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Abstract

The interpretability of models has been one of the focal research topics in the ma-
chine learning community due to a rise in the use of black box models and complex
state-of-the-art models [6]. Most of these models are debugged through trial and error,
based on end-to-end learning [7, 48]. This creates some uneasiness and distrust among
the end-user consumers of the models, which has resulted in limited use of black box
models in disciplines where explainability is required [33]. However, alternative models,
”white-box models,” come with a trade-off of accuracy and predictive power [7]. This re-
search focuses on interpretability in natural language processing for misinformation data.
First, we explore example-based techniques through prototype selection to determine if
we can observe any key behavioural insights from a misinformation dataset. We use
four prototype selection techniques: Clustering, Set Cover, MMD-critic, and Influential
examples. We analyse the quality of each technique’s prototype set and use two proto-
type sets that have the optimal quality to further process for word analysis, linguistic
characteristics, and together with the LIME technique for interpretability. Secondly, we
compare if there are any critical insights in the South African disinformation context.
Keywords: Disinformation, Interpretability, South African, Prototypes, Example-based.
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“Interpret means to explain or to present in understandable terms. In
the context of ML systems, we define interpretability as the ability to ex-
plain or to present in understandable terms to a human. A formal definition
of explanation remains elusive; in the field of psychology, Lombrozo states
“explanations are the currency in which we exchanged beliefs” and notes
that questions such as what constitutes an explanation, what makes some
explanations better than others, how explanations are generated and when
explanations are sought are just beginning to be addressed.”

Doshi-Velez, F. and Kim, B. (2017) ‘Towards A Rigorous Science of Interpretable
Machine Learning’.
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Chapter 1

Introduction

Machine learning models have become less explainable in the last couple of decades, such
that they can solve complex problems while not compromising on predictive accuracy
[3, 25, 16]. However, the more complex the machine learning model is, the more difficult
it can be to explain how it made its decisions. Therefore, explaining or interpreting how
a model makes its decisions has become paramount in recent years. Resulting in the
model’s learning biases, models not performing as expected in ”the real world,” end-
users wanting to understand why a model selected or did not select them for a particular
class/category, etc. Interpretability has thus become a crucial research field, especially in
high-risk areas like self-driving cars, medical diagnosis, and criminal detection systems.
Interpretable models build trust and transparency between the model and end-users.
Various explainable models have been developed; however, some of the explainable mod-
els do not produce humanly interpretable outputs. Human interpretable models are
essential as this ensures lay users can understand how a model makes its decision with-
out having to be the model/system developer.
Natural language processing models interact with society frequently, like translation sys-
tems, next-word prediction, sentiment, and fake news detection. Therefore explainability
needs to be humanly understandable in this field to ensure safety and trust.

1

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 1. Introduction 2

This research aims to explore a humanly explainable model in natural language fo-
cusing on misinformation. We leverage known humanly explainable machine learning
techniques on misinformation data to determine if there are no key characteristics of
misinformation data that can aid in safety online when it comes to fake news.
This chapter provides an introduction to the study; we first discuss in detail the mo-
tivation and background, followed by research objectives & contributions, and finally,
discuss the outline of this paper.

1.1 Motivation

Explainable AI refers to techniques designed to assist in interpreting how models make
their decisions. The need to be able to interpret how a model makes its decision has risen
in the past decade; due to regulation and ethical concerns for end-users to understand
how a model came to its decisions [3]. For example, a recent law that has been put
in place is the General Data Protection Regulation (GDPR) which states the ”right to
explanation,” meaning that consumers of a model have a right to be provided with an
understandable reason on how the model reached its decision [16, 27].
Interpretability is not required by all machine learning tasks or use-cases, it is required
where an incorrect outcome has significant consequences or the problem has not been
studied sufficiently leading to untrust in systems output [16, 3].
Explainable machine learning in natural language processing (NLP) tasks has recently
become a focal topic. Historically NLP systems were based on hand-written rules and
decision trees based on hard if-then rules. Thus, in earlier years, NLP tasks were ex-
plainable to a certain extent [13, 42]. However, with the introduction and rise in deep
learning models and modern NLP tasks, the systems and models used for NLP tasks
are more complex with deep learning networks or state-of-the-art transformer models
such as BERT (Bidirectional Encoder Representations from Transformers) being used,
making them less transparent and humanly explainable [3, 16].
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Chapter 1. Introduction 3

The need for interpretability in NLP tasks is because most of the tasks in NLP in-
teract with the society at large and tend to learn human biases [42]; For example, a
sentiment classifier that Luminoso trained showed that the trained classifier was repre-
senting racist behaviour; as a neutral sentence ”Let’s go get Italian food” was classified
more positive than a functionally similar statement ”Let’s go get Mexican food.” Another
well-known example is Taytweets, the Microsoft tweet chatbot, which was supposed to
resemble a 19-year-old girl but instead learned and tweeted racist and offensive tweets.
This shows that interpretability in NLP is crucial to ensure the models can be trusted
as some of the models have the potential to create instability in society. [13, 11].
In this research, we focus on the interpretability of NLP misinformation classification
tasks. We have seen a rise in misinformation being distributed on various social media
platforms. An example is the current COVID-19 pandemic; a lot of misinformation has
been filtering through the media, causing significant panic in society. Governments took
this spread of misinformation seriously and even tasked working groups to deal with the
issue, as it may impact how effective a government can be in dealing with the pandemic.
Thus, if we can explain misinformation and identify humanly interpretable characteris-
tics, there would be more safety online.
Three main techniques can be used to explain models: model-agnostic, model-specific,
and example-based techniques [17, 3, 16, 33]. Model agnostic are techniques that can be
applied to any model, whilst model-specific are methods that can only be used for a spe-
cific family of models and lastly, example-based techniques focus on extracting examples
from the data which is then used as an explanation for the models or summarisation of
the data [17, 3, 16, 33].
In NLP tasks, extensive research has been done on model-agnostic and model-specific
techniques, where the main aim is to determine which variables are the most influential
to the decision made by the model. However, there is limited application of the use
of example-based techniques where the objective is to explore a sparse sample of the
dataset to achieve explainability. This paper explores using example-based techniques
to achieve explainability in an NLP misinformation task.
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Chapter 1. Introduction 4

Explainable machine learning literature has limited consensus on the difference be-
tween the term’s interpretability and explainability. Some literature uses the terms
interchangeably, while others have clear distinct differences between the two. In this
paper, we will use the terms equally as done so in [29, 33] and define interpretability and
explainability as ”the degree to which a human can understand the cause of a decision”
[16].

1.2 Objectives

The primary goal of the thesis is to use a human interpretable model for misinformation
classification to identify and characterise misinformation effectively.We leverage example-
based techniques, as psychological studies state humans understand or create reasoning
through creating a mental model by using examples [30].

More specifically, our goal seeks to answer the following research questions:

1. What behavioural factors can distinguish a misinformation class?
a. Can we use prototypes with a combination of another model and feature engi-
neering technique to extract such features?
b. Is there a contrast in these behavioural factors on different datasets from dif-
ferent countries or topics; what underlying commonalities exist?

2. How does prototype/example-based methodology compare to the most commonly
used algorithms?
a. Is an example-based approach significant to an approach that outputs an attri-
bution map?

The secondary goal of this research is to determine the quality of prototypes selected
by training a model on the sparse dataset and analysing how well the model performs.
Based on the results, we can evaluate the quality of the selected prototypes (assist in
use cases where there is insufficient data).
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1.3 Contributions

The main contribution that this research will bring to the explainable research commu-
nity is the use of example-based techniques on natural language misinformation tasks
compared to the extensively researched model-agnostic methods with a focus on ex-
tracting key features and characteristics. Instead of focusing on the feature space, we
focus on representative data samples and extract key behavioural insights to achieve
interpretability in misinformation data. We further compare whether there is a contrast
between South African fake news to Global news data characteristics.

1.4 Limitations

The main limitation we experience is the limited data for using South African fake news
data. The dataset is comparable small to the rest of the data with only a sample size of
763 Fake news data and more than 40000 real news.

1.5 Dissertation Outline

The rest of this thesis will be organised as follows.:

• In Chapter 2 we look at and review the literature that has been researched on
explainable machine learning.

• In Chapter 3 we discuss the data that was used in this research and how we
performed exploratory data analysis[EDA] on our datasets.

• In Chapter 4 we provide a comparative application on the well known explainable
techniques in natural language processing.

• In Chapter 5 we discuss the methodology that was applied in this research to
determine interpretability in misinformation.

0Work presented on the 28th October 2021 at the Ethics and Explainability for Responsible Data
Science (EE-RDS) and the paper is under Review
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• In Chapter 6 we provide the results of the experiments we performed.

• In Chapter 7 provided the concluding remarks and discussion on future work.
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Chapter 2

Literature Review

The research in this thesis aims to understand interpretability for specifically natural
language processing tasks with a focus on misinformation tasks. We aim to identify
characteristics of misinformation with the help of using interpretability techniques. Such
that we can produce humanly explainable examples for misinformation tasks. This
chapter starts by summarising the taxonomy of interpretability in section 2.1. We then
discuss and review the literature on intrinsically interpretable models in section 2.3,
followed by section 2.3, which focuses on post-hoc model interpretability, and finally,
section 2.5 summarizes key takeaways from the literature reviewed.

2.1 Taxonomy of Interpretability

Interpretability is defined as the degree to which a human can understand an explanation
and is required because of the incompleteness of the problem being solved. However,
further to the issue of incompleteness various pieces of literature like [33] and [16] state
that the importance and the why for having an explainable model is for the following
reasons:

• Trust & Verification:

The models must be trusted by the end-users so that when they interact with the
model, they can fully trust the decisions made by it.

7
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Chapter 2. Literature Review 8

• Safety:

Refers to understanding how a model works, which is valuable in high stake de-
cisions.This allows for constant improvement of the system such that it has a
near-to-zero error rate as we constantly learn from it.

• Debug & audit:

Explainability allows users and developers to debug models when the model fails.

• Detect bias:

Assists in picking and detecting if a model learns any biases from the data.

The survey by [14]: Opportunities and Challenges in Explainable Artificial Intel-
ligence (XAI) summarises the above-stated need for interpretability into three groups
being:

1. Accountability; to create a sense of accountability when a model fails.
2. Fairness; to ensure that models are fair and safe from bias and lastly
3. Transparency; to ensure trust and verification.
It is argued that accountability is the most important reason that we should aim to

achieve with interpretability.

2.1.1 Evaluation of Interpretability

There has yet to be a consensus on how to validate interpretable models. However, there
are three main suggested evaluation techniques that were first presented in the paper
”Towards A Rigorous Science of Interpretable Machine Learning” by [16]:

1. Application grounded method: The explainable model to be evaluated by the end-
user in the environment in which it will be deployed.

2. Human grounded: How simply can a human evaluate the explanation.

3. Functionally grounded: How well does the explanation faithfully represent the
model.
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Chapter 2. Literature Review 9

Further to the proposed evaluation methods [33] and [13] state that an explainable
technique should have one or more of the following properties:

• Translucent: Relates to how reliant the model is to model parameters.The more
translucent an explainable model is the better.

• Portability: Model can be used for different types of models.

• Accuracy: How well the explainable model predicts unseen data.

• Fidelity: How well the model mimics the model’s prediction.The lower the fi-
delity,the more unreliable the explanations are.

• Consistency: Explanation must be consistent on different models for the same
data.

• Stability: high stability is desired for explainable models; similar to consistency
an explainable model is stable if there are no significant changes in data instances
similar to the data point being explained.

• Comprehensibility: Refers to how well humans can understand the explanation.

2.1.2 Classification of Interpretability

Traditionally interpretable models are classified as either intrinsic or post-hoc which is
determined based on when interpretability is achieved [11, 42].For example, suppose in-
terpretability is achieved with the model’s output or during the prediction phase.In that
case, the model is classified as intrinsic, using figure 2.1 as a visual explanation, the
model would end at the output phase and no additional processing would be required.
Conversely, post-hoc interpretability is achieved through further processing after the
model has predicted an outcome; this is seen in the adapted figure 2.2.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  
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An explainable model G(.) can either be 1. model-specific indicating that the tech-
nique can only be used for a specific class of machine learning models, or 2. Model-
agnostic indicates that the technique can be used for all model types [16, 3, 27]. The
output, g, of an explanation can be a:

• Feature summary: This indicates features that are the most relevant in making a
decision for a particular class.

• Feature visualization: Output of an image highlighting the important features or
pixels.

• Model internals: Internal weights or structure of models; usually the output of
inherently interpretable models like decision trees, linear models, etc. and

• Data points: Returns sparse data points that best represent the full dataset X.

The scope of an explanation output, g, can either be local, explaining a single data
point, or global, explaining the high-level overview of the model of class [14, 29, 17].

Figure 2.1: High-level overview of a typical machine learning system. Which takes in an input
of X data points, which is fed into a learned machine learning algorithm f with parameters �
and outputs a vector of decisions Ŷ .

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  
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Figure 2.2: High-level overview of a typical post-hoc interpretable model. Which uses the
output of machine learning and applies to an interpretable technique G to output an explana-
tion.

2.2 Intrinsically Interpretable models

Most of the traditional intrinsic methods, like decision trees or logistic regression, do
not offer the complex learning that comes with dealing with language data resulting in a
significant trade-off of in accuracy. This motivated researchers to explore the ability to
achieve intrinsic explainability in complex deep learning models by leveraging the internal
structure and knowledge learned by the model. The prominently used architecture to
achieve intrinsic interpretability using deep learning models is the attention mechanism
that can be added to the architecture of a deep learning model [24].

The attention mechanism was proposed to improve the performance of language
models. Attention uses a contextual vector, which is the output of the encoder layer;
attention allows the input to focus on the previous output or, similarly, for the input
features to interact with each other, known as self-attention [24, 44]. Because the atten-
tion mechanism produces weights, the weights can be used to output an attention map
that highlights the most prevalent features that were used in each layer [12, 6]. Although
attention may seem to provide a sense of transparency for deep learning models; [37] and
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[6] states that the attention mechanism should be used with caution as it is a mixture
of various representations and can be misleading.
[44] proposes to iterate through the attention query using an iterative, recursive atten-
tion model which attempts to trace back the contextualized word representation from
the encoder with the aim of learning better representations and attention weights that
can be used as an explanation of the model rather than normal attention.
Alternative to attention as an intrinsic interpretable model [10, 36, 19, 1] leverage off
the convolution neural network (CNN) structure with adaptions in the last layers of the
network to achieve explainability for the model’s decisions. [49]’s approach uses the CNN
with a ReLu(rectified linear unit) in the last two hidden layers, such that they can lever-
age the local linear models (LLM) produced by ReLu. The explanations are obtained by
determining the importance of the text inputs by using the weights of LLM. Similarly,
[19] uses a TC-CNN which, instead of ReLu, in the last hidden layer global average pool
is applied to the spatial feature vectors of the CNN to obtain a single feature vector F.
The obtained feature vector is used on class activation map extraction to determine the
contribution of each feature.
Uniquely [36] uses latent features which are explainable to train a deep learning model.
The proposed latent variables fall into six categories of the complexity contour generator
(CoCoGen), which are part of the Stanford CoreNLP toolkit. The latent variable list
and description can be seen below in table 2.1. The approach first analyses text using
CoCoGen to obtain an output sequence of 154 feature vectors that relate to the features
described in table 2.1. The feature vector obtained can then be fed into a network to de-
termine output and explanation based on the relative importance of the language feature
groups. The relative importance of a feature group is determined through delta scores
which are standard scores obtained by performing normal standardization on all indica-
tors (feature groups); with the scores, one can distinguish interesting patterns between
classes.
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Feature group Size of Sub-types Example/Description

Syntactic complexity 18 mean-length,clauses per sen-
tences, Coordinate phrases
per clause and Particular
structures

Lexical Richness 12 contents words, Lexical di-
versity,type token ratio,Lex-
ical sophistication

Register-based n-gram frequency 25 measures of frequencies, n-
gram frequency of order 1-5
from five language registers

LIWC-style 60 function, grammar percep-
tual, cognitive and biologi-
cal processes, personal con-
cerns, affect, social, basic
drives.

Word-Prevalence 36 information on word fre-
quency,contextual diversity
and semantic distinctive-
ness.

Table 2.1: Table of CoCoGen feature groups and descriptions adapted from the literature [36]
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2.3 Post-hoc Techniques

The most common techniques for explainability for deep learning models is post-hoc
methods. The techniques aim to achieve interpretability after the model has been trained,
by using the information and output of the trained model to explain why a model made its
decision as shown visually in figure 2.2. The techniques can be split into gradient/saliency
based, surrogate based, probing and example based techniques.

2.3.1 Gradient based techniques

Gradient-based interpretable methods use gradient signals to assign relevancy of feature
inputs with the goal of creating an attribution map[35, 43]. The attribution map captures
the importance of each feature. Attribution maps have to be sensitive to changes in the
input space to ensure they do not focus on unimportant features and are invariant such
that they are consistent in the output result when applied to different models [43, 29].
Further, gradient methods commonly achieve local interpretability for a single instance
xi looking back at figure 2.2; figure 2.3 shows an adaptation of the explanation function
G and output to show what the methodology outputs and the baseline explanation
function.

One of the well-known attribution techniques is saliency, termed the vanilla gradient
in some literature. Explainability is achieved by taking the gradient of the output with
respect to the input. However, saliency can be very noisy. To improve the noise [29, 2]
proposed grad * input to smoothen the attribution maps by multiplying the gradient
with the instance value, see equation 2.1 and 2.2 respectively.

AttributionMap = AC =

∣∣∣∣∣ ∂Ŷ∂ xi

∣∣∣∣∣ (2.1)

AC =

∣∣∣∣∣ ∂Ŷ∂ xi

∣∣∣∣∣ ◦ xi (2.2)
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Figure 2.3: High-level overview of a salient-based explainable model. Which uses the output
of machine learning and calculates the gradient of output with respect to input to determine
important features for making the decision.

Vanilla gradient explanations are usually best suited in models where a linear rela-
tionship exists between output and input; given that deep learning models are complex
and linearity does not exist, the technique may not be as faithful to deep learning mod-
els [34, 35]. [43] proposed integrated gradients, a modification of the gradient approach.
Integrated gradients averages all gradients along a straight line between a baseline value
x̄ and the input of interest xi. The baseline is usually chosen to be an empty sequence.

Attribution methods only focus on the change in the output layer with respect to the
input layer. They do not consider the intermediate layers and the changes of the feature
gradient [43, 35]. Attribution propagation is proposed, which looks at each layer from the
output to the input. Propagation methods decompose the network work layer by layer
assigning relevancy scores on each neuron[35, 34]. One of the most popular attribution
propagation methods applied to NLP downstream tasks is layer-wise relevancy propaga-
tion(LRP). LRP starts from the outer layer Ŷ and works backward, assigning relevancy
score, Rk, to each neuron based on its sensitivity it is to its successor layer [43]. The
score is calculated by decomposing the activation function in each neuron rather than
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Figure 2.4: Overview of a Layer-wise propagation technique as shown in [42]. Shows the
decomposition process from model prediction layer to input feature layer.

calculating gradients [42]. Figure 2.4 shows a visual example of the decomposition.
Alternative to LRP, [39] proposes a more improved propagation technique, DeepLift.

Instead of directly redistribution the score from the upper layer to the lower layer,
DeepLift uses a baseline to calculate the relevance score by looking at the effect of
the activation neuron from the original data, xi, compared to the baseline data x̂i.
Contrary to attribution-based methods, [27, 3] Proposes the use of surrogate models
over attribution methods as attribution methods can be fragile and highly unreliable for
an explanation of complex-based models.
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2.3.2 Surrogate Models

Surrogate models attempts to mimic the model and how it achieved its output by using
the information from the model to train a more intrinsic model with the information
captured [37, 23]. Surrogate models were first proposed by [46] to model latent variables
with the aim of making the process more explainable. The benefit of using surrogate
models for explainability is that they are portable and can be applied to any model
for any dataset [33, 16]. The commonly used surrogate model in machine learning is
LIME (local interpretable model-agnostic explainer). LIME was first proposed by [37],
in the paper ”why should I trust you? Explaining the predictions of any classifier”. The
technique selects an instance xi for interpretation that has been predicted using a model
F ; LIME selects perturbed points close to the instance to create a new data set. The
new data is trained using the model F and an intrinsic model like logistic regression to
gain insight and explanation for the model’s decision. LIME outputs the most significant
variables for the model when making a classification decision.

LIME only produces local explanations; as such, there have been various adaptations
of LIME to achieve global interpretability. [23] proposes K-LIME, which uses partitioning
to partition the space of the predictors and fits an intrinsic model in each partition.
Similarly, [37] proposed SP-LIME, which rather than partitioning, picks a set of instances
that best represent the data that are used to fit the intrinsic model to gain a global
understanding of the model.

A major limitation of LIME is that the weights produced do not necessarily indicate
the importance of a feature and can create a false sense of relevance in the features.
[49] and [33] propose to compute Shapley values for explanation compared to LIME.
Shapley values use the ideology of game theory to create a linear combination or model
for every permutation of features. The shapely value shows the average contribution of a
feature across all possible permutations. For example given data which has two features
[x1, x2] shapely will average across the weights obtained from the permutation [x1], [x2],
[x1, x2]. The computational time of obtaining Shapley values can exponentially increase
with the more features one has.

Contrary to determining which features are relevant as explanation [22], proposes
to use feature importance techniques with probing techniques that can inform us what
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linguistic properties are captured in the model. There are various techniques which probe
for various properties such as syntactical structure, context, semantics, sentence length,
word order, verb tense. Probes are shallow networks that are placed on the intermediate
layers of a network and can investigate in each layer what is captured [22, 48, 18]. If
the task being probed for performs poorly, in accuracy terms, then the information is
not encoded or is not needed to make a decision. The main issue with probes is they
can be complex and maybe be unfaithful; instead of learning the representation being
probed it learns the task [22]. Given that linguistics are essential for NLP, probes are
important in giving a holistic explanation and should instead be used as a combination
with an alternate explanation technique.

2.3.3 Example based techniques

[45] argues that using importance value for interpretation may be abstract for a lay-user
to gain a full understating for NLP task as they may not grasp the significance of the
importance of the word “help” for instance. They thus propose using example-based
techniques, given that humans work with mental models and contrasts for explana-
tions; therefore, example-based techniques will help humans build mental models of the
machine learning model [30]. The three most prominent interpretation example-based
methods are:

Counterfactual examples

Counterfactual examples aim to achieve interpretability by producing a contradictory
reality; It aims to describe a causal situation by stating that if X had not occurred , Y
could not have occurred. In figure 2.5 from [38], we see an example of a counterfactual
example generator using text-to-text transfer learning; for an instance where the expla-
nation is a contrasting scenario selected from a sample of candidates. Counterfactual
is interested in what changes in the input of an instance will cause a prediction to flip
[33, 29]. In earlier years, to obtain counterfactuals, it was either through trial and error,
where features where flipped until the desired outcome was obtained, or manual anno-
tations were required by experts of the data [38]. Recently, there have been tool-kits
created to obtain counterfactual explanations from a model by masking a percentage
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Figure 2.5: Overview of counterfactual generator as shown in [38]. Shows how from the
positive classified input text of a sentiment classifier ”This movie is great,” a % of the words
are masked; in this case, the word ’great’ is masked, and editor searchers for appropriate
counterfactual for the use case being ”This movie is bad.” Explaining that if the word ”great”
was not there, the sentiment decision would not have been positive

of data through text-to-text transfer learning and conducting a binary search to gener-
ate edits, and once the desired outcome is obtained, the process stops. Similarly, [45]
proposes Polyjuice, which uses a library of annotated data to generate real-world coun-
terfactuals. Counterfactuals may run into the issue of having too many explanations
that can contradict each other [3]. Moreover, they need to be minimal in the sense that
a minimal change to the input is inserted into the original data point, further, they must
be grammatically, and semantically meaningful [45, 37, 16].
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Adversarial Examples

Adversarial examples are very similar to counterfactual examples, but more with the aim
of identifying the model’s vulnerable points [33, 29]. Adversarial examples are looking
for input points that would make the model make an incorrect classification; for instance,
in an NLP misclassification case, the input example would be text that would classify
the text as genuine when in fact, it is fake. Adversarial examples are commonly used for
debugging a model more than interpretability [29].

Prototype Selection

The prototype algorithm goes back to 1968 when it was termed instance-based learning.
The original aim of selecting prototypes was for data editing purposes with the aim
of improving accuracy and efficiency in their data, rather than wanting to understand
the data set [8]. Historically the techniques to select prototypes were using clustering
techniques (K-medoids or K-means) and determining how far instances are from one
another [8, 33, 25]. A recent approach, with the aim of explainability, is the set cover
theorem proposed by [8]. This approach aims to find the smallest subset of data so that
every point around the data is in close proximity.

All the techniques above are aimed at just identifying the dataset which best repre-
sents the full data; however, what about the outliers of the data? [7] states that if we just
rely on prototypes, we may miss important information about our data and consequently
over-generalize. They propose an approach that leverages a bayesian framework and aims
to extract prototypes as well as critics which are data points that do not best represent
the data to gain holistic explainability and understanding of complex data [7, 33]. The
algorithm is commonly known as MMD-critic. It has been explored extensively in image
classification tasks where the prototypes are visual examples of images that best rep-
resent the data. From the small set of prototypes and critics, one can understand the
data and different attributes and features; a visual example of the method can be seen
in figure 2.6. The outputs of the prototypes can be used to explain a particular class in
a classification task and why the model made its decision. Further, prototypes can be
used to train the nearest neighbour classifier for intrinsic explainability [3].
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Figure 2.6: Overview of prototype and critics selection process; we start of with the full
dataset X and from the data set add, xi, data instances which minimise the distance between
the distribution of prototypes and full dataset

2.4 Application of NLP Interpretable models on mis-
information models.

In this research, we focus on one of the applications of NLP, misinformation. The rise
and detrimental effects of fake news have attracted the use of deep learning models
for detecting fake news. However, the model’s performance alone is not sufficient [5].
Therefore in this section, we zoom into the literature related specifically to misinforma-
tion explainability. [31] in the paper ”A Survey on Explainable Fake News Detection”
categories the explainability of misinformation models into:

1. Explanation by social features:

Techniques that use social media platform data to achieve interpretability in fake news
detection. These methods often use comments and user profile history of who shared the
news article to explain why an article is classified as fake. For example, [40] proposes the
dEFEND framework, which uses the co-attention mechanism by using both comments
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and news content to achieve interpretability. Similarly, [28] proposed using Graph Neural
Networks, which looks at more attributes compared to the dEFEND framework. Over
and above the comments and news content, the methodology also uses profile history
features to explain why a text was classified as fake. However, these techniques are often
limited to articles disseminated through social media platforms.

2. Explanation by feature importance:

The most common techniques used to achieve interpretability in misinformation models
aim to extract key features. [5, 20, 4] suggest the use of surrogate models or a com-
bination of surrogate models to extract key features. They propose to use techniques
such as LIME, anchors, SHAP, and attention mechanism with misinformation models to
achieve interpretability. Given the gaps identified with surrogate methods in 2.3.2; [5]
further suggests using human-in-the-loop together with the techniques. They selected a
sample of people; one group was provided the output of the model’s prediction, while
another group was provided with both the output of the model and feature importance
outcome from SHAP. The observations noted were that when humans are included to
achieve explanation, it is easier for the users to trust a model and build mental mod-
els of the different categories in the future. Uniquely, [36, 32, 41] suggest using latent
variables and hierarchal structures to achieve explainability in misinformation use cases.
[36] used latent variables as discussed in 2.2; the latent variables are generated using the
complexity contour generator and fed into a misinformation model. The relative impor-
tance of the feature group is then used for an explanation by observing any interesting
patterns in the classes. On the other hand, [32, 41] use hierarchal structures to achieve
interpretability in misinformation use cases. [32] uses a hierarchal attention network;
the attention network looks at salient sentences to determine the most important sen-
tences in each article. The highlighted sentences are outputs and are used to explain
the model’s prediction. Alternatively, [41] builds a hierarchical propagation network for
each class to extract structural, temporal, and linguistic features. The features extracted
from each class are compared to note if any differences exist between fake news data and
true news data.
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3. Explanation by news content:

These methods output the most important words based on the linguistic and semantic
features from the content of the article [31]. [47] developed the xFake system to achieve
this; the system is designed to analyze news items from different perspectives. The sys-
tem uses PERT, which studies the linguistic properties in the news context, and ATTN,
which studies the semantic properties. As a result, the system highlights important
words or features based on linguistic and semantic properties to achieve explainability
in misinformation articles.

In most literature, when it comes to misinformation models and interpretability,
the aim is to provide a reasonable explanation to the user to increase user trust and
confidence. Given that the users are not experts, it is thus paramount for the explanation
to be humanly understandable [5, 31, 4].

2.5 Summary

In the sample literature reviewed, we see that there has been significant progress in
the research of interpretable black box models for natural language tasks. Most ap-
proaches offer post-hoc interpretability meaning explainability is achieved once the model
is trained. We determined two categories of techniques of explainability into two model-
agnostic and model-specific. We find that the approaches applied to NLP models aim
to understand how features interact, determine which words are the most relevant, and
what linguistic properties are captured in the model. We found that example-based tech-
niques are applied for natural language tasks but with a primary focus on counterfactual
and adversarial examples. We focus on example-based methodologies, which select a
subset of the data or instance of the data for interpretability in an NLP misinformation
classification task. We further apply the methodology to a South African fake news data
set to determine if there are any significant insights between global vs. South African
fake news.
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Chapter 3

Data Collection

This chapter describes the data we used for this research and how it was collected. The
data used is categorised into true and fake news classes. In section 3.2, we describe the
pre-processing steps that we took on our datasets, and in section 3.3, we discuss the
exploratory data analysis.

3.1 Datasets

3.1.1 ISOT DATA

We use the commonly known misinformation dataset, the ISOT dataset, as the baseline
dataset collected by the University of Victoria’s Information Security and Object Tech-
nology lab. The dataset consists mainly of a combination of world news and political
news from the year 2015 to 2018. The data was collected from reuters.com, Politifact,
and Wikipedia. In table 3.1 and 3.2 we show how the data is structured and the size of
the data.

24
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Data Attributes Description

ID Unique identification of document
Title Title of document

Author Arthur of document
Text Full text of document
label Class specification (1-misinformation, 0-true)
Date Date the news article was posted(ranges between the year 2015-2018)

Table 3.1: Table showing attributes ISOT dataset

Misinformation Size (number of documents)

Fake News 23481
True News 21417

Table 3.2: Table showing number of news articles in each class

3.1.2 COVID Dataset

The second dataset we use is a COVID dataset; we chose this dataset given the recent
increase in misinformation given the COVID pandemic; the data is named COVID-
FNIR and extracted from IEEE DataPort. The dataset contains news articles related to
COVID news during the year 2020. It consisted of India, USA, and Europe data scraped
from different sources; fake news was collected from Poynter, and true news from verified
Twitter handles and news publishers. The fake and true news datasets were stored in
different files as they had slightly different attributes in table 3.3. We show the attributes
and also include the size of the data.
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Data Attributes Description FakeNews TrueNews

Date Date the article was created(Period of 2020) Yes Yes
Link Link to the article Yes Yes
Text Full text of the news Yes Yes
Region Region the article originated from Yes Yes
Country Country the article originated from Yes Yes
Explanation Explanation of why it was labeled fake news Yes No
Origin URL Original link to article Yes No
Poynter Label The class label provided by poynter Yes No
Label Classification provided by the data collectors 0(Fake) 1(True)
size Size of Article 3794

Table 3.3: Table showing attributes COVID dataset

3.1.3 South African Dataset

South African dataset, which was curated with fake and real news data; the news articles
were posted between the years 2017-2019. The fake news data was obtained from Zenodo
Data Repository, which was data scrapped from disinformation websites in South Africa.
The true news data was collected from various news media across South Africa news24,
eyewitness, etc. The limitation of South African disinformation data is that it is minimal
in size; we had 763 Fake news data and more than 40000 real news datasets as shown in
table 3.4.

Data Attributes Description

Date Date article was released (ranges between the year 2017-2019)
Title Title of document
Text Full text of document
URL URL to the news article

Medium Medium news was shared

Table 3.4: Table showing attributes of South African dataset
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3.2 Data Pre-processing

We perform pre-processing such that we can have quality data when applying explanation
techniques. First, we reduce the number of attributes in each dataset. We want all the
data sets to be standard and comprise just two columns, text and label. For the Covid-19
dataset, we had to change the class labels to align to ISOT where 0=True and 1= Fake
news; we added an additional label column to the South African data to have similar
class labels.

To ensure our data was ready for processing, the following steps were taken.

• Removed all empty text instances and instances with less than five words as these
instances may not provide us with the necessary insight required.

• We detect non-English texts in the text data through language detection.

• We perform regular expression processing by removing HTML tags, digits, punc-
tuation, stop-words, remove duplicate texts, and lemmatizing the text data.

• For each data set we perform further cleaning; for the ISOT data we had to remove
the publication words in the text such that the models do not pick up biases; for
the Covid dataset we ensure one consistent wording for the word covid and lastly
for the South African dataset provided that it has imbalanced classes we performed
under-sampling.
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3.3 Exploratory data analysis

To analyse the dataset further, we use some exploratory text analysis techniques. We
analyze prominent words and word length, perform sentiment analysis, and lastly, unsu-
pervised topic modelling.

3.3.1 Word/length analysis

We analyse the length distribution of words and characters in each dataset by determin-
ing the average word length and vocab in our text. We compare the word count of class
1 (fake) and class 0 (True). We find that in both classes across the datasets, the average
length of words of fake and real text is similar, with fake news having more outlying
values as seen in figure 3.1 to figure 3.3.
To further analyse the words in each datasets we observe the top bi- and tri-gram words
and word cloud to observe the most frequent words in each dataset. As observed in
appendix 1, we find the most frequent words in the true dataset similar to that of fake
news, which is expected as fake news text tries to disguise itself to be true and is usually
around a common topic; we summarise the frequent words in table 3.5.

Data ISOT Covid SA
Class 1(Fake) President,Coun-

try,Trump
COVID19,Peo-
ple,lockdown

ANC,country,Police,govern-
ment,Ramaphosa

Class 0(True) President,Coun-
try,Trump,Republi-
can

COVID19,Test, lock-
down,hospital

ANC,country,newcase,gov-
ernment,ramaphosa

Table 3.5: Table showing prominent words in each datasets as observed in the word cloud in
Appendix1
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Figure 3.1: Density plot of word count for ISOT dataset
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Figure 3.2: Density plot of word count for Covid dataset
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Figure 3.3: Density plot of word count for SA dataset
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3.3.2 Sentiment analysis

Textblob is used to determine the sentiment of the text between the classes. Overall the
sentiment of each class follows a similar distribution and is neutral. We further observe,
as can be seen in figure 3.4 - 3.6 that the South African and ‘Covid data has more
positive outlook compared to that of the ISOT data, which may also be influenced by
the vocabulary and culture in the different regions the data was collected.
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Figure 3.4: Density plot of Sentiment for ISOT Data
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Figure 3.5: Density plot of Sentiment for Covid Data
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Figure 3.6: Density plot of Sentiment for SA Data
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3.3.3 Unsupervised Topic Modelling

Lastly, we used the genism model to perform unsupervised bi-gram topic modelling on
our dataset to determine the common themes in our data. The output can be observed in
Appendix 2. We observe the themes in ISOT are centered around Presidency, American
politics, and Ministers; the Covid data is centered around Covid cases, death rate, and
lockdowns.

3.4 Summary

We observe that the prominent words, sentiments, and topics in fake news are similar
to that of true news. Showing it is challenging to separate fake and true news by just
using prominent words. We will explore this further in the coming chapters.
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Chapter 4

Measuring and Comparing
Attribution Type Interpretable
Models

In this chapter, we explore some of the popular explainable techniques applied to NLP
misinformation classification tasks. We use the baseline dataset ISOT to obtain results
from some of the most popular techniques for interpretable machine learning. We discuss
each technique and compare the output results.

4.1 Logistic Regression & Decision Trees

We first explore intrinsic approaches, logistic regression, and decision trees that were
traditionally used on NLP classification tasks to achieve interpretability [27]. We first
tokenize our datasets before we train them using the models. We explore two tokenizing
approaches, TfidfVectorizer, and word2vec embeddings. We further explore uni-gram
and tri-gram tokenization to be able to extract phrases rather than single words.

36
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Logistic regression

Once we have tokenized our text data, we use a logistic regression pipeline to train both
uni-gram and tri-gram tokenized data. Given that once the model has been trained and
tested, there is no further pre-processing required, we interpret the model’s decision by
extracting the learned model coefficients.

From the coefficients, we can determine which words and phrases were the most
influential in making a model decision. In figure 4.1 and 4.2 we show the most positive
and negative words for the model in the uni-gram and bi-gram case.

Figure 4.1: Top positive and nega-
tive features for uni-gram logistic re-
gression

Figure 4.2: Top positive and nega-
tive features for tri-gram logistic re-
gression
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We observe that words and phrases with president name’s and ones that mention
American politics negatively contribute to the model’s decision.

We further perform local explanation for a single instance and compare the explana-
tion between the tfidf and word2vec. In figure 4.3 and 4.4 we observe that the explana-
tion for the instance is identical in both cases indicating that the logistic regression as
an explainer is faithful; there is a slight difference in the probability and score and some
words are highlighted darker in word2vec compared to Tfidf meaning they assigned more
importance in the explanation.

Figure 4.3: Local explanation for Tfidf logistic regression model

Figure 4.4: Local explanation for word2vec logistic regression model
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Decision Tree

With the decision tree, the model’s output is a rule-based global explanation. During
the training phase, we limit our trees to a depth of 5. The results of the decision tree
can be shown in figure 4.5.

Figure 4.5: Local explanation for word2vec logistic regression model

The phrase used to make decision rules in the model is also related to the presidency
and politics from the USA, similar to the logistic regression. However, we also note that
the decision rules for fake and true news classes are very similar and making it difficult
to distinguish a clear decision rule between the classes..
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4.2 LIME (Local interpretable model-agnostic ex-
plainer

We apply the LIME surrogate model as explained in chapter 2. We first train an LSTM
(long short-term memory) network on our ISOT dataset to classify misinformation. Once
our model has been trained and tested, we apply the LIME methodology to derive a local
explanation for a single instance. The steps we followed are:

• Use word2vec embeddings on the cleaned dataset.

• Train LSTM

• We select an instance of interest x10 from our test dataset for an explanation,
similar datapoint used across the techniques.

• Select perturbed points that are in the proximity of x10

• We use LIME to generate explanations.

The output of the explanation can be seen in figure 4.6. The words with the highest
weights for fake and real news are highlighted, with orange indicating importance for
fake and blue real news. The darker the color, the more significant the feature is in
explaining the outcome.

Figure 4.6: Local explanation for word2vec LIME model
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SP-LIME

We further use SP-LIME to derive a global explanation. We pick a representative sample
in each class that applies LIME to each instance in the chosen samples to determine the
most common explanation for each category. We observe that true news explanations are
words with dates, facts, and neutral words; Fake news explanations are usually related
to the government and are politically connected. The results of SP-LIME can be seen
in Appendix C.

4.3 SHAP Values

Given that LIME weights cannot be trustworthy in determining the importance of a
feature [33], we apply SHAP values as described in chapter 2. We observe the outcome
in figure 4.7, which shows the top 20 features based on their importance. The weight
of each variable based on the average of its combinations across the feature space is
the x-axis and shows whether the variable positively or negatively affects the predicted
outcome.
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Figure 4.7: SHAP explainer on ISOT data
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4.4 Attribution values: Integrated gradients

Lastly, we applied attribution methods to observe the outcome of the explanation tech-
nique. We used the same LSTM model applied in LIME; however, for integrated gra-
dients, we create a baseline, empty embedding, and calculate the gradient between the
baseline and the input. In figure 4.8 we observe the results of an explanation for class
label 1 (fake news). It shows the words or features with the most substantial attribution
score, with darker colors indicating more significant attribution scores compared to the
lighter color.

Figure 4.8: Attribution map using integrated gradients explanation for class label 0

4.5 Quantitative results of trained models

In table 4.1 we show the accuracy score of the models trained, indicating how well the
models can predict unseen fake news data. As expected, we observe low accuracy scores
for the Logistic regression and Decision tree model, models which are intrinsically in-
terpretable as described in 2.2. When interpretability is achieved in black-box models
through surrogate and model-agnostic techniques (LIME, SHAP, and Integrated gradi-
ents), we see the model’s performance is not compromised. This shows the trade-off
between accuracy and intrinsic explainable models.

Table 4.1: Table showing the accuracy values of the trained models to achieved interpretability
in section 4.
Logistic Regression Decision

Tree
LIME
LSTM

SHAP
LSTM

Integrated
gradient
LSTM

89% 62% 96% 96% 96%

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4. Measuring and Comparing Attribution Type Interpretable Models 43

4.6 Summary

Majority of the results of the explanations discussed in this section output attribu-
tion/saliency maps highlighting the most important words(features) that are important
in making the decision. However, although we found some explanation techniques to
be faithful to a lay-user, the words may not be sufficient to distinguish and interpret
between the two classes as we find fake news class to have similar words to true news.
We thus try to use an example based technique in conjunction with one of the techniques
to try and identify any key characteristics between the two classes.

We further observe the trade-off in accuracy and interpretability in table 4.1 as the
accuracy values of intrinsic interpretable models are far less desirable than that of model-
agnostic techniques.
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Chapter 5

Methodology

In chapter 4 we discovered that most interpretable model outputs are attribution maps;
we aim to use example-based techniques such that the explanations are more humanly
understandable. We use four techniques that are commonly used on image data. First,
we scale the techniques to our misinformation data to determine if we cannot extract
any characteristics that could be used to interpret between the two classes. Further, we
choose the best technique by analysing the quality of the examples produced. In this
section, we discuss the methodology we used.

5.1 Experimental Design

The four techniques explored are Clustering, Set-Cover, Influential instances, and MMD-
Critic. The techniques can be summarised as prototypical techniques. Prototype method-
ologies output a subset of the dataset. The subset selected is considered the best rep-
resentation of the dataset. These subsets are then used to explain the data class before
model prediction or after; explanation can be achieved by extracting the commonality
and characteristics of each prototype class. Further, they can also be used to understand
and investigate complex data [21]. For image data, prototypical examples are easy to
digest and distinguish the characteristics that make up a class; however, with text data,
it may not be and may be overwhelming to explain. Because of this, we further process
the text prototypes extracted using text analytics techniques and employ one of the

44

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5. Methodology 45

model-agnostic techniques described earlier. The design steps we follow are described
high-level in figure 5.1.

Figure 5.1: High-level experimental design steps taken to achieve results

5.2 Algorithms

5.2.1 K-nearest neighbour Clustering Algorithm

Clustering is one of the earliest techniques, for example-based methods. The approach
splits the data into clusters or classes based on their proximity to each other. A new
instance xi is assigned to the cluster to which it has the closest proximity based on
K centroids.The advantage of the clustering method is that it can be used both as a
method to extract prototypes and as an intrinsic interpreter in its own right; however,
the disadvantage is that it can not achieve interpretability on a modular level(global
explainability) just on a local level.
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For text data, the similarity score between documents is used to determine the clus-
ters of the dataset. We utilise the K-nearest neighbour clustering technique to determine
the set of prototypes for each class. We show that running the algorithm on each class
respectively, as stated in [9], yields prototype sets with the K instances chosen for an
instance prediction being the set. Given that interpretability cannot be achieved on a
modular level, the prototype sets are acquired through the prediction phase of test in-
stances.
Given a dataset X with class label Y , where yi ∈ 1, 0 we split the data X into X train and
X test. For each x ∈ X test we determine which K documents in X train are closest to the
instance x; the K selected documents are the prototype sets for the selected instance.
We repeat for all instances in X test and obtain a list of documents K, which we make
our set of prototypes. The algorithm can be seen in algorithm 5.1 below.

Start with an empty set K = ∅, given dataset Xtrain and instance x ∈ Xtest

while K ≤10:
Find xtraini which is the most similar to x

K ∪xtraini

end while

Algorithm 5.1: Clustering Prototype selection method
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5.2.2 Set Cover Algorithm

[9] proposed the set cover approach to select prototypes as an improvement to the K-
clustering techniques. As the name suggests, the methodology leverages the set cover
theorem, which states that given a set X what are the optimal subsets S which cover the
universal set X by minimising the cost. Compared to the above clustering technique,
the set cover approach automatically selects the number of prototypes for each class and
can achieve both modular and local interpretability

The selection of prototypes using the technique can be made via two approaches the
integer program and the greedy approach. We make use of the greedy approach.
An instant xi ∈ X is selected as a prototype if it encompasses the following characteris-
tics:

• In its sphere, it should cover more training points that have the same class as itself.

• It should cover fewer instances of the opposite class.

• It must be sparse

To determine the prototype set Pl where Pl is the prototype set of class l. We require
a sphere size dependent on a radius value; the sphere and radius are used to determine
each instance’s coverage. The size of the sphere is calculated by using a pairwise distance
formula; we want to minimise the cost of covering a new instance.

Below in figure 5.2 we show an image of the selected prototypes adapted from [15]
which shows the greedy algorithm for a 2-class toy problem using a radius of 1.5. The
prototypes chosen for each class are bolded as their coverings include the most instances
which belong to the same class and less of the other class.
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Figure 5.2: Image showing Set Cover example for a classification toy example
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5.2.3 Influential Instances

Influential instances is an example-based technique that does not necessarily output a set
of instances but calculates what influence each instant has on the model parameters. An
influential instance changes the model parameters and decision when deleted; [26] states
that the counterfactual question that is asked is: ”how would the model’s predictions
change if we did not have this training point?”.The method is used mainly for debugging
and to explain behaviour of the model.

There are two approaches one can take to determine influential instances:

• Deletion: In this approach, one needs to iterate through the training data and
delete each instance; once deleted, analyse how the model parameters change by
retraining the model.

• Calculation of influence function: The influence function determines which in-
stances are the most influential to the model by up-weighting the instance by a
small amount and determines the change in the model parameters.

We use the calculation of influence function as it is known to be more robust [3, 26];
further, the approach also has the benefit of highlighting which instances are the most
harmful to the prediction of a particular test instance. To use the influential function, one
needs to train a model with a loss function that is twice differentiable and a loss gradient
that is accessible with respect to model parameters. The influence score calculation is
based on the loss function.

Given a dataset X, which maps to a label set Y , we split the dataset into training
and test points. With x1, x2, ..., xn ∈ X train and y1, y2, ..., yn ∈ Y train we state that
zi = (xi, yi) as being the training point for instance i. The loss function is then defined
as 1

n

∑n
i=1 L(zi, θ), where θ is the model parameters. By up-weighting an instance zi by

a small amount ε we get a new loss function: 1
n

∑n
i=1 L(zi, θ) + εL(z, θ).
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To determine the influence measure, which measures the change of up-weighting a
training instance, zi by ε, the gradient of the loss and inverse of hessian is used as shown
in the below equation 5.1:

I(z) = −H−1

θ̂
∇L(z, θ̂) (5.1)

Where:
Hθ =

∑n
i=1∇2

θL(zi, θ̂) is the Hessian of the loss function and twice differentiable.

We use the CNN network to train our data with cross-entropy loss. Then for each
instant in the training data, we up-weight the loss function by a small amount( 1

n
) and

determine their influence score as described in equation 5.1. We then use the top 100
most influential instances for each class as our prototype sets.

5.2.4 MMD-Critic Algorithm

MMD-critic is a quantitative approach that uses maximum mean discrepancy, a greedy
approach in selecting prototypes. It aims to select a subset of prototypes Z that best
represent our dataset X such that the probability distribution of the data points in Z

approximates that of X. This approach is one of the preferred approaches for selecting
prototypes [33, 25] given that together with prototypes, it outputs critics, which are data
points that least represent a class and has a high probability of being misclassified.

To get the prototype and critic sets, the following attributes are required:

1. m* and n* number of prototypes and critics:
The number of prototypes and critics can be selected manually or alternatively use
ε an error term, such that the algorithm stops searching once the MMD is above
the threshold of the error.

2. Kernel function:

We use the kernel function in the MMD formula to determine the distance between
two points. The kernel ranges between 0 an 1. Values close to 0 indicate the points
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are infinitely apart, while a value closer to 1 indicates similar points. The Euclidean
distance is used in our kernel, and we use the radial basis kernel, a popular kernel
used across the literature.

3. MMD:
The maximum mean discrepancy function is generally used to determine the ”close-
ness” of two distributions. We use it to determine how well our prototype distri-
bution approximates the data i.e., we will add data points that provide the lowest
MMD compared to other samples in the data. The equation of the MMD is shown
in equation 5.2:

MMD2 =
1

m2

m∑
i,j=1

k(zi, zj)−
z

mn

m,n∑
i,j=1

k(zi, xj) +
1

n2

n∑
i,j

k(xi, xj) (5.2)

Where:
zi is the ith data point in prototype sample set.
xi is the ith data point in data set
k=Kernal measure
m= number of prototypes and
n= number of data points in the dataset

The goal is to optimize the function so that the function’s middle term approxi-
mates to zero.
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4. Witness Function:
The witness function is only used once all prototypes are selected. The purpose of
the function is to search for a subset of data points n, which are not represented
well by the data (outliers). It measures the proximity of each remaining data
point to the dataset as well as its proximity to the chosen prototype set. If the
witness function value is close to zero, it means the instance is not a critic, but
instances with a large positive or negative witness value are a critic. Having a large
positive and negative witness function is an indication that the instance either
underestimates or overestimates the data distribution; the equation is shown in
equation 5.3

W =
1

n

n∑
i

k(x, xi)−
1

m

m∑
j=1

k(x, zj) (5.3)

where:
zj is the jth data point in prototype set.
xi is the ith data point in data set

The algorithm of using the MMD-critic approach for selecting prototypes and critics
is described in algorithm 5.2 and 5.3.
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Start with an empty set Z = ∅, given dataset X

while Z ≤m:
Find xi which reduces the MMD2

for all xi in the X do
Calculate the MMD2

Select xi which optimises MMD2

Z ∪xi
end while

Algorithm 5.2: MMD2 Prototype selection algorithm

Start with an empty set C = ∅, given dataset X \ Z
while C ≤n:

Find xi with largest |W |
for all xi in the X \ Z do

Calculate the W

Select xi with largest value
C ∪xi

end while

Algorithm 5.3: Critic selection algorithm
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5.3 Prototype Analysis

In this section, we describe how we analyse the prototypes extracted from the data to
determine characteristics that can be used to associate and explain the classes.

Prototype Quality

To determine the quality of the prototypes, we use the trained LSTM model on unseen
data which was not selected as part of the prototypes. The accuracy score of how well
the model predicted will help us understand the quality of chosen prototypes.

Determining class characteristics from prototypes

To determine class characteristics from prototypes, we apply various techniques. First,
we extract top key phrases from each class using Tfidf and Word2Vec. We also determine
the sentiment and perform opinion detection on the extracted prototypes. Further, we
perform a comparative analysis on the part of speech used, word length, and special
characters to determine any significant character differences between the two classes.

Using SP LIME in conjunction with prototypes

We employ the global explainer SP-LIME to determine how the model-agnostic technique
would explain prototype classes, Such that we can have an explainer that is truthful,
portable, and can be understood by a human to a degree.

5.4 Summary

This chapter discusses the approaches taken to extract, analyse and explain the proto-
typical examples. We highlighted the algorithm used and the steps that were taken to
extract the necessary results, which we discuss in chapter 6.
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Chapter 6

Results

In this chapter we discuss the results that we retrieve from the data and analysis per-
formed as described in chapter 5.

6.1 Prototypes Selected

We apply the algorithms described in our methodology section to each of our datasets;
ISOT, COVID, and SA data. We analyse the prototypes selected for each data using
the algorithms and determine how common the sets are to each other.

6.1.1 Clustering Sets

We use our test data to acquire our prototype set for clustering. For each instance in the
test data, we select the top 20 documents it is similar to; we then remove any duplicate
indices chosen for more than one test indices to get a unique subset. After applying the
approach to our datasets, we find that for all datasets, the fake news set is larger than
the true news set by at least a margin of 12, as shown in table 6.1. This may indicate
that fake news has more variety compared to true news data. In table 6.2 - 6.4, we also
observe that the prototype sets chosen for ISOT and COVID match the Set Cover sets
highly 43% and 47%, while SA has a match rate of 51% with MMD-critic.

55

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 6. Results 56

When looking at the phrases extracted and word cloud for each set figure 6.1 - 6.6
, we observe that the sets are closely related to each other and may be difficult to dis-
tinguish between the two classes. This is especially the case for ISOT classes; however,
for Covid and SA, we can see that fake news phrases are centered around controversial
topics and show subjectivity.

Data Set Size of True Set Size of Fake Set

ISOT 29 43
COVID 24 33
SA 20 32

Table 6.1: Table showing the size of each prototype set using clustering technique for our
dataset

Clustering
Set

Set Cover Influential MMD-
Critic

Clustering
Set

100% 43% 21% 19%

Set Cover 43% 100% 41% 31%
Influential 21% 41% 100% 51%
MMD-
Critic

19% 31% 51% 100%

Table 6.2: Table showing the match rate of the prototype sets for ISOT data
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Clustering
Set

Set Cover Influential MMD-
Critic

Clustering
Set

100% 47% 33% 22%

Set Cover 47% 100% 44% 29%
Influential 33% 44% 100% 56%
MMD-
Critic

22% 29% 56% 100%

Table 6.3: Table showing the match rate of the prototype sets for Covid data

Clustering
Set

Set Cover Influential MMD-
Critic

Clustering
Set

100% 42% 41% 51%

Set Cover 42% 100% 49% 33%
Influential 41% 49% 100% 52%
MMD-
Critic

51% 33% 52% 100%

Table 6.4: Table showing the match rate of the prototype sets for SA data
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Figure 6.1: Word Cloud class 1(Fake)for ISOT

Figure 6.2: Word Cloud class 0(True) for ISOT.
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Figure 6.3: Word Cloud class 1(Fake)for COVID Data

Figure 6.4: Word Cloud class 0(True) for COVID Data
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Figure 6.5: Word Cloud class 1(Fake)for SA Data

Figure 6.6: Word Cloud class 0(True) for SA Data
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6.1.2 Set Cover Sets

Set Cover has a larger set of prototypes selected compared to clustering, as shown in
table 6.5. Unlike clustering, we observe that the prototype sets for Set Cover are slightly
larger for true news compared to fake, but given that the variance is smaller between
the classes, it indicates similar variation.

When observing the matching rate, table 6.2-6.4, of each set we observe that ISOT
and COVID sets have a higher match rate with clustering sets whilst SA set has higher
rate with Influential instances set. Looking at the word cloud phrases in figure 6.7-6.12,
similar to clustering, the top phrases can be difficult to distinguish between classes; how-
ever, for SA and COVID fake news word cloud we notice phrases such as farm attack and
farm murderer and around covid cures which are controversial and subjective compared
to true news phrases.

Data Set Size of True Set Size of Fake Set

ISOT 230 225
COVID 174 171
SA 123 119

Table 6.5: Table showing the size of each prototype set using Set Cover technique for our
datasets
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Figure 6.7: Word Cloud ISOT prototype output for class 1(Fake) using Set Cover

Figure 6.8: Word Cloud ISOT prototype output for class 0(True) using Set Cover
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Figure 6.9: Word Cloud Covid prototype output for class 1(Fake) using Set Cover

Figure 6.10: Word Cloud Covid prototype output for class 0(True) using Set Cover
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Figure 6.11: Word Cloud SA prototype output for class 1(Fake) using Set Cover

Figure 6.12: Word Cloud SA prototype output for class 0(True) using Set Cover
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6.1.3 Influential function sets

For influential instances, the prototype sets are not automatically chosen. The algorithm
will tell us which instances are the most influential and harmful. We then choose the top
100 instances, which are the most influential, and the top 20 harmful instances. From
the top 100 influential examples, we show the split per class in table 6.6 and observe
that the true news class makes up 47% of the set and fake news 53% for ISOT and SA
data, similarly for COVID set we find true news is 44% and fake news 56%. We observe
that the top 100 influential instances have a higher match rate with MMD-critic sets.

Data Set Size of True Set Size of Fake Set

ISOT 47 53
COVID 44 56
SA 47 53

Table 6.6: Table showing the size of each prototype set using Influential technique for our
dataset
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Figure 6.13: Word Cloud ISOT prototype output for class 1(Fake) using Influential instances

Figure 6.14: Word Cloud ISOT prototype output for class 0(True) using Influential instances

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 6. Results 67

Figure 6.15: Word Cloud Covid prototype output for class 1(Fake) using Influential instances

Figure 6.16: Word Cloud Covid prototype output for class 0(True) using Influential instances
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Figure 6.17: Word Cloud SA prototype output for class 1(Fake) using Influential instances

Figure 6.18: Word Cloud SA prototype output for class 0(True) using Influential instances
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6.1.4 MMD-Critic Sets

The algorithm automatically selects MMD-Critic sets; we find that the size of the sets is
larger for fake news compared to true news, shown in size split table 6.7. This indicates
there is more variation in fake news compared to true news. We further select the top 10
data instances with a high witness score. Finally, we compare the critics to the harmful
instances selected in influential instances and find that the chosen set is 57% match.
It is observed in figure 6.19 to 6.24 that true phrases are more neutral and have a less
aggressive tone to fake phrases as we can note that there are words such as farm attack,
deliberately negligence, people dead in the fake news phrases.

Data Set Size of True Set Size of Fake Set

ISOT 54 113
COVID 49 92
SA 42 87

Table 6.7: Table showing the size of each prototype set using MMD-Critic technique for our
dataset
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Figure 6.19: Word Cloud ISOT prototype output for class 1(Fake) using MMD-Critic tech-
nique

Figure 6.20: Word Cloud ISOT prototype output for class 0(True) using MMD-Critic tech-
nique
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Figure 6.21: Word Cloud Covid prototype output for class 1(Fake) using MMD-Critic tech-
nique

Figure 6.22: Word Cloud Covid prototype output for class 0(True) using MMD-Critic tech-
nique
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Figure 6.23: Word Cloud SA prototype output for class 1(Fake) using MMD-Critic technique

Figure 6.24: Word Cloud SA prototype output for class 0(True) using MMD-Critic technique
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6.2 Quality of prototypes

We need to determine the quality of the prototypes to ensure that the information we
extracted is truthful and portable to any use case related to misinformation classification.
As described in [7, 8] to determine the quality of prototypes, we train a model with the
prototype sets and determine the accuracy percentage when predicting unseen data. The
prototype set with the highest accuracy has the highest quality. We train our prototype
sets using an LTSM and observe the prediction accuracy in table 6.8.
Across the four example-based methods, we observe that the prototype sets with the
highest accuracy are Influential and MMD-Critic; although the two methods have an
accuracy of less than 70% we believe that if we manually select the prototype sets to
be larger, the accuracy value would increase. Therefore, in the next section, we further
process both the Influential and MMD-critic to determine key characteristics we can
extract.

Data Set Clustering Set Cover Influential MMD-Critic

ISOT 36% 41% 67% 71%
COVID 33% 39% 56% 59%
SA 31% 34% 47% 53%

Table 6.8: Table showing the quality of each prototype set by observing prediction quality
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6.3 Further Processing of Selected Sets.

In this section, we further analyse the two prototype sets with the highest quality mea-
sured by the prediction accuracy. First, we look at the top phrases of each set; we use
them to perform sentiment, opinion detection, and word analysis. We further use a
model agnostic explainer on the sets and, lastly, use a probing technique to determine
linguistic properties.

6.3.1 Analysis of Set Phrases

As seen in Appendix D, the prototypical examples from text data are just a list of sen-
tences where one can not distinguish the key characteristics between the classes. We
take advantage of the SBERT functionality, keyBERT, which uses the embedding of the
model to generate keywords and phrases from a document by calculating the cosine sim-
ilarity of each generated key phrase to the document. We select the top 10 key phrases
with the highest similarity score.

It is observed in figure 6.25 to 6.30 that true phrases are more neutral and have a
less aggressive tone to fake phrases as we can note that there are words such as farm
attack, deliberately negligence, people dead in the fake news phrases.
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Figure 6.25: Figure showing top 10 phrases extracted from ISOT MMD prototypical set
examples. Green phrases are true news phrases and red fake news phrases
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Figure 6.26: Figure showing top 10 phrases extracted from ISOT Influential prototypical set
examples. Green phrases are true news phrases and red fake news phrases
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Figure 6.27: Figure showing top 10 phrases extracted from SA MMD prototypical set exam-
ples. Green phrases are true news phrases and red fake news phrases
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Figure 6.28: Figure showing top 10 phrases extracted from SA Influential prototypical set
examples. Green phrases are true news phrases and red fake news phrases
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Figure 6.29: Figure showing top 10 phrases extracted from Covid MMD prototypical set
examples. Green phrases are true news phrases and red fake news phrases
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Figure 6.30: Figure showing top 10 phrases extracted from Covid Inflential prototypical set
examples. Green phrases are true news phrases and red fake news
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6.3.2 Sentiment and opinion detection

We examined both sentiment and subjectivity from the prototypical examples. We used
the textblob measure of subjectivity and polarity to determine whether the text classes
are more positive, negative, neutral, objective, or subjective. As can be observed in
figure 6.31-6.35, we find that overall, fake news displayed in the orange bar is more
subjective compared to true news displayed in the blue bar; however, when it comes to
South African text, we find that true news is more subjective and fake is more objective.
We further observe in figure 6.33-6.35 that true news is more positive than fake news.
Another unique observation of the South African dataset is that it does not have neutral
text when analysed with the MMD set.
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Figure 6.31: Figure showing opinion mining results based on the objective measure of textblob
from all three datasets. It shows the percentage count of the text values that where subjective
compared to objective
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Figure 6.32: Figure showing opinion mining results based on subjectivity measure of textblob
from all three datasets. It shows the percentage count of the text values that were subjective
compared to objective
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Figure 6.33: Figure showing sentiment results based on polarity measure of textblob from all
three datasets. It shows the percentage count of the text values that were negative
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Figure 6.34: Figure showing sentiment results based on polarity measure of textblob from all
three datasets. It shows the percentage count of the text values that were neutral
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Figure 6.35: Figure showing sentiment results based on polarity measure of textblob from all
three datasets. It shows the percentage count of the text values that were positive
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6.3.3 Word analysis

Word length

Next, we observed if there were any significant differences in the average words between
fake and true news data. We find that, on average, between the three datasets, fake
news is about 18% less compared to true news, and we further observe that fake news
has more words in capital, showing a more aggressive tone. Finally, we show the average
words and capital word counts in table 6.9.

Data Average Words Average Upper

Covid True 35 3
Covid Fake 14 7
SA True 336 2
SA Fake 274 3.5
ISOT True 463 5
ISOT Fake 328 7.5

Table 6.9: Table showing the average words and upper case words in the prototypical example
dataset
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Word comparison

We use the Scattertext library to plot how fake and true news words differ in words and
the intersection points between the groups. For example, in figure 6.36-6.38, we note
that true words for covid data that are not used in fake news are words such as http,
story, covidoutbreak, trending, and social; which are very neutral words that are not
persuasive or negative. While fake news has words such as viral, country names, image,
and kill, which are commonly associated with controversial words or topics.

Figure 6.36: Figure showing word differences and similarities between the two class groups
in SA prototypical examples
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Figure 6.37: Figure showing word differences and similarities between the two class groups
in ISOT prototypical examples

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 6. Results 84

Figure 6.38: Figure showing word differences and similarities between the two class groups
in COVID prototypical examples
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6.3.4 Linguistic Properties

Given that we are dealing with language data, we also need to observe characteristic
differences in linguistic properties. We, thus, observe the part of speech from each class
in the prototypes shown in figure 6.39 to 6.41. The most significant differences are noted
regarding noun usage in the ISOT prototype examples, where true news uses more nouns
than fake news. Overall across the datasets, true news text use past tense verbs(VBD)
and prepositions(IN) more compared to fake news, while fake news has more adjective
(JJ), verb base form(VB), and verb 3rd person(VBZ) compared to true news. It is
further noted that ISOT fake news text has more pronouns than true text compared to
the rest of the datasets. South African text data has more foreign words(FW) than the
rest of the dataset’s text; this may be because South African text is usually used with a
combination of colloquial words.
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Figure 6.39: Figure showing part of speech tag for Covid prototypes
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Figure 6.40: Figure showing part of speech tag for ISOT prototypes
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Figure 6.41: Figure showing part of speech tag for SA prototypes
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6.3.5 Prototypical examples used with SP-Lime

We use the LTSM trained to perform model agnostic global explainer SP-Lime to de-
termine any additional information that can be extracted using both example-based
explainer and model agnostic explainer. The results of the explainer can be seen in
figure 6.42-6.43. We find that the most relevant words indicated by the explainer are
similar to what we observed in the scattertext output, where text classified as fake news
has words that evoke emotion and are centered around a controversial topic whilst true
news is more neutral and objective.

Figure 6.42: Output of using SP-LIME with Prototypical examples to explain and indicate
prevalent words for true news class
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Figure 6.43: Output of using SP-LIME with Prototypical examples to explain and indicate
prevalent words for Fake news class

6.3.6 Critics and harmful instances

The advantage of both MMD-Critic and Influential instances is that they indicate which
instances are harmful or are outliers to a class. MMD automatically selects the critics
for each class, and 10% of the selected critic set belonged to true news, whilst 90% of the
instances belonged to fake news. This indicates that models are more likely to misclassify
fake news instances as true news.

We analyse phrases and the output of an attribution map for the top harmful influ-
ential instance and MMD-critic instance for fake news class (1).In figure 6.44, we can see
that the phrases selected for the harmful instances are very similar to that of true news,
making it difficult to distinguish between the classes.
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Figure 6.44: Output showing comparison of phrases selected for harmful instance of fake
news data to that of a true news instance

Figure 6.45: Output of using attribution map to determine key features for harmful instance
indicated by influential and MMD-critic
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6.4 Summary

We used four approaches to select prototypes on three of our datasets; once we had
our chosen sets based on the algorithms, we measured for each set the quality of the
prototypes. Influential instances and MMD-Critic produced prototype sets with the
highest quality; for these two sets, we explore if there are any character differences
between the two classes. This is applied across the datasets to determine any differences
between the datasets. Below we list some of the significant differences which we observe:

• In section 6.3.3, we performed word analysis, and the result across the datasets
led to the conclusion that Fake news is shorter in length and contains more capital
words.

• In section 6.3.2, we measured the subjectivity of the prototypes and observed that
Fake news is more subjective and often opinionated.

• Using POS tagging in 6.3.4, we were able to conclude that Fake news uses more
adjectives, verb in 3rd person, and pronouns in linguistic properties.

• By observing the output of the word cloud images, word comparison’s from scat-
tertext, and phrase extraction, we note that Fake news phrases are more aggressive
and are always around controversial topics.

• In figure 6.40 POS tag results for South African data and 6.36 the scattertext
output; We determine that South African fake data has more foreign words as
more colloquial words are used.

• Further, from the POS tag in 6.3.4, we can also say South African text is either
positive or negative, with hardly any neutral text.

• Lastly, South African fake news is less subjective and more objective compared
to the rest of the datasets as per the output of subjectivity analysis performed in
6.3.2.
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We also observed from harmful instances that fake news text could be very difficult to
detect by a layperson. However, by using linguistic properties, a linguistic expert can de-
tect the slight differences that exist. Consumers of news can use the above characteristics
to determine the probability of fakeness from text data.
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Chapter 7

Conclusions

This chapter summarizes the research work presented in this study. We revisit our
research questions and discuss the main findings. We also discuss proposed future work.

7.1 Summary of Conclusions

In this research, we discuss the problem of interpretability in natural language processing,
specifically with respect to misinformation classification tasks. We want to determine
what behavioural factors can be used to distinguish a misinformation class and which
interpretability model is best suited for interpreting misinformation data.
In chapter 4 we used the commonly used interpretation methods for natural language
processing, methods which output attribution maps by highlighting the most important
words and phrases in a prediction to explain the prediction outcome. We found that
the attribution methods were faithful in their interpretation. However, given that they
explained a single instance, it was challenging to determine common characteristics of a
class and clearly determine the characteristics, if any, of misinformation data.
In chapter 5 we used example-based techniques for model interpretation to determine if
any key characteristics could be used to explain the prediction between the two classes.
We found that with natural language; prototype selection methods, unlike images, one
cannot easily determine the differences and explanations of the predictions of the two
classes. We, therefore, further probed the prototypes of each class extracted using vari-
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ous techniques and tools to determine the character and linguistic differences. We found
some significant differences in word length, tone, subjectivity, part of speech, and sen-
timent as described in chapter 6. We further found that more fake news instances are
critics compared to true news, showing that fake news curated tries to mimic the prop-
erties and authenticity of the news piece.
From the results obtained in chapter 5 and 4 we were able to compare prototype/example-
based methodology with the most commonly used algorithms. We note that with
example-based methods, one can extract a sample of the data which best represents
a particular class. Then from the sample, easily extract characteristics that make up the
class. The key difference’s between example-based techniques and common techniques
is that with example-based techniques, one could make characteristic differences before
having to train a model. In contrast, most techniques require a model to be trained
to extract patterns. Further, examples extracted may help build mental models using
the prototypes and critics to achieve better human interpretability. However, when it
comes to natural language processing, using both techniques to achieve interpretability
in misinformation is best suited to truly understand the data and extract key information
between the classes. Lastly, given that most of the characteristic differences between the
two classes observed require a language expert, the method may be extended to include
human-in-the-loop to determine the prototypes’ robustness, faithfulness, and quality.

7.2 Future Work

There are more insights that we can achieve from the prototype methodology. We list
below some potential avenues for future research, specifically in disinformation:

• The quality of prototypes and critic sets selected can change based on the kernel
used in MMD-critic and how we represent the data. Using MMD-critic as the
algorithm, we can explore how the prototype and critic sets differ if a string kernel
or sequence embeddings is used to capture the sequence of the documents.

• Determining the quality of the prototypes is crucial and needs further exploring.
Current literature proposes, together with training, a model to have humans in
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the loops to assess the prototypes to determine their quality and characteristics.
In the future, we can extend our research by adding a human-in-the-loop measure,
more specifically, linguistic experts, to examine the quality of prototypes.

• Lastly, Given the distinct key patterns observed, we can explore building an in-
trinsic interpretable pipeline. Which will have two phases, with the first phase
extracting key feature attributes from the text and then using the feature at-
tributes as feature inputs in a logistic regression model or any white-box model.
Such that we can distinguish if, over time, we can have key features that can be
used in white-box models to classifier misinformation.
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Appendix A

Appendix 1

The first Appendix shows the word analysis images discussed in the exploratory data
analysis section in chapter 3. We show visually word cloud and tri-gram output of our
three datasets.

Figure A.1: Word Cloud class
1(Fake) word clod image.

Figure A.2: Word Cloud class
0(True) word clod image.
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Figure A.3: Word Cloud class
1(Fake) word clod image.

Figure A.4: Word Cloud class
0(True) word clod image.

Figure A.5: Word Cloud class
1(Fake) word clod image.

Figure A.6: Word Cloud class
0(True) word clod image.

A.1 Word Cloud analysis

We observe that the prominent words in fake news are similar to that of true news.
Showing it is difficult to separate fake and true news by just using prominent words.
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Appendix 2

In this Appendix we show the results of unsupervised topic modelling with the gensim
model as described in Chapter 3.

Figure B.1: Bi-gram topic analysis for ISOT Data
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Figure B.2: Bi-gram topic analysis for Covid Data

Figure B.3: Bi-gram topic analysis for SA Data

B.1 Topic Modeling

We show the three main topic themes across each dataset.
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Appendix C

Appendix 3

In this Appendix we show the results of unsupervised topic modelling with the gensim
model as described in Chapter 4.

Figure C.1: SP-LIME results from a representative sample of fake news dataset
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Figure C.2: SP-LIME results from a representative sample of True news dataset

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Appendix D

Appendix 4

In this Appendix we show the results of using MMD-critic approach to extract prototypes
as discussed in chapter 6. We extracted prototypes for each dataset.

Figure D.1: Extracted fake-Covid class prototypical examples
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Figure D.2: Extracted True-Covid class prototypical examples
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Figure D.3: Extracted fake-ISOT class prototypical examples
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Figure D.4: Extracted True-ISOT class prototypical examples
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Figure D.5: Extracted Fake-SA class prototypical examples
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Figure D.6: Extracted True-SA class prototypical examples
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