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If K is a compact Hausdorff space so that the Banach lattice C(K) is isometrically 
lattice isomorphic to a dual of some Banach lattice, then C(K) can be decomposed 
as the �∞-direct sum of the carriers of a maximal singular family of order continuous 
functionals on C(K). In order to generalise this result to the vector lattice C(X) of 
continuous, real valued functions on a realcompact space X, we consider direct and 
inverse limits in suitable categories of vector lattices. We develop a duality theory 
for such limits and apply this theory to show that C(X) is lattice isomorphic to the 
order dual of some vector lattice F if and only if C(X) can be decomposed as the 
inverse limit of the carriers of all order continuous functionals on C(X). In fact, we 
obtain a more general result: A Dedekind complete vector lattice E is perfect if and 
only if it is lattice isomorphic to the inverse limit of the carriers of a suitable family 
of order continuous functionals on E. A number of other applications are presented, 
including a decomposition theorem for order dual spaces in terms of spaces of Radon 
measures.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

Let K be a compact Hausdorff space. A basic question concerning the Banach lattice C(K) is the 
following: Does there exist a Banach space (lattice) E so that C(K) is isometrically (lattice) isomorphic 
to the dual E∗ of E? That is, does C(K) have a Banach space (lattice) predual? In general, the answer 
to this question is ‘no’. The unit ball of C[0, 1] has only two extreme points, but the unit ball of the dual 
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of an infinite dimensional Banach space has infinitely many extreme points. Hence C[0, 1] is not the dual 
of any Banach space; hence also not of any Banach lattice. On the other hand, C(βN) is the dual of �1. 
The problem is therefore to characterise those spaces K for which C(K) is a dual Banach space (lattice). 
Combining two classic results of Dixmier [17] and Grothendieck [22], respectively, gives an answer to this 
question in the setting of Banach spaces, see also [14] for a recent presentation. The Banach lattice case is 
treated in [34].

In order to formulate this result we recall the following. A Radon measure μ on K is called normal if 
|μ|(B) = 0 for every closed nowhere dense subset B of K. The space of all normal Radon measures on K is 
denoted N(K). The space K is called Stonean if it is extremally disconnected; that is, the closure of every 
open set is open. K is hyper-Stonean1 if it is Stonean and the union of the supports of the normal Radon 
measures on K is dense in K.

Theorem 1.1. Let K be a compact Hausdorff space. Consider the following statements.

(i) C(K) has a Banach lattice predual.
(ii) C(K) has a Banach space predual.
(iii) K is hyper-Stonean.
(iv) Let F be a maximal singular family of normal probability measures on K, and for each μ ∈ F let Sμ

denote its support. Then

C(K) � u �−→
(
u|Sμ

)
μ∈F

∈
⊕
∞

C(Sμ)

is an isometric lattice isomorphism.

Statements (i), (ii) and (iii) are equivalent, and each implies (iv). If K is Stonean, then all four statements 
are equivalent.

Furthermore, in case C(K) has a Banach space predual E, this predual is also a Banach lattice predual 
and is unique up to isometric lattice isomorphism. In particular, E is isometrically lattice isomorphic to 
N(K).

This result can be reformulated by identifying N(K) with the order continuous dual of C(K), via the 
isometric lattice isomorphism between the dual of C(K) and the space of Radon measures on K, and C(Sμ)
with the carrier of the corresponding functional on C(K).

Theorem 1.2. Let K be a compact Hausdorff space. Consider the following statements.

(i) C(K) has a Banach lattice predual.
(ii) C(K) has a Banach space predual.
(iii) C(K) is Dedekind complete and has a separating order continuous dual.
(iv) Let F be a maximal singular family of order continuous functionals on C(K), and for each ϕ ∈ F let 

Cϕ denote its carrier and Pϕ the band projection onto Cϕ. Then

C(K) � u �−→ (Pϕu)ϕ∈F ∈
⊕
∞

Cϕ

is an isometric lattice isomorphism.

1 We feel obligated to recall Kelley’s remark [28]: ‘In spite of my affection and admiration for Marshall Stone, I find the notion 
of a Hyper-Stone downright appalling.’.
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Statements (i), (ii) and (iii) are equivalent, and each implies (iv). If K is Stonean, then all four statements 
are equivalent.

Furthermore, in case C(K) has a Banach space predual E, this predual is also a Banach lattice predual 
and is unique up to isometric lattice isomorphism. In particular, E is isometrically lattice isomorphic to the 
order continuous dual C(K)∼n of C(K).

The above problem may be generalised to the class of realcompact spaces. Recall that a realcompact space 
is a Tychonoff space X which is homeomorphic to a closed subset of some product of R. Equivalently, X is 
realcompact if it is a Tychonoff space and for every point x ∈ βX \X (where βX denotes the Stone-Čech 
compactification of X) there exists a real-valued, continuous function u on X which does not extend to 
a continuous, real-valued function on X ∪ {x}. For every Tychonoff space X there exists a unique (up to 
homeomorphism) realcompact space υX so that C(X) and C(υX) are isomorphic vector lattices, see for 
instance [23], [20, Chapter 8] and [18, §3.11]. The realcompact space υX is called the realcompactification
of X.

Let X be a realcompact space. Then C(X) is a vector lattice but, in general, not a Banach lattice. Hence 
we ask the following question: Does there exist a vector lattice E so that E∼ is lattice isomorphic to C(X)? 
That is, does C(X) have an order predual? Xiong [37] obtained the following answer to this question.

Theorem 1.3. Let X be a realcompact space. Denote by S the union of the supports of all compactly supported 
normal Radon measures2 on X. The following statements are equivalent.

(i) There exists a vector lattice E so that E∼ is lattice isomorphic to C(X).
(ii) C(X) is lattice isomorphic to (C(X)∼n )∼.
(iii) X is extremally disconnected and υS = X.

This result differs from the corresponding result for compact spaces in the following respects. Unlike in 
the Banach lattice setting, C(X) may have more than one order predual, see [37]. Secondly, the condition 
that C(X) is Dedekind complete and has a separating order continuous dual does not imply that C(X) has 
an order predual. Indeed, in [32, p. 620] an example is provided of a realcompact space X so that C(X)
is Dedekind complete and has a separating order continuous dual, but is not the order dual of any vector 
lattice. Furthermore, we have no counterpart of the decomposition

C(K) � u �−→ (Pϕu)ϕ∈F ∈
⊕
∞

Cϕ.

The naive extension of this decomposition to the class of extremally disconnected realcompact spaces does 
not provide a characterization of those spaces C(X) which admit an order predual. It will be shown in 
Section 6.3, Proposition 6.19, that if X is an extremally disconnected realcompact space and F is a maximal 
singular family in C(X)∼n so that

C(X) � u �−→ (Pϕu)ϕ∈F ∈
∏
ϕ∈F

Cϕ

is a lattice isomorphism, then C(X)∼n is an order predual for C(X). The converse, however, is false, see 
Example 6.20.

In view of the above, we formulate the following problem. Let X be an extremally disconnected real-
compact space. Can the property ‘C(X) admits an order predual’ be characterised in terms of a suitable 

2 See Section 2.2.
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decomposition of C(X) in terms of the carriers of order continuous functionals on C(X)? We solve this 
problem using direct and inverse limits in suitable categories of vector lattices.3

Such limits are common in analysis, see for instance [6], [13, Chapter IV, §5], [8, Chapter 5] and [12]. Direct 
limits of vector lattices were introduced by Filter [19] and inverse limits of vector lattices have appeared 
sporadically in the literature, see for instance [16,29], but no systematic study of this construction has 
been undertaken in the context of vector lattices. We therefore take the opportunity to clarify the question 
of existence of inverse limits in certain categories of vector lattices. We also establish the permanence of 
a number of vector lattice properties under the inverse limit construction. Our treatment of direct and 
inverse limits of vector lattices is found in Sections 3 and 4, respectively. Inspired by results in the theory of 
convergence spaces [6] we obtain duality results for direct and inverse limits of vector lattices, see Section 5. 
These results are roughly of the following form: If a vector lattice E can be expressed as the direct (inverse) 
limit of some system of vector lattices, then the order (continuous) dual of E can be expressed in a natural 
way as the inverse (direct) limit of a system of order (continuous) duals. In addition to a solution of the 
mentioned decomposition problem, a number of applications of the general theory of direct and inverse 
limits of vector lattices are presented in Section 6. These include the computations of order (continuous) 
duals of function spaces and a structural characterisation of order dual spaces in terms of spaces of Radon 
measures.

In the next section, we state some preliminary definitions and results which are used in the rest of the 
paper.

2. Preliminaries

2.1. Vector lattices

In order to make the paper reasonably self-contained we recall a few concepts and facts from the theory 
of vector lattices. For undeclared terms and notation we refer to the reader to any of the standard texts in 
the field, for instance [2,3,31,38]. Let E and F be real vector lattices. For u, v ∈ E we write u < v if u ≤ v

and u �= v. In particular, 0 < u means u is positive but not zero. We note that if E is a space of real-valued 
functions on a set X, then 0 < v does not mean that 0 < v(x) for every x ∈ X.

For sets A, B ⊆ E let A ∨ B := {u ∨ v : u ∈ A, v ∈ B}. The sets A ∧ B, A+, A− and |A| are defined 
similarly. Lastly, Ad := {u ∈ E : |u| ∧ |v| = 0 for all v ∈ A}. We write A ↓ u if A is downward directed and 
inf A = u. Similarly, we write B ↑ u if B is upward directed and supB = u.

Let T : E → F be a linear operator. Recall that T is positive if T [E+] ⊆ F+, and regular if T is the 
difference of two positive operators. T is order bounded if T maps order bounded sets in E to order bounded 
sets in F. If F is Dedekind complete, T is order bounded if and only if T is regular [39, Theorem 20.2]. 
Further, T is order continuous if inf |T [A]| = 0 whenever A ↓ 0 in E. Every order continuous operator 
is necessarily order bounded [3, Theorem 1.54]. T is a lattice homomorphism if it preserves suprema and 
infima of finite sets, and a normal lattice homomorphism if it preserves suprema and infima of arbitrary 
sets; equivalently, if it is an order continuous lattice homomorphism, see [31, p. 103]. A lattice isomorphism
is a bijective lattice homomorphism T : E → F. An operator T is a lattice isomorphism if and only if it is 
bijective and both T and T−1 are positive [39, Theorem 19.3]. We say that T is interval preserving if for 
all 0 ≤ u ∈ E, T [[0, u]] = [0, T (u)]. An interval preserving map need not be a lattice homomorphism, nor 
is a (normal) lattice homomorphism in general interval preserving, see for instance [3, p. 95]. However, the 
following holds. We have not found this result in the literature, and therefore we include the simple proof.

3 In the literature, direct and inverse limits are also referred to as inductive and projective limits, respectively.
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Proposition 2.1. Let E and F be vector lattices and T : E → F a positive operator. The following statements 
are true.

(i) If T is injective and interval preserving then T is a lattice isomorphism onto an ideal in F, hence a 
normal lattice homomorphism into F.

(ii) If T is a lattice homomorphism and T [E] is an ideal in F then T is interval preserving.

Proof of (i). Assume that T is injective and interval preserving. T [E] is an ideal in F by [27, Proposition 
14.7]. Therefore, because T is injective, it suffices to show that T is a lattice homomorphism. To this end, 
consider u, v ∈ E+. Then 0 ≤ T (u) ∧T (v) ≤ T (u) and 0 ≤ T (u) ∧T (v) ≤ T (v). Since T is interval preserving 
and injective there exists w ∈ [0, u] ∩ [0, v] = [0, u ∧ v] so that T (w) = T (u) ∧ T (v). We have

T (w) ≤ T (u ∧ v) ≤ T (u) and T (w) ≤ T (u ∧ v) ≤ T (v).

Hence T (u) ∧ T (v) = T (w) ≤ T (u ∧ v) ≤ T (u) ∧ T (v) so that T (u ∧ v) = T (w) = T (u) ∧ T (v).
To see that T is a normal lattice homomorphism, let A ↓ 0 in E. Then T [A] ↓ 0 in T [E] because T is a 

lattice isomorphism onto T [E]. But T [E] is and ideal in F, so T [A] ↓ 0 in F. �
Proof of (ii). Assume that T is a lattice homomorphism and T [E] is an ideal in F. Let 0 ≤ u ∈ E and 
0 ≤ v ≤ T (u). Because T [E] is an ideal in F there exists w ∈ E so that T (w) = v. Let w′ = (w ∨ 0) ∧ u. 
Then 0 ≤ w′ ≤ u and T (w′) = (v ∨ 0) ∧ T (u) = v. �
Proposition 2.2. Let E be a vector lattice, A and B projection bands in E, PA and PB the band projections 
of E onto A and B, respectively, and IE the identity operator on E. Assume that A ⊆ B. The following 
statements are true.

(i) PA is an order continuous lattice homomorphism.
(ii) PA ≤ IE.
(iii) PAPB = PBPA = PA.
(iv) PA is interval preserving.

Proof. For (i), see [31, Theorem 24.6 & Exercise 24.11]. For (ii) and (iii), see [31, Theorems 24.5 (ii) & 30.1 
(i)]. Lastly, (iv) follows from Proposition 2.1 (ii), since PA[E] = A is a band, hence an ideal, in E. �

The order dual of E is E∼ := {ϕ : E → R : ϕ is order bounded}, and the order continuous dual of E is 
E∼

n := {ϕ ∈ E∼ : ϕ is order continuous}. If A ⊆ E and B ⊆ E∼ we set

A◦ := {ϕ ∈ E∼ : ϕ(u) = 0, u ∈ A}, ◦B := {u ∈ E : ϕ(u) = 0, ϕ ∈ B}.

For ϕ ∈ E∼ the null ideal (or absolute kernel) of ϕ is

Nϕ := {u ∈ E : |ϕ|(|u|) = 0}.

The carrier of ϕ is Cϕ := Nd
ϕ. The null ideal Nϕ of ϕ is an ideal in E and its carrier Cϕ is a band; if ϕ is 

order continuous then Nϕ is also a band in E, see for instance [38, §90].
Define σ : E � u �→ Ψu ∈ E∼∼

nn by setting Ψu(ϕ) := ϕ(u) for all u ∈ E and ϕ ∈ E∼
n . Then σ is a lattice 

homomorphism, and, if ◦E∼
n = {0}, σ is injective, see [38, p. 404 - 405]. We call E perfect if σ is a lattice 

isomorphism onto E∼∼
nn .

In the following theorem, we briefly recall some basic facts concerning the order adjoint of a positive 
operator T : E → F which we make use of in the sequel.



6 W. van Amstel, J.H. van der Walt / J. Math. Anal. Appl. 531 (2024) 127770
Theorem 2.3. Let E and F be vector lattices and T : E → F a positive operator. Denote by T∼ : F∼ → E∼

its order adjoint, ϕ �→ ϕ ◦ T . The following statements are true.

(i) T∼ is positive and order continuous.
(ii) If T is order continuous then T∼[F∼

n ] ⊆ E∼
n .

(iii) If T is interval preserving then T∼ is a lattice homomorphism.
(iv) If T is a lattice homomorphism then T∼ is interval preserving. The converse is true if ◦F∼ = {0}.

Proof. For (i), see [27, 14.2 & 14.5]. The statement in (ii) follows directly from the fact that composition 
of order continuous operators is order continuous. For (iii), see [27, 14.13]. The first statement in (iv) is 
proven in [3, Theorem 2.16 (1)]. The second statement is proven in [3, Theorem 2.20]. We note that although 
[3] declares a blanket assumption at the start of the book that all vector lattices under consideration are 
Archimedean, the proofs of [3, Theorems 2.16 & 2.20] do not make use of this assumption. �
Proposition 2.4. Let E and F be vector lattices and T : E → F a linear lattice homomorphism onto F. The 
following statements are true.

(i) T∼[F∼] = ker(T )◦.
(ii) If E is Archimedean and T is order continuous then T∼[F∼

n ] = ker(T )◦ ∩ E∼
n .

Proof of (i). Let ϕ ∈ F∼. If u ∈ ker(T ) then T∼(ϕ)(u) = ϕ(T (u)) = ϕ(0) = 0. Hence T∼(ϕ) ∈ ker(T )◦. For 
the reverse inclusion, let ψ ∈ ker(T )◦. Define ϕ : F → R by setting ϕ(v) = ψ(u) if v = T (u). Then ϕ ∈ F∼

and T∼(ϕ) = ψ. �
Proof of (ii). It follows from (i) and Theorem 2.3 (ii) that T∼[F∼

n ] ⊆ ker(T )◦ ∩ E∼
n . We show that if 

T∼(ϕ) ∈ E∼
n for some ϕ ∈ F∼ then ϕ ∈ F∼

n . From this and (i) it follows that T∼[F∼
n ] = ker(T )◦ ∩ E∼

n . 
We observe that it suffices to consider positive ϕ ∈ F∼. Indeed, T is a surjective lattice homomorphism 
and therefore, by Proposition 2.1 (ii), also interval preserving. Hence by Theorem 2.3 (iii), T∼ is a lattice 
homomorphism.

Suppose that 0 ≤ ϕ ∈ F∼ and that T∼(ϕ) ∈ E∼
n . Let A ↓ 0 in F. Define B := T−1[A] ∩ E+. Then B is 

downward directed and T [B] = A. In particular, ϕ[A] = T∼(ϕ)[B]. Let C := {w ∈ E : 0 ≤ w ≤ v for all v ∈
B}. If w ∈ C then 0 ≤ T (w) ≤ u for all u ∈ A so that T (w) = 0. Hence C ⊆ ker(T ). Since E is Archimedean, 
we have B − C ↓ 0 in E, see [31, Theorem 22.5]. Since T∼(ϕ) is order continuous, T∼(ϕ)[B − C] ↓ 0; that 
is, for every ε > 0 there exists v ∈ B and w ∈ C so that ϕ(T (v)) = ϕ(T (v − w)) = T∼(ϕ)(v − w) < ε. 
Hence, for every ε > 0 there exists u ∈ A so that ϕ(u) < ε. This shows that ϕ[A] ↓ 0 so that ϕ ∈ F∼

n as 
required. �

Let I be a non-empty set and let Eα be a vector lattice for every α ∈ I. Then 
∏
α∈I

Eα is a vector lattice 

with respect to the coordinate-wise operations. If the index set is clear from the context, we omit it and 
write 

∏
Eα. For β ∈ I let πβ :

∏
Eα → Eβ be the coordinate projection onto Eβ and ιβ : Eβ →

∏
Eα the 

right inverse of πβ given by

πα(ιβ(u)) =
{

u if α = β

0 if α �= β.

We denote by 
⊕

Eα the ideal in 
∏

Eα consisting of u ∈
∏

Eα for which πα(u) �= 0 for only finitely many 

α ∈ I. The following properties of 
∏

Eα and 
⊕

Eα are used frequently in the sequel.
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Theorem 2.5. Let I be a non-empty set and Eα a vector lattice for every α ∈ I. The following statements 
are true.

(i) The coordinate projections πβ and their right inverses ιβ are normal, interval preserving lattice homo-
morphisms.

(ii)
∏

Eα is Archimedean if and only if each Eα is Archimedean.

(iii)
∏

Eα is Dedekind complete if and only if each Eα is Dedekind complete.

(iv) If I has non-measurable cardinal, then the order dual of 
∏

Eα is 
⊕

E∼
α .

(v) The order continuous dual of 
∏

Eα is 
⊕

(Eα)∼n .

(vi) The order dual of 
⊕

Eα is 
∏

E∼
α .

(vii) The order continuous dual of 
⊕

Eα is 
∏

(Eα)∼n .

We leave the straightforward proofs of (i), (ii), (iii), (vi) and (vii) to the reader.

Proof of (iv). Assume that I has non-measurable cardinal. By (i) of this theorem and Theorem 2.3 (iii) and 

(iv), ι∼β :
(∏

Eα

)∼
→ E∼

β is an interval preserving normal lattice homomorphism for every β ∈ I. Because 

each ϕ ∈
(∏

Eα

)∼
is linear and order bounded, the set Iϕ := {β ∈ I : ι∼β (ϕ) �= 0} is finite for every 

ϕ ∈
(∏

Eα

)∼
. Define S :

(∏
Eα

)∼
→

⊕
E∼
α by setting

S(ϕ) := (ι∼α (ϕ))α∈I , ϕ ∈
(∏

Eα

)∼
.

Then S is a lattice homomorphism. It remains to verify that S is bijective.
We show that S is injective. Let 0 �= ϕ ∈

(∏
Eα

)∼
. Fix 0 ≤ u ∈

∏
Eα so that ϕ(u) �= 0. For f ∈ RI

let fu ∈
∏

Eα be defined by πα(fu) = f(α)πα(u), α ∈ I. Define ϕ̂ : RI → R by setting

ϕ̂(f) := ϕ(fu), f ∈ RI .

Then ϕ̂ is a non-zero order bounded linear functional on RI . Because I has nonmeasurable cardinal, I
equipped with the discrete topology is realcompact, see [20, §12.2]. Therefore there exists a non-zero finitely 
supported and countably additive measure μ on the powerset 2I of I so that

ϕ̂(f) =
∫
I

f dμ =
∑
α∈I

f(α)μ(α), f ∈ RI ,

see [21, Theorem 4.5]. Let α be in the support of μ, and let g be the indicator function of {α}. Then 
0 �= μ(α) = ϕ̂(g) = ϕ(gu) = ι∼α (ϕ)(πα(u)). Therefore S(ϕ) �= 0 so that S is injective.

To see that S is surjective, observe that for every β ∈ I, π∼
β : E∼

β →
(∏

Eα

)∼
is an interval preserving 

normal lattice homomorphism by (i) of this theorem and Theorem 2.3 (iii) and (iv). Define T :
⊕

E∼
α →(∏

Eα

)∼
by setting

T (ψ) :=
∑

π∼
α (ψα), ψ = (ψα) ∈

⊕
E∼
α .

Then T is a positive operator. We claim that S ◦ T is the identity on 
⊕

E∼
α . Indeed, for any ψ ∈

⊕
E∼
α

we have
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S(T (ψ)) =
∑
α∈I

(ι∼β (π∼
α (ψα)))β∈I =

∑
α∈I

(ψα ◦ πα ◦ ιβ)β∈I .

By definition of the ιβ it follows that S(T (ψ)) = ψ which verifies our claim. Therefore S is a lattice 
isomorphism. �
Proof of (v). Define S :

(∏
Eα

)∼
→

⊕
E∼
α as in the proof of (iv). By (i) of this theorem and Theorem 2.3

(ii), S maps 
(∏

Eα

)∼

n
into 

⊕
(Eα)∼n . A similar argument to that given in the proof of (iv) shows that S

is a surjective lattice homomorphism. Hence it remains to show that S is injective.
Let 0 ≤ ϕ ∈

(∏
Eα

)∼

n
and suppose that S(ϕ) = 0. Then ι∼β (ϕ) = 0 for every β ∈ I. But for any 

0 ≤ u ∈
∏

Eα,

u = sup
{∑

α∈F

ια(u) : F ⊆ I is finite
}
.

Therefore by the order continuity of ϕ,

ϕ(u) = sup
{∑

α∈F

ι∼α (ϕ)(u) : F ⊆ I is finite
}

= 0

for all 0 ≤ u ∈
∏

Eα; hence ϕ = 0. Because S is a lattice homomorphism it follows that, for all ϕ ∈(∏
Eα

)∼

n
, if S(ϕ) = 0 then ϕ = 0; that is, S is injective. �

Remark 2.6. We note that, in general, the statement in Theorem 2.5 (iv) is not true if I has measurable 
cardinal: In this case the map S in the proof of Theorem 2.5 (iv) may fail to be injective. To see this, 
suppose that I has measurable cardinal. Then I equipped with the discrete topology is not realcompact. 
We identify RI with C(υI). Let x ∈ υI \ I. Then δx : RI � u �→ u(x) ∈ R is a non-zero, positive linear 
functional on RI , but S(δx) = 0.

We now define the categories which are the setting of this paper. It is readily verified that these are 
indeed categories.

Objects Morphisms

VL Vector lattices Lattice homomorphisms
NVL Vector lattices Normal lattice homomorphisms
IVL Vector lattices Interval preserving lattice homomorphisms
NIVL Vector lattices Normal, interval preserving lattice homomorphisms

We refer to these four categories as categories of vector lattices. If C is a category of vector lattices, then 
a C-morphism is a morphism within the category C. Below we depict the subcategory relationships among 
the categories of vector lattices under consideration.

NVL

VL NIVL

IVL

⊇⊇
⊇ ⊇
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2.2. Measures on topological spaces

Because the terminology related to measures on topological spaces varies across the literature, we declare 
our conventions. Let X be a Hausdorff topological space. For a function u : X → R we denote by Zu the 
zero set of u and by Zc

u its co-zero set, that is, the complement of Zu. If A ⊆ X then 1A denotes the 
indicator function of A.

Denote by BX the Borel σ-algebra generated by the open sets in X. A (signed) Borel measure on X is 
a real-valued and σ-additive function on BX . We denote the space of all signed Borel measures on X by 
Mσ(X). This space is a Dedekind complete vector lattice with respect to the pointwise operations and order 
[39, Theorem 27.3]. In particular, for μ, ν ∈ Mσ(X),

(μ ∨ ν)(B) = sup {μ(A) + ν(B \A) : A ⊆ B, A ∈ BX} , B ∈ BX .

For any upward directed set D ⊆ Mσ(X)+ with supD = ν in Mσ(X),

ν(B) = sup{μ(B) : μ ∈ D}, B ∈ BX . (2.1)

Following Bogachev [9], we call a Borel measure μ on X a Radon measure if for every B ∈ BX ,

|μ|(B) = sup{|μ|(K) : K ⊆ B is compact}.

Equivalently, μ is Radon if for every B ∈ BX and every ε > 0 there exists a compact set K ⊆ B so that 
|μ|(B \K) < ε. Observe that if μ is Radon, then also

|μ|(B) = inf{|μ|(U) : U ⊇ B is open}.

Denote the space of Radon measures on X by M(X).
Recall that the support of a Borel measure μ on X is defined as

Sμ := {x ∈ X : |μ|(U) > 0 for all U � x open}.

A non-zero Borel measure μ may have empty support, and even if Sμ �= ∅, it may have measure zero [9, Vol. 
II, Example 7.1.3]. However, if μ is a non-zero Radon measure, then Sμ �= ∅ and |μ|(Sμ) = |μ|(X); in fact, 
for every B ∈ BX , |μ|(B) = |μ|(B∩Sμ). We list the following useful properties of the support of a measure. 
These are well known for measures on locally compact spaces, see for instance [14, Chapter 4], with proofs 
that also apply in our setting. The proofs are therefore omitted.

Proposition 2.7. Let μ and ν be Radon measures on X. The following statements are true.

(i) If |μ| ≤ |ν| then Sμ ⊆ Sν .
(ii) Sμ+ν ⊆ S|μ|+|ν|
(iii) S|μ|+|ν| = Sμ ∪ Sν .

A Radon measure μ is called compactly supported if Sμ is compact. We denote the space of all compactly 
supported Radon measures on X as Mc(X). Further, a Radon measure μ on X is called a normal measure
if |μ|(L) = 0 for all closed nowhere dense sets L in X. The space of all normal Radon measures on X is 
denoted N(X), and the space of compactly supported normal Radon measures by Nc(X).

Theorem 2.8. The following statements are true.
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(i) M(X) is an band in Mσ(X)
(ii) Mc(X) is an ideal in M(X).
(iii) N(X) is a band in M(X).
(iv) Nc(X) is a band in Mc(X).

Proof. For the proof of (i), let μ, ν ∈ M(X). Consider a Borel set B and a real number ε > 0. There 
exists a compact set K ⊆ B so that |μ|(B \ K) < ε/2 and |ν|(B \ K) < ε/2. We have |μ + ν|(B \ K) ≤
|μ|(B \K) + |ν|(B \K) < ε. Therefore μ + ν ∈ M(X). A similar argument shows that aμ ∈ M(X) for all 
a ∈ R. It also follows in this way that for all ν ∈ Mσ(X) and μ ∈ M(X), if |ν| ≤ |μ| then ν ∈ M(X). By 
definition of a Radon measure, |μ| ∈ M(X) whenever μ ∈ M(X). Therefore M(X) is an ideal in Mσ(X).

To see that M(X) is a band in Mσ(X), consider an upward directed subset D of M(X)+ so that supD = ν

in Mσ(X). Fix a Borel set B and a real number ε > 0. There exists μ ∈ D so that ν(B) − ε/2 < μ(B). 
But μ is a Radon measure, so there exists a compact subset K of B so that μ(K) > μ(B) − ε/2. Therefore 
ν(K) ≥ μ(K) > μ(B) − ε/2 > ν(B) − ε. Therefore ν ∈ M(X) so that M(X) is a band in Mσ(X).

The statement in (ii) follows immediately from the definition of the support of a measure and Proposi-
tion 2.7. It is clear that N(X) is an ideal in M(X), and that it is a band follows from (2.1). Hence (iii) is 
true. That (iv) is true follows immediately from (ii) and (iii). �

Unsurprisingly, there is a close connection between Radon measures on X and order bounded linear 
functionals on C(X). Theorem 2.9 to follow is implicit in [21, Corollary 1 (p. 106) & Theorems 4.2, 4.5], 
see also [24] where a treatment is given in terms of Baire measures. In order to facilitate the discussion of 
order continuous functionals to follow, we include the proof.

Theorem 2.9. Let X be a realcompact space. There is a lattice isomorphism C(X)∼ � ϕ �−→ μϕ ∈ Mc(X)
so that for every ϕ ∈ C(X)∼,

ϕ(u) =
∫
X

u dμϕ, u ∈ C(X).

Proof. We identify the space Cb(X) with C (βX). Because Cb(X) is an ideal in C(X), the restriction map 
from C(X)∼ to Cb(X)∼ is a lattice homomorphism [3, Section 1.3, Exercise 1]. It follows from [24, Theorem 
1] that this map is injective. Thus by the Riesz Representation Theorem [35, Theorem 18.4.1], for every 
ϕ ∈ C(X)∼ there exists a unique Radon measure νϕ on βX so that

ϕ(u) =
∫
βX

u dνϕ, u ∈ Cb(X).

Furthermore, the map ϕ �→ νϕ is a lattice isomorphism onto its range.
We claim that the range of this map is M0(βX) := {ν ∈ M(βX) : Sν ⊆ X}. According to [21, Theorem 

4.4], Sνϕ
⊆ X for every ϕ ∈ C(X)∼. Hence νϕ ∈ M0(βX). Conversely, let ν ∈ M0(βX). Since Sν ⊆ X is 

compact in βX, hence also in X,

ψ(u) :=
∫
Sν

u dν, u ∈ C(X)

defines an order bounded functional on C(X). For every u ∈ Cb(X) we have∫
u dν =

∫
u dν = ψ(u) =

∫
u dνϕ.
βX Sν βX
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Therefore ν = νψ which establishes our claim.
We have shown that C(X)∼ � ϕ �→ νϕ ∈ M0(βX) is a lattice isomorphism. We now show that M0(βX)

is isomorphic to Mc(X).
Let ν ∈ M0(βX). The Borel sets in X are precisely the intersections with X of Borel sets in βX [21, p. 

108]. Furthermore, if B′, B′′ ∈ BβX so that B′∩X = B′′∩X then ν(B′) = ν(B′∩Sν) = ν(B′′∩Sν) = ν(B′′). 
For B ∈ BX define

ν∗(B) := ν(B′) with B′ ∈ BβX so that B′ ∩X = B.

It follows from the previous observation that ν∗ is well-defined. It follows easily that ν∗ ∈ Mc(X), and that 
the map M0(βX) � ν �→ ν∗ ∈ Mc(X) is injective, linear, and bipositive. Let μ ∈ Mc(X). For every B ∈ BβX

let ν(B) := μ(B ∩X). Then ν ∈ M0(βX) and ν∗ = μ. Therefore M0(βX) � ν �→ ν∗ ∈ Mc(X) is a lattice 
isomorphism.

For ϕ ∈ C(X)∼ let μϕ := (νϕ)∗. Then C(X)∼ � ϕ �→ μϕ ∈ Mc(X) is a lattice isomorphism. It remains 
to show that, for every ϕ ∈ C(X)∼,

ϕ(u) =
∫
X

u dμϕ, u ∈ C(X).

Fix 0 ≤ ϕ ∈ C(X)∼ and u ∈ C(X)+. A minor modification of the proof of [21, Theorem 3.1] shows that 
there exists a natural number N so that ϕ(u) = ϕ(u ∧ n1X) for every n ≥ N . But

∫
X

u dμϕ = sup
n∈N

∫
X

u ∧ n1X dμϕ,

and, for every n ∈ N,

∫
X

u ∧ n1X dμϕ =
∫
βX

u ∧ n1X dνϕ = ϕ(u ∧ n1X).

Therefore

ϕ(u) =
∫
X

u dμϕ,

as desired. �
Theorem 2.10. Let X be a realcompact space. Let ϕ be an order bounded functional on C(X). Then ϕ is 
order continuous if and only if μϕ is a normal measure. The map

C(X)∼n � ϕ �−→ μϕ ∈ Nc(X)

is a lattice isomorphism onto Nc(X).

Proof. We make use of the notation introduced in the proof of Theorem 2.9. It suffices to show that for any 
0 ≤ ϕ ∈ C(X)∼, ϕ is order continuous if and only if μϕ is normal. Let 0 ≤ ϕ ∈ C(X)∼n . Because Cb(X)
is an ideal in C(X) the restriction of ϕ to Cb(X) is order continuous. Hence the measure νϕ ∈ M0(βX) so 
that
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ϕ(u) =
∫
βX

u dνϕ, u ∈ Cb(X)

is a normal measure on βX, see for instance [14, Definition 4.7.1, Theorem 4.7.4]. It therefore follows that 
the measure μϕ = (νϕ)∗ ∈ Mc(X) is a normal measure on X.

Conversely, let 0 ≤ ϕ ∈ C(X)∼ be such that μϕ is a normal measure on X. Then the Borel measure ν
on βX given by

ν(B) = μϕ(B ∩X), B ∈ BβX

is a normal measure on βX. Hence Sν is regular-closed in βX, see [14, Proposition 4.7.9]. But Sν = Sμϕ
⊆ X

so that Sμϕ
is regular-closed in X. Therefore, if D ↓ 0 in C(X) then D|Sμϕ

= {u|Sμϕ
: u ∈ D} ↓ 0 in 

C(Sμϕ
), see [26, Theorem 3.4]. Also, μϕ restricted to the Borel sets in Sμϕ

is a normal measure on Sμϕ
. 

Hence

inf
u∈D

ϕ(u) = inf
u∈D

∫
Sμϕ

u dμϕ = 0.

Therefore ϕ is order continuous. �
3. Direct limits

We recall the definitions of a direct system in a category of vector lattices, and of the direct limit of 
such a system. These definitions are specializations of the corresponding definitions in general categories, 
see for instance [5, Chapter 5] and [30, Chapter III] where direct limits are referred to as colimits. We 
summarise some existence results and list vector lattice properties that have permanence under the direct 
limit construction. Additional results are found in [19]. Lastly, we give a number of examples of direct limits 
which we will make use of later.

Definition 3.1. Let C be a category of vector lattices, I a directed set, Eα a vector lattice for each α ∈ I, 
and eα,β : Eα → Eβ a C-morphism for all α � β in I. The ordered pair D := ((Eα)α∈I , (eα,β)α�β) is called 
a direct system in C if, for all α � β � γ in I, the diagram

Eα Eγ

Eβ

eα,β

eα,γ

eβ,γ

commutes in C.

Definition 3.2. Let C be a category of vector lattices and D := ((Eα)α∈I , (eα,β)α�β) a direct system in 
C. Let E be a vector lattice and for every α ∈ I, let eα : Eα → E be a C-morphism. The ordered pair 
S := (E, (eα)α∈I) is a compatible system of D in C if, for all α � β in I, the diagram

Eα E

Eβ

eα,β

eα

eβ

commutes in C.
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Definition 3.3. Let C be a category of vector lattices and D := ((Eα)α∈I , (eα,β)α�β) a direct system in C. 
The direct limit of D in C is a compatible system S := (E, (eα)α∈I) of D in C so that for any compatible 
system S̃ := (Ẽ, (ẽα)α∈I) of D in C there exists a unique C-morphism r : E → Ẽ so that, for every α ∈ I, 
the diagram

E Ẽ

Eα

r

eα ẽα

commutes in C. We denote the direct limit of a direct system D by lim−→D or lim−→Eα.

Since the direct limit of a direct system is in fact an initial object in a certain derived category, it follows 
that the direct limit, when it exists, is unique up to a unique isomorphism, see for instance [11, p. 54].

3.1. Existence and permanence properties of direct limits

Filter [19] shows that any direct system D := ((Eα)α∈I , (eα,β)α�β) in VL has a direct limit in VL.4 In 
particular, the set-theoretic direct limit [10, Chapter III, §7.5] of D equipped with suitable vector space and 
order structures is also the direct limit of D in VL. We briefly recall the details.

For u in the disjoint union 
⊎

Eα of the collection (Eα)α∈I , denote by α(u) that element of I so that 
u ∈ Eα(u). Define an equivalence relation on 

⊎
Eα by setting u ∼ v if and only if there exists β � α(u), α(v)

in I so that eα(u),β(u) = eα(v),β(v). Let E :=
⊎

Eα/ ∼ and denote the equivalence class generated by 
u ∈

⊎
Eα by u̇.

Let u̇, v̇ ∈ E. We set u̇ ≤ v̇ if and only if there exists β � α(u), α(v) in I so that eα(u),β(u) ≤ eα(v),β(v). 
Further, for a, b ∈ R define

au̇ + bv̇ :=
˙︷ ︸︸ ︷

aeα(u),β(u) + beα(v),β(v),

where β � α(u), α(v) in I is arbitrary. With addition, scalar multiplication and the partial order so defined, 
E is a vector lattice. The lattice operations are given by

u̇ ∧ v̇ =
˙︷ ︸︸ ︷

eα(u),β(u) ∧ eα(v),β(v)

and

u̇ ∨ v̇ =
˙︷ ︸︸ ︷

eα(u),β(u) ∨ eα(v),β(v),

with β � α(u), α(v) in I arbitrary.
For each α ∈ I define eα : Eα → E by setting eα(u) := u̇ for u ∈ Eα. Each eα is a lattice homomorphism 

and the diagram

Eα E

Eβ

eα,β

eα

eβ

4 The results in [19] are not formulated in these terms.
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commutes in VL for all α � β in I so that S := (E, (eα)α∈I) is a compatible system of D in VL. Further, 
if S̃ = (Ẽ, (ẽα)α∈I) is another compatible system of D in VL then

r : E � u̇ �−→ ẽα(u)(u) ∈ Ẽ

is the unique lattice homomorphism so that the diagram

E Ẽ

Eα

r

eα ẽα

commutes for every α ∈ I. Hence S is indeed the direct limit of D in VL.
We give two further existence results for direct limits of direct systems in other categories of vector 

lattices.

Theorem 3.4. Let D := ((Eα)α∈I , (eα,β)α�β) be a direct system in IVL, and let S := (E, (eα)α∈I) be the 
direct limit of D in VL. Then S is the direct limit of D in IVL.

Proof. We show that each eα is interval preserving. To this end, fix α ∈ I and 0 ≤ u ∈ Eα. Suppose that 
0̇ ≤ v̇ ≤ eα(u) = u̇. Then there exists a β � α, α(v) in I so that 0 ≤ eα(v),β(v) ≤ eα,β(u). But eα,β is 
interval preserving, so there exists 0 ≤ w ≤ u in Eα so that eα,β(w) = eα(v),β(v). Therefore eα(w) = ẇ = v̇. 
Hence eα is interval preserving. Therefore S is a compatible system of D in IVL.

Let S̃ := (Ẽ, (ẽα)α∈I) be a compatible system of D in IVL, thus also in VL. We show that the canonical 
lattice homomorphism r : E → Ẽ is interval preserving. Consider u̇ ∈ E+. Let 0 ≤ v ≤ r(u̇) in Ẽ, that is, 
0 ≤ v ≤ ẽα(u)(u). But ẽα(u) is interval preserving so there exists 0 ≤ w ≤ u in Eα(u) so that v = ẽα(u)(w). 
Thus 0̇ ≤ ẇ ≤ u̇ in E and r(ẇ) = v. Therefore r is interval preserving. �
Theorem 3.5. Let D := ((Eα)α∈I , (eα,β)α�β) be a direct system in NIVL, and let S := (E, (eα)α∈I) be the 
direct limit of D in VL. Assume that eα,β is injective for all α � β in I. Then S is the direct limit of D in 
NIVL.

Proof. We start by proving that eα : Eα → E is injective for every α ∈ I. Fix α ∈ I and u ∈ Eα so that 
eα(u) = 0̇ in E. Then there exists β � α in I so that eα,β(u) = 0. But eα,β is injective, so u = 0. Hence eα
is injective.

By Theorem 3.4, eα : Eα → E is an injective interval preserving lattice homomorphism for every α ∈ I. It 
follows from Proposition 2.1 (i) that eα is a NIVL-morphism for every α ∈ I. Therefore S is a compatible 
system of D in NIVL.

Let S̃ := (Ẽ, (ẽα)α∈I) be a compatible system of D in NIVL. By Theorem 3.4 the canonical map r : E → Ẽ
is an interval preserving lattice homomorphism. We claim that r is a normal lattice homomorphism. To this 
end, let A ↓ 0̇ in E. Without loss of generality we may suppose that A is bounded from above in E, say by 
u̇0. There exists α ∈ I and u0 ∈ Eα so that u̇0 = eα(u0). Because eα is injective and interval preserving, 
there exists for every u̇ ∈ A a unique u ∈ [0, u0] ⊆ Eα so that eα(u) = u̇. In particular, e−1

α [A] ⊆ [0, u0]. We 
claim that inf e−1

α [A] = 0 in Eα. Let 0 ≤ v ∈ Eα be a lower bound for e−1
α [A]. Then eα(v) ≥ 0 is a lower 

bound for A in E, hence eα(v) = 0. But eα is injective, so v = 0. This verifies our claim. By definition, 
r[A] = ẽα[e−1

α [A]]. Because ẽα is a normal lattice homomorphism it follows that inf r[A] = 0 in Ẽ. �
We recall the following result on permanence of vector lattice properties under the direct limit construc-

tion from [19].
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Theorem 3.6. Let D := ((Eα)α∈I , (eα,β)α�β) be a direct system in a category C of vector lattices. Assume 
that eα,β is injective for all α � β in I. Let S := (E, (eα)α∈I) be the direct limit of D in VL. Then the 
following statements are true.

(i) E is Archimedean if and only if Eα is Archimedean for all α ∈ I.
(ii) If C is IVL then E is order separable if and only if Eα is order separable for every α ∈ I.
(iii) If C is IVL then E has the (principal) projection property if and only if Eα has the (principal) projection 

property for every α ∈ I.
(iv) If C is IVL then E is (σ-)Dedekind complete if and only if Eα is (σ-)Dedekind complete for every 

α ∈ I.
(v) If C is IVL then E is relatively uniformly complete if and only if Eα is relatively uniformly complete 

for every α ∈ I.

Before we proceed to discuss examples of direct limits we make some clarifying remarks about the 
structure of the direct limit of vector lattices.

Remark 3.7. Let D := ((Eα)α∈I , (eα,β)α�β) be a direct system in VL and let S := (E, (eα)α∈I) be the direct 
limit of D in VL.

(i) Unless clarity demands it, we henceforth cease to explicitly express elements of E as equivalence classes; 
that is, we write u ∈ E instead of u̇ ∈ E.

(ii) For every u ∈ E there exists at least one α ∈ I and uα ∈ Eα so that u = eα(uα). If u = eβ(uβ) for 
some other β ∈ I and uβ ∈ Eβ then there exists γ � α, β in I so that eα,γ(uα) = eβ,γ(uβ), and hence

eγ(eα,γ(uα)) = u = eγ(eβ,γ(uβ)).

(iii) It is proven in Theorem 3.5 that if eα,β is injective for all α � β in I then eα is injective for all α ∈ I. 
In this case we identify Eα with the sublattice eα[Eα] of E.

(iv) An element u ∈ E is positive if and only if there exist α � β in I and uα ∈ Eα so that eα(uα) = u and 
eα,β(uα) ≥ 0 in Eβ . Combining this observation with (ii) we see that u ≥ 0 if and only if there exist 
α ∈ I and 0 ≤ uα ∈ Eα so that u = eα(uα).

3.2. Examples of direct limits

In [19] a number of examples are presented of naturally occurring vector lattices which can be expressed 
as direct limits in categories of vector lattices. We provide further examples which will be used in Section 6.

Example 3.8. Let E be a vector lattice. Let (Eα)α∈I be an upward directed collection of ideals in E such 
that Eα ⊆ Eβ if and only if α � β. Assume that 

⋃
Eα = E. For all α � β in I, let eα,β : Eα → Eβ and 

eα : Eα → E be the inclusion mappings. Then D := ((Eα)α∈I , (eα,β)α�β) is a direct system in NIVL and 
S := (E, (eα)α∈I) is the direct limit of D in NIVL.

Proof. It is clear that D is a direct system in NIVL and that S is a compatible system of D in NIVL. 
Let S̃ = (Ẽ, (ẽα)α∈I) be any compatible system of D in NIVL. We show that there exists a unique NIVL-
morphism r : E → Ẽ so that for all α ∈ I, the diagram

E Ẽr

eα ẽα
Eα
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commutes.
If u ∈ E and α, β ∈ I are such that u ∈ Eα, Eβ , then ẽα(u) = ẽβ(u). Indeed, for any γ � α, β in I

ẽγ(u) = ẽγ(eα,γ(u)) = ẽα(u)

and

ẽγ(u) = ẽγ(eβ,γ(u)) = ẽβ(u).

Therefore the map r : E → Ẽ given by

r(u) = ẽα(u) if u ∈ Eα

is well-defined. It is clear that this map makes the diagram above commute. Further, if u, v ∈ E then there 
exists α ∈ I so that u, v ∈ Eα. Then for all a, b ∈ R we have au + bv, u ∨ v ∈ Eα so that

r(au + bv) = ẽα(au + bv) = aẽα(u) + bẽα(v) = a r(u) + b r(v)

and

r(u ∨ v) = ẽα(u ∨ v) = ẽα(u) ∨ ẽα(v) = r(u) ∨ r(v).

Hence r is a lattice homomorphism. A similar argument shows that r is interval preserving. To see that 
r is a normal lattice homomorphism, let A ↓ 0 in E. Without loss of generality, assume that there exists 
0 ≤ u0 ∈ E so that u ≤ u0 for all u ∈ A. Then A ⊆ Eα for some α ∈ I so that r[A] = ẽα[A]. Hence, because 
ẽα is a normal lattice homomorphism, inf r[A] = 0. Therefore r is a NIVL-morphism.

It remains to show that r is the unique NIVL-morphism making the diagram above commute. Suppose 
that r̃ is any such morphism. Let u ∈ E. There exists α ∈ I so that u ∈ Eα. We have r̃(u) = r̃(eα(u)) =
ẽα(u) = r(u), which completes the proof. �

The remaining examples in this section may readily been seen to be special cases of Example 3.8. Therefore 
we omit the proofs.

Example 3.9. Let E be a vector lattice. For every 0 < u ∈ E let Eu be the ideal generated by u in E. For 
all 0 < u ≤ v let eu,v : Eu → Ev and eu : Eu → E be the inclusion mappings. Let I be an upward directed 
subset of E+ {0} so that E =

⋃
Eu. Then D := ((Eu)u∈I , (eu,v)u≤v) is a direct system in NIVL and 

S := (E, (eu)u∈I) is the direct limit of D in NIVL.

Example 3.10. Let (X, Σ, μ) be a complete σ-finite measure space. Let Ξ := (Xn) be an increasing sequence 
(w.r.t. inclusion) of measurable sets with positive measure so that X =

⋃
Xn. For n ≤ m in N let 

en,m : Lp(Xn) → Lp(Xm) be defined (a.e.) by setting

en,m(u)(t) :=
{

u(t) if t ∈ Xn

0 if t ∈ Xm\Xn

for each u ∈ Lp(Xn). Further, define

Lp
Ξ−c(X) := {u ∈ Lp(X) : u = 0 a.e. on X \Xn for some n ∈ N} .

For n ∈ N let en : Lp(Xn) → Lp (X) be given by
Ξ−c



W. van Amstel, J.H. van der Walt / J. Math. Anal. Appl. 531 (2024) 127770 17
en(u)(t) :=
{

u(t) if t ∈ Xn

0 if t ∈ X \Xn

for all u ∈ Lp(Xn). The following statements are true.

(i) Dp
Ξ−c := ((Lp(Xn))n∈N , (en,m)n≤m) is a direct system in NIVL, and en,m is injective for all n ≤ m in 

N.
(ii) Sp

Ξ−c :=
(
Lp

Ξ−c(X), (en)n∈N
)

is the direct limit of Dp
Ξ−c in NIVL.

Example 3.11. Let X be a locally compact Hausdorff space. Let Γ := (Xα)α∈I be an upward directed (with 
respect to inclusion) collection of non-empty open precompact subsets of X so that 

⋃
Xα = X. For each 

α ∈ I, let M(X̄α) be the space of Radon measures on X̄α and Mc(X) the space of compactly supported 
Radon measures on X. For all α � β in I, let eα,β : M(X̄α) → M(X̄β) be defined by setting

eα,β(μ)(B) := μ(B ∩ X̄α) for all μ ∈ M(X̄α) and B ∈ BX̄β
.

Likewise, for α ∈ I, define eα : M(X̄α) → Mc(X) by setting

eα(μ)(B) := μ(B ∩ X̄α) for all μ ∈ M(Xα) and B ∈ BX .

The following statements are true.

(i) DΓ :=
(
(M(X̄α)α∈I , (eα,β)α�β

)
is a direct system in NIVL and eα,β is injective for all α � β in I.

(ii) SΓ := (Mc(X), (eα)α∈I) is the direct limit of DΓ in NIVL.

Example 3.12. Let X be a locally compact Hausdorff space. Let Γ := (Xα)α∈I be an upward directed (with 
respect to inclusion) collection of open precompact subsets of X so that 

⋃
Xα = X. For each α ∈ I, let 

N(X̄α) be the space of normal Radon measures on X̄α and Nc(X) the space of compactly supported normal 
Radon measures on X. For all α � β in I, let eα,β : N(X̄α) → N(X̄β) be defined by setting

eα,β(μ)(B) := μ(B ∩ X̄α) for all μ ∈ N(X̄α) and B ∈ BX̄β
.

Likewise, for α ∈ I, define eα : N(X̄α) → Nc(X) by setting

eα(μ)(B) := μ(B ∩ X̄α) for all μ ∈ N(Xα) and B ∈ BX .

The following statements are true.

(i) EΓ :=
(
(N(X̄α)α∈I , (eα,β)α�β

)
is a direct system in NIVL and eα,β is injective for all α � β in I.

(ii) TΓ := (Nc(X), (eα)α∈I) is the direct limit of EΓ in NIVL.

4. Inverse limits

In this section we discuss inverse systems and inverse limits in categories of vector lattices, which are 
the categorical dual concepts of direct systems and direct limits. Below we present the definitions of inverse 
systems and inverse limits in these categories. As is the case in the previous section, these definitions are 
specializations of the corresponding definitions in general categories, see for instance [5, Chapter 5] or [30, 
Chapter III].
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Definition 4.1. Let C be a category of vector lattices, I a directed set, Eα a vector lattice for each α ∈ I, 
and pβ,α : Eβ → Eα a C-morphism for all β � α in I. The ordered pair I := ((Eα)α∈I , (pβ,α)β�α) is an 
inverse system in C if, for all α � β � γ in I, the diagram

Eγ Eα

Eβ

pγ,β

pγ,α

pβ,α

commutes in C.

Definition 4.2. Let C be a category of vector lattices and I := ((Eα)α∈I , (pβ,α)β�α) an inverse system in 
C. Let E be a vector lattice and for every α ∈ I, let pα : E → Eα be a C-morphism. The ordered pair 
S := (E, (pα)α∈I) is a compatible system of I in C if, for all α � β in I, the diagram

E Eα

Eβ

pβ

pα

pβ,α

commutes in C.

Definition 4.3. Let C be a category of vector lattices and I := ((Eα)α∈I , (pβ,α)β�α) an inverse system in 
C. The inverse limit of I in C is a compatible system S := (E, (pα)α∈I) so that for any compatible system 
S̃ := (Ẽ, (p̃α)α∈I) in C there exists a unique C-morphism s : Ẽ → E so that, for all α ∈ I, the diagram

Ẽ E

Eα

p̃α

s

pα

commutes in C. The inverse limit of I is denoted by lim←−I or lim←−Eα.

Since inverse limits are terminal objects in a certain derived category, they are unique up to a unique 
isomorphism when they exist, see for instance [11, Corollary 3.2]

4.1. Existence of inverse limits

Our first task is to establish the existence of inverse limits in various categories of vector lattices. The 
basic result, akin to Filter’s result for direct systems, is the following.

Theorem 4.4. Let I := ((Eα)α∈I , (pβ,α)β�α) be an inverse system in VL. Define the set

E :=
{
u ∈

∏
Eα : πα(u) = pβ,α(πβ(u)) for all α � β in I

}
.

For every α ∈ I define pα := πα|E. The following statements are true.

(i) E is a vector sublattice of 
∏

Eα.
(ii) The pair S := (E, (pα)α∈I) is the inverse limit of I in VL.
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Proof of (i). We verify that E is a sublattice of 
∏

Eα; that it is a linear subspace follows by a similar 
argument, as the reader may readily verify. Consider u and v in E. Then πα(u ∨ v) = πα(u) ∨ πα(v) for all 
α ∈ I. Fix any α, β ∈ I so that β � α. Then

pβ,α(πβ(u ∨ v)) = pβ,α(πβ(u)) ∨ pβ,α(πβ(u)) = πα(u) ∨ πα(v) = πα(u ∨ v).

Therefore u ∨ v ∈ E. Similarly, u ∧ v ∈ E so that E is a sublattice of 
∏

Eα. �
Proof of (ii). From the definitions of E and the pα it is clear that S is a compatible system of I in VL. Let 
S̃ := (Ẽ, (p̃α)α∈I) be any compatible system of I in VL. Define s : Ẽ → E by setting s(u) := (p̃α(u))α∈I . 
Let β � α in I. Because S̃ is a compatible system

pβ,α(p̃β(u)) = p̃α(u), u ∈ Ẽ.

Therefore s(u) ∈ E for all u ∈ Ẽ. Because each p̃α is a lattice homomorphism, so is s. By the definitions 
of s and the pα, respectively, it follows that pα ◦ s = p̃α for every α ∈ I. We show that s is the unique 
lattice homomorphism with this property. To this end, let s̃ : Ẽ → E be a lattice homomorphism so that 
pα ◦ s̃ = p̃α for every α ∈ I. Fix u ∈ Ẽ. Then for every α ∈ I,

πα(s̃(u)) = pα(s̃(u)) = p̃α(u) = πα(s(u)).

Hence s = s̃ and therefore lim←−I = (E, (pα)α∈I) in VL. �
Theorem 4.5. Let I := ((Eα)α∈I , (pβ,α)β�α) be an inverse system in NVL and S := (E, (pα)α∈I) its inverse 
limit in VL. The following statements are true.

(i) Let A ⊆ E and assume that inf A = u or supA = u in 
∏

Eα. Then u ∈ E.
(ii) If Eα is Dedekind complete for every α ∈ I then S is the inverse limit of I in NVL.

Proof of (i). It is sufficient to consider infima of downward directed subsets of E. Let A ⊆ E and assume 
that A ↓ u in 

∏
Eα. By Theorem 2.5 (i), for every α ∈ I, pα[A] = πα[A] ↓ πα(u) in Eα. For β � α in I,

πα(u) = inf pα[A] = inf pβ,α[pβ [A]] = pβ,α(inf pβ [A]) = pβ,α(πβ(u));

the second to last identity follows from the fact that pβ,α is a normal lattice homomorphism. Therefore 
u ∈ E. �
Proof of (ii). First, we prove that the pα are normal lattice homomorphisms. Let A ↓ 0 in E. Since Eα is 
Dedekind complete for every α ∈ I, so is 

∏
Eα. Therefore A ↓ u in 

∏
Eα for some u ∈

∏
Eα. Then u ∈ E

so that A ↓ u in E. But A ↓ 0 in E, hence u = 0. Therefore inf pα[A] = πα(u) = 0 for every α ∈ I.
From the above it follows that S is a compatible system in NVL. It remains to show that S satisfies 

Definition 4.3 in NVL. Let S̃ = (Ẽ, (p̃α)α∈I) be a compatible system in NVL. Based on Theorem 4.4 we 
need only show that s : Ẽ → E defined by setting s(u) := (p̃α(u))α∈I for every u ∈ Ẽ is a normal lattice 
homomorphism.

Let A ↓ 0 in Ẽ. Then, since each p̃α is a normal lattice homomorphism, πα[s[A]] = pα[s[A]] = p̃α[A] ↓ 0
in Eα for every α ∈ I. Hence s[A] ↓ 0 in 

∏
Eα, therefore also in E. Therefore s is a normal lattice 

homomorphism, hence a NVL-morphism, so that limI = (E, (pα)α∈I) in NVL. �
←−
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Remark 4.6. Let I := ((Eα)α∈I , (pβ,α)β�α) be an inverse system in a category of vector lattices, and 
S := (E, (pα)α∈I) its inverse limit in VL. We occasionally suppress the projections pα and simply write 
E = lim←−I or ‘E is the inverse limit of I’.

4.2. Permanence properties

In this section we establish some permanence properties for inverse limits, along the same vein as those 
for direct limits given in Theorem 3.6. These follow easily from the construction of inverse limits given in 
Theorem 4.4 and the properties of products of vector lattices given in Theorem 2.5.

Theorem 4.7. Let I := ((Eα)α∈I , (pβ,α)β�α) be an inverse system in VL and S := (E, (pα)α∈I) its inverse 
limit in VL. The following statements are true.

(i) If Eα is Archimedean for every α ∈ I then so is E.
(ii) If Eα is Archimedean and relatively uniformly complete for every α ∈ I then E is relatively uniformly 

complete.

Proof. We note that (i) follows immediately from Theorem 2.5 (ii) and the construction of an inverse limit 
in VL.

For (ii), assume that Eα is Archimedean and relatively uniformly complete for every α ∈ I. We show 
that every relatively uniformly Cauchy sequence in E is relatively uniformly convergent. Because E is 
Archimedean by (i), it follows from [31, Theorem 39.4] that it suffices to consider increasing sequences. 
Let (un) be an increasing, relatively uniformly Cauchy sequence in E. Then for every α ∈ I, (pα(un)) is 
an increasing sequence in Eα. According to [31, Theorem 59.3], (pα(un)) is relatively uniformly Cauchy 
in Eα. Because each Eα is relatively uniformly complete, there exists uα ∈ Eα so that (pα(un)) converges 
relatively uniformly to uα. In fact, because (pα(un)) is increasing, uα = sup{pα(un) : n ∈ N}. Therefore 
u := (uα) = sup{un : n ∈ N} in 

∏
Eα. By Theorem 4.5 (i), u ∈ E so that u = sup{un : n ∈ N} in E. 

Therefore (un) converges relatively uniformly to u by [31, Lemma 39.2]. We conclude that E is relatively 
uniformly complete. �

Theorem 4.8. Let I := ((Eα)α∈I , (pβ,α)β�α) be an inverse system in NVL and S := (E, (pα)α∈I) its inverse 
limit in VL. The following statements are true.

(i) If Eα is σ-Dedekind complete for every α ∈ I then so is E.
(ii) If Eα is Dedekind complete for every α ∈ I then so is E.
(iii) If Eα is laterally complete for every α ∈ I then so is E.
(iv) If Eα is universally complete for every α ∈ I then so is E.

Proof. We prove (ii). The statements in (i) and (iii) follow by almost identical arguments, and (iv) follows 
immediately from (ii) and (iii).

Let D ⊆ E be an upwards directed set bounded above by u ∈ E. For every α ∈ I the set Dα := pα [D] is 
bounded above in Eα by πα(u) ∈ Eα. Since Eα is Dedekind complete for every α ∈ I, vα := supDα exists 
in Eα for all α ∈ I. We have that supD = (vα) in 

∏
Eα. By Theorem 4.5 (i), v := (vα) ∈ E. Because E is 

a sublattice of 
∏

Eα it follows that v = supD in E. �
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4.3. Examples of inverse limits

In this section we present a number of examples of inverse systems and their limits in categories of vector 
lattices. These will be used in Section 6. Our first example is related to Example 3.10.

Example 4.9. Let (X, Σ, μ) be a complete σ-finite measure space. Let Ξ := (Xn) be an increasing sequence 
(w.r.t. inclusion) of measurable sets with positive measure so that X =

⋃
Xn. For 1 ≤ p ≤ ∞ let Lp

Ξ−	oc(X)
denote the set of (equivalence classes of) measurable functions u : X → R so that u1Xn

∈ Lp(Xn) for every 
n ∈ N. For m ≥ n in N let rm,n : Lp(Xm) → Lp(Xn) and rn : Lp

Ξ−	oc(X) → Lp(Xn) be the restriction 
maps. The following statements are true.

(i) Ip
Ξ−	oc := ((Lp(Xn))n∈N , (rm,n)m≥n) is an inverse system in NIVL, and rm,n is surjective for all m ≥ n

in N.
(ii) Sp

Ξ−	oc := (Lp
Ξ−	oc(X), (rn)n∈N) is a compatible system of Ip

Ξ−	oc in NIVL.
(iii) Sp

Ξ−	oc is the inverse limit of Ip
Ξ−	oc in NVL.

Proof. That (i) and (ii) are true is clear. We prove (iii).
Because Lp(Xn) is Dedekind complete for every n ∈ N, lim←−Ip

Ξ−	oc := (F, (pn)n∈N) exists in NVL by 
Theorem 4.5 (ii). Since Sp

Ξ−	oc is a compatible system of Ip
Ξ−	oc in NVL there exists a unique normal lattice 

homomorphism s : Lp
Ξ−	oc(X) → F so that the diagram

Lp
Ξ−	oc(X) F

Lp(Xn)
rn

s

pn

commutes for every n ∈ N. We show that s is bijective. To see that s is injective, suppose that s(u) = 0
for some u ∈ Lp

Ξ−	oc(X). Then rn(u) = 0 for every n ∈ N; that is, the restriction of u to each set Xn

is 0. Since 
⋃

Xn = X it follows that u = 0. To see that s is surjective, consider u ∈ F. If m ≥ n then 
pn(u) = rm,n(pm(u)); that is, pn(u) = pm(u) a.e. on Xn. Therefore v : X → R given by

v(x) := pn(u)(x) if x ∈ Xn

is a.e. well-defined on X =
⋃

Xn. For n ∈ N, v restricted to Xn is pn(u) ∈ Lp(Xn). Therefore v ∈ Lp
Ξ−	oc(X). 

Furthermore, pn(s(v)) = rn(v) = pn(u) for all n ∈ N so that s(v) = u. We conclude that s is a lattice 
isomorphism. �

Our second example is a companion result for Examples 3.11 and 3.12.

Example 4.10. Let X be a topological space and O := {Oα : α ∈ I} collection of non-empty open subsets 
of X which is upward directed with respect to inclusion; that is, α � β if and only if Oα ⊆ Oβ . Assume that ⋃
Oα is dense and C-embedded in X. For β � α, denote by rβ,α : C(Ōβ) → C(Ōα) and rα : C(X) → C(Ōα)

the restriction maps. The following statements are true.

(i) IO := ((C(Ōα))α∈I , (rβ,α)β�α) is an inverse system in VL.
(ii) SO := (C(X), (rα)α∈I) is a compatible system of IO in VL.
(iii) SO is the inverse limit of IO in VL.
(iv) If X is a Tychonoff space and Oα is precompact for every α ∈ I then IO is an inverse system in NIVL, 

SO is a compatible system of IO in NIVL, and rβ,α is surjective for all β � α in I.
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Proof. That (i), (ii) and (iii) are true follows from arguments similar to those used in the proof of Exam-
ple 4.9. We therefore omit the proofs of these statements. We only note that for (iii), we use the fact that 
every u ∈ C(

⋃
Oα) has a unique continuous and real-valued extension to X; that is, restriction from X to ⋃

Oα defines a lattice isomorphism from C(
⋃

Oα) onto C(X).
To verify the first two statements in (iv) it is sufficient to show that the rα and rα,β are order continuous 

and interval preserving. That these maps are order continuous follows from [26, Theorem 3.4]. That they are 
interval preserving follows from the fact that every compact subset of a Tychonoff space is C∗-embedded. We 
show that the rα are interval preserving, the proof for rα,β being identical. Consider an α ∈ I, u ∈ C(X)+
and v ∈ C(Ōα) so that 0 ≤ v ≤ rα(u). Because Ōα is C∗-embedded in X there exists a continuous function 
v′ ∈ C(X) so that rα(v′) = v. Let w := (0 ∨ v′) ∧ u. Then 0 ≤ w ≤ u and, because rα is a lattice 
homomorphism, rα(w) = v. Therefore [0, rα(u)] = rα[[0, u]].

For every β � α in I, Ōα is C∗-embedded in Ōβ so that rβ,α is surjective. �
Our next example is of a more general nature. It is an essential ingredient in our solution of the decom-

position problem for C(X) mentioned in Section 1.

Example 4.11. Let E be an Archimedean vector lattice. Denote by BE the Boolean algebra of projection 
bands in E.5 Let M be a non-trivial ideal in BE; that is, M ⊂ BE is downward closed, upward directed 
and does not consist of the trivial band {0} only. For notational convenience we express M as indexed by a 
directed set I, M = {Bα : α ∈ I}, so that α � β if and only if Bα ⊆ Bβ .

For Bα ⊆ Bβ in M, denote by Pα the band projection of E onto Bα and by Pβ,α the band projection of 
Bβ onto Bα; that is, Pβ,α = Pα|Bβ

. The following statements are true.

(i) IM := (M, (Pβ,α)β�α) is an inverse system in NIVL and S̃ := (E, (Pα)α∈I) is a compatible system of 
IM in NIVL.

(ii) lim←−IM := (F, (pα)α∈I) exists in VL. If E is Dedekind complete then (F, (pα)α∈I) is the inverse limit 
of IM in NVL.

(iii) PM : E � u �→ (Pα(u))α∈I ∈ F is the unique lattice homomorphism so that the diagram

E F

Bα

Pα

PM

pα

commutes for every α ∈ I. Furthermore, PM[E] an order dense sublattice of F. If E is Dedekind complete 
then PM[E] is an ideal in F.

(iv) PM is injective if and only if {Pα : α ∈ I} separates the points of E. In this case, PM is a lattice 
isomorphism onto an order dense sublattice of F.

Proof. Since band projections are both interval preserving and order continuous, (i) follows immediately 
from Proposition 2.2. The statement in (ii) follows immediately from (i) and Theorems 4.4 and 4.5 (ii). 
That (iv) is true is a direct consequence of the definition of PM.

We proceed to prove (iii). Since Pα is a lattice homomorphism for every α ∈ I, PM is a lattice homomor-
phism into 

∏
Bα. If u ∈ E and α � β then Pβ,α(Pβ(u)) = Pα(u) by Proposition 2.2 (iii). Hence PM[E] is 

a sublattice of F. It follows from the construction of F as a sublattice of 
∏

Bα given in Theorem 4.4 that 
pα ◦ PM = Pα for all α ∈ I.

5 BE is ordered by inclusion.
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Let 0 < u = (uα) ∈ F. There exists α0 ∈ I so that uα0 > 0 in Bα0 ⊆ E. Then 0 < PM(uα0) ≤ u in F. 
Hence PM[E] is order dense in F.

Assume that E is Dedekind complete. We show that PM[E] is an ideal in F. Consider v ∈ E+ and 
u = (uα) ∈ F+ so that 0 ≤ u ≤ PM(v). Then uα ≤ Pα(v) ≤ v for all α ∈ I. Let w = sup{uα : α ∈ I} in 
E. We claim that PM(w) = u. Because uα ≤ w for all α ∈ I, uα = Pα(uα) ≤ Pα(w). Therefore u ≤ PM(w). 
For the reverse inequality we note that for all β ∈ I,

Pβ(w) = sup{Pβ(uα) : α ∈ I}.

We claim that Pβ(uα) ≤ uβ for all α, β ∈ I. It follows from this claim that Pβ(w) ≤ uβ so that PM(w) ≤ u. 
Thus we need only verify that, indeed, Pβ(uα) ≤ uβ for all α, β ∈ I. To this end, fix α, β ∈ I. Let γ ∈ I be a 
mutual upper bound for α and β. Because u = (uα) ∈ F, S̃ is compatible with IM and uγ , uα ∈ E we have

Pβ(uα) = Pβ(Pγ,α(uγ)) ≤ Pβ(uγ) = Pγ,β(Pγ(uγ)) = Pγ,β(uγ) = uβ .

This completes the proof. �
Remark 4.12. Let E, BE, M, IM, PM and S̃ be as in Example 4.11. Assume that {Pα : α ∈ I} separates 
the points of E. It may happen that PM maps E onto lim←−IM, but this is not always the case. If this is 
the case, then lim←−IM = S̃ in VL, or, if E is Dedekind complete, in NVL. A sufficient, but not necessary, 
condition for PM to map E onto F is that E ∈ M.

(i) Consider the vector lattice Rω of all functions from N to R. For F ⊆ N let

BF := {u ∈ Rω : supp(u) ⊆ F}.

Then M := {BF : ∅ �= F ⊆ N is finite} is a proper, non-trivial ideal in BRω and {PF : ∅ �= F ⊆
N finite} separates the points of Rω. It is easy to see that PM maps Rω onto lim←−IM.

(ii) Consider the vector lattice �1. As in (i), for F ⊆ N define

BF := {u ∈ �1 : supp(u) ⊆ F}

Then M := {BF : ∅ �= F ⊆ N is finite} is a proper, non-trivial ideal in B	1 and lim←−IM is Rω. In this 
case, PM[�1] is a proper subspace of lim←−IM.

Based on Remark 4.12 we ask the following question: Given a Dedekind complete vector lattice E, does 
there exist a proper ideal M in BE so that PM : E → lim←−IM is an isomorphism onto lim←−IM? We do not 
pursue this question any further here, except to note the following example.

Example 4.13. Let X be an extremally disconnected Tychonoff space. Let O := {Oα : α ∈ I} be a proper, 
non-trivial ideal in the Boolean algebra RX of clopen subsets of X. Assume that 

⋃
Oα is dense and C-

embedded in X. Then M := {C(Oα) : α ∈ I} is a proper, non-trivial ideal in BC(X) and PM : C(X) →
lim←−IM is a lattice isomorphism onto lim←−IM.

Proof. The Boolean algebras RX and BC(X) are isomorphic. In particular, the isomorphism is given by

RX � O �−→ BO = {u ∈ C(X) : supp(u) ⊆ O},

see [15, Theorem 12.9]. We note that for O ∈ RX the band BO may be identified with C(O), and the 
band projection onto BO is given by restriction to O. Therefore M is a proper, non-trivial ideal in BC(X). 
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It follows from Example 4.10 that lim←−IM = C(X), i.e. IM : C(X) → lim←−IM is a lattice isomorphism onto 
lim←−IM. �
5. Dual spaces

The results presented in this section form the technical heart of the paper. Roughly speaking, we will 
show, under fairly general assumptions, that the order (continuous) dual of a direct limit is an inverse limit. 
On the other hand, more restrictive conditions are needed to show that the order (continuous) dual of an 
inverse limit is a direct limit. These results form the basis of the applications given in Section 6.

5.1. Duals of direct limits

Definition 5.1. Let D := ((Eα)α∈I , (eα,β)α�β) be a direct system in IVL. The dual system of D is the pair 
D∼ :=

(
(E∼

α )α∈I , (e∼α,β)α�β

)
.

If D is a direct system in NIVL, define the order continuous dual system of D as the pair D∼
n :=(

((Eα)∼n )α∈I , (e∼α,β)α�β

)
with e∼α,β : (Eβ)∼n → (Eα)∼n .

Proposition 5.2. Let D := ((Eα)α∈I , (eα,β)α�β) be a direct system in IVL. The following statements are 
true.

(i) The dual system D∼ is an inverse system in NIVL.
(ii) If D is a direct system in NIVL then the order continuous dual system D∼

n is an inverse system in 
NIVL.

Proof. We present the proof of (i). That (ii) is true follows by a similar argument, so we omit the proof.
The maps eα,β : Eα → Eβ are interval preserving lattice homomorphisms for all α � β. By Theorem 2.3

the adjoint maps e∼α,β : E∼
β → E∼

α are normal interval preserving lattice homomorphisms. Fix α, β, γ ∈ I

such that α � β � γ. Since D is a direct system in IVL, eα,γ = eβ,γ ◦ eα,β so that e∼α,γ = e∼α,β ◦ e∼β,γ . Thus 
the dual system D∼ =

(
(E∼

α )α∈I , (e∼α,β)α�β

)
is an inverse system in NIVL. �

Proposition 5.3. Let D := ((Eα)α∈I , (eα,β)) be a direct system in IVL and S := (E, (eα)α∈I) a compatible 
system of D in IVL. The following statements are true.

(i) S∼ := (E∼, (e∼α )α∈I) is a compatible system for the inverse system D∼ in NIVL.
(ii) If D is a direct system in NIVL and S is a compatible system in NIVL, then S∼

n := (E∼
n , (e∼α )α∈I) is 

a compatible system for the inverse system D∼
n in NIVL.

Proof. Again, we only prove (i) as the proof of (ii) is similar. By Theorem 2.3, e∼α : E∼ → E∼
α is a normal 

interval preserving lattice homomorphism for every α ∈ I. Furthermore, if α � β then eα = eβ ◦ eα,β so 
that e∼α = e∼α,β ◦ e∼β . Therefore S∼ is a compatible system of D∼ in NIVL. �

The main results of this section are the following.

Theorem 5.4. Let D := ((Eα)α∈I , (eα,β)α�β) be a direct system in IVL, and let S := (E, (eα)α∈I) be the 
direct limit of D in IVL. The following statements are true.

(i) limD∼ := (F, (pα)α∈I) exists in NVL.
←−
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(ii)
(
lim−→D

)∼ ∼= lim←−D∼ in NVL; that is, there exists a lattice isomorphism T : E∼ → F such that the 
following diagram commutes for all α ∈ I.

E∼ F

E∼
α

e∼α

T

pα
(5.1)

Proof. That (i) is true follows from Proposition 5.2 and Theorem 4.5 (ii) because E∼
α is Dedekind complete 

for every α ∈ I.
We prove (ii). By Proposition 5.3, S∼ := (E∼, (e∼α )α∈I) is a compatible system for D∼ in NIVL, hence 

also in NVL. Therefore there exists a unique normal lattice homomorphism T : E∼ → F so that the diagram 
(5.1) commutes. We show that T is bijective.

To see that T is injective, let ψ ∈ E∼ and suppose that T (ψ) = 0. Consider any u ∈ E. There exist α ∈ I

and uα ∈ Eα so that u = eα(uα), see Remark 3.7. Then ψ(u) = ψ(eα(uα)) = e∼α (ψ)(uα) = pα(T (ψ))(u) = 0. 
This holds for all u ∈ E so that ψ = 0. Therefore T is injective.

It remains to show that T maps E∼ onto F. To this end, consider (ϕα) ∈ F+. We construct a functional 
0 ≤ ϕ ∈ E∼ so that T (ϕ) = (ϕα).

Let u ∈ E. Consider any α, β ∈ I, uα ∈ Eα and uβ ∈ Eβ so that eα(uα) = u = eβ(uβ), see Remark 3.7. We 
claim that ϕα(uα) = ϕβ(uβ). Indeed, there exists γ � α, β in I so that eα,γ(uα) = eβ,γ(uβ). Furthermore, 
eγ(eα,γ(uα)) = u = eγ(eβ,γ(uβ)). Because (ϕα) ∈ F we have ϕα = e∼α,γ(ϕγ) and ϕβ = e∼β,γ(ϕγ). Hence

ϕα(uα) = ϕγ(eα,γ(uα)) = ϕγ(eβ,γ(uβ)) = ϕβ(uβ).

Thus our claim is verified.
For u ∈ E define ϕ(u) := ϕα(uα) if u = eα(uα). By our above claim, ϕ is a well-defined map from E into 

R. To see that ϕ is linear, consider u, v ∈ E and a, b ∈ R. Let u = eα(uα) and v = eβ(vβ) where α, β ∈ I, 
uα ∈ Eα and vβ ∈ Eβ . There exists γ � α, β in I so that

au + bv = eγ(aeα,γ(uα) + beβ,γ(vβ)).

Then

ϕ(au + bv) = ϕγ(aeα,γ(uα) + beβ,γ(vβ)) = aϕγ(eα,γ(uα)) + bϕγ(eβ,γ(vβ)).

But eγ(eα,γ(uα)) = eα(uα) = u and eγ(eβ,γ(vβ)) = eβ(vβ) = v. Hence ϕγ(eα,γ(uα)) = ϕ(u) and 
ϕγ(eβ,γ(vβ)) = ϕ(v). Therefore ϕ(au + bv) = aϕ(u) + bϕ(v).

We show that ϕ is positive. If 0 ≤ u ∈ E then there exist α ∈ I and 0 ≤ uα ∈ Eα so that u = eα(uα), see 
Remark 3.7. Then ϕ(u) = ϕα(uα) ≥ 0, the final inequality following from the fact that (ϕα) ∈ F+.

It follows from the definition of ϕ and the commutativity of the diagram (5.1) that pα(T (ϕ)) = e∼α (ϕ) =
ϕα for every α ∈ I. Hence T (ϕ) = (ϕα) so that T is surjective. �
Theorem 5.5. Let D := ((Eα)α∈I , (eα,β)α�β) be a direct system in NIVL, and let S := (E, (eα)α∈I) be the 
direct limit of D in IVL. The following statements are true.

(i) lim←−D∼
n := (G, (pα)α∈I) exists in NVL.

(ii) If eα,β is injective for all α � β in I then 
(
lim−→D

)∼

n
∼= lim←−D∼

n in NVL; that is, there exists a lattice 

isomorphism S : E∼
n → G such that the following diagram commutes for all α ∈ I.
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E∼
n G

(Eα)∼n
e∼α

S

pα
(5.2)

Proof. The proof proceeds in a similar fashion to that of Theorem 5.4. That (i) is true follows from Propo-
sition 5.2 and Theorem 4.5 (ii).

For the proof of (ii), assume that eα,β is injective for all α � β in I. Then S is the direct limit of D in 
NIVL by Theorem 3.5. Hence, by Proposition 5.3 (ii), S∼

n is a compatible system of D∼
n in NIVL, hence 

in NVL. Therefore there exists a unique normal lattice homomorphism S : E∼
n → G so that the diagram 

(5.2) commutes.
It follows by exactly the same reasoning as employed in the proof of Theorem 5.4 that S is injective. 

It remains to verify that S maps E∼
n onto G. Let (ϕα) ∈ G+. As in the proof of Theorem 5.4 we define a 

positive functional ϕ ∈ E∼ by setting, for each u ∈ E,

ϕ(u) := ϕα(uα) if u = eα(uα).

We claim that ϕ is order continuous. To see that this is so, let A ↓ 0 in E. Without loss of generality, we may 
assume that A is bounded above by some 0 ≤ w ∈ E. By Remark 3.7 (ii) there exist α ∈ I and 0 ≤ wα ∈ Eα

so that eα(wα) = w, and, by Remark 3.7 (iii), eα is injective. Because eα is also interval preserving, there 
exists for every u ∈ A a unique 0 ≤ uα ≤ wα in Eα so that eα(uα) = u. Let Aα := {uα : u ∈ A}. Then 
Aα ↓ 0 in Eα. Indeed, let 0 ≤ v ∈ Eα be a lower bound for Aα. Then 0 ≤ eα(v) ≤ eα(uα) = u for all u ∈ A. 
Because A ↓ 0 in E it follows that eα(v) = 0, hence v = 0. By definition of ϕ and the order continuity of ϕα

we now have ϕ[A] = ϕα[Aα] ↓ 0. Hence ϕ ∈ E∼
n .

By definition of ϕ and the commutativity of the diagram (5.2) it follows that S(ϕ) = (ϕα). Therefore S
is surjective. �
Remark 5.6. Let D := ((Eα)α∈I , (eα,β)α�β) be a direct system in IVL, and let S := (E, (eα)α∈I) be the 
direct limit of D in IVL. In general, it does not follow from ◦(Eα)∼ = {0} for all α ∈ I that ◦E∼ = {0}, even 
if all the Eα are non-trivial and the eα injective. Indeed, it is well known that L0[0, 1], the space of Lebesgue 
measurable functions on the unit interval [0, 1], has trivial order dual, see for instance [38, Example 85.1]. 
However, by Example 3.9, L0[0, 1] can be expressed as the direct limit of its principal ideals, each of which 
has a separating order dual.

In view of the above remark, the following proposition is of interest.

Proposition 5.7. Let D := ((Eα)α∈I , (eα,β)α�β) be a direct system in IVL, and let S := (E, (eα)α∈I) be the 
direct limit of D in IVL. Assume that for every α ∈ I, eα is injective and eα[Eα] is a projection band in E. 
The following statements are true.

(i) If ◦(Eα)∼ = {0} for every α ∈ I then ◦E∼ = {0}.
(ii) If ◦(Eα)∼n = {0} for every α ∈ I then ◦E∼

n = {0}.

Proof. The proofs of (i) and (ii) are identical, except that for (ii) we note that for all α ∈ I, eα and e−1
α are 

order continuous by Proposition 2.1 (i). We therefore omit the proof of (ii).
Assume that ◦(Eα)∼ = {0} for every α ∈ I. Let u ∈ E be non-zero. Then there exist α ∈ I and a non-zero 

uα ∈ Eα so that eα(uα) = u, see Remark 3.7. By assumption there exists ϕα ∈ Eα
∼ so that ϕα(uα) �= 0. 

Denote by Pα : E → eα[Eα] the projection onto eα[Eα]. We note that eα is a lattice isomorphism onto eα[Eα]. 
Let ϕ := (e−1

α ◦ Pα)∼(ϕα). Then ϕ ∈ E∼ and, because u ∈ eα[Eα], ϕ(u) = ϕα(e−1
α (Pα(u))) = ϕα(uα) �= 0. 

Hence ◦E∼ = {0}. �
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5.2. Duals of inverse limits

We now turn to duals of inverse limits. For inverse systems over N, we prove results analogous to 
Theorems 5.4 and 5.5. We identify the main obstacle to more general results for inverse systems over 
arbitrary index sets: Positive (order continuous) functionals defined on a proper sublattice of a vector 
lattice E do not necessarily extend to E.

Definition 5.8. Let I := ((Eα)α∈I , (pβ,α)β�α) be an inverse system in IVL. The dual system of I is the pair 
I∼ :=

(
(E∼

α )α∈I , (p∼β,α)β�α

)
.

If I is an inverse system in NIVL, define the order continuous dual system of I as the pair I∼
n :=(

((Eα)∼n )α∈I , (p∼β,α)β�α

)
with p∼β,α : (Eα)∼n → (Eβ)∼n .

The following preliminary results, analogous to Propositions 5.2 and 5.3, are proven in the same way as 
the corresponding results for direct limits. As such, we omit the proofs.

Proposition 5.9. Let I := ((Eα)α∈I , (pβ,α)β�α) be an inverse system in IVL. The following statements are 
true.

(i) The dual system I∼ is a direct system in NIVL.
(ii) If I is an inverse system in NIVL then the order continuous dual system I∼

n is a direct system in 
NIVL.

Proposition 5.10. Let I := ((Eα)α∈I , (pβ,α)β�α) be an inverse system in IVL and S := (E, (pα)α∈I) a 
compatible system of I in IVL. The following statements are true.

(i) S∼ := (E∼, (p∼α )α∈I) is a compatible system for the direct system I∼ in NIVL.
(ii) If I is an inverse system in NIVL and S is a compatible system in NIVL, then S∼

n := (E∼
n , (p∼α )α∈I)

is a compatible system for the direct system I∼
n in NIVL.

Lemma 5.11. Let I := ((En)n∈N , (pm,n)m≥n) be an inverse system in IVL and let S := (E, (pn)n∈N) be the 
inverse limit of I in VL. Assume that pm,n is a surjection for all m ≥ n in N. Then pn is surjective and 
interval preserving for every n ∈ N. In particular, S is a compatible system of I in IVL.

Proof. Fix n0 ∈ N. Consider any un0 ∈ En0 . For n < n0 let un = pn0,n(un0). Because pn0+1,n0 is a 
surjection, there exists un0+1 ∈ En0+1 so that pn0+1,n0(un0+1) = un0 . Inductively, for each n > n0 there 
exists un ∈ En so that pn,n−1(un) = un−1.

We show that (un) ∈ E. Let n < m in N. By the definition of an inverse system it follows that pm,n =
pn+1,n ◦ pn+2,n+1 ◦ · · · ◦ pm−1,m−2 ◦ pm,m−1. It thus follows that pm,n(um) = un so that (un) ∈ E. We 
have pn0((un)) = un0 so that pn0 is a surjection. It follows from Proposition 2.1 (ii) that pn0 is interval 
preserving. Since S is a compatible system of I in VL and the pn are interval preserving, we conclude that 
S is a compatible system of I in IVL. �
Theorem 5.12. Let I := ((En)n∈N , (pm,n)m≥n) be an inverse system in IVL, and let S := (E, (pn)n∈N) be 
the inverse limit of I in VL. Assume that pm,n is a surjection for all m ≥ n in N. Then the following 
statements are true.

(i) limI∼ := (F, (en)n∈N) exists in NIVL.
−→
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(ii)
(
lim←−I

)∼ ∼= lim−→I∼ in NIVL; that is, there exists a lattice isomorphism T : F → E∼ such that the 
following diagram commutes for all n ∈ N.

F E∼

(En)∼

T

en p∼
n

Proof. By Proposition 5.9, I∼ is a direct system in NIVL. Because the pm,n are surjections their adjoints 
are injective. Thus by Theorem 3.5, lim−→I∼ exists in NIVL.

We proceed to prove (ii). Because the maps p∼m,n : (En)∼ → (Em)∼ are injective, so are the maps 
en : (En)∼ → F, see Remark 3.7. By Lemma 5.11, each pn : E → En is surjective and interval preserving, 
and S is a compatible system of I in IVL. Therefore p∼n : (En)∼ → E∼ is an injection for every n in N.

By Proposition 5.10, S∼ = (E∼, (p∼n )n∈N) is a compatible system of I∼ in NIVL. Therefore there exists 
a unique interval preserving normal lattice homomorphism T : F → E∼ so that the diagram

F E∼

(En)

T

en p∼
n

commutes for all n ∈ N. We show that T is a lattice isomorphism.
Our first goal is to establish that T is injective. Consider ϕ ∈ F so that T (ϕ) = 0. There exist an n ∈ N

and a unique ϕn ∈ (En)∼ so that en(ϕn) = ϕ. Then p∼n (ϕn) = T (en(ϕn)) = T (ϕ) = 0. But p∼n is injective 
so that ϕn = 0, hence ϕ = en(ϕn) = 0.

It remains to show that T maps F onto E∼. This follows from

E∼ =
⋃

p∼n [(En)∼] ,

a fact which we now establish. Suppose that E∼ �=
⋃

p∼n [(En)∼]. Because p∼n is an interval preserving 

lattice homomorphism for every n ∈ N, each p∼n [(En)∼], and hence 
⋃

p∼n [(En)∼], is a solid subset of E∼. 
Therefore, because E∼ �=

⋃
p∼n [(En)∼], there exists 0 ≤ ψ ∈ E∼ \

⋃
p∼n [(En)∼]. By Proposition 2.4 (i), 

p∼n [(En)∼] = ker(pn)◦ for every n ∈ N so that ψ /∈ ker(pn)◦ for n ∈ N. Hence, for every n ∈ N, there exists 
0 ≤ u(n) ∈ ker(pn) so that ψ(u(n)) = 1. We claim that there exists w ∈ E so that w ≥ u(1) + · · · + u(n) for 
all n ∈ N. This claim leads to ψ(w) ≥ ψ(u(1) + · · ·+u(n)) = n for every n ∈ N, which is impossible, so that 
E∼ =

⋃
p∼n [(En)∼].

For each n ∈ N, write u(n) = (u(n)
m ) ∈ E+ ⊆

∏
Em. Let wm := u

(1)
m + · · · + u

(m)
m for every m ∈ N, and 

w := (wm). If n > m then u(n)
m = pn,m(pn(u(n))) = 0 because u(n) ∈ ker(pn). Since u(n)

m ≥ 0 for all m, n ∈ N

we therefore have wm ≥ u
(1)
m + . . . + u

(n)
m for all m, n ∈ N so that w ≥ u(1) + · · · + u(n) for every n ∈ N. To 

see that w ∈ E consider m1 ≥ m0 in N. Then

pm1,m0(wm1) = pm1,m0(u(1)
m1

) + · · · + pm1,m0(u(m1)
m1

).

But u(n) = (u(n)
m ) ∈ E for all n ∈ N, so

pm1,m0(wm1) = u(1)
m0

+ · · · + u(m1)
m0

.

Finally, because u(n)
m = 0 for all n > m in N we have
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pm1,m0(wm1) = u(1)
m0

+ · · · + u(m0)
m0

= wm0 .

Hence w ∈ E, which verifies our claim. This completes the proof. �
Theorem 5.13. Let I := ((En)n∈N , (pm,n)m≥n) be an inverse system in NIVL, and let S := (E, (pn)n∈N) be 
the inverse limit of I in VL. Assume that pn is order continuous and En is Archimedean for each n ∈ N, 
and that pm,n is a surjection for all m ≥ n in N. The following statements are true.

(i) lim−→I∼
n := (G, (en)n∈N) exists in NIVL.

(ii)
(
lim←−I

)∼

n
∼= lim−→I∼

n in NIVL; that is, there exists a lattice isomorphism S : G → E∼
n such that the 

following diagram commutes for all n ∈ N.

G E∼
n

(En)∼n

S

en p∼
n

Proof. The existence of lim−→I∼
n in NIVL follows by the same reasoning as given in Theorem 5.12.

For (ii), as in the proof of Theorem 5.12, we see that en : (En)∼n → G and p∼n : (En)∼n → E∼
n are injective 

interval preserving normal lattice homomorphisms for all n ∈ N. In addition, S is a compatible system for 
I in NIVL.

By Proposition 5.10 (ii), S∼
n = (E∼

n , (p∼n )n∈N) is a compatible system of I∼
n in NIVL. Therefore there 

exists a unique interval preserving normal lattice homomorphism S : G → E∼
n so that the diagram

G E∼
n

(En)∼n

S

en p∼
n

commutes for all n ∈ N. Exactly the same argument as used in the proof of Theorem 5.12 shows that S is 
a lattice isomorphism, this time making use of Proposition 2.4 (ii). �

Theorems 5.12 and 5.13 cannot be generalised to systems over an arbitrary directed set I. Indeed, the 
assumption that the inverse system I is indexed by the natural numbers is used in essential ways to show 
that the lattice homomorphisms T and S in Theorems 5.12 and 5.13, respectively, are both injective and 
surjective. The injectivity of S and T follows from the surjectivity of the maps pn, which in turn follows 
from Lemma 5.11 where the total ordering of N is used explicitly. We are not aware of any conditions on 
an inverse system I in VL, indexed over an arbitrary directed set, which implies that the projections from 
lim←−I into the component spaces are surjective. Furthermore, the method of proof for surjectivity of S and 
T cannot be generalised to systems over arbitrary directed sets. As we show next, this issue is related to 
the extension of order bounded linear functionals.

Theorem 5.14. Let I := ((Eα)α∈I , (pβ,α)β�α) be an inverse system in IVL and S := (E, (pα)α∈I) its inverse 
limit in VL. Assume that pβ,α and pα are surjections for all β � α in I. Then the following statements are 
true.

(i) lim−→I∼ := (F, (eα)α∈I) exists in NIVL.
(ii) There exists an injective interval preserving normal lattice homomorphism T : F → E∼ so that the 

diagram
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F E∼

E∼
α

T

eα p∼
α

commutes for every α ∈ I.
(iii) If T is a bijection, hence a lattice isomorphism, then every order bounded linear functional on E has 

an order bounded linear extension to 
∏

Eα. The converse is true if I has non-measurable cardinal.

Proof. That (i) and (ii) are true follow as in the proof of Theorem 5.12. We verify (iii).
Let ι : E →

∏
Eα be the inclusion map. The diagram

E
∏

Eα

Eα

pα

ι

πα

commutes for every α ∈ I, and therefore the diagram(∏
Eα

)∼
E∼

E∼
α

ι∼

π∼
α

p∼
α

also commutes for each α ∈ I. Hence, for all α ∈ I, the diagram(∏
Eα

)∼
E∼

E∼
α F

ι∼

π∼
α

p∼
α

eα

T

commutes.
Assume that T is a lattice isomorphism, and therefore a surjection. Let ϕ ∈ E∼. There exists a ψ ∈ F so 

that T (ψ) = ϕ. By Remark 3.7, there exist α ∈ I and ψα ∈ E∼
α so that eα(ψα) = ψ. Then

ι∼(π∼
α (ψα)) = p∼α (ψα) = T (eα(ψα)) = ϕ.

Therefore ι∼ is a surjection; that is, every ϕ ∈ E∼ has an order bounded linear extension to 
∏

Eα.
Assume that I has non-measurable cardinal, and every order bounded linear functional on E extends to 

an order bounded linear functional on 
∏

Eα. Then ι∼, which acts as restriction of functionals on 
∏

Eα to 

E, is a surjection. Fix ϕ ∈ E∼. There exists ψ ∈
(∏

Eα

)∼
so that ϕ = ι∼(ψ). By Theorem 2.5 (iv) there 

exist α1, . . . , αn ∈ I and ψ1 ∈ E∼
α1
, . . . , ψn ∈ E∼

αn
so that ψ = π∼

α1
(ψα1) + . . . + π∼

αn
(ψαn

). Then

ϕ = ι∼

(
n∑

i=1
π∼
αi

(ψi)
)

=
n∑

i=1
ι∼(π∼

αi
(ψi)) =

n∑
i=1

p∼αi
(ψi) =

n∑
i=1

T (eαi
(ψi)) = T

(
n∑

i=1
eαi

(ψi)
)
.

Therefore T is surjective, and hence a lattice isomorphism. �
A similar result holds for the order continuous dual of an inverse limit. We omit the proof of the next 

theorem, which is virtually identical to that of Theorem 5.14. Note, however, that unlike in Theorem 5.14, 
we make no assumption on the cardinality of I.
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Theorem 5.15. Let I := ((Eα)α∈I , (pβ,α)β�α) be an inverse system in NIVL and S := (E, (pα)α∈I) its 
inverse limit in VL. Assume that pβ,α and pα are surjections for all β � α in I, and that each pα is order 
continuous. Then the following statements are true.

(i) lim−→I∼
n := (G, (eα)α∈I) exists in NIVL.

(ii) There exists an injective and interval preserving normal lattice homomorphism S : G → E∼
n so that the 

diagram

G E∼
n

(Eα)∼n

S

eα p∼
α

commutes for every α ∈ I.
(iii) S is a lattice isomorphism if and only if every order continuous linear functional on E has an order 

continuous linear extension to 
∏

Eα.

The following two results are immediate consequences of Theorems 5.14 and 5.15, respectively.

Corollary 5.16. Let I := ((Eα)α∈I , (pβ,α)α�β) be an inverse system in IVL, S := (E, (pα)α∈I) its inverse 
limit in VL and (F, (eα)α∈I) the direct limit of I∼ in NIVL. Assume that pβ,α and pα are surjections for 
all β � α in I. If E is majorising in 

∏
Eα then 

(
lim←−I

)∼ ∼= lim−→I∼ in NIVL; that is, there exists a lattice 
isomorphism T : F → E∼ such that the diagram

F E∼

E∼
α

T

eα p∼
α

commutes for all α ∈ I.

Proof. According to [3, Theorem 1.32], every order bounded functional on E extends to an order bounded 
functional on 

∏
Eα. Therefore the result follows directly from Theorem 5.14. �

Corollary 5.17. Let I := ((Eα)α∈I , (pβ,α)α�β) be an inverse system in NIVL, S := (E, (pα)α∈I) its inverse 
limit in VL and (F, (eα)α∈I) the direct limit of I∼

n in NIVL. Assume that pβ,α and pα are surjections for 
all β � α in I, and that each pα is order continuous. If E is majorising and order dense in 

∏
Eα then (

lim←−I
)∼

n
∼= lim−→I∼

n in NIVL; that is, there exists a lattice isomorphism S : F → E∼
n such that the diagram

F E∼
n

(Eα)∼n

S

eα p∼
α

commutes for all α ∈ I.

Proof. According to [3, Theorem 1.65], every order continuous functional on E extends to an order contin-
uous functional on 

∏
Eα. Therefore the result follows directly from Theorem 5.15. �

In contradistinction with direct limits, the inverse limit construction always preserves the property of 
having a separating order (continuous) dual.
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Proposition 5.18. Let I := ((Eα)α∈I , (pβ,α)β�α) be an inverse system in VL and S := (E, (pα)α∈I) its 
inverse limit in VL. Then the following statements are true.

(i) If ◦(Eα)∼ = {0} for every α ∈ I then ◦E∼ = {0}.
(ii) If ◦(Eα)∼n = {0} and pα is order continuous for every α ∈ I then ◦E∼

n = {0}.

Proof. The proofs of (i) and (ii) are identical. Hence we omit the proof of (ii).
Assume that ◦(Eα)∼ = {0} for every α ∈ I. Let u ∈ E be non-zero. Then there exists α ∈ I so that 

pα(u) �= 0. Since ◦(Eα)∼ = {0}, there exists ϕ ∈ (Eα)∼ so that ϕ(pα(u)) �= 0; that is, p∼α (ϕ)(u) �= 0. Hence 
◦E∼ = {0}. �
6. Applications

In this section we apply the duality results for direct and inverse limits obtained in Section 5. In particular, 
we consider order (continuous) duals of some of the function spaces which are expressed as direct and inverse 
limits in Sections 3.2 and 4.3, respectively. This is followed by an investigation of perfect spaces. We show 
that, under certain conditions, the direct and inverse limits of perfect spaces are perfect. We then specialise 
these results to the case of C(X) and obtain a solution to the decomposition problem mentioned in the 
introduction. Finally, we show that an Archimedean vector lattice has a relatively uniformly complete order 
predual if and only if it can be expressed, in a suitable way, as an inverse limit of spaces of Radon measures 
on compact Hausdorff spaces.

The following two simple propositions are used repeatedly. These results are proved in [10, p. 193, p. 205]
in the context of direct and inverse systems of sets. The arguments in [10] suffice to verify the results in the 
vector lattice context, so we do not repeat them here.

Proposition 6.1. Let D := ((Eα)α∈I , (eα,β)α�β) and D′ :=
(
(E′

α)α∈I , (e′α,β)α�β

)
be direct systems in VL

with direct limits S := (E, (eα)α∈I) and S ′ := (E′, (e′α)α∈I) in VL. Assume that for every α ∈ I there exists 
a lattice homomorphism Tα : Eα → E′

α so that the diagram

Eα E′
α

Eβ E′
β

Tα

eα,β e′α,β

Tβ

(6.1)

commutes for all α � β in I. The following statements are true.

(i) There exists a unique lattice homomorphism T : E → E′ so that the diagram

Eα E′
α

E E′

Tα

eα e′α

T

(6.2)

commutes for every α ∈ I.
(ii) If Tα is a lattice isomorphism for every α ∈ I, then so is T .
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Proposition 6.2. Let I := ((Eα)α∈I , (pβ,α)β�α) and I ′ :=
(
(E′

α)α∈I , (p′β,α)β�α

)
be inverse systems in VL

with inverse limits S := (E, (pα)α∈I) and S ′ := (E′, (p′α)α∈I) in VL. Assume that for every α ∈ I there 
exists a lattice homomorphism Tα : Eα → E′

α so that the diagram

Eβ E′
β

Eα E′
α

Tβ

pβ,α p′
β,α

Tα

(6.3)

commutes for all α � β in I. The following statements are true.

(i) There exists a unique lattice homomorphism T : E → E′ so that the diagram

E E′

Eα E′
α

T

pα p′
α

Tα

(6.4)

commutes for every α ∈ I.
(ii) If Tα is a lattice isomorphism for every α ∈ I, then so is T .

6.1. Duals of function spaces

In this section we apply the duality results in Section 5 to the examples in Sections 3.2 and 4.3 to obtain 
characterizations of the order and order continuous duals of some function spaces. These results follow 
immediately from the corresponding examples and the appropriate duality result.

Theorem 6.3. Let (X, Σ, μ) be a complete σ-finite measure space. Let Ξ := (Xn) be an increasing sequence 
(w.r.t. inclusion) of measurable sets with positive measure so that X =

⋃
Xn. Let 1 ≤ p < ∞ and 1 ≤ q ≤ ∞

satisfy 1
p + 1

q = 1. For n ∈ N let en and rn be as in Examples 3.10 and 4.9, respectively.
For every n ∈ N, let Tn : Lq(Xn) → Lp(Xn)∼ be the usual (isometric) lattice isomorphism,

Tn(u)(v) =
∫
Xn

uv dμ, u ∈ Lq(Xn), v ∈ Lp(Xn).

There exists a unique lattice isomorphism T : Lq
Ξ−	oc(X) → Lp

Ξ−c(X)∼ so that the diagram

Lq
Ξ−	oc(X) Lp

Ξ−c(X)∼

Lq(Xn) Lp(Xn)∼

T

rn e∼n

Tn

commutes for every n ∈ N.

Proof. The result follows immediately from Examples 3.10 and 4.9, Theorem 5.4 and Proposition 6.2. �
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Theorem 6.4. Let (X, Σ, μ) be a complete σ-finite measure space. Let Ξ := (Xn) be an increasing sequence 
(w.r.t. inclusion) of measurable sets with positive measure so that X =

⋃
Xn. Let 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞

satisfy 1
p + 1

q = 1. For n ∈ N let en and rn be as in Examples 3.10 and 4.9, respectively.
For every n ∈ N, let Sn : Lq(Xn) → Lp(Xn)∼n be the usual (isometric) lattice isomorphism,

Sn(u)(v) =
∫
Xn

uv dμ, u ∈ Lq(Xn), v ∈ Lp(Xn).

There exists a unique lattice isomorphism S : Lq
Ξ−	oc(X) → Lp

Ξ−c(X)∼n so that the diagram

Lq
Ξ−	oc(X) Lp

Ξ−c(X)∼n

Lq(Xn) Lp(Xn)∼n

S

rn e∼n

Sn

commutes for every n ∈ N.

Proof. We recall that the mappings en,m in Example 3.10 are injective for all n ≤ m in N. Therefore the 
result follows immediately from Examples 3.10 and 4.9, Theorem 5.5 and Proposition 6.2. �
Theorem 6.5. Let (X, Σ, μ) be a complete σ-finite measure space. Let Ξ := (Xn) be an increasing sequence 
(w.r.t. inclusion) of measurable sets with positive measure so that X =

⋃
Xn. Let 1 ≤ p < ∞ and 1 ≤ q ≤ ∞

satisfy 1
p + 1

q = 1. For n ∈ N let en and rn be as in Examples 3.10 and 4.9, respectively.
For every n ∈ N, let Tn : Lq(Xn) → Lp(Xn)∼ be the usual (isometric) lattice isomorphism,

Tn(u)(v) =
∫
Xn

uv dμ, u ∈ Lq(Xn), v ∈ Lp(Xn).

There exists a unique lattice isomorphism R : Lq
Ξ−c(X) → Lp

Ξ−	oc(X)∼ so that the diagram

Lq(Xn) Lp(Xn)∼

Lq
Ξ−c(X) Lp

Ξ−	oc(X)∼

Tn

en r∼n

R

commutes for every n ∈ N.

Proof. We recall that the mappings pm,n in Example 4.9 are surjective for all m ≥ n in N. Therefore the 
result follows immediately from Examples 3.10 and 4.9, Theorem 5.12 and Proposition 6.1. �
Theorem 6.6. Let (X, Σ, μ) be a complete σ-finite measure space. Let Ξ := (Xn) be an increasing sequence 
(w.r.t. inclusion) of measurable sets with positive measure so that X =

⋃
Xn. Let 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞

satisfy 1
p + 1

q = 1. For n ∈ N let en and rn be as in Examples 3.10 and 4.9, respectively.
For every n ∈ N, let Sn : Lq(Xn) → Lp(Xn)∼n be the usual (isometric) lattice isomorphism,

Sn(u)(v) =
∫

uv dμ, u ∈ Lq(Xn), v ∈ Lp(Xn).

Xn
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There exists a unique lattice isomorphism Q : Lp
Ξ−c(X) → Lq

Ξ−	oc(X)∼n so that the diagram

Lq(Xn) Lp(Xn)∼n

Lq
Ξ−c(X) Lp

Ξ−	oc(X)∼n

Sn

en r∼n

Q

commutes for every n ∈ N.

Proof. Because the mappings pm,n in Example 4.9 are surjective for all m ≥ n in N, the result follows 
immediately from Examples 3.10 and 4.9, Theorem 5.13 and Proposition 6.1. �

The next two results are special cases of Theorems 2.9 and 2.10, respectively.

Theorem 6.7. Let X be a locally compact and σ-compact Hausdorff space. Let Γ := (Xn) be an increasing 
sequence (with respect to inclusion) of open precompact sets in X so that X =

⋃
Xn. For n ∈ N let en and 

rn be as in Examples 3.11 and 4.10, respectively.
For every n ∈ N, let Tn : M(X̄n) → C(X̄n)∼ denote the usual (isometric) lattice isomorphism,

Tn(μ)(u) =
∫
Xn

u dμ, μ ∈ M(X̄n), u ∈ C(X̄n).

There exists a unique lattice isomorphism T : Mc(X) → C(X)∼ so that the diagram

M(X̄n) C(X̄n)∼

Mc(X) C(X)∼

Tn

en r∼n

T

commutes for every n ∈ N.

Proof. Recall that the rn are surjective. The result follows immediately from Examples 3.11 and 4.10, 
Theorem 5.12 and Proposition 6.1. �
Theorem 6.8. Let X be a locally compact and σ-compact Hausdorff space. Let Γ := (Xn) be an increasing 
sequence (with respect to inclusion) of open precompact sets in X so that X =

⋃
Xn. For n ∈ N let en and 

rn be as in Examples 3.12 and 4.10, respectively.
For every n ∈ N, let Sn : N(X̄n) → C(X̄n)∼n denote the (isometric) lattice isomorphism,

Sn(μ)(u) =
∫
Xn

u dμ, μ ∈ N(X̄n), u ∈ C(X̄n).

There exists a unique lattice isomorphism S : Nc(X) → C(X)∼ so that the diagram
n
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N(X̄n) C(X̄n)∼n

Nc(X) C(X)∼n

Sn

en r∼n

S

commutes for every n ∈ N.

Proof. The result follows immediately from Examples 3.12 and 4.10, Theorem 5.13 and Proposition 6.1. �
6.2. Perfect spaces

Recall that a vector lattice E is perfect if the canonical embedding E � u �−→ Ψu ∈ E∼∼
nn is a lattice 

isomorphism [38, p. 409]. We say that a vector lattice E is an order continuous dual, or has an order 
continuous predual if there exists a vector lattice F so that E and F∼

n are isomorphic vector lattices. From 
the definition it is clear that every perfect vector lattice has an order continuous predual. On the other 
hand, see [38, Theorem 110.3], F∼

n is perfect for any vector lattice F. Therefore, if E has an order continuous 
predual then E is perfect; that is, E is perfect if and only if it has an order continuous predual.

This section is mainly concerned with obtaining a decomposition theorem for perfect vector lattices, 
i.e. for vector lattices with an order continuous predual, akin to Theorem 1.2. This result follows as an 
application of Example 4.11 and the duality results in Section 5.

Lemma 6.9. Let E be a vector lattice and 0 ≤ ϕ, ψ ∈ E∼
n . The following statements are true.

(i) There exist functionals 0 ≤ ϕ1, ψ1 ∈ E∼
n so that ϕ1 ∧ ψ1 = 0, ϕ1 ≤ ϕ, ψ1 ≤ ψ and ϕ ∨ ψ = ϕ1 ∨ ψ1.

(ii) If E has the principal projection property and ϕ is strictly positive, then for all u ∈ E, if η(u) = 0 for 
all functionals 0 ≤ η ≤ ϕ then u = 0.

Proof. The statement in (i) follows from [33, Lemma 1.28 (ii) & Exercise 1.2.E1].
We prove the contrapositive of (ii). Let u �= 0 in E. Without loss of generality assume that u+ �= 0. 

Denote by B the band generated by u+ in E. Define η := ϕ ◦ PB. Then η is order continuous, 0 ≤ η ≤ ϕ

and η(u) = ϕ(u+) �= 0. �
Theorem 6.10. Let I := ((Eα)α∈I , (pβ,α)β�α) be an inverse system in NIVL, and let S := (E, (pα)α∈I) be 
its inverse limit in VL. Assume that pβ,α is surjective for all β � α in I. If Eα is perfect for every α ∈ I

then so is E.

Proof. By Proposition 5.9 the pair I∼
n :=

(
((Eα)∼n )α∈I , (p∼β,α)α�β

)
is a direct system in NIVL. Because 

every pβ,α is surjective, each p∼β,α is injective. Hence, by Theorem 3.5, the direct limit of I∼
n exists in NIVL. 

Let T := (F, (eα)α∈I) be the direct limit of I∼
n in NIVL.

By Proposition 5.2 the pair I∼∼
nn :=

(
((Eα)∼∼

nn )α∈I , (p∼∼
β,α)α�β

)
is an inverse system in NIVL, and T ∼

n :=
(F∼

n , (e∼α )α∈I) is the inverse limit of I∼∼
nn in NVL by Theorem 5.5. For every α ∈ I, let σα : Eα → (Eα)∼∼

nn
denote the canonical lattice isomorphism. We observe that the diagram

Eβ (Eβ)∼∼
nn

Eα (Eα)∼∼

σβ

pβ,α p∼∼
β,α
nnσα
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commutes for all β � α in I. By Proposition 6.2, there exists a unique lattice isomorphism Σ : E → F∼
n so 

that the diagram

E F∼
n

Eα (Eα)∼∼
nn

Σ

pα e∼α

σα

commutes for every α ∈ I. Since F∼
n is perfect, we conclude that E is also perfect. �

We now come to the main results of this section, namely, decomposition theorems for perfect vector 
lattices. Recall the terminology and notation introduced in Example 4.11.

Theorem 6.11. Let E be a Dedekind complete vector lattice. Let Mn ⊆ BE consist of the carriers of all 
positive, order continuous functionals on E; that is,

Mn := {Cϕ : 0 ≤ ϕ ∈ E∼
n }.

For Cϕ ⊆ Cψ in Mn, denote by Pϕ the band projection of E onto Cϕ and by Pψ,ϕ the band projection of Cψ

onto Cϕ. The following statements are true.

(i) Mn is an ideal in BE.
(ii) Mn is a non-trivial ideal in BE if and only if E admits a non-zero order continuous functional.
(iii) Mn is a proper ideal in BE if and only if E does not admit a strictly positive order continuous functional.
(iv) PMn is injective if and only if ◦E∼

n = {0}.
(v) If E is perfect then PMn is a lattice isomorphism.

Proof of (i). For 0 ≤ ψ, ϕ ∈ E∼
n , we have Cψ, Cϕ ⊆ Cϕ∨ψ ∈ Mn and therefore Mn is upwards directed.

Let B ∈ BE and 0 ≤ ϕ ∈ E∼
n such that B ⊆ Cϕ. Define ψ := ϕ ◦ PB. Then ψ ≥ 0 and by the 

order continuity of band projections, ψ ∈ E∼
n . We show that Nψ = Bd. For u ∈ Bd, PB(|u|) = 0 so that 

ψ(|u|) = ϕ (PB(|u|)) = 0. Therefore Bd ⊆ Nψ. For the reverse inclusion, let v ∈ Nψ. Then ϕ (PB(|v|)) = 0 so 
that PB(|v|) ∈ Nϕ ⊆ Bd. Hence PB(|v|) = 0 so that v ∈ Bd. We conclude that B = Cψ. Therefore B ∈ Mn
so that Mn is downward closed, hence an ideal in BE. �
Proof of (ii). This is clear. �
Proof of (iii). A functional 0 ≤ ϕ ∈ E∼

n is strictly positive if and only if Nϕ = {0}, if and only if Cϕ = E; 
hence the result follows. �
Proof of (iv). According to Example 4.11 (iii), PMn is injective if and only if {Pϕ : 0 ≤ ϕ ∈ E∼

n } separates 
the points of E. It therefore suffices to prove that ◦E∼

n = {0} if and only if {Pϕ : 0 ≤ ϕ ∈ E∼
n } separates the 

points of E.
Assume that ◦E∼

n = {0}. Fix u ∈ E with u �= 0. Then there exists ϕ ∈ E∼
n such that ϕ(u) �= 0. Therefore 

0 < |ϕ(u)| ≤ |ϕ|(|u|). Hence u /∈ N|ϕ| and thus P|ϕ|(u) �= 0.
Conversely, assume that {Pϕ : 0 ≤ ϕ ∈ E∼

n } separates the points of E. Let 0 < v ∈ E+. There exists 
0 ≤ ϕ ∈ E∼

n such that Pϕ(v) > 0. Since every positive functional is strictly positive on its carrier, it 
follows that ϕ(v) ≥ ϕ (Pϕ(v)) > 0. Now consider any non-zero w ∈ E. There exists 0 ≤ ϕ ∈ E∼

n such that 
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ϕ(w+) �= 0. Let B denote the band generated by w+ in E and define the functional ψ := ϕ ◦ PB . Then 
0 ≤ ψ ∈ E∼

n and ψ(w) = ϕ(w+) �= 0. �
Proof of (v). It follows from Example 4.11 (ii) that PMn is a lattice homomorphism. Since E is perfect, 
◦E∼

n = {0} by [38, Theorem 110.1] and so by (iv), PMn is injective. We show that PMn is surjective.
Let 0 ≤ u = (uϕ) ∈ lim←−IMn . Define the map Υ : (E∼

n )+ → R by setting Υ (ϕ) := ϕ (uϕ) for every 
ϕ ∈ (E∼

n )+. We claim that Υ is additive. Let 0 ≤ ϕ, ψ ∈ E∼
n . Then

Υ (ϕ + ψ) = (ϕ + ψ) (uϕ+ψ)
= ϕ (uϕ+ψ) + ψ (uϕ+ψ)
= ϕ ◦ Pϕ (uϕ+ψ) + ψ ◦ Pψ (uϕ+ψ) .

Because (uϕ) ∈ lim←−IMn , uϕ+ψ ∈ Cϕ+ψ so that Pϕ (uϕ+ψ) = Pϕ+ψ,ϕ (uϕ+ψ) = uϕ and Pψ (uϕ+ψ) =
Pϕ+ψ,ψ (uϕ+ψ) = uψ. Hence

Υ (ϕ + ψ) = ϕ (uϕ) + ψ (uψ) = Υ (ϕ) + Υ (ψ) .

By [4, Theorem 1.10] Υ extends to a positive linear functional on E∼
n , which we denote by Υ as well.

We claim that Υ is order continuous. To see this, consider any D ↓ 0 in E∼
n . Fix ε > 0 and ϕ ∈ D. By 

[3, Theorem 1.18] there exists ψ0 ≤ ϕ in D so that 0 ≤ ψ(uϕ) < ε for all ψ ≤ ψ0 in D. Consider ψ ≤ ψ0. 
Since u ∈ lim←−IMn we have uψ = Pϕ,ψ(uϕ) ≤ uϕ so that 0 ≤ ψ(uψ) ≤ ψ(uϕ) < ε; that is, 0 ≤ Υ(ψ) < ε for 
all ψ ≤ ψ0. Therefore Υ[D] ↓ 0 in R so that Υ is order continuous, as claimed.

Since E is perfect, there exists v ∈ E+ so that Υ (ϕ) = ϕ (v) for all ϕ ∈ E∼
n . We claim that PMn(v) = u; 

that is, Pϕ(v) = uϕ for every 0 ≤ ϕ ∈ E∼
n . For each 0 ≤ ϕ ∈ E∼

n we have ϕ(uϕ) = Υ (ϕ) = ϕ(v) = ϕ (Pϕ(v)). 
Let 0 ≤ η ≤ ϕ in E∼

n . Then

η (uϕ) = η (Pη(uϕ)) = η(Pϕ,η(uϕ)) = η (uη) = Υ(η) = η(v),

and,

η (Pϕ(v)) = η (PηPϕ(v)) = η (Pη(v)) = η(v).

Thus η (uϕ − Pϕ(v)) = 0. By Lemma 6.9 (ii), applied on Cϕ, we conclude that Pϕ(v) = uϕ. This verifies 

our claim. Therefore PMn maps E+ onto 
(
lim←−IMn

)+
which shows that PMn is surjective. �

Remark 6.12. We observe that the converse of Theorem 6.11 (v) is false. Indeed, (c0)∼∼
nn = �∞ so that c0 is 

not perfect. However, there exists a strictly positive functional ϕ ∈ (c0)∼n . Therefore c0 = Cϕ ∈ Mn so that 
PMn maps c0 lattice isomorphically onto lim←−IMn , see Remark 4.12.

Corollary 6.13. Let E be a Dedekind complete vector lattice. Let Mp ⊆ BE consist of the carriers of all 
positive, order continuous functionals on E which are perfect; that is,

Mp := {Cϕ : 0 ≤ ϕ ∈ E∼
n and Cϕ is perfect}.

The following statements are true.

(i) Mp is an ideal in BE.
(ii) PMp

is a lattice isomorphism if and only if E is perfect.
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Proof of (i). It follows from Theorem 6.11 (i) and the fact that bands in a perfect vector lattice are them-
selves perfect that Mp is downwards closed in BE. To see that Mp is upwards directed, fix Cϕ, Cψ ∈ Mp. 
By Lemma 6.9 (i) there exist functionals 0 ≤ ϕ1 ≤ ϕ and 0 ≤ ψ1 ≤ ψ in E∼

n such that ϕ1 ∧ ψ1 = 0 and 
ϕ1 ∨ ψ1 = ϕ ∨ ψ. Because 0 ≤ ϕ1 ≤ ϕ and 0 ≤ ψ1 ≤ ψ it follows that Cϕ1 ⊆ Cϕ and Cψ1 ⊆ Cψ. Therefore 
Cϕ1 and Cψ1 are perfect. By [38, Theorem 90.7] we have

Cϕ1∨ψ1 = (Cϕ1 + Cψ1)
dd = Cϕ1 + Cψ1 .

By [38, Theorem 90.6], since ϕ1 ∧ ψ1 = 0, we have Cϕ1 ⊥ Cψ1 . Thus Cϕ1 ∩ Cψ1 = {0} which implies 
Cϕ1∨ψ1 = Cϕ1 ⊕ Cψ1 . Hence it follows from Theorem 2.5 (v) and (vii) that (Cϕ1∨ψ1)

∼∼
nn

∼= Cϕ1∨ψ1 ; that is, 
Cϕ∨ψ = Cϕ1∨ψ1 is perfect. Since Cϕ, Cψ ⊆ Cϕ∨ψ it follows that Mp is upward directed, hence an ideal in 
BE. �
Proof of (ii). If E is perfect then Mp = Mn, and so the result follows from Theorem 6.11 (v). Conversely, if 
PMp

is an isomorphism then Theorem 6.10 implies that E is perfect. �
We now consider direct limits of perfect spaces. Due to the inherent limitations of the duality theorems 

for inverse limits, the results we obtain are less general than the corresponding results for inverse limits.

Theorem 6.14. Let D := ((En)n∈N , (en,m)n≤m) be a direct system in NIVL, and let S := (E, (en)n∈N) be 
the direct limit of D in IVL. Assume that e∼n,m is surjective for all n ≤ m in N. If En is perfect for every 
n ∈ N then so is E.

Proof. By Proposition 5.2, the pair D∼
n :=

(
((En)∼n )n∈N , (e∼n,m)n≤m

)
is an inverse system in NIVL, and 

by Theorem 4.5 (ii) the inverse limit of D∼
n exists in NVL. Denote lim←−D∼

n by S0 := (F, (pn)n∈N).
By Proposition 5.9, the pair D∼∼

nn :=
(
((En)∼∼

nn )
n∈N , (e∼∼

n,m)n≤m

)
is a direct system in NIVL. Since we 

assumed that the e∼n,m are surjective, it follows by Theorem 5.13 that (S0)∼n is the direct limit of D∼∼
nn in 

NIVL. For every n ∈ N, let σn : En → (En)∼∼
nn denote the canonical lattice isomorphism. The diagram

En (En)∼∼
nn

Em (Em)∼∼
nn

σn

en,m e∼∼
n,m

σm

commutes for all n ≤ m in N. By Proposition 6.1 there exists a unique lattice isomorphism Σ : E → F∼
n so 

that the diagram

En (En)∼∼
nn

E F∼
n

σn

en e∼∼
n,m

Σ

commutes for every n ∈ N. Since F∼
n is perfect, we conclude that E is also perfect. �

Corollary 6.15. Let D := ((En)n∈N , (en,m)n≤m) be a direct system in NIVL, and let S := (E, (en)n∈N) be 
the direct limit of D in IVL. Assume that en,m is injective and en,m[En] is a band in Em for all n ≤ m in 
N. If En is perfect for every n ∈ N then so is E.
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Proof. We show that e∼n,m is surjective for all n ≤ m in N. Then the result follows directly from Theo-
rem 6.14. We observe that each En is Dedekind complete and thus has the projection property. Fix n ≤ m

in N. Let Pm,n : Em → en,m[En] be the band projection onto en,m[En]. The diagram

En Em

en,m[En]
en,m

en,m

Pm,n

commutes. Therefore

(Em)∼n (En)∼n

(en,m[En])∼n

e∼n,m

P∼
m,n e∼n,m

commutes as well. Since en,m : En → en,m[En] is an isomorphism, so is e∼n,m : (en,m[En])∼n → (En)∼n . It 
follows from the above diagram that e∼n,m : (Em)∼n → (En)∼n is a surjection. �
Corollary 6.16. Let E be a vector lattice. Assume that there exists an increasing sequence (ϕn) of positive 
order continuous functionals on E such that 

⋃
Cϕn

= E and, for every n ∈ N, Cϕn
is perfect. Then E is 

perfect.

Proof. For all n ≤ m denote by en,m : Cϕn
→ Cϕm

and en : Cϕn
→ E the inclusion maps. By Example 3.8, 

D := ((Cϕn
)n∈N , (en,m)n≤m) is a direct system in NIVL, and S := (E, (en)n∈N) is the direct limit of D in 

NIVL. By Corollary 6.15, E is perfect. �
6.3. Decomposition theorems for C(X) as a dual space

This section deals with decomposition theorems for spaces C(X) of continuous, real valued functions 
which are order dual spaces. In particular, we show that the naive generalization of Theorems 1.1 and 1.2 to 
the non-compact case fails, and present an alternative approach via inverse limits. Specialising Corollary 6.13
to C(X) yields the desired decomposition theorem. In order to facilitate the discussion to follow we recall 
some basic facts concerning the structure of the carriers of positive functionals on C(X). Throughout this 
section, X denotes a realcompact space. Recall from Section 1 that the realcompactification of a Tychonoff 
space Y is denoted as υY .

Let 0 ≤ ϕ ∈ C(X)∼. According to Theorem 2.9 there exists a measure μϕ ∈ Mc(X)+ so that

ϕ(u) =
∫

u dμϕ, u ∈ C(X).

Denote by Sϕ the support of the measure μϕ. The null ideal of ϕ is given by

Nϕ = {u ∈ C(X) : u(x) = 0 for all x ∈ Sϕ}.

Indeed, the inclusion {u ∈ C(X) : u(x) = 0 for all x ∈ Sϕ} ⊆ Nϕ is clear. For the reverse inclusion, 
consider u ∈ C(X) so that u(x0) �= 0 for some x0 ∈ Sϕ. Then there exist a neighbourhood V of x0 and a 
number ε > 0 so that |u|(x) > ε for all x ∈ V . Because x0 ∈ Sϕ, μϕ(V ) > 0. Therefore

ϕ(|u|) ≥
∫

|u| dμϕ ≥ εμϕ(V ) > 0

V
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so that u /∈ Nϕ. It therefore follows that

Cϕ = {u ∈ C(X) : u(x) = 0 for all x ∈ X \ Sϕ}.

The band Cϕ is a projection band if and only if Sϕ is open, hence compact and open, see [26, Theorem 6.3]. 
In this case we identify Cϕ with C(Sϕ) and the band projection Pϕ : C(X) → Cϕ is given by restriction of 
u ∈ C(X) to Sϕ.

Proposition 6.17. Let X be extremally disconnected. Then Cϕ is perfect for every 0 �= ϕ ∈ C(X)∼n .

Proof. Let 0 �= ϕ ∈ C(X)∼n . Since C(X) is Dedekind complete, so is Cϕ. Furthermore, |ϕ| is strictly 
positive and order continuous on Cϕ. Thus Cϕ has a separating order continuous dual. By Theorem 1.2, 
Cϕ = C(Sϕ) has a Banach lattice predual; that is, Cϕ is an order dual space. Therefore Cϕ is perfect by 
[38, Theorem 110.2]. �
Theorem 6.18. Let X be a realcompact space. Denote by S the union of the supports of all order continuous 
functionals6 on C(X). The following statements are equivalent.

(i) There exists a vector lattice E so that C(X) is lattice isomorphic to E∼.
(ii) C(X) is perfect.
(iii) X is extremally disconnected and υS = X; that is,

C(X) � u �−→ u|S ∈ C(S)

is a lattice isomorphism.

Proof. That (i) implies (ii) follows from [38, Theorem 110.2]. The argument in the proof of [37, Theorem 
2] shows that (ii) implies (iii), and [37, Theorem 1] shows that (iii) implies (i). Thus the statements (i), (ii) 
and (iii) are equivalent. �

A naive attempt to generalise Theorem 1.2 (iv) is to replace the �∞-direct sum in that result with the 
Cartesian product of the carriers of a maximal singular family in C(X)∼n . In next result and the example 
to follow, we show that this approach is not correct.

Proposition 6.19. Let X be an extremally disconnected realcompact space, and let F be a maximal (with 
respect to inclusion) singular family of positive order continuous linear functionals on C(X). Consider the 
following statements.

(i) The map

C(X) � u �−→ (Pϕ(u)) ∈
∏
ϕ∈F

Cϕ

is a lattice isomorphism.
(ii) C(X) is perfect.
(iii) There exists a vector lattice E so that C(X) is lattice isomorphic to E∼.

Then (i) implies (ii), and (ii) and (iii) are equivalent.

6 Equivalently, all compactly supported normal Radon measures on X.
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Proof. By Theorem 6.18, (ii) and (iii) are equivalent. Assume that (i) is true. By Theorem 2.5 (v) and (vii), 
C(X)∼∼

nn is isomorphic to 
∏

(Cϕ)∼∼
nn . But each Cϕ is perfect so that 

∏
(Cϕ)∼∼

nn is isomorphic to 
∏

Cϕ, 
hence C(X) is isomorphic to C(X)∼∼

nn . �
Example 6.20. As is well known, C(βN) = �∞ is perfect, hence an order dual space. For every x ∈ N, denote 
by δx : C(βN) → R the point mass centred at x. Then F = {δx : x ∈ N} is a maximal singular family 
in C(βN)∼n ∼= �1. Since Cδx = R for every x ∈ N, it follows that 

∏
Cδx = Rω. Therefore 

∏
Cδx does not 

have a strong order unit. Since C(βN) contains a strong order unit,

C(βN) � u �−→ (Pδx(u)) ∈
∏

Cδx

is not an isomorphism.

The final result of this section offers a solution to the decomposition problem for a space C(X) which is 
an order dual space. We refer the reader to the notation used in Example 4.11 and Theorem 6.10.

Theorem 6.21. Let X be an extremally disconnected realcompact space. Denote by S the union of the supports 
of all order continuous functionals on C(X). The following statements are equivalent.

(i) There exists a vector lattice E so that C(X) is lattice isomorphic to E∼.
(ii) C(X) is perfect.
(iii) υS = X.
(iv) PMn : C(X) → lim←−IMn is a lattice isomorphism.

Proof. By Theorem 6.18, it suffices to show that (ii) and (iv) are equivalent. Since Cϕ is perfect for every 
0 ≤ ϕ ∈ C(X)∼n by Proposition 6.17, this follows immediately from Corollary 6.13. �
6.4. Structure theorems

Let E be an Archimedean vector lattice. In Example 3.9 it is shown that the principal ideals of E form 
a direct system in NIVL, and that E can be expressed as the direct limit of this system. In this section we 
exploit this result and the duality results in Section 5 to obtain structure theorems for vector lattices and 
their order duals.

A frequently used technique in the theory of vector lattices is to reduce a problem to one confined to 
a fixed principal ideal Eu of a space E. Once this is achieved, the problem becomes equivalent to one in a 
space C(K) of continuous functions on some compact Hausdorff space K via the Kakutani Representation 
Theorem, see [25] or [33, Theorem 2.1.3]. For instance, this technique is used in [33, Theorem 3.8.6] to study 
tensor products of Banach lattices. The following result is essentially a formalization of this method in the 
language of direct limits.

Theorem 6.22. Let E be an Archimedean, relatively uniformly complete vector lattice. For all 0 < u ≤ v there 
exist compact Hausdorff spaces Ku and Kv and injective, interval preserving normal lattice homomorphisms 
eu,v : C(Ku) → C(Kv) and eu : C(Ku) → E so that the following is true.

(i) Eu is lattice isomorphic to C(Ku) for every 0 < u ∈ E.
(ii) DE := ((C(Ku))0<u∈E, (eu,v)u≤v) is a direct system in NIVL
(iii) SE := (E, (eu)0<u∈E) is the direct limit of DE in NIVL.
(iv) E is Dedekind complete if and only if Ku is Stonean for every 0 < u ∈ E.
(v) If E is perfect then Ku is hyper-Stonean for every 0 < u ∈ E.
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Proof. According to [33, Proposition 1.2.13] every principal ideal in E is a unital AM -space. Therefore 
the statements in (i), (ii) and (iii) follow immediately from Example 3.9 and Kakutani’s Representation 
Theorem for AM -spaces [25]. The proof of (iv) follows immediately from Theorem 3.6 and [33, Proposition 
2.1.4].

For the proof of (v), assume that E is perfect. Then, in particular, E is Dedekind complete and has 
a separating order continuous dual. Therefore the same is true for each Eu. By (i), C(Ku) is Dedekind 
complete and has a separating order continuous dual. It follows from Theorems 1.1 and 1.2 that Ku is 
hyper-Stonean. �
Corollary 6.23. Let E be an Archimedean, relatively uniformly complete vector lattice. There exist an inverse 
system I := ((M(Kα))α∈I , (pβ,α)β�α) in NIVL, with each Kα a compact Hausdorff space, and normal 
lattice homomorphisms pα : E∼ → M(Kα), so that S := (E∼, (pα)α∈I) is the inverse limit of I in NVL.

Proof. The result follows immediately from Theorems 6.22 and 5.4, and the Riesz Representation Theo-
rem. �

In order to obtain a converse of Corollary 6.23 we require a more detailed description of the interval 
preserving normal lattice homomorphisms eu,v : C(Ku) → C(Kv) in Theorem 6.22. Let X and Y be 
topological spaces and p : X → Y a continuous function. Recall from [7, p. 20] that p is almost open if for 
every non-empty open subset U of X, int

(
p [U ]

)
�= ∅. It is clear that all open maps are almost open and 

thus every homeomorphism is almost open.

Proposition 6.24. Let K and L be compact Hausdorff spaces and T : C(K) → C(L) a positive linear map. 
T is a lattice homomorphism if and only if there exist a unique 0 < w ∈ C(L) and a unique continuous 
function p : Zc

w → K so that

T (u)(x) =

⎧⎨
⎩

w(x)u(p(x)) if x ∈ Zc
w

0 if x ∈ Zw

(6.5)

for all u ∈ C(K). In particular, w = T (1K).
Assume that T is a lattice homomorphism. Then the following statements are true.

(i) T is order continuous if and only if p is almost open.
(ii) T is injective if and only if p[Zc

w] is dense in K.
(iii) T is interval preserving if and only if p[Zc

w] is C∗-embedded in K and p is a homeomorphism onto 
p[Zc

w].

Proof. The first part of the result is well known, see for instance [1, Theorem 4.25]. Now suppose that T is 
a lattice homomorphism. The statement (i) follows from [36, Theorem 4.4], or, from [7, Theorem 7.1 (iii)].

We prove (ii). Assume that p[Zc
w] is dense in K. Let u ∈ C(K) satisfy T (u) = 0. Then w(x)u(p(x)) = 0

for all x ∈ Zc
w. Hence u(z) = 0 for all z ∈ p[Zc

w]. Since p[Zc
w] is dense in K it follows that u = 0. Thus 

T is injective. Conversely, suppose that p[Zc
w] is not dense in K. Then there exists 0 < u ∈ C(K) so that 

u(z) = 0 for all z ∈ p[Zc
w]; that is, u(p(x)) = 0 for all x ∈ Zc

w. Hence T (u)(x) = w(x)u(p(x)) = 0 for all 
x ∈ Zc

w. By definition T (u)(x) = 0 for all x ∈ Zw so that T (u) = 0. Therefore T is not injective. Thus (ii) 
is proved.

Lastly we verify (iii). Suppose that T is interval preserving. We first show that p[Zc
w] is C∗-embedded in 

K. Consider 0 ≤ f ∈ Cb(p[Zc
w]). We must show that there exists a function g ∈ C(K) so that g(z) = f(z)

for all z ∈ p[Zc
w]. We may assume that f ≤ 1p[Zc ]. Define v : L → R by setting
w
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v(x) :=

⎧⎨
⎩

w(x)f(p(x)) if x ∈ Zc
w

0 if x ∈ Zw

for every x ∈ K. It is clear that v is continuous on Zc
w and on the interior of Zw. For every other point 

x ∈ K, continuity of v follows from the inequality 0 ≤ v ≤ w. From this last inequality and the fact 
that T is interval preserving it follows that there exists 0 ≤ g ≤ 1K so that T (g) = v. If x ∈ p[Zc

w]
then w(x)f(p(x)) = v(x) = T (g)(x) = w(x)g(p(x)) so that f(p(x)) = g(p(x)); that is, g(z) = f(z) for all 
z ∈ p[Zc

w].
Next we show that p is a homeomorphism onto p[Zc

w]. First we show that p is injective. Consider distinct 
x0, x1 ∈ Zc

w and suppose that p(x0) = p(x1). There exists v ∈ C(L) with 0 < v ≤ w = T (1K) such that 
v(x0) = 0 and v(x1) > 0. Because T is interval preserving there exists 0 < u ≤ 1K in C(K) so that 
T (u) = v. Then u(p(x0)) = 0 and u(p(x1)) > 0, contradicting the assumption that p(x0) = p(x1). Therefore 
p is injective.

It remains to verify that p−1 is continuous. Let (xi) be a net in Zc
w and x ∈ Zc

w so that (p(xi)) converges 
to p(x) in K. Suppose that (xi) does not converge to x. Passing to a subnet of (xi) if necessary, we obtain 
a neighbourhood V of x so that xi /∈ V for all i. Therefore there exists a function 0 < v ≤ w in C(L) so 
that v(x) > 0 and v(xi) = 0 for all i. Because T is interval preserving there exists a function u ∈ C(K) so 
that T (u) = v. In particular, w(x)u(p(x)) = v(x) > 0 so that u(p(x)) > 0, but w(xi)u(p(xi)) = v(xi) = 0 so 
that u(p(xi)) = 0 for all i. Therefore (u(p(xi))) does not converge to u(p(x)), contradicting the continuity 
of u. Hence (xi) converges to x so that p−1 is continuous.

Conversely, suppose that p is a homeomorphism onto p[Zc
w], and that p[Zc

w] is C∗-embedded in K. Let 
0 < u ∈ C(K) and 0 ≤ v ≤ T (u) in C(L). Define f : p[Zc

w] → R by setting

f(z) := 1
w(p−1(z))v(p

−1(z)), z ∈ p[Zc
w].

Because p−1 : p[Zc
w] → Zc

w is continuous, f is continuous. Furthermore, 0 ≤ f(z) ≤ u(z) for all z ∈ p[Zc
w]. 

Therefore f is a bounded continuous function on p[Zc
w]. By assumption there exists a continuous function 

g : K → R so that g(z) = f(z) for all z ∈ p[Zc
w]. Since 0 ≤ f ≤ u on p[Zc

w], the function g may be chosen 
so that 0 ≤ g ≤ u. For x ∈ Zc

w we have

T (g)(x) = w(x)g(p(x)) = w(x)f(p(x)) = w(x)v(x)
w(x) = v(x),

and for x ∈ Zw we have v(x) = 0 = T (g)(x). Therefore T (g) = v so that T is interval preserving. �
Theorem 6.25. Let E be a vector lattice. The following statements are equivalent.

(i) There exists a relatively uniformly complete Archimedean vector lattice F so that E is lattice isomorphic 
to F∼.

(ii) There exists an inverse system I := ((M(Kα))α∈I , (pβ,α)β�α) in NIVL, with each Kα a compact 
Hausdorff space, such that the following holds.
(a) For each β � α in I there exist a function w ∈ C(Kβ)+ and a homeomorphism t : Zc

w → t[Zc
w] ⊆ Kα

onto a dense C�-embedded subspace of Kα so that for every μ ∈ M(Kβ),

pβ,α(μ)(A) =
∫

−1

w dμ, A ∈ BKα
.

p [A]
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(b) For every α ∈ I there exists a normal lattice morphism pα : E → M(Kα) such that lim←−I =
(E, (pα)α∈I) in NVL.

Proof that (i) implies (ii). By Theorem 6.22 there exist a direct system D := ((C(Kα))α∈I , (eα,β)α�β) in 
NIVL, with each Kα a compact Hausdorff space, and interval preserving normal lattice homomorphisms 
eα : C(Kα) → F so that S := (F, (eα)α∈I) is the direct limit of D in NIVL. Note that eα,β is injective for all 
α � β in I. By Theorem 5.4 and the Riesz Representation Theorem [35, Theorem 18.4.1], S∼ := (E, (e∼α )α∈I)
is the inverse limit of the inverse system D∼ :=

(
M(Kα), (e∼α,β)α�β

)
in NVL. Thus the claim in (b) holds.

Fix β � α in I. We show that e∼α,β is of the form given in (a). By Proposition 6.24 there exist w ∈ C(Kβ)+
and a homeomorphism t : Zc

w → t[Zc
w] ⊆ Kα onto a dense C�-embedded subspace of Kα so that

eα,β(u)(x) =

⎧⎨
⎩

w(x)u(t(x)) if x ∈ Zc
w

0 if x ∈ Zw

for all u ∈ C(Kα). Let T : C(Kα) → Cb(Zc
w) and Mw : Cb(Zc

w) → C(Kβ) be given by T (u) = u ◦ t and 
Mw(v) = wv for all u ∈ C(Kα) and v ∈ Cb(Zc

w), with wv defined as identically zero outside Zc
w. Then T

and Mw are positive operators and eα,β = Mw ◦ T ; hence e∼α,β = T∼ ◦ M∼
w . It follows from [9, Theorems 

3.6.1 & 9.1.1] that T∼(μ)(A) = μ(t−1[A]) for every μ ∈ M(Zc
w) and A ∈ BKα

. The Riesz Representation 
Theorem shows that, for each ν ∈ M(Kβ) and every Borel set B in Zc

w,

M∼
w (ν)(B) =

∫
B

w dν.

Hence for μ ∈ M(Kβ) and A ∈ BKα
,

e∼α,β(μ)(A) =
∫

t−1[A]

w dμ

as claimed. �
Proof that (ii) implies (i). Fix β � α in I and consider the function w ∈ C(Kβ)+ and the homeomorphism 
t : Zc

w → t[Zc
w] ⊆ Kα given in (b). Define the map eα,β : C(Kα) → C(Kβ) as

eα,β(u)(x) =

⎧⎨
⎩

w(x)u(t(x)) if x ∈ Zc
w

0 if x ∈ Zw

We show that D := ((C(Kα))α∈I , (eα,β)α�β) is a direct system in NIVL.
It follows by Proposition 6.24 that each eα,β is an injective interval preserving normal lattice homomor-

phism. It remains to show that eα,γ = eβ,γ ◦ eα,β for all α � β � γ in I. An argument similar to that in 
the proof that (i) implies (ii) shows that e∼α,β = pβ,α for all α � β; hence e∼∼

α,β = p∼β,α. By Proposition 5.9, 
I∼ :=

(
(M(Kα)∼)α∈I , (p∼β,α)β�α

)
is a direct system in NIVL and therefore e∼∼

α,γ = e∼∼
β,γ ◦ e∼∼

α,β for all 
α � β � γ in I. Since C(Kα) has a separating order dual for every α ∈ I, it follows that eα,γ = eβ,γ ◦ eα,β . 
Hence D is a direct system in NIVL.

Since each eα,β is injective, lim−→D := (F, (eα)α∈I) exists in NIVL by Theorem 3.5. Since C(Kα) is 
Archimedean and relatively uniformly complete for each α ∈ I it follows from Theorem 3.6 (i) and (v) that 
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F is also Archimedean and relatively uniformly complete. Because e∼α,β = pβ,α for all α � β in I, D∼ = I. 
Therefore, by Theorem 5.4, there exists a lattice isomorphism T : F∼ → E such that the diagram

F∼ E

M(Kα)
e∼α

T

pα

commutes for all α ∈ I. This completes the proof. �
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