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Abstract 

This paper examines the causal interactions between various measures of energy 

consumption due to mining activity and electricity return and volatility patterns across the 

power markets in the U.S., U.K. and Europe via a nonlinear causality model that accommodates 

structural breaks and regime shifts in the bivariate interactions. Our findings establish a causal 

relationship running from bitcoin mining activity, proxied by the Cambridge Bitcoin Electricity 

Consumption Index, to Phelix electricity price returns, the reference price for the power spot 

market for the German/Austrian market area. This suggests that mining activity can induce 

wealth effects in the real economy; however, the effect is heterogeneous across the different 

power markets examined. At the same time, we find that the effect of mining activity is focused 

on return volatility, consistently for all three proxies of bitcoin electricity consumption and all 

the electricity markets examined. Accordingly, our findings provide robust evidence of 

volatility effects of mining activity in power markets across both sides of the Atlantic, 

suggesting that the crypto mining-power market nexus primarily entails risk effects, an issue 

of particular concern for hedgers whose goal is to stabilize energy costs in their operations.  
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1. Introduction 

The use of Bitcoin and associated cryptocurrencies is increasingly gaining relevance in 

recent years, fuelled by the rising cryptocurrency adoption rates among investors, particularly 

in developing countries in Asia and Africa, who tend to suffer from financial instability and 

barriers to traditional financial products. Naturally, the rise in adoption rates for crypto assets 

has resulted in a flurry of mining activity for these assets globally, overwhelmingly led by 

crypto miners in mainland China, followed by the U.S. and Russia, until 2011 when the Chinese 

government decided to ban all mining activities in June 2021 following major power 

disruptions experienced in the country, fuelled by the heavy energy consumption rates 

associated with cryptocurrency mining. In fact, an increasing number of studies published in 

the last several years present robust evidence regarding the non-virtual side of mining and 

trading of these assets, establishing a link to price fluctuations in the energy market (e.g. 

Karmakar, et al, 2021). The goal of this paper is to provide further evidence on the non-virtual 

effects of cryptocurrency mining activity on the real economy by examining the causal 

interactions between various measures of electricity consumption associated with bitcoin 

mining activity and power market dynamics from major electricity markets in Europe, U.K. 

and U.S. By doing so, we present novel insight to the price dynamics in global power markets 

with significant implications, both from an investment and policy making perspectives. 

Bitcoin is owned and governed by series of autonomous individuals and cooperate 

organizations known as Bitcoin “Miners”. These miners are authorities responsible for 

enforcing the credibility of the Bitcoin network in a decentralized manner. New Bitcoin are 

released to miners at a fixed but periodically declining rate. The process of creating new Bitcoin 

is hugely energy intensive as powerful computers are required to solve complex cryptographic 

puzzles and the trust-minimizing policy of Bitcoin mining is facilitated through its “proof-of-

work algorithm” that this requires huge power-hungry machines for performance. In fact, it is 

estimated that Bitcoin consumes more energy than decent sized economies like Czech 

Republic, Netherlands and Ukraine, while it consumes around half as much energy as several 

G7 countries including Italy and the U.K.1 In the U.S., the annual quantum of electricity usage 

of the Bitcoin network is estimated to be about the same as that of Washington State with an 

                                                            
1 https://digiconomist.net/bitcoin-energy-consumption. 
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average Bitcoin transaction consuming an amount equivalent to six weeks of electricity 

consumption in a typical average American household (Tully, 2021). 

Although Bitcoin is primarily mined in countries that enjoy the availability of relatively 

cheap and surplus energy supply – like China, U.S. and Russia, recent evidence shows that 

mining activity not only leaves a large carbon footprint as most mining facilities are powered 

by fossil fuels, but also has the potential to disrupt real economic activity as it puts tremendous 

pressure on energy consumption rates. In this regard, the recent ban in 2011 by the Chinese 

government on all crypto mining activity is a great example of why policy authorities need a 

better understanding on the effect of mining activity on the power market as the country 

decided to ban crypto mining after experiencing major disruptions and power shortages. 

Furthermore, considering that the Chinese crackdown on mining has led to a flurry of Chinese 

miners flocking into Kazakhstan to continue their operations, who in turn, reportedly caused 

major power disruptions in that country, a better understanding of the nexus between crypto 

mining and power market can help policy authorities to better coordinate their efforts to 

monitor and mitigate the non-virtual side effects of mining activity on their economies. 

On the academic side, a growing number of works have examined the link between 

Bitcoin as a cryptocurrency and other asset markets as well as carbon emission patterns using 

various methodologies and in different contexts (e.g. Urquhart, 2016; Bouri et al., 2017; Bouri 

et al., 2018 Shahzad et al., 2019; Smales, 2019; Aalborg et al. 2019; Scharnowski, 2021; Jiang 

et al, 2021 among others). Separately, there is a large literature on the price and volatility 

dynamics in the electricity market, primarily focusing on modelling and forecasting electricity 

prices (e.g. Weron et al., 2004; Weron and Misiorek 2008; Escribano et al., 2011; Raviv et al., 

2015; Karakatsani and Bunn, 2015; Foroni et al., 2019; Algieri et al., 2021). Weron (2014) 

provides a detailed review of the literature in this regard. In the strand of the literature that is 

more related to the focus of our analysis, a growing number of works in recent years have 

examined Bitcoin from an energy consumption perspective (e.g. Stoll et al., 2019; de Vries, 

2020, 2021; Sedlmeir et al, 2020; Karmakar et al., 2021; Ante and Fiedler, 2021) although a 

formal econometric model that established a direct link between the two markets was only 

developed recently in Karmakar et al. (2021). Unlike these works, we examine the causal 

interactions between various measures of energy consumption due to mining activity and 

electricity return and volatility patterns across electricity markets in the U.S., U.K. and Europe 
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via a nonlinear causality model that has been popularly utilized in different contexts in recent 

works. 

Our findings establish a causal relationship running from bitcoin mining activity, 

proxied by the Cambridge Bitcoin Electricity Consumption Index, to Phelix electricity price 

returns, the reference price for the power spot market for the German/Austrian market area. 

This suggests that mining activity can induce wealth effects in the real economy; however, the 

effect is heterogeneous across the different power markets examined. At the same time, we 

find that the effect of mining activity is focused on return volatility, consistently for all three 

proxies of bitcoin electricity consumption and all the electricity markets examined. 

Accordingly, we provide robust evidence of volatility effects of mining activity in power 

markets across both sides of the Atlantic, suggesting that the crypto mining-power market 

nexus primarily entails risk effects which is an issue of particular concern for hedgers in the 

power market whose goal is to stabilize energy costs in their operations.  

The rest of the paper is structured as follows. Section 2 presents a brief review of the 

literature on power market dynamics and the link to cryptocurrencies. Sections describes the 

data and methodology employed in our analysis. Section 4 presents the empirical results and 

Section 5 concludes with a discussion of the implications of the findings and directions for 

future research. 

2. Literature Review 

Various studies in the literature have attempted to quantify the energy consumption and 

resulting carbon emissions associated with the Bitcoin network (de Vries, 2018, 2020, 2021; 

Krause and Tolaymat, 2018; Stoll et al., 2019; Sedlmeir et al., 2020) and other proof-of-work 

blockchains (Li et al., 2019; Gallersdörfer et al., 2020). Given the popularity of the issue, 

particularly from a policy making perspective, the validity of the proposed models, 

assumptions and their implications have been heavily debated in public scientific platforms. 

These discussions have consequently led to the development of proxies that capture the Bitcoin 

network’s electricity consumption at the regional and global levels. One of the popularly cited 

works in this regard include the Cambridge Bitcoin Electricity Consumption Index (CBECI) 

project maintained by the Digital Assets Programme (DAP) Team at the Centre for Alternative 

Finance at the University of Cambridge. The second is the Bitcoin Energy Consumption Index 

(BECI) maintained by Digiconomist that measures energy consumption of the Bitcoin network.  
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The bitcoin consumption indices have been utilized in different contexts in the literature 

and in studies that are more related to our focus. For example, focusing on the social costs 

associated with the energy consumption related to Bitcoin, Ante and Fiedler (2021) highlight 

the role of Bitcoin in the settlement of global transactions in a decentralized fashion by 

comparing energy consumption patterns associated with Bitcoin to the social benefits it offers 

over the centralized settlement layers such as the American FedWire, Clearing House Interbank 

Payments System (CHIPS) or the European TARGET2 system. The authors argue that even 

though the mining process involves exorbitantly high energy costs, miners are not necessarily 

irrational in their decision to absorb high energy expenditures as long as the potential reward 

from mining exceeds that cost. In other words, as long as the cost of electricity remains stable, 

while the value of Bitcoin rises, the profitability argument becomes a fuelling propensity for 

incessant mining with consequent increase in energy consumption (Steinmetz et al., 2020). 

Similarly, in another attempt to quantify the impact of Bitcoin mining on power consumption 

dynamics, Stoll et al. (2019) utilize a methodology to obtain an estimate for the power 

consumption associated with Bitcoin mining based on IPO filings of major hardware 

manufacturers, insights on mining operations, and mining pool compositions. The authors then 

translate the power consumption estimates into carbon emissions estimates, using the 

localization of IP addresses.  

In studies that aim to examine the possible effect of Bitcoin’s energy usage on financial 

markets, Corbet et al. (2019) establish a link between the energy consumption patterns in the 

cryptocurrency market with the financial performance in the energy sector, particularly large 

electricity and utility markets. Their results confirm the earlier findings by Krause and 

Tolaymat (2018) that it costs more to mine $1 worth of Bitcoin than it did to mine $1 worth 

various precious metals including gold, platinum or copper. Furthermore, from a carbon 

emissions perspective, Mora et al. (2018) show that Bitcoin mining and trading activity has the 

potential to create enough CO2 emissions to push warming above 2 degrees Celsius within less 

than three decades although Song and Aste (2020) find that the energy consumption cost of 

mining Bitcoin has remained stable since 2010.  The direct link to price dynamics in the power, 

however, is provided recently in Karmakar et al (2021) who examine the effect of energy 

consumption due to Bitcoin mining and trading on the electricity prices in three prominent U.S. 

power markets. Utilizing the time-varying Regression+ GARCHX in volatility model, the 

authors document a significant volatility effect of Bitcoin mining activity in the electricity 

markets examined, with the volatility effect increasing over time, particularly with the 

widespread lockdowns enforced due to the COVID-19 pandemic. Despite the emerging 
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evidence regarding the effect of crypto mining and trading activity on power market dynamics, 

however, the topic is still relatively understudied. In our application, to the best of our 

knowledge, we present the first evidence regarding the possible causal interactions between 

return and volatility dynamics in global electricity markets and various proxies of energy 

consumption due to Bitcoin mining.  

3. Data and Methodology 

3.1 Data 

Our electricity price dataset covers major U.S. and European pricing benchmarks including 

the Northern Illinois hub, Western Hub, New England hub, Phelix electricity, French base load, 

Italian base load, Spanish base load, and the UK base load electricity prices, all of which are 

converted to log-returns. Specifically, we collect daily spot price data over the period Dec. 19, 

2017–June 18, 2021, obtained from Commodity Systems Inc.2 To capture bitcoin mining 

activity, we use the change in the Cambridge Bitcoin Electricity Consumption Index that 

measures the Bitcoin network’s daily electricity load.3 The electricity consumption index data 

is available in the form of a hypothetical range consisting of a lower bound, upper bound and 

best-guess estimate as the exact electricity consumption value cannot be determined. The lower 

(upper) bound assumes that all miners always use the most (least) energy-efficient equipment 

available on the market. The best-guess estimate is based on the more realistic assumption that 

miners use a basket of profitable hardware rather than a single model. For robustness checks, 

we perform our tests using each consumption index separately. 

Table A1 in the Appendix provides the summary statistics of the data, and highlights the 

existence of non-normality, i.e., heavy-tails, and provides a preliminary motivation to rely on 

a quantiles-based approach. Figure A1 in the Appendix plots the variables of interest. 

3.2 Methodology 

Our empirical analysis utilizes a nonparametric, nonlinear causality test via a hybrid 

approach developed by Balcilar et al. (2018), based on the frameworks created by Nishiyama 

et al. (2011) and Jeong et al. (2012). Let 𝑦௧ denote the electricity price returns for the various 

US, UK, and European hubs descried earlier and let 𝑥௧ denote the daily growth in the Bitcoin 

consumption indexes (max, min, and guess), derived by taking the first difference of the natural 

                                                            
2 https://www.csidata.com/. 
3 The data is publicly available at: https://cbeci.org/. 
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logarithms of the respective consumption series. Consider 𝑌௧ିଵ ≡ ሺ𝑦௧ିଵ, … , 𝑦௧ି௣ሻ, 𝑋௧ିଵ ≡

ሺ𝑥௧ିଵ, … , 𝑥௧ି௣ሻ,  𝑍௧ ൌ ሺ𝑋௧, 𝑌௧ሻ, and let  𝐹௬೟|∙ሺ𝑦௧| •ሻ denote the conditional distribution of 𝑦௧ 

given •.  Defining 𝑄ఏሺ𝑍௧ିଵሻ ≡ 𝑄ఏሺ𝑦௧|𝑍௧ିଵሻ and 𝑄ఏሺ𝑌௧ିଵሻ ≡ 𝑄ఏሺ𝑦௧|𝑌௧ିଵሻ, we obtain  

𝐹௬೟|௓೟షభ
ሼ𝑄ఏሺ𝑍௧ିଵሻ|𝑍௧ିଵሽ ൌ 𝜃  with probability one. Subsequently, we test the hypotheses  of 

(non)causality in the 𝜃-th quantile as:  

𝐻଴:   𝑃൛𝐹௬೟|௓೟షభ
ሼ𝑄ఏሺ𝑌௧ିଵሻ|𝑍௧ିଵሽ ൌ 𝜃ൟ ൌ 1                                                                                     ሺ1ሻ  

𝐻ଵ:   𝑃൛𝐹௬೟|௓೟షభ
ሼ𝑄ఏሺ𝑌௧ିଵሻ|𝑍௧ିଵሽ ൌ 𝜃ൟ ൏ 1                                                                                      ሺ2ሻ  

Jeong et al. (2012) show that the feasible kernel-based test statistics has the following 

formulation: 

               𝐽መ் ൌ
1

𝑇ሺ𝑇 െ 1ሻℎଶ௣ ෍ ෍ 𝐾 ൬
𝑍௧ିଵ െ 𝑍௦ିଵ

ℎ
൰ 𝜀௧̂𝜀௦̂ 

்

௦ୀ௣ାଵ,௦ஷ௧

                      

்

௧ୀ௣ାଵ

                        ሺ3ሻ 

where 𝐾ሺ•ሻ is the kernel function with bandwidth ℎ, 𝑇 is the sample size, 𝑝 is the lag order, 

and 𝜀௧̂ ൌ 𝟏ሼ𝑦௧ ൑ 𝑄෠ఏሺ𝑌௧ିଵሻሽ െ 𝜃 is the regression error, where 𝑄෠ఏሺ𝑌௧ିଵሻ is an estimate of the 

𝜃-th conditional quantile and 𝟏ሼ•ሽ is the indicator function. The Nadarya-Watson kernel 

estimator of 𝑄෠ఏሺ𝑌௧ିଵሻ is given by 

𝑄෠ఏሺ𝑌௧ିଵሻ ൌ
∑ 𝐿 ቀ

𝑌௧ିଵ െ 𝑌௦ିଵ
ℎ ቁ  𝟏ሼ𝑦௦ ൑ 𝑦௧ሽ்

௦ୀ௣ାଵ,௦ஷ௧

∑ 𝐿 ቀ
𝑌௧ିଵ െ 𝑌௦ିଵ

ℎ ቁ்
௦ୀ௣ାଵ,௦ஷ௧

                                                                   ሺ4ሻ  

with 𝐿ሺ•ሻ denoting the kernel function.  

In an extension of the framework proposed by Jeong et al. (2012) that is based on 

Nishiyama et al. (2011), Balcilar et al. (2018) develop an extension to the 𝐾-th moment which 

allows us to test causality at higher moments. In our case, we focus on (𝐾 ൌ 2) and examine 

the causal relationship between bitcoin electricity consumption and electricity return volatility 

captured by the second moment of the electricity return series. As a general description, 

causality at the 𝐾-th moment is tested via the null and alternative hypotheses given by: 

𝐻0:   𝑃 ቄ𝐹𝑦𝑡
𝑘|𝑍𝑡െ1

൛𝑄𝜃ሺ𝑌𝑡െ1ሻ|𝑍𝑡െ1ൟ ൌ 𝜃ቅ ൌ 1,    𝑘 ൌ 1,2, … , 𝐾                                                          ሺ5ሻ  

𝐻1:   𝑃 ቄ𝐹𝑦𝑡
𝑘|𝑍𝑡െ1

൛𝑄𝜃ሺ𝑌𝑡െ1ሻ|𝑍𝑡െ1ൟ ൌ 𝜃ቅ ൏ 1,    𝑘 ൌ 1,2, … , 𝐾                                                           ሺ6ሻ  

As a special case, the causality-in-variance test is formulated by replacing 𝑦௧ in Eqs. (3) 

and (4) with 𝑦௧
ଶ. As pointed out by Balcilar et al. (2018) a rescaled version of 𝐽መ்  has the standard 

normal distribution. The testing approach is sequential and failing to reject the test for 𝑘 ൌ

1 does not automatically lead to no-causality in the second moment (i.e., non-causality in 
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means does not imply that there is no causality in variances), meaning that one can still 

construct the test for 𝑘 ൌ 2.  

The empirical implementation of causality testing via quantiles entails specifying three key 

parameters: the bandwidth (h), the lag order (p), and the kernel types for 𝐾ሺ∙ሻ and 𝐿ሺ∙ሻ. We 

determine ℎ by the leave-one-out least-squares cross validation. We use a lag order based on 

the Schwarz Information Criterion (SIC), which is 2 for max and 1 for min and guess. Finally, 

for 𝐾ሺ∙ሻ and  𝐿ሺ∙ሻ, we use Gaussian kernels. 

4. Results 

Before examining the findings from the quantile-based causality tests, we begin our 

analysis by examining the linear Granger causality tests, presented in Table 1, where the null 

hypothesis is that bitcoin electricity consumption does not affect electricity prices. Note that 

we select the appropriate lag length in these tests by minimizing the Schwarz Information 

Criterion (2 lags for max and 1 for min and guess). As seen in Table A1, we find no statistical 

evidence of a linear causal relationship, consistently across all electricity price series and three 

alternative bitcoin electricity consumption indexes. Thus, the linear causality tests do not reject 

the null hypothesis, indicating no causation based on the linear specification.  

[Please insert Table 1 here.] 

Having observed no evidence of causality based on the linear specification, we next 

examine whether the finding of non-causality might be due to model mis-specification that 

assumes a linear predictability relationship. Therefore, in order to explore whether the linear 

model is mis-specified, we test for the presence of nonlinearity and regime changes (structural 

breaks) in the relationship between the bitcoin consumption indexes and the electricity return 

series. Specifically, we use the Brock et al. (1996, BDS) test on the residuals from the linear 

model used in the linear Granger causality tests and test the null hypothesis of i.i.d.residuals at 

various dimensions (m). Table 2 in the Appendix presents the results of the BDS nonlinearity 

tests. As shown in the table, the BDS test yields overwhelming evidence of nonlinearity, that 

is, we reject the null hypothesis of linearity at the highest level of significance, consistently 

across all electricity return series and bitcoin consumption indexes. Further examining the 

presence of possible structural breaks in the data via the powerful UDmax and WDmax tests of 

Bai and Perron (2003), we observe in Table 3 at least one structural break for all return series 

with the exception of Northern Illinois hub, New England hub and Spanish base load electricity 
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prices, as well as the UK base load (for max and min bitcoin indexes only). These additional 

tests, thus yield strong evidence of nonlinearity and structural breaks in the relationship 

between the electricity price and bitcoin consumption index series, suggesting that the 

inferences from the linear causality model in Table 1 are not valid. 

[Please insert Tables 1 and 2 here.] 

Given the strong evidence of nonlinearity, we then proceed with the causality-in-quantiles 

test (for both causality-in-means and causality-in-variance) that builds on a data-driven 

framework, and as such, is robust against possible misspecification due to nonlinearity and/or 

regime changes. Figures 1 and 2 present the results for the causality-in-mean and causality-in-

variance tests, respectively, examining causality running from each bitcoin consumption series 

to electricity returns (volatility) at a particular quantile. The horizontal (vertical) axis in the 

figure captures the various quantiles (test statistic). The lines corresponding to the various 

electricity prices show the rejection (non-rejection) of the null of no Granger causality from 

the various measures of Bitcoin electricity consumption index to electricity returns (volatility) 

at the 5 percent level, if the lines are above (below) 1.96 for a specific quantile. 

[Please insert Figure 1 here.] 

The tests for causality-in-means, reported in Figure 1, generally yield insignificant causal 

effects of bitcoin mining activity on electricity returns, implied by the test statistic values below 

the critical value at all electricity return quantiles. The only exception is the Phelix electricity 

prices, the reference price for the power spot market for the German/Austrian market area, for 

which we observe a significant causal effect of bitcoin mining on electricity prices. 

Interestingly, although the U.S. dominates the global share of mined bitcoins (China was the 

biggest miner until the mining ban imposed in 2021 when large scale power outages were 

experienced in the country), we do not observe any significant causal effects of mining activity 

on electricity prices. At the same time, although Germany contributes to about 5% of global 

mining activity, we observe significant causality running from mining activity to electricity 

returns in the Germany/Austria hub, possibly driven by the presence of heavy industrial zones 

in this region, consuming vast amounts of power and coupled with high energy prices, making 

the power market in this region particularly vulnerable to additional consumption pressures 

due to mining activity. Interestingly, this finding comes against the background that Germany 

has recently unseated Singapore as the most-crypto friendly country in the world.4 

Accordingly, our findings suggest that the policy authorities in that country should be carefully 

                                                            
4 Coincub’s global crypto ranking report, Q1 2022. https://coincub.com/crypto-ranking-guide-for-2022-q1/ 
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monitoring mining activity and its contribution to power consumption trends as this could pose 

a serious threat for the real economic activity, particularly considering that the German 

economy is based on heavy industrial production that consumes vast amounts of power 

annually.  

[Please insert Figure 2 here.] 

Further examining the causality-in-variance tests reported in Figure 2, we observe that the 

real effect of bitcoin mining activity on the power market is focused on return volatility rather 

than returns, consistent with the recent evidence in Karmakar et al. (2021) for three prominent 

power markets in the U.S. We find that all three proxies of bitcoin electricity consumption have 

a significant causal effect on return volatility in all of the electricity markets examined. The 

causal effects are significant at the highest level of significance in all cases and strongest around 

the median quantiles. The robust volatility effect of mining activity on electricity returns is 

likely to create challenges for market participants who hedge their exposure to power market 

fluctuations, implying that hedgers need to carefully monitor mining proxies in order to 

determine optimal hedge positions to minimize their exposure to price uncertainty. 

Nevertheless, these findings provide further support to the growing evidence that relates mining 

activity by crypto miners to power market dynamics. 

5. Conclusion 

This paper contributes to the growing literature on the non-virtual effects of cryptocurrency 

mining activity on the real economy by examining the causal interactions between various 

measures of electricity consumption associated with bitcoin mining activity and power market 

dynamics from major electricity markets in Europe, U.K. and U.S. Utilizing a nonlinear, 

quantile-based causality test that can uncover quantile specific causality relationships, we 

document a significant causal effect running from bitcoin mining activity, proxied by the 

Cambridge Bitcoin Electricity Consumption Index, to Phelix electricity price returns, the 

reference price for the power spot market for the German/Austrian market area. While the 

causal effect on returns is not observed for the other power markets in the sample, we find that 

the effect of mining activity is focused on return volatility, consistently for all three proxies of 

bitcoin electricity consumption and all the electricity markets examined. Accordingly, we 

provide robust evidence of volatility effects of mining activity in power markets across both 

sides of the Atlantic. 
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The findings have significant implications for firms who aim to stabilize their energy costs 

by hedging price fluctuations in power prices. Given the evidence of nonlinear predictability 

in return volatility due to mining activity, the findings imply that conditional hedging strategies 

could be devised by firms in energy intensive industries by utilizing volatility forecasting 

models that employ measures of mining activity. In fact, a natural extension of our study would 

be to examine the wealth effects of improved volatility forecasts obtained from forecasting 

models that employ mining activity as a predictor. From a policy making perspective, our 

findings pave the way to institute a carbon tax on crypto miners to compensate firms and 

consumers for the increased volatility in power prices due to mining activity. Given that mining 

activity also plays a critical role from a carbon emissions perspective, our findings present a 

strong case for policy makers to consider taxing strategies justified both from a power market 

stability and climate perspectives. It will be interesting to extend our study to a full-fledged 

volatility forecasting exercise in future work and see if volatility models can indeed be 

improved by augmenting standard models with measures of mining activity. 
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Table 1: Granger causality Tests 

Electricity hub 
Bitcoin price 
measure p probability 

Northern Illinois hub 

Max 0.335507 0.8456 
Min 0.007924 0.9291 
Guess 0.077782 0.7803 

Western Hub 

Max 0.731127 0.6938 
Min 1.648939 0.1991 
Guess 0.898384 0.3432 

New England hub  

Max 0.734015 0.6928 
Min 0.235759 0.6273 
Guess 0.445944 0.5043 

Phelix electricity  

Max 0.400431 0.8186 
Min 0.060442 0.8058 
Guess 0.476983 0.4898 

French base load  

Max 0.327982 0.8487 
Min 0.019075 0.8902 
Guess 0.118434 0.7307 

Italian base load  

Max 0.407831 0.8155 
Min 0.338044 0.561
Guess 0.199189 0.6554 

Spanish base load  

Max 0.74133 0.6903 
Min 0.060343 0.806 
Guess 0.088564 0.766

UK base load  

Max 0.032838 0.9837 
Min 0.013032 0.9091 
Guess 0.268284 0.6045 

Note: p is the lag-length chosen based on SIC. 
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Table 2: Brock et al., (1996, BDS) test of nonlinearity. 

Northern Illinois hub

M 2 3 4 5 6 
Max 4.3168*** 5.8858*** 6.2898*** 6.7479*** 7.2954*** 
Min 4.4888*** 5.9105*** 6.2685*** 6.7596*** 7.3267*** 
Guess 4.4570*** 5.8502*** 6.1986*** 6.6776*** 7.2240*** 

Western Hub

M 2 3 4 5 6 
Max 6.9813*** 9.8899*** 11.2758*** 12.3795*** 13.4955*** 
Min 6.8867*** 9.5509*** 10.9679*** 12.0890*** 13.2110*** 
Guess 6.9257*** 9.6563*** 11.1055*** 12.2810*** 13.4384*** 

New England hub

M 2 3 4 5 6 
Max 3.9538*** 5.8426*** 6.6573*** 7.2399*** 7.7598*** 
Min 3.6695*** 5.7729*** 6.6577*** 7.2602*** 7.7786*** 
Guess 3.6521*** 5.7691*** 6.6506*** 7.25061*** 7.7663*** 

Phelix electricity

M 2 3 4 5 6 
Max 3.6295*** 4.2736*** 4.5033*** 4.4884*** 4.9369*** 
Min 3.5933*** 4.1529*** 4.4080*** 4.4085*** 4.8270*** 
Guess 3.6653*** 4.2105*** 4.4755*** 4.4834*** 4.9020*** 

French base load

M 2 3 4 5 6 
Max 4.5191*** 4.9600*** 4.8870*** 4.8304*** 4.9855*** 
Min 4.7809*** 5.2606*** 5.1863*** 5.1300*** 5.1707*** 
Guess 4.7541*** 5.2314*** 5.1624*** 5.1113*** 5.1512*** 

Italian base load

M 2 3 4 5 6 
Max 5.1572*** 6.1971*** 6.4847*** 6.2976*** 6.3295*** 
Min 5.5262*** 6.5806*** 6.9119*** 6.6924*** 6.5875*** 
Guess 5.5102*** 6.5479*** 6.8696*** 6.6458*** 6.5374*** 

Spanish base load

M 2 3 4 5 6 
Max 5.0819*** 6.2952*** 6.5659*** 6.4732*** 6.7091*** 
Min 5.7296*** 7.1283*** 7.2790*** 7.1077*** 7.1896*** 
Guess 5.7208*** 7.1429*** 7.2881*** 7.1095*** 7.1735*** 

UK base load 

M 2 3 4 5 6 
Max 4.6689*** 5.8592*** 6.4593*** 6.9316*** 7.5992*** 
Min 4.6345*** 5.8737*** 6.4970*** 7.0004*** 7.6068*** 
Guess 4.5222*** 5.7351*** 6.3473*** 6.8608*** 7.4831*** 

Note: The table reports the z-statistic of the BDS test corresponding to the null of i.i.d. residuals, with 
the test applied to the residuals recovered from the electricity returns equation used to test linear 
Granger causality. *** indicates rejection of the null hypothesis at the 1 percent level of significance.
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Table 3: Bai and Perron (2003) multiple structural break test. 

Break test 
Northern 
Illinois hub 

Western 
Hub 

New England 
hub 

Phelix 
electricity 

French base 
load 

Italian base 
load 

Spanish base 
load 

UK base 
load 

Max 
 2/27/2018 

11/07/2019, 
6/05/2020, 
12/08/2020 

11/23/2018, 
10/03/2019, 
4/16/2020 5/26/2020 

Min 
 2/26/2018 

9/17/2020, 
11/16/2020 

10/03/2019, 
4/16/2020 5/26/2020 

Guess 

 2/26/2018 
9/08/2020, 
11/05/2020 

10/03/2019, 
4/16/2020 5/26/2020 

9/11/2018, 
4/03/2019, 
10/17/2019, 
4/30/2020, 
11/06/2020 

Note: The table reports the break dates obtained from the Bai and Perron (2003) test of multiple structural breaks, with the test applied to the electricity returns 
equation used to test linear Granger causality. 
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Figure 1: Causality-in-means tests. 
(a) Max 

 
(b) Min 

 
(c) Guess 

 
Note: The horizontal axis measures the various quantiles and the vertical axis captures the test statistic. The lines 
corresponding to the various electricity prices show the rejection (non-rejection) of the null of no Granger 
causality from the various measures of Bitcoin electricity consumption index growth to electricity returns at the 5 
percent level, if the lines are above (below) 1.96 for a specific quantile. CV is the 5 percent critical value of 1.96. 
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Figure 2: Causality-in-variance tests. 
(a) Max 

 
(b) Min 

 
(c) Guess 

 

 
Notes: The horizontal axis measures the various quantiles and the vertical axis captures the test statistic. The lines 
corresponding to the various electricity prices show the rejection (non-rejection) of the null of no Granger 
causality from the Bitcoin electricity consumption index to electricity return volatility at the 5 percent level, if the 
lines are above (below) 1.96 for a specific quantile. CV is the 5 percent critical value of 1.96.
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APPENDIX: 
Table A1: Summary statistics. 
 Variable

Statistic 

Northern 
Illinois 

hub 
Western 

Hub 

New 
England 

hub
Phelix 

electricity
French 

base load
Italian base 

load
Spanish 

base load
UK base 

load MAX MIN GUESS
Mean 0.0002 0.0004 -0.0008 0.0014 0.0007 0.0004 0.0008 0.0008 -0.0006 -0.001 -0.0011 

Median -0.0005 0.0000 -0.0019 -0.0002 0.0000 0.0000 0.0005 0.0000 -0.0015 -0.0012 -0.0014 
Maximum 0.2282 0.3626 0.5789 0.3281 0.4342 0.2891 0.3326 0.1984 0.2425 0.2452 0.1638
Minimum -0.2307 -0.3764 -0.6827 -0.281 -0.4424 -0.2112 -0.3586 -0.1031 -0.297 -0.1021 -0.1504 
Std. Dev. 0.0327 0.0398 0.0625 0.04 0.0471 0.0275 0.0365 0.0256 0.0378 0.0254 0.026 
Skewness 1.0348 0.706 1.214 2.0911 1.5771 0.9948 0.5384 1.1023 0.1519 1.4294 0.4299
Kurtosis 19.308 32.6536 45.9391 24.1682 33.8685 29.0644 41.8129 10.7138 16.6707 15.9565 9.4893 

Jarque-Bera 9683.39*** 31581.03*** 66279.41*** 16683.4*** 34500.73*** 24485.26*** 54022.24*** 2306.32*** 6700.09*** 6308.21*** 1535.45*** 
Observations 860

Note: *** indicates rejection of the null of normality of the Jarque-Bera test at 1% level of significance. 
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Figure A1: Data plots. 
(a) Bitcoin energy consumption index growth 
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(b) US electricity returns 
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(c) European electricity returns  
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