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ABSTRACT Challenges such as backhaul availability and backhaul scalability have continued to outweigh
the progress of integrated access and backhaul (IAB) networks that enable multi-hop backhauling in 5G
networks. These challenges, which are predominant in poor wireless channel conditions such as foliage, may
lead to high energy consumption and packet losses. It is essential that the IAB topology enables efficient
traffic flow by minimizing congestion and increasing robustness to backhaul failure. This article proposes
a backhaul adaptation scheme that is controlled by the load on the access side of the network. The routing
problem is formulated as a constrained Markov decision process and solved using a dual decomposition
approach due to the existence of explicit and implicit constraints. A deep reinforcement learning (DRL)
strategy that takes advantage of a recursive discrete choice model (RDCM) was proposed and implemented
in a knowledge-defined networking architecture of an IAB network. The incorporation of the RDCM
was shown to improve robustness to backhaul failure in IAB networks. The performance of the proposed
algorithm was compared to that of conventional DRL, i.e., without RDCM, and generative model-based
learning (GMBL) algorithms. The simulation results of the proposed approach reveal risk perception by
introducing certain biases on alternative choices and the results showed that the proposed algorithm provides
better throughput and delay performance over the two baselines.

INDEX TERMS Backhaul, choice aversion, constrained Markov decision process, deep reinforcement
learning, integrated access and backhaul, recursive discrete choice model, routing.

I. INTRODUCTION between access and backhaul [3]. The IAB technology was

The fifth generation (5G) new radio (NR) technology pro-
vides the foundation for future mobile and wireless commu-
nications by supporting new types of applications and flexible
spectrum usage [1]. The densified small cell architecture of
5G networks makes it labour intensive and costly for mobile
network operators (MNOs) to provide fiber backhaul to every
access point (AP) in the network [2]. Integrated access and
backhaul (IAB) is a key technology enabler for 5G NR that
alleviates this challenge by leveraging the availability of
large amounts of spectrum in millimeter wave (mm-wave)
frequencies to enable the wireless spectrum to be shared
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standardized for 3GPP release 15 [4], and it is envisaged to be
more financially successful than LTE relaying [5]. In an IAB
network, there is a wireless backhaul link between secondary
base station (SBSs) and a main base station (MBS), which is
typically connected to the core network via fiber backhaul.
The wireless backhaul links between an SBS and the MBS
can be a single direct link or over multiple hops through
other SBSs. IAB networks benefit from the usage of high-
frequency bands, which are capable of having large trans-
mission bandwidth that is feasible without any considerable
performance sacrifice.

In IAB networks, backhaul traffic is routed in an SBS-
to-SBS fashion until it reaches the MBS. This brings about
the discussion on the need for efficient backhaul routing in
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IAB networks, which should consider environmental con-
text such as SBS load and bandwidth allocation. As MNOs
move from initial 5G market launches to extending their
5G network capacity, they face the challenge of securing
high bandwidth backhaul solutions to the 5G sites in a fast
and cost-effective manner [3], [6]. Although mm-wave links
allow high-throughput wireless transmissions, they are vul-
nerable to blockage from moving objects such as vehicles,
seasonal changes such as foliage, as well as infrastructure
changes [7]. Thus, from a reliability perspective, it is impor-
tant to ensure that each IAB node can continually provide
coverage and end-user service even when the active backhaul
routes are temporarily unavailable. In order to autonomously
reconfigure the backhaul network without service disruption
and packet losses during reconfiguration, the 3GPP has stan-
dardized the use of topology adaptation. IAB topology adap-
tation can be a result of integration of a new IAB node into an
existing topology, detachment/release of an IAB node from
an existing topology, detection of backhaul link overload,
deterioration of backhaul link quality, link failure, or other
such events. Following is a literature review on some of the
recent research works that have used artificial intelligence
(AI) strategies for problems in IAB networks.

A. RELATED RESEARCH WORKS
The application of ML techniques in traffic engineering is
not new, more especially the supervised learning techniques.
Supervised learning models for directly learning paths for
high-throughput dynamic packet routing have been proposed
in [8] and [9]. For instance, the approach in [9] was used
to predict future traffic, then optimize the routing plan using
the predicted values. However, simulation results showed that
this approach might be ineffective. On the other hand, the
approach used in [8] assumes a central controller to avoid
congestion, which uses information gathered from the whole
network to train a different model for each source and des-
tination pair in the network. The solution for the congestion
optimization problem is then provided by a heuristic algo-
rithm. The main challenge that these aforementioned proto-
cols addresses is deciding the best path to be taken by traffic
from its source to the destination, under certain constraints.
In addition to supervised learning approaches, reinforce-
ment learning (RL) and deep reinforcement learning (DRL)
strategies have also been proposed to solve routing problems.
With the view that the conventional routing algorithms do
not consider the network data history such as overloaded
routes and route failure, the authors in [10] used the advan-
tages of network data to present a RL-based routing strategy.
Since RL-based routing algorithms require additional control
message headers, the authors addressed this by proposing
an enhanced protocol named enhanced RL routing protocol
(e-RLRP). The e-RLRP scheme aimed to reduce the net-
work overheads by implementing different network scenar-
10s, where the number of nodes, routes, traffic flows and
degree of mobility were varied. The performance of the
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e-RLRP scheme is compared to that of the optimized link
state routing, BATMAN, and RLRP protocols, and the exper-
imental results showed that the e-RLRP protocol provides
reduced network overhead in most network scenarios com-
pared to all the other protocols.

In another contribution, the authors in [11] proposed
a method to investigate multi-hop scheduling in self-
backhauled mm-wave networks. Here, the authors addressed
the challenge of selecting the best routes and how to allocate
rates to the links subject to latency constraints. In their design,
they factored in channel variations and network dynamics that
are specific to mm-wave frequencies, and they formulated a
network utility maximization problem subject to a bounded
delay constraint and network stability. The problem was
decoupled into two: (i) path selection and (ii) rate allocation,
where learning the best paths was performed using RL, and
rate allocation was solved using successive convex approxi-
mation. The results of this approach showed that it achieved
a guaranteed communication reliability of 99.9999%, and
latency reduction of 50.64% and 92.9% when compared with
two baselines, respectively. On the other hand, the authors
in [12] developed a DRL-based framework to solve the spec-
trum allocation problem for an IAB architecture with large
scale deployment in a dynamic environment. The available
spectrum is divided into several orthogonal sub-channels, and
the MBS and all IAB nodes have the same spectrum resource
for allocation. A spectrum allocation problem was formulated
as a mix-integer and non-linear programming problem with
the goal of maximizing the sum log-rate of all user equipment
(UE) groups. The problem could not be handled when the
IAB network became large and time-varying. A DRL strategy
was then incorporated in the form of an actor-critic spectrum
allocation scheme. Here, deep neural networks (DNNs) were
used to achieve real-time spectrum allocation in different
scenarios, and the evaluation results were better than some
baseline allocation policies.

A novel scheme for jointly allocating spectrum and trans-
mission power for both access and backhaul links for SBSs
and MBSs was proposed in [13]. Here, the authors formu-
lated the spectrum allocation and power management prob-
lem as a mix-integer and non-linear programming problem,
with the objective of maximizing the downlink data rate.
A double deep Q-learning network approach was then pro-
posed to achieve an efficient policy learning for joint spec-
trum allocation and power management, to obtain a scheme
named SAPM-DDQN. The proposed SAPM-DDQN does not
require any prior information from other units for optimiza-
tion, which is suitable for practical deployment. Simulation
results showed the effectiveness of the proposed scheme for
joint spectrum allocation and power management.

B. RESEARCH MOTIVATION

Due to highly dense device connectivity in urban environ-
ments, especially during peak hours, network management
is becoming more complex. Optimal scheduling in dynamic
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mm-wave network environments is difficult and relatively
time-consuming to perform on-the-fly. In as much as the
design of new networks must not lose the features that made
them successful; it must be open to new applications, such
as being able to adapt to new protocols. This means that
new techniques that combine these virtues to new protocols
should be devised. From the literature, it has been seen
that DRL-based solutions provide a better action-selection
strategy that incorporates the dynamic load among APs in
IAB networks, compared to conventional Q-learning meth-
ods. However, majority of research contributions in terms of
resource management problems in IAB networks sought to
find an optimal way to allocate a fixed demand for resources
from UEs, whose performance degrades with increasing con-
gestion. These approaches usually overlook the fundamen-
tal problem related to the features of each application, i.e.,
the intrinsic coupling of the cost and the demand for net-
work resources. This coupling allows the demand to vary
with congestion, thus leading to the “Tragedy of the Com-
mons” [14], which is the severe inefficiency caused by the
over-consumption of transmission resources. The aim is usu-
ally to find the path with the lowest cost according to a defined
metric [15].

The most common metric used by routing protocols in liter-
ature is the hop count, where the cost of a path is defined as the
sum of the number of hops between source and destination.
This means that allocating resources to activities such as route
request and route exploration/exploitation should be as best
as possible. Most optimization problems are formulated as
mixed-integer non-linear programming problems in order to
reduce the energy consumption costs. Usually, this approach
is NP-hard, and evolutionary games are often introduced
to deal with their complexities. The cost perspective and
computation of the cost function in IAB networks should
be defined in terms of the cost of maintaining the required
performance levels at each node of the network. Conventional
cost functions are either empirical or heuristic. Among all the
available cost functions for application-level multicast rout-
ing, neither of them has clearly defined derivations. In most of
these prior works, the presentations of the routing algorithm
do not address how the link cost function should be defined in
order to efficiently allocate resources throughout the network.
This again raises needs for a new multi-variable cost function.
Consequently, many solutions have been developed to solve
this problem, and most of them leverage perceptron conver-
gence in neural network (NN) algorithms. The possibility
of synthesizing NNs from examples of their input/output
behavior is a central motivating factor towards addressing the
tragedy of commons in this field.

C. RESEARCH QUESTIONS AND SUMMARY OF
CONTRIBUTIONS

In this article, smart ways in which robust and efficient back-
hauling can be achieved are sought. In doing so, the main
questions to ask are: How can a system learn how to handle
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varying backhaul packet arrival rates without compromising
the access quality of service (QoS)? How much of a role do
transmission delays and buffer size play in the power man-
agement and rate allocation in IAB networks? Can machine
learning (ML) techniques be leveraged to improve the energy
efficiency and throughput performance in constrained IAB
networks? In order to answer these questions, this article
examines the effect of packet arrivals on backhaul routing per-
formance metrics in IAB networks while considering latency
requirements and buffer size limitations. The contributions of
this article are summarized as follows:

1) KNOWLEDGE-DEFINED NETWORKING

Since in IAB networks, part of the radio spectrum is used
for backhaul connection, each node must perform dynamic
bandwidth reservation in a distributed manner. A knowl-
edge defined networking (KDN) scheme was proposed as
an architecture for network monitoring and the bandwidth
reservation procedure was carried out in the medium access
control (MAC) layer to make the reservation process very
rapid. In this case, the proposed system is divided into two
subsystems, i.e., (i) the data plane, and (ii) the knowledge
plane.

« The data plane includes support for distributed traffic
admission control (DTAC), any node in the IAB network
allocates bandwidth resources for traffic flows in a dis-
tributed manner. Assuming that all IAB nodes have the
same point of view of the network and employ the same
algorithm, the network topology was modeled as a prob-
abilistic graph. Then, the RA problem was formulated as
a non-convex programming problem with the objective
of maximizing the overall backhaul capacity, subject
to a flexible range extension to ensure that the QoS
requirements of access users are considered, satisfied,
and maintained.

o The knowledge plane uses the probabilistic graph
model to estimate the Q values and calculate the max-
imum bound latency, i.e., a process of learning network
information from distributed network states is developed
using Q-learning. This is a transfer learning procedure
for sharing information with nearest neighbors using the
forward-backward exploration technique. Here, a per-
formance prediction scheme that uses the principles of
DRL strategies was proposed in order to handle the
complexity of the IAB network, as well as assessing the
latency upper bound and effective throughput.

2) ADDRESSING THE TRAGEDY OF COMMONS
« A QoS-aware routing optimization scenario is presented
using a rigorous and unified framework based on con-
strained Markov decision processes (MDPs), which
details the reward and cost functions using implicit
and explicit constraints. The basic idea behind this is
to be able to simultaneously utilize physical-centric
and system-level techniques to achieve maximum
throughput and minimum possible delays and power
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consumption. A crucial cognitive function, where the
learning process applies prediction error to adjust future
predictions, was incorporated into the DRL strategy.
Thus, the DRL strategy was used together with a recur-
sive discrete choice model (RDCM) in the evaluation
of route choices in the presence of stochastic traffic
and channel conditions. Regret learning, which exploits
historical information about channel and queue states in
selecting the optimal route, was leveraged with condi-
tions of choice aversion. Then, a DRL strategy was used
to aggregate link states on paths in a flexible architecture
that represents a source-destination routing scheme.

+ A multi-dimensional matrix format is presented to
embed the topological and link reliability information of
the IAB network. Incorporating attributes such as traffic
arrival distribution, channel state, buffer occupancy sta-
tus, and power management states into one expression is
difficult for classical techniques. Here, the mathematical
models of queues with deadlines and rewards are used
to describe the attributes of the system. Then, in order
to gain the best QoS of the IAB network, a max-weight
algorithm was used together with back-pressure routing
in order to handle the routing aspect of the IAB network.
Lastly, taking into full account both explicit and implicit
constraints and several QoS parameters simultaneously,
a multi-variable goodput distribution was used to formu-
late the cost function by employing a post-decision state
learning strategy to deal with the known and unknown
components of the system. Compared with the con-
ventional DRL algorithm, the improved DRL frame-
work can effectively make better routing decisions and
achieves better routing delays.

D. ARTICLE OUTLINE AND NOTATIONS

The remainder of this paper is organized as follows: Section
IT discusses the proposed system-level model of the IAB
network. Section III presents the mathematical formulation of
the problem as well as the optimization objective. Section IV
discusses the proposed DRL strategy that applies a RDCM.
In Section V, the proposed algorithm is discussed in detail,
and its computational complexity is compared with the base-
lines. Section VI presents the performance evaluation of the
proposed algorithm in comparison to the baseline approaches
using simulation results. Ultimately, Section VII gives the
concluding remarks of the article. The notations used in
this article, together with their descriptions are tabulated in
TABLE 1.

Il. PROPOSED SYSTEM MODEL

Consider the uplink (UL) transmission of a two-tier multi-hop
IAB network consisting of one IAB donor, a set of IAB nodes,
and user equipments (UEs). The IAB nodes serve UEs and
are connected to each other via wireless backhaul, while the
IAB donor is connected to the core network via fiber backhaul
and capable of serving access UEs and backhaul traffic. The
proposed TAB network model is shown in Fig. 1 below.
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TABLE 1. Notations and Descriptions.

l Notation [ Description
gV, €&) Graph G with node set V, and edge set, £
v € V;e €& | Nodewv and graph edge e
N Set of IAB nodes, synonymous with V
K Set of UEs associated with IAB nodes
MeNUK Set of all nodes, i.e., IAB nodes and UEs
F A finite set of traffic flows
Qtn Maximum queue length or threshold
q} Evolution of queue length, i.e., buffer queue state
€i,j A communication link between two nodes ¢ and j
dp k Eucledian distance between UE k and SBS n
Pk The transmission power of the k-th UE
In,k Channel power gain between k-th UE and n-th SBS
'yzmj SINR of the backhaul link between SBSs 7 and j
p{j j Transmit power from node ¢ to node j
'rlf, J Transmission rate between node ¢ and node j
7 The average backhaul transmission rate
Ce The capacity of edge e € £
D(t) The average cost of delayed packets
Af Packet arrival rate at flow f
Cr The maximum delay constraint for each flow
Ry The discounted reward for a packet in flow f
Ke The Lagrange multiplier for edge e
s The optimal policy
Network
module l
- ::"'"ﬂu"
: nllnuu

Network state

FIGURE 1. 1AB network model setup in the 5G standalone deployment
scenario.

As shown in Fig. 1 above, N = {0,1,2,---, N} access
points (APs) are distributed according to a Poisson point
process, where ng is the IAB donor and the rest are IAB
nodes [16]. The donor node together with the IAB nodes are
assumed to be equipped with multiple antennas such that they
operate in full-duplex mode, i.e., transmitting and receiving
signals simultaneously. In line with KDN as part of the 5G
network requirements, an IAB network that can assemble
itself given high-level instructions, reassemble itself if the
requirements change, and autonomously reconfigure itself in
the event of an outage, two separate - but communicating
planes are proposed, i.e., data plane, and knowledge plane.

A. THE DATA PLANE
In order to allow traffic flows to be scheduled on multiple
links, the topology of the IAB network is modeled using
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FIGURE 2. A graph model of the data plane of an IAB network.

an undirected graph. Thus, a graph G = (V, &), where V
is the set of nodes (synonymous to the set A'), and £ be
the set of edges or links, ie, &€ = {(i,j))li € N,j €
M3}, is defined. Here, i and j represent the indices of the
transmitting and receiving nodes, such that e;; represents
the edge/link between the two communicating nodes, and
M = N UK is the set of all nodes. As shown in Fig. 1
above, the data plane is where the nodes, UEs, and the actual
communication channels are found, and it is also where all
the signalling and data handling occurs. The data plane of the
considered IAB network can be represented using a toy model
example as shown in Fig. 2 below [17].

Let |V| and || denote the cardinality of the node and
edge sets, respectively, and 51.+ represent the set of outgoing
links from node i. In addition, let a transmission decision
be denoted by (i,j), Vi,j € &, while a decision not to
transmit be denoted by a loop, i.e., (i,i), Vi € V. Then,
let the set 7 = {1,2,---, F} represent the finite number
of traffic flows. Each flow is assumed to have the attributes
determining the source and destination nodes. Since in a
graph tree, a source node (or a child node or a transmitter) is
defined using index i and the destination node (or parent node
or receiver) by index j, {(i, j)|j = par(i)} describes the parent-
to-child relationship in the IAB network. The backhaul links
between IAB nodes and their immediate neighbors, up to the
destination, are modeled as edges, ¢ € &, such that when a
route request message from the i-th node reaches the parent
node j, the communication link is represented as e; ;. Let P;
denote the i — j paths of graph G such that P = U;P; is a set
containing the all the paths.

B. THE KNOWLEDGE PLANE

The knowledge plane is a distributed construct within the
network that gathers, aggregates, and manages information
about network behavior and operation, with a goal of enlarg-
ing the view of what constitutes the network [18]. Similar
in operation to the control plane, its task is to draw the
network topology and handle all the functions and processes
that determine which routes to be taken by packets. There-
fore, the proposed architecture for this plane exploits the
Q-learning technique, with the assumption that all the nodes
have the same point of view of the network and run the same
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FIGURE 3. The simplified graph model of an IAB environment illustrating
the learning framework.

algorithm. The exploration of the Q-learning technique on
this plane is shown in Fig. 3 below:

As part of the framework shown in FIGURE 3 above,
support for DTAC procedures is incorporated using the max-
weight scheme, which frequently tracks node congestion by
checking buffer queue occupancy status. This process is a
way of evaluating the reliability of every link of nodes that
communicate with one another using the backward and for-
ward exploration technique. The ability of the knowledge
plane to model the graph-based information of the data plane
is made possible through the network optimizing module,
which is an OpenFlow device containing the flow table. The
implementation of this idea was inspired by the behavioral
game discussed in [19].

1) ROUTE ESTABLISHMENT
The process illustrated in FIGURE 3 proceeds as outlined in
the following example.

Example 1: Let the route established use the process illus-
trated in Fig. 3, where the transmission passes through the
nodes i, j, and j' towards ng, such that Q;(j’, no) is the time
that a node j estimates it takes to deliver a packet bound
for ng via j/. This time estimate includes the time that the
packet will spend in the queue while being buffered at node
J» 1.e., the holding time. After node j has sent the packet to
node j/, it immediately receives the estimate of the remaining
time for it to reach the destination from node j'. It must be
noted that each node in the network maintains information
about the Q values for each of the possible next hops. This
information represents the delivery time for the packets to
reach the MBS. An update regarding the present Q value of
each node is sent to the previous node in a process called
backward exploration. In order to keep the Q value estimates
as accurate as possible, and to also reflect the changes in the
state of the network, the estimates need to be updated with
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minimum possible overhead [17]. Thus, as soon as node j
sends a packet P(i, ng) destined for the MBS to one of the
neighboring nodes j’, node j sends its best estimate Qj(z, no)
for the destination back to node j, where z is a donor node.

2) COMPUTATION OF BOUNDS

It is believed that the maximum bound on the latency can
be calculated using the maximum buffer occupancy of each
node and the egress link rate [20], where the queue lengths
are used in computing the upper bound of latency in terms
of the number of nodes deployed to relay traffic to ng. Upon
receiving the estimate, Qy(z, ng), node j computes the new
estimate using the exploration of Q values. This process is
known as the forward and backward exploration, since it
involves updating the Q values of the sending node j using the
information obtained from the receiving node j'. With every
hop of the packet P(i, ng), only one Q value is updated, i.e.,
when node j sends the packet, P(i, ngp), to one of its neighbors,
e.g., j, the packet can take along information about the Q
values of node j. When node ' receives this packet, it can
use this information in updating its Q values pertaining to
its neighbor, i.e., node j. Then, when the node j/ makes a
decision, it uses these updated Q values for node j, then the
Q value updates in backward exploration.

Ill. MATHEMATICAL PROBLEM FORMULATION

Considering that the model described in Section II above is
time-slotted with discrete time steps ¢, the following assump-
tions are made: (i) the traffic arrival rate, )Lf (t), at each
node queue is approximated by a Poisson process; (ii) the
packet lengths are approximated by an exponential distribu-
tion, (iii) the traffic arrival distribution, px()»), is unknown;
(iv) a wireless transmission card of each node consists of
a transmission buffer that can hold a maximum of Q pack-
ets, whose average queue length, g, can be explained using
Little’s theorem [21]. Then, using the number of arrivals
and the transmission rate, the evolution of the queue in the
transmission buffer can be represented using the dynamic
update equation which is elaborated in [22], expressed as

follows:
+

da+D=|qdo-> Too| +n.
VfeF

which is the evolution of the queue over time, where [x]" £
max(x, 0), and A}-(t) € Ay(t) represents the data arrival rate at
node i, with Ay (¢) being the set of packets of flow f arriving at
the source node, s¢. In this case we consider the queues to be
operating in discrete time, ¢ € Z™, where q}’}(t) represents the
queue length at node i. Point-to-point channel-power states
for channel state, /(f), and transmission power are used to
realize the transmission rate as follows:

! j() = Bij(1)log, (1 + 1{]_0)) : @

where B, ;(¢) represents the backhaul bandwidth, and ylf j(t)
is the SINR experienced by the traffic flow when transmitted
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via link (i, j), defined as follows:
Vi P08},
iD= $x ;
2 ki Pl (D8 (1) + No

where I’I,",,'(f) represents the transmission power of trans-
mitting flow f from IAB node i to j, g’; j(t) is the
distance-dependent channel gain assumed to follow a
Rayleigh fading distribution with unitary average power,
g’; j(t) ~ exp(1). The first term in the denominator is the
aggregated interference from the access users, while the sec-
ond term, Ny, is the white Gaussian noise spectral density.
Since in IAB networks, part of the wireless spectrum is used
for the backhaul connection of SBSs, the SBSs must be able
to dynamically reserve resources for backhauling traffic to
the gateway, ng. That is, if r{ j(t) in (2) is the backhaul rate,
then r, i (¢) represents the access rate. Therefore, based on
this intuition, the access-backhaul condition can be stated as
follows:

10 = Biolog, (1+7[0) = ra. @

Using this condition, and also given the transmission power,
the data rate for link (i, j) can be defined as Zfe F rfc j(t).

(€)

A. THE MARKOV DECISION PROCESS

Assuming that the proposed system follows a Markov process
with discrete time steps, let ¢ define the time intervals. The
objective of the agent is to determine an optimal policy, ,
that maps a state space, S, onto an action space, (7 : S — A)
that maximizes the expected reward R, while minimizing
network delay [23]. Thus, an MDP is represented by a tuple
(S, A, R,P,S)[24], where P : S x A xS — [0, 1] is
the unknown transition probability function, where P(s(¢ +
1)]s, a) is the transition probability from state s to s(z + 1)
after taking action a [25]. The current network observations
constitute the state set, S, i.e., available bandwidth, network
load, i.e., the number of traffic flows and traffic demand, and
network status, i.e., the channel conditions and interference
levels. Generally, the state space can be summarized into
utilization and the port rate as follows:

Sj(t) = {Uswi(t)’ Pz,sw,-(t)} €S, (5)

where U, (t) € [0, 1] represents the current utilization of
the flow table of switch i, and P, ,,(¢) represents the port
rate of port z of switch i. On the other hand, the RA decisions
constitute the action set, which could be the spectrum and
computational resources, as well as the network configura-
tions. In this way, the action set, A, consists of the route
choice, power management, and the throughput, such that the
i-th node scheduling action, as(t), can be defined as the link
to which the flow f is routed, and at the assigned transmission
power, which can be defined as follows:

aty=d.(t), jeV., feF. (6)

Therefore, a scheduling policy 7, which maps the system
state, s¢(¢), to the scheduling action, ar(z), is defined such
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that ay(¢) = 7 (s¢(¢)). The transition function of the MDP is
denoted as P(jli, ), which s the probability thats; s (t+1) = j
given that s; ¢ () = i, and ar(¢) = [, is defined as follows:
1, if 1=(,2
PGli, 1) = 7

Uli. 1 [O, otherwise. Vje S @
This is the transition probability function, which must be the
same for all packets in all traffic flows, such that the reward
function can be represented as follows:

. R(s, 7 (s)),
RT(j) =
() [0,
where R(s, m(s)) is the discounted reward for a packet in
flow f for being in state j, defined as follows:

R, w) =E[y" 0] ©)

where 0 < y! < 1 is the discount factor. Then, the reward of
taking action g under any state s can be defined using a reward
function R : S x A x 8’ — R. Therefore, the cumulative
reward expectation of the access-backhaul condition in (4) is
represented as follows:

T
RE()=Eeor | DD D Rems) |, (10)

t=1feF (i,)eE
where T denotes the horizon for which the system is
observed.

if j=d ®

otherwise,

B. FORMULATING THE CONSTRAINED MARKOV
DECISION PROCESS

Since the action taken to maximize a certain reward always
goes with an incurred cost, a cost function, C; : Sx Ax S’ —
R, is defined. Minimizing network delays requires that the
transmission buffer has to be monitored for queuing delays
and packet losses. In this way, a buffer cost is defined to
reward the system for minimizing queuing delays, thereby
protecting against overflows and subsequent packet losses,
as well as penalizing every packet that is lost. The buffer
cost is defined as the expected sum of holding costs and
overflow cost with respect to the traffic arrival and goodput
distributions [26], and can be expressed as follows:

o0 z
glg.pl, ¥,y 9= D> p0 (v, 2)
=0 f=0
{lg —f1+nmax([g —f1+ 1 —Q,0)},
Y]
where [g — f] is the holding cost, which represents the
number of packets that were in the buffer at the beginning
of the time slot. Since a stable buffer is assumed, according
to Little’s theorem, the holding cost is proportional to the
queuing delay [27]. The overflow cost, n max([¢g—f]+A —Q,
imposes the penalty n for each packet that is dropped.

T
CFH=Fen [ DD D V'iels,ms) | (12)

1=0 feF (i,)eE
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The objective of this formulated constrained Markov deci-
sion process (CMDP) is to find a policy, my, which maxi-
mizes (10), while satisfying (12).

C. THE OPTIMIZATION PROBLEM

We now formulate a stochastic optimization problem for
maximizing the average sum throughput, subject to the capac-
ity, queue stability, and power consumption constraints. Here,
the optimization problem is expressed as follows:

T
PmaxRE() =Bewr | 33 > R, @) |, (13)
t=1feF (i,j)e€

subject to
Cl:Cf() < Qm, VjeV
C2: CF()<Ce, VG )eET

C3:pl;20.G.)eVID. Dl < Pima. (19

jeVifeF

The constraint C1 ensures that buffer overflows and sub-
sequent packet losses are prevented by forcing the queue
length not to exceed the threshold Qy,. This constraint puts
emphasis on the transmission delay by controlling the packet
processing time per node, i.e., 0 < Dj(t) < 8{, where D;(t) is

the instantaneous delay of node j, and SJf.' is the upper bound

on the processing time. Based on the evidence in [28] that the
node packet-processing capacity is a very important measure
in minimizing delays when the )»5 is high, then D;(¢) depends
on the node processing capacity, i.e.,

Pr{Dj(t) = djmax(t)} < S, 15)

where dj jqx(t) is the maximum achievable delay of node j,
while &, is the threshold of the probabilistic delay. The
constraint C2 ensures that the required backhaul capacity is
always less than the capacity of the link C,. This constraint
means that the average backhaul transmission rate, ?lf j(t),
has to be kept below the link capacity ensuring that the
long-term arrival rate does not exceed the average transmis-
sion rate, which in turn prevents buffer overflows and sub-
sequent packet losses, i.e., ;{j([) > im0 D) %E{Af(t)}.
Lastly, the constraint C3 emphasizes on the decision vector,
p,m in (13), which defines the transmission power range
contained in the transmission power vector, p. This con-
straint ensures that the transmission power assigned to the
forwarding node i does not exceed the maximum allowed
transmission power by enforcing a power control condition.

IV. PROPOSED DEEP REINFORCEMENT LEARNING WITH
RECURSIVE DISCRETE CHOICE MODEL

The proposed algorithm combines the DRL strategy with
the RDCM to form a DRL-RDCM scheme that is suited
for next generation routing applications since it can provide
rapid and accurate route predictions. Here, the mechanism
for adjusting the reward value is flexible, i.e., if choosing a
route that is considered to be a bad route gives a low value
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FIGURE 4. Deep reinforcement learning for modeling reward estimation
in an IAB network.

of the punishment, the estimated value of that route slowly
decreases and probably this “‘bad route”” may be selected in
the foreseeable future. On the other hand, if the value of the
punishment is very high, the route may no longer be chosen in
future routing events. The proposed framework tries to find
a balance between low and high rewards/punishment using
an efficient cost model. The proposed framework, which is
based on a DRL strategy is illustrated in Fig. 4 below.

As shown in Fig. 4, the proposed DRL-RDCM learning
algorithm computes and updates a policy, 7, for the DNN
agent to achieve a better level of performance and generality.
The complexity of learning through trial-and-error is reduced
using RDCM discussed in the following section. Evaluat-
ing the attributes of the IAB network such as throughput,
average packet losses, and latency are the main targets of
the routing problem. According to the routing nature and
dynamics of the problem, a forward-backward exploration
technique is used to learn the network attributes. Using this
process, both the local and global network attributes update,
where the long-term reward is related to the global network
performance by looking for routes with the highest success
rate. With reference to the graph model in Fig. 3 above, the
source node conveys route setup request messages to the
destination, i.e., the gateway/MBS. The reward generation
and value estimates are presented on a link-by-link basis,
and the rewards are propagated based on acknowledgement
messaging from other network nodes. In this case, the local
reward value is directly related to the receipt of the acknowl-
edgement message for a packet successfully received by the
Jj-th node. A higher value of the local reward means that node
Jj is a good candidate for a link towards the gateway, which
increases the probability of being selected for backhaul route
establishment in future. Therefore, the set of nodes that are
adjacent to node i in this probabilistic graph are referred to
as its physical neighbors, and finding the best route between
the source and the destination must be rewarded. Since the
reward function is intimately tied to the state and action
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spaces, the Q-learning algorithm is used. In a time-dependent
problem such as this one, the distance to the reward is handled
using the DRL strategy, where the agent is trained to interact
with the environment, and the goal is to maximize the total
rewards and to also learn by adjusting its strategy based on
the rewards.

A. THE RECURSIVE DISCRETE CHOICE MODEL

According to the IEEE 802.16 standard, a logical link
between two nodes in a network can be set up provided they
are able to communicate directly with each other [35]. The
route choice model proposed in this work is based on the
assumption that nodes behave rationally by maximizing a
certain utility function, or equivalently minimizing a certain
cost function [29]. In addition, the nodes observe additional
parameters that affect their path choice. These factors vary
across nodes and they are unknown to the model. As such,
arandom term, €, is added to the cost function. Although the
modeller would not know the additional parameters, it knows
the family of distributions for €. The objective then is to infer
the probability that a given path is optimal given the current
distribution of states. In this work, a recursive discrete choice
model is incorporated in the DRL strategy, with the objective
of inducing a Markov chain into the graph G. Considering
the graph model in Fig. 2, the sets of edges entering and
leaving node j are denoted as £ and 8;’, respectively. The
links or paths passing through node j are represented by e;,
and the route choice model is developed using discrete choice
experiment, which incorporates choice overhead by means
of a penalty parameter [30]. Choice aversion is computed
for each outgoing edge, ¢; € 5]*, and a collection of i.i.d.
random variables of the error terms, {Ee_i}ejeg, are assumed

such that the RDCM becomes a recursive logit model [31].
The recursive reward/utility associated with edge ¢; is then
defined as follows:

R (¢)) = R{/_ + E(max (Vo — ;, log |5j+|}), (16)

e’eé’f'*'

where R’;j is the instantaneous reward of edge e; and the
expectation [E (+) is the adjusted continuation value associated
with regard to the choice of edge e;, V, is the observed real-
ization of random rewards. The factor €2, log |8i+| represents
the penalty that captures the size of the choice set, i.e., é'jj,
where the parameter 2;, > 0 is the parameter representing
choice aversion [31]. Thus, assuming that the collection of
random variables at each node j # ng fulfills the sufficient
criterion whose distribution is sufficiently scaled as defined
in [32], (16) can be reformulated as follows:

R (¢)) = Rﬁj +log| D €% | — @ log iEFL(17)
eeEr
Je

where the second and third terms represent the closed-form

expression of the expectation in (16). Since each flow has
to find an optimal route to ng, when the flows reach node
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Jj # np they observe the realization of random utilities,
Ve, Ve; € 5j+, and subsequently choose the edge with the
highest utility. This is done by leveraging regret learning,
which exploits information about channel states, /, and queue
states, O, in choosing the optimal route [33]. This intuition
is influenced by the learning framework in Fig. 3, where the
forward and backward exploration are employed in learning
maximization of the long-term utility of traffic flows. This
whole process is repeated at each subsequent node, j' :j #
no, resulting in a RDCM. Therefore, the expected traffic flow
entering a node will take an outgoing route according to a
choice probability defined as follows:

77(61-|€j+) = ’P(e] = arg max Ve/) Vi#ny (18)
e 65
It must be noted that as the value of the parameter £2;,
increases, the edge choice probability (18) is increasingly
penalized by the size of the choice set. This reflects the cost of
choice overload onto the edge utility of the user with a large
choice set. According to the law of flow conservation [34],
Xj = D ce-fer Vj # no is feasible if there exist a unique
flow vector that satisfies all flow constraints. Therefore, the
solution of this RDCM can be equivalently written in the form
of route choice probabilities, assuming that for each route the
utility associated to it is a random variable defined as follows:

R(ep = D (Rl ;= @, log|Ef D

ecE
= 2Ry = 2R loelEl (19
ec€ ecE

Therefore, under these conditions, using the choice probabil-
ity in (18), the probability of choosing the route ¢; can be
defined as follows:

P, AP (ej = arg maé( Rf(ej)) , (20)
e

which is equivalent to the greedy action selection in [46]
equation (34). Among the possibly multiple routes that the
flows can take between source and destination, the algorithm
selects only one. Flow regulation of rate and delay at ingress
can only be ensured along a single path, hence resource
utilization bounds need to be established.

B. FORMULATION OF OPTIMIZATION BOUNDS

The existence of the non-linear probabilistic constraint (15)
in C1 makes the optimization problem difficult to solve.
In order to circumvent this issue, its linear deterministic
equivalent is introduced using Markov’s inequality such that
for a non-negative random variable X and a > 0, one can have
Pr{X > a} < E[X]/a, which results in the following [36]:

Pr [@ > ath} _ Blg.0) 1)
f

AfSun

The mathematical models of queues with deadlines and
rewards are used to describe the attributes of the system,
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such that if the utilization factor follows the accurate stability
conditions described in [37], the stability of the system can be
guaranteed. Therefore, in order to relax (15), the condition of
the expected queue length must be satisfied as follows:

ELQ}(1)] < Arbus), .

In order to guarantee that all flows have a certain minimum

VfeF, VteT. (22)

level of QoS, a minimum requirement r’”"’ is introduced as
follows:

ey < () < i), (23)
where r ¥ is the maximum rate constraint, which is enforced

to av01d the over-allocation of resources when a large number
of packets are sent simultaneously, such that rf (t) > q ().
Then, the optimization problem can be rewrltten as follows

T
P imax D > D" aopRT(1), st (23),  (24)

t=1feF (i,))eE

where wy is a weight assigned to each flow f. Then, the
expected queue length can be defined as follows:

t
E[Q) ()] = 14 — D rp(D). (25)

By substituting (25) into (22), the minimum rate requirement
can be obtained as follows:

rL(0) = Ap(e — Broy) — Z (o). (26)

=1

Since the statistical information regarding all the candidate
routes are not available, a proper solution to (13) is difficult
to obtain. Then, using the reward function in (8) and the
effective throughput in (9), the CMDP equivalent of (10) can
be represented as follows:

max hm — ZZ Z ZRf(s f(t—i-r)) , 27
t=1 feF (i,j)eS 1=0
subject to
Tlgr;o—E ZZ Z Z]I{af(t+r)—e}<Ce ,

t=1feF (i,j)eS 1=0
(28)

where the E[-] is the expectation taken with respect to the
traffic flow arrival process, the transition function, and the
optimal policy m. At this point, the policy, m, continues to
generate the system states. In order to solve the formulated
CMDRP in (24), the Lagrange duality equivalent of the prob-
lem is formulated, where it is assumed that the problem is
associated with a Lagrangian, £. The Lagrangian equivalent
of (27) and (28) can be written as follows:

St i 15| ST XY

ec& t=1feF (i,j))e€ 1=0

LT, k) =
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Ri(sF(t+1) = D kellaf(t+1)=e} | |

eje€

(29)

where ¥ > 0 is the Lagrange multiplier. Then, for every
feasible policy, = € II, it can be observed that (27) is bounded
below by the formulated L(r, k). Therefore, if the rewards
and transition probabilities are the same for every packet in a
given traffic flow are the same, then the state-value function
can be defined as follows:

T
VF (k)=E [,Z (Rf(s}T(t-i-‘l:))—z/ce]l{a}r(t+7:)=e})i| .
=0 e
(30

where E[-] is the expectation with respect to the underlying
transition probability under the policy 7 («). The Lagrangian
in (29) can be written as follows:

T
Lm0 = 3 keCe +fo;£20%2 PIRAD
€

ee€ t=1 (i,))eV
1 T
= ZKeCe + Z Tl;mw T Z |8|Vj.’(K)
ec€ feF =1
= ZKeCe+ prvfzt(/()- (€29
ec€ feF

Then, the dual function is obtained as follows:
D(k) = m;lx L@, k), (32)
and the dual policy is represented as follows:
(k) = arg max L(m, «), (33)
and the optimal dual variable is denoted as follows:

d* = arg Ln;g D(«). (34)

Assuming that there is no duality gap, the optimal policy, 7 *,
of the CMDP is the same as 7 (d*), and that x and Vf” (k) of
any flow are independent of all the other flows. In this case,
the objective is to obtain the optimal policy, 77 («), for each
flow as follows:

D(k) = max LT, k)

— b4
= ZKECE + mjgx z ,ofo (x)
ec€ feF

= ZKeCe + Z of H}tax V;[f(lc)
ecE feF /

= D keCet D Vi), (35)
ecE feF

where V¥ (k) =maXy, Vfﬂf (k), and 7ty (k) =arg MaXy, Vfﬂf (x).
At this point, ¢ (k) and V]i" («) can be computed using finite
horizon dynamic programming.
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C. COMPUTING THE COST FUNCTION

The ability of the novel cost function to maintain prior knowl-
edge enables it to accelerate the convergence of the algorithm,
which improves the algorithm’s performance in delay-power
trade-off. Since the transition probabilities as well as the
link probabilities cannot be known a priori, a post-decision
state-based dynamic programming technique is employed to
compute the cost function. Here, the transition probability
function is split between the known and the unknown dynam-
ics in order to learn the link probabilities and obtain the opti-
mal policy. Under the assumptions on arrival and processing
rates, the analytical results for the buffer occupancy status are
used to compute the cost function. The queue load and the
delay distribution are taken as the known information and are
exploited to develop a more efficient cost function based on
the CMDP. In this case, a post-decision state, 5, is defined,
which is related to the current state as follows:

5(1) = (gj(0), h(1), x(t + 1)
= (Igj(1) = wi], h(1), x(1 4 1)) . (36)

The post-decision state in (36) represents the state of the
transmission buffer after packets have been transmitted, but
just before new packets arrive, thus, the queue length can be
represented by g(t) = g;(t) — (). Here, the channel state is
assumed to be the same as the state at time ¢, and the power
management post-decision state is the same as the power
management at time ¢ + 1. Then, the state at time ¢ + 1 can
be represented as follows:

s(t+1) = (gt + 1), h(t + 1), x(t + 1))
= ([q(t) — w1 + 1), h(r + 1), x(t + 1)) . (37)

It must be noted that at the state s(# + 1), unknown dynamics,
such as the arrival rate and the channel state, have been incor-
porated. The post-decision queue state after traffic arrival can
be represented as g(r+1) = g(t) +A}. The introduction of the
post-decision state enables the factorization of the transition
probability function into known and unknown components.
In this case, the known component accounts for the transition
from the current state, s(¢), to the post-decision state, 5. On the
other hand, the unknown component accounts for the transi-
tion from the post-decision state, 5, to the next state, s(z + 1).
Factorizing the transition probability function results in

p(s(t + Dls,a) = ZPM(S(I + DIs, a)pi(Sls, a),  (38)

where subscript k represents the known component and sub-
script u represents the unknown component. Since the queue
overflow depends on the arrival distribution, which is an
unknown component, the queue overflow cost may depend on
the action and the post-decision state. Based on the goodput
distribution in (11), the cost function can similarly be factor-
ized as follows:

c(s, a) = cr(s, a) + Zpk(Els, a)ey(s, a). (39)

VOLUME 11, 2023



M. M. Sande et al.: Backhaul Adaptation Scheme for IAB Networks Using DRL With RDCM

IEEE Access

Since the goodput distribution has to account for packet
losses, the algorithm must penalize packet overflows. Since
action exploration is not necessary to learn the optimal policy,
the known transition probability function can be defined as
follows:

peGls, a) = p*Flx, W' (g — gy, DI(h =h),  (40)

and the unknown transition probability can be represented as
follows:

Pu(s@t+1D)I3) =p"(h(t+DIp* (gt + D =PIt + 1) =X),
(1)

where I(-) is the indicator function, which takes a value of 1 if
its argument is true, and O otherwise. Then, the known and
unknown cost functions are defined as follows:

ck(s, @) = p([h, x1, ¥, 3, 2) + 1 D (1, ¥, Dlg — ] (42)

n=0

and

@ =pun D) prOymax(G+1r—Q,0),  (43)
=0

where the parameter 71 represents the penalty. The
post-decision value function, V*, which plays a similar role
as the action-value function in Q-learning can be used to
represent the unknown component of the discounted cost as
follows:

VEG) = cu® + ¢ Z pu(s(t + DIHV* (s + ). (44)
s(t+1)

The minimization of the cost function can be obtained by
substituting the unknown component into the known one as
follows:

V*(s) = ggtl ICk(s, a) + Zpk(Els, a)V*(E)] . (45)

Then, the optimal policy of the post-decision state-value
function can be computed as follows:

Tpost(s) = min [ck<s, a)+ > piGls, a)V*(E)] . (46)

In order to keep the system at equilibrium, when the queue
length approaches its maximum, the system has to quickly
generate a policy for an optimal action to reduce the queue
length by increasing the transmission rate r(¢). As such, QoS
parameters such as packet goodput and packet holding costs
are considered to account for the increase in transmission
power as the transmission rate increases.
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V. ALGORITHM DESCRIPTIONS AND COMPUTATIONAL
COMPLEXITIES

In this section, the basic formulation of the proposed DRL
approach, which uses a DNN, is introduced together with
the associated computational complexities for the proposed
algorithm and other baseline algorithms used for comparison.
The training and inference phases of the proposed algorithm
are separated in order to improve clarity and understanding
of the analysis of the computational complexity.

A. DNN OPTIMIZATION AND ACTION SELECTION

A feedforward multi-layer perceptron (MLP) neural netrowk
(NN)is used for the training process and action output
receives input data for routing in the IAB network. Informa-
tion about a known network such as the topology and link
capacities are required when training the DNN. This includes
a known source, destination, bandwidth, duration, as well as
time of arrival in order to obtain the temporal sequence of
traffic flows. The topology of the DNN that is implemented
by the agent in the DRL strategy is a feedforward MLP NN
with linear hidden neurons and sigmoid output neurons [38].
Another important requirement is the time series, i.e., the
knowledge of the traffic passing over the network in a cer-
tain period of time. In this case, a dataset with topology
and aggregated information about traffic, which comes in
the form of an N x N traffic matrix was used, where the
element in row i and column j represents the total amount
of traffic, i.e., the average bandwidth in a certain period of
time between nodes i and j. With the state space shown in (5),
the optimization of the MLP was done using the analysis of
the number of neurons in the hidden layer, and using three
training sets, i.e., training, validation, and testing. The input
data consists of the node ID of the packet that should be
transferred through to the gateway. The interface status or
utilization represents the information about the status of all
interfaces for the node/router.

B. SAMPLING OF ROUTE CHOICE PROBABILITIES

1) MAX-WEIGHT AND BACK-PRESSURE ALGORITHMS

Since some nodes may fail due to power issues, damage,
congestion, as well as environmental interference, this should
not affect the overall task of the IAB network. In order
to avoid such catastrophes, the routing protocol must be
able to use the information at its disposal and find alter-
nate routes toward the gateway. The max-weight and back-
pressure algorithms were used to determine which link(s)
should be activated. The max-weight checks the maximum
queue at any node and it gives out the results accordingly,
while the back-pressure algorithm compares two nodes to
determine which link should be activated. In order to obtain
better results, no restrictions must be put on the weights of
the DNN. This is because of the existence of more than one
possible route, whereby a choice of the best route creates
a stochastic decision-making problem. Situations like this
cannot be handled using decision trees due to their instability
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when slight changes are introduced, which is prevalent in
wireless networks. Therefore, a cumulative prospect theory
is applied to the Metropolis-Hastings algorithm [41]. In this
way, a POMDP with Q-values that quantify the agents’ value
of choosing one route over another is implemented. The agent
then calculates its prediction error, which is equivalent to
reward minus the Q-value of the decision. The prediction
error, the belief state, the learning rate, and the reward are
then used to update the Q-values of the next iteration. The
procedure for training the DNN is outlined in Algorithm 1
below:

Algorithm 1 Procedure for Training the Deep Neural
Network
Input: State, s € S,; Learning rate, a; € A;
Input: Discount factor, y’
Output: O(s, a)
01: Initialize environment for IAB network;
02: For each state, s € S, do
03: Randomly pick wy, - - -

, wq according to

N(u(s), oy)

04: For each iteration of the training episode do

05: Find step length and sample minibatch of

input data, and

06: Run SGD and update weights

07: End For

08: Determine available action a € A and
estimate Q(s, a)

09: End For

10:  Return Q(s, a); 0)

2) SAMPLING OF WEIGHTS

The value of the perceived weight is randomly sampled from
a normal distribution N (u(s), o) as shown in Step 03 of
Algorithm 1. This is accomplished by using the Metropolis-
Hastings algorithm, where p(s) is the mean and oy is the
standard deviation. The value of the standard deviation is
one of the parameters of the proposed model. Each sampling
event results in a stimulus to which noise it added to, then
the agent creates a belief state that determines the correctness
of the stimulus. This belief state is then applied to model
the behavior of IAB nodes in the context of route choices
by demonstrating the validity of the discrete choice model
in route choices. From each belief state, available actions are
determined to estimate the Q-value, Q; ;. The application of
cumulative prospect theory models the effect of the learn-
ing rate and noise levels on the cumulative reward, r; ;(t).
Therefore, the Q-value of making a state transition can be
represented as follows:

Qi j() = rij(t)+y' max Qjs. 47)

where y’ is the discount factor. The agent then combines
the formed belief state as to the current side of the stimulus
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with its stored Q-values, then chooses a particular route and
receives an appropriate reward, ; j(¢). In this way, the value of
r;+(t) becomes the second parameter of the proposed model.
The higher the Q-value, Q; j(¢), the higher is the probability
that the agent will choose that particular route over the other
alternative routes.

C. ACTION SELECTION AND REWARD COMPUTATION

The process of reward value adjustment should be flexible,
i.e., the adjustment may not be too small to not cause changes
or too large to induce sudden change due to a specific event.
As aforementioned, if the value of the punishment for choos-
ing a bad route is very small, the estimated value of that route
will slowly decrease and probably this bad route can still be
chosen for a long time. On the other hand, if the punishment
value is too high, a route may no longer be chosen because
of just one packet loss event. Thus, a balance should be
struck between very low and very high rewards/punishment.
Therefore, the objective of this section is to evaluate the
reliability of backhaul routes in terms of the cost of delays and
power. The difference between the conventional Q-learning
algorithm and post-decision state learning is that, instead
of using a sample average of the action-value function to
approximate Q*, the latter uses a sample average of the
post-decision value to approximate V*. In the post-decision
state learning algorithm, the state space is characterized by
the buffer state, and the only action is the throughput, subject
to packet losses. As the algorithm updates the state-action
pair, it only provides information about the buffer-throughput
pair. The post-decision state learning provides information
about every state-action pair that can potentially lead to all the
corresponding buffer-throughput pairs. It is worth noting that
here, the experience tuples are updated in parallel, as such the
post-decision state learning algorithm has the same memory
requirements as the DRL algorithm. The procedure for the
proposed DRL strategy is outlined in Algorithm 2 below:

D. COMPUTATIONAL COMPLEXITY OF THE PROPOSED
ALGORITHM

The whole operation of training the DNN and action selection
has a run-time complexity of O(n) in forward propagation
as well as in the backward propagation. Then, the run-time
computational complexity of both the forward and backward
propagation can be obtained as O(n - n) = O(n?) [40]. The
outputs of the DNN agent are the actions that also serve as the
input to the Q-learning algorithm, whose first task is to select
the action that maximizes the reward. Since the evolution
metric used is the total reward collected by the agent in every
training episode, the configuration of the learning rate is quite
critical. The DRL considers obtaining the long-term reward
by performing the choice evaluation/aversion procedure to
generate higher rewards and lower costs. This evaluation
process is carried out using the defined graph structure and
the RDCM, where a number of candidate routes are evaluated
in terms of utility and cost. Therefore, the learning update
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Algorithm 2 Procedure for DRL With RDCM

Input: )L;(t); Buffer size, Q; T, ay, y!
Output: Reward, 7*(q(2)), 7(t), c(q(1), (1))
01: Initialize buffer occupancy as g(z)
02: Initialize post-decision state value function V°

03: Create candidate set of routes for traffic flow
04: For each link (i, j) do

05: Find link to nearest node and observe SINR
06: If current SINR y; ; > yp then

07: Select ar(t) = arg max, O(s¢ (), ar(1); 0)
08: Take transmission action, i.e., as(t) = arg

minge {e(s, @) + Xspe Gls @) VO
Observe transition to next state, s(f + 1)
09: Else

10: Request route on another candidate link

11: End If

05: Observe the post-decision state experience
tuple o = (s(¢), a(t), s, ¢y, s(t + 1))

15: Populate transition probabilities, (s(¢), a(t),
p@), r(0), s(t + 1))

17:  End For

18:  Return m*(g(t)), 7(t), c(q(t), ¥(t))

and the computation of the reward and cost result in run-time
complexity of O(n?). The computation of the cost function
through the use of the value iteration approach has a sample
complexity of O(n?), which is similar to the results found
in [42]. On overall, the post-decision state learning algorithm
does not require more memory than the Q-learning algorithm
used in the RL strategy, and therefore the computational
complexity of the post-decision state learning algorithm can
be determined as O(n - n?) = O®3).

E. DESCRIPTION OF BASELINE ALGORITHMS

Due to the limitations surrounding the proper utilization of
resources in IAB networks as well as the nature of the route
requests and discoveries, a reliable benchmark algorithm has
not been identified. To this effect, based on the stochastic
nature of IAB networks, the traditional DRL and the genera-
tive model-based learning (GMBL) approaches were selected
as benchmark algorithms for this work.

1) GENERATIVE MODEL-BASED LEARNING

The GMBL is a naive “plug-in”’ model-based ML technique
used to build maximum likelihood estimates of the transition
model in the MDP from observations and then find an optimal
policy. It operates by preserving a local linear relationship
utilizing the Laplacian matrix with the aim of maintaining
the graph-based structure of the original data in Hamming
space [43]. This technique follows a procedure under which
each link is sampled a predefined number of times in order to
determine its statistics to a desired level of accuracy. Then, the
resulting model is used as an input to the CMDP framework.
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Moreover, by automatically assigning weights for each view
to improve clustering performance, the method takes distinc-
tive contributions of multiple views into consideration. In this
work, an alternating iterative optimization method is designed
to solve the resulting optimization problems. It is, however,
difficult to implement since all nodes have to generate packets
on their own in order to sample links. The sample complexity
of the GMBL is proportional to the number of links in the
network topology - consistent with the number of unknown
parameters such as link success probabilities. In terms
of sample and computational complexity of obtaining the
e-optimal policy in this model, the agent accesses the under-
lying transition model via a sampling oracle that provides a
sample of the next state when given any state-action pair as
input [44].

2) DEEP REINFORCEMENT LEARNING

DRL is a sub-field of ML that combines RL and deep learning
(DL), where RL considers the problem of a computational
agent learning to make decisions by trial and error. By incor-
porating DL into the solution, DRL allows agents to make
decisions from unstructured input data without manual engi-
neering of the state space. As a result, the equilibria of this
strategy differs along three task complexity measures, i.e.,
(1) the cardinality of the choice space, where a state is equiv-
alent to the information set facing the player along the path
leading to the equilibrium; (ii) the level of iterative knowledge
of rationality, and (iii) the level iterative knowledge of the
strategy [45]. The greedy action selection of game theory and
RL is illustrated with an almost similar complexity. How-
ever, more information is integrated in the RL strategy with
the learning update, and as more information is integrated
into an algorithm, it becomes more computationally complex
to implement. The state-of-the-art RL strategy in resource
allocation states that the computation time cannot be upper
bounded by less than O(n?).

VI. PERFORMANCE EVALUATION

A. NETWORK MODEL SETUP

In the experimental setup, the IAB network was deployed
according to the standards of 5G standalone deployment,
with the 5G core network completely disconnected from the
4G EPC. The radius of the deployment area is 1000 meters,
and the donor node is 250 meters from the nearest IAB
node, while the IAB nodes are 100 meters apart. A random
walk model was adopted in simulating UE mobilities. Since
wireless connections cannot be connected to the server at the
same time, each user activates its wireless connection to the
server using 802.11 links. To avoid collision and to provide
better QoS to traffic flows in the dynamic network, time-
sharing is employed. An initial randomized policy was set to
a uniform distribution, and the inter-arrival time of a Poisson
arrival process is an exponential random variable. In this way,
the local reward is given to the route that has the best rate
of success in delivering packets within their deadlines. The
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TABLE 2. Simulation parameters.

Parameter Value Unit ‘
Component carrier frequency 28 GHz

System bandwidth, B 20 MHz
Subcarrier spacing 60 kHz [48]
Maximum transmission power 80 mW
Maximum number of nodes, N 5 -

Finite buffer size, O 25 packets
Fixed symbol rate, 1/T 500 x103 symbols/sec
Time slot duration, At 0.5 ms

Finite horizon, T’ 125 time slots
Packet arrival rate 10 packets/slot
Base station processing time 0.6 msec/request
SDN controller processing time 0.2 msec/request
Discounting factor, v 0.75 -

NetworkX library in python for producing random graphs
from a given set of edges [47] was used to set up the network.

B. SIMULATION PARAMETERS
The main simulation parameters adopted from [46] are tabu-
lated in TABLE 2 below.

To evaluate the performance of the proposed strategy, the
assumption of network heterogeneity was made. The simula-
tions, which affirm the potential of the proposed algorithm,
were conducted using MATLABR R2021b software running
on a workstation computer with an i5 Intel Core processor and
a 3.2 GHz processor speed. Here, 100 SBSs were deployed in
a randomly distributed manner over a 1000 radius, with the
gateway placed towards the end of the network as shown in
Fig. 1. Small cell connection distances that are indicated in
Fig. 2, were set to unity, which means that the route lengths
are measured in number of hops and delays are measured
using queue lengths and waiting times.

C. DNN TRAINING PERFORMANCE

The training, validation, and testing sets were created based
on the topology of the IAB network, and the number of
samples for training the model depends on the kind of router
for which the DNN agent was created. For each DNN layer,
a matrix multiplication and an activation function are com-
puted in forward propagation, and the rectified linear unit
(ReLU) in the hidden layers computes the transfer func-
tion [39]. Without putting any restrictions on the weights,
each threshold-activated neuron was simulated with a sig-
moid activation at the output by computing the transfer func-
tion. Using the online approach, testing of the online training
framework is done where the DNN is continuously being
trained while being applied to the IAB network. The ability
of the proposed approach to adopt accuracy in IAB routing,
as well as the ability of the model to continuously learn from
ongoing interactions with the IAB network and automatically
re-adapt on the fly to changing dynamics is evaluated. The
performance evaluation is done for 40 epochs, which each
epoch run over 50,000 iterations, and the training results are
shown below:
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FIGURE 5. Training, testing, and validation loss using the mean squared
error.
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FIGURE 6. Training and testing accuracy.

Figure 5 above shows the test errors of the SGD as a
function of the number of epochs. This is shown using the
average MSE per training epoch, and it indicates the good
performance of the algorithm in all the three aspects, i.e.,
training, testing, and validation. In the implementation of the
SGD, the speed of convergence was enhanced by initializing
the weights using heuristics, and by using Nesterov’s momen-
tum [49] and dropout. It is also apparent that the algorithm
performs well as the distance between the testing and valida-
tion curves is minimal. Fig. 6 shows the average accuracy as
a function of the number of epochs, i.e., training and testing
per epoch. These results indicate a good performance of the
algorithm in terms of learning from the data set, as the training
accuracy immediately peaks at > 90%, while the testing
accuracy reaches 90% accuracy after two epochs. Both these
plots are a little noisy, giving the impression that the training
algorithm is not making steady progress. However, there is an
indication that good results would be obtained when the real
network data is used to train the system. On overall, these
results indicate that the performance loss in terms of training
and testing is already low after five training epochs, which
suggests that the MLP can be adopted for the IAB problem
under consideration.

D. RESOURCE AVAILABILITY AND RESOURCE DEMAND

In this subsection, the performance of scheduling and back-
haul route selection is evaluated using route prediction prob-
abilities to improve the understanding of the relationship
between two variables against each other from a traffic trace
obtained from a 5G standalone testbed at the National Chiao
Tung University, China. The results in this subsection show
how two dependent variables on two different axes vary with a
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FIGURE 8. Variation of entities in a queue and total delay entities with
time.

common independent variable. The time-series evaluation of
the resource demand and capacity is shown in Fig. 7 below:

In Fig. 7 above, it can be seen that in most instances the
resource demand is more than the available capacity, which
means that the packet arrival rate is more than the departure
rate, thus putting the system under pressure. The instability of
the system is shown by the lack of proper correlation between
the resource demand and the capacity. The time-series evalu-
ation of the number of entities in the node queue and the total
delay is shown in Fig. 8 below:

As shown in Fig. 8 above, the number of entities in the
queue increases almost linearly with time, while the total
delay increases exponentially with time. This behavior is
expected since the Poisson arrival rate is modeled as an
exponential function. This Poisson-exponential behavior ade-
quately describes the first order auto-regressive model in
a manner that is independent of the average level of the
queue. When considered from a classical statistics point of
view, each observation would be assumed as a sample of a
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FIGURE 9. Route choice probabilities using the choice aversion model
with the penalization factor, ».

given random variable, which would usually be i.i.d., thus
neglecting the correlation of the evolutionary process.

E. EVALUATION OF ROUTE CHOICES USING CHOICE
AVERSION

This section focuses on the analysis of node behavior in back-
haul route selection in the presence of contextual information.
In the case of route choices where uncertainty is due to
variations in the actual travel times and information accuracy,
the node’s response is usually modeled by considering the
utility maximization paradigm, which is affected by the risk
perception. Depending on the considered traffic and policy,
different behaviours such as risk aversion may be observed.
The planning and acting of a node in a partially observable
stochastic domain is evaluated. The route prediction probabil-
ities generated by the RL-RDCM are evaluated as a function
of an increasing value of the choice aversion penalization,
n as shown in FIGURE 9 below:

As shown in FIGURE 9 above, as the value of 7 increases,
the probability of packets being routed on route 1 increases.
This means that the choice aversion model assigns more
packets to route 1 because it has no alternative comparison
in terms of minimum cost. This justifies the basic premise
of prospect theory in environments with model uncertainty
that agents tend to explore the route with minimum cost when
they are reminded about the incremental cost of their actions.
Applying cumulative prospect theory on the DRL strategy
models the effect of the learning rate and noise level on the
cumulative reward. The received stimulus is sampled from
a normal distribution N (s, oy), thus the normal-distribution
response is centred on the arithmetic means w(s) of the nor-
mal probability distribution, and the width is determined by
the arithmetic standard deviation o;. The cumulative rewards
received based on TAB node response to selected actions
under varying learning rates and noise levels are shown
below:
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0
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FIGURE 10. Noise level of 0.20 and learning rate «; = 0.40.

0
Sampled stimulus

FIGURE 11. Noise level of 0.10 and learning rate o; = 0.40.

FIGURE 12. Noise level of 0.20 and learning rate o; = 0.20.

FIGURE 10 shows a sigmoid shape that is usually
expected in cumulative probability functions. For the results
in FIGURE 10, the learning rate, «; = 0.40 and the noise
level is 0.20. The cumulative reward to the stimulus gradually
increases initially, and it is larger for the positive stimu-
lus. As the cumulative reward concaves up, it indicates an
increase in new acquired information, and it nearly becomes
linear indicating an approximately constant rate of acquiring
knowledge. Then, the downward concave indicates the reduc-
tion in new information, meaning the system is no longer
gaining new information, but using experience. The perfor-
mance of route choice probability is evaluated with a reduced
noise value of 0.10 and the result is shown in FIGURE 11.
The results shown in FIGURE 11 indicate a rapid increase
and a rapid decline in the rewards for the three routes. This
means that the observed behavior of the cumulative reward
is only due to the decrease in the noise level. Here, the
upward concave of the graph is slow, indicating a delayed
response to the stimulus. The performance of the scheme
when the learning rate is reduced to «; = 0.20 and the noise
value set as 0.20 is shown in FIGURE 12. In FIGURE 12,
the effect of equaling the learning rate and noise level at
0.20 results in a more gradual increase and a more gradual
decline in learning network information. The performance
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FIGURE 13. Noise level of 0.10 and learning rate «; = 0.20.

TABLE 3. The effect of the discount factor on the reward.

[ Discount factor, 7*  Overall reward, #  Most efficient path |

0.75 99.99994034 0,1,3,9,10
0.80 99.99651029 0,1,3,9,10
0.85 99.98082485 0,1,3,9,10

when the noise level is reduced to 0.10 and the learning
rate remained at 0.20 is shown in FIGURE 13. A rapid
increase and a rapid decline in the behavior of the cumulative
reward is shown in FIGURE 13, similar to the response in
FIGURE 11. The stimulus-reward results shown in the above
figures all show deterministic responses and the use of the
Metropolis-Hastings algorithm demonstrates the accuracy of
route choices.

F. EVALUATION OF CUMULATIVE THROUGHPUT

In this section, the cumulative reward in terms of the through-
put of backhaul traffic with a varying learning rate, o;.
The performance of route establishment is evaluated using
the Q-learning algorithm and the DNN architecture with the
learning rate kept constant, i.e., oy = 0.60, while the value
of the discount factor is increased. The effect of changing the
values of the discount factor, y’, has been diagnosed and the
results are shown in TABLE 3 below:

The results shown in TABLE 3 above were run over
1000 iterations, and the role of the discount factor is to
determine how much the agent of the proposed algorithm
cares about rewards in the distant future relative to those in the
immediate future. A higher value of the reward was obtained
for y' = 0.75 than when y! is increased. It was observed that
when y? > 0.85, the sums do not converge for the policy,
i.e., sums up to infinity. This means that at higher discount
rates, the proposed algorithm becomes impulsive in choice
behavior and does not show impulsive responses at lower
discount factors. This raises a very important aspect that has
always been ignored when Al strategies are applied in routing
problems, which motivates a more interesting performance-
complexity trade-off for IAB network design.

The effect of changing the value of y’ is evaluated on
route 1, i.e., the route with the highest choice probability.
Additional analysis on the effect of the learning rate was con-
ducted, and the relationship between the cumulative through-
put and the number of iterations is shown in Fig. 14.
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FIGURE 15. Cumulative throughput vs number of iterations with
ag =0.4 and yf = 0.75.

The cumulative throughput shown in Fig. 14 is for dif-
ferent learning algorithms, all using the same transmission
budget. The transmission budget was set, and the cumulative
throughput was evaluated for all the algorithms and the results
show an increasing throughput trend for all the algorithms as
the number of iterations increase. The proposed DRL-RDCM
outperforms the conventional DRL and the GMBL by ben-
efiting from the choice model used in its design. It must be
noted that all the algorithms have a similar neural training, but
differ in the RL agents they use. To test this relationship even
further, the learning rate, o, is varied under the same behavior
of the discount factor. The performance for oy = 0.4 is shown
in Fig. 15 below:

The results shown in Fig. 15 above show that the oscilla-
tions caused by a large learning rate are reduced. The learning
rate was further reduced to 0.2 and the performance is shown
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FIGURE 16. Cumulative throughput vs number of iterations with
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in Fig. 16. The simulation results suggest that reducing the
learning rate helps the algorithm to learn better and it prevents
the agent from being myopic and only learn actions that
would produce immediate rewards. However, this is achieved
at the cost of a large and increased time complexity. The
action selection of the DRL strategy was shown to have sim-
ilar complexity to the GMBL, the only difference being that
the GMBL follows a procedure where each link is sampled a
given number of times to determine its statistics to a desired
level of accuracy. The resulting model is then used as an
input to the CMDP framework and how much prediction error
affects this adjustment also depends on the learning rate.

G. EVALUATING SYSTEM STABILITY BY INCORPORATING
DELAY AND CONSTRAINTS

Up to this point, the system evaluation has exclusively
focused on optimizing network utilities based on the trans-
mission rates. Thus, the extension to this work is to incor-
porate the delay as a very important performance metric.
Both the average throughput and the transmission delay were
evaluated as the number of deployed IAB nodes between the
traffic source and the donor node was increased. The end-
to-end throughput was evaluated against the number of IAB
nodes with a source rate of R = 25 Mbps and the result is
shown in Fig. 17 below:

In Fig. 17 above, the throughput performance for the
three algorithms is evaluated and an increasing trend is
observed as the number of IAB nodes increase. The proposed
DRL-RDCM strategy is observed to first lag the conventional
DRL strategy, but as more spectrum becomes available in the
network, it outperforms both baselines. This is because in
as much as the RL strategy used in DRL is model-free, the
use of the RDCM makes it behave more like a model-based
strategy. This justifies the fact that quality improves as one
moves away from the cell edge towards the center as capacity
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FIGURE 18. Average throughput vs number of IAB nodes at R = 50 Mbps.

becomes more guaranteed. The throughput performance is
further evaluated with a source rate of R = 50 Mbps, and
the results are shown in Fig. 18 below: Compared to the case
of Fig. 17, in Fig. 18 above, a congested scenario was created
by doubling the source rate and an overall improved perfor-
mance of the three algorithms is observed, with the proposed
DRL-RDCM performing much better than both baselines.
The result shows that with a high source rate, the performance
of the proposed algorithm progressively improves as the num-
ber of IAB nodes increase, which indicates that the proposed
algorithm benefits more from coverage enhancement than
the other two baselines. This indicates the strength of the
proposed solution in terms of maximizing the backhaul link
throughput without compromising the access QoS. The end-
to-end latency for the configuration in Fig. 18 is shown in
Fig. 19.
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As expected, the average end-to-end latency decreases as
the number of IAB nodes increases, as shown in Fig. 19. This
is because as the number of IAB nodes increases, it provides
more transmission routes, which decreases the average end-
to-end delay of the system. From Fig. 19, it can be seen
that the proposed DRL-RDCM provides significantly better
end-to-end delay performance compared to the two baselines.
This is particularly so for a small number of IAB nodes,
and as the number of IAB nodes increases, the performance
of the conventional DRL approach improves to closely fol-
low that of the proposed scheme. On the other hand, the
average latency for the GMBL approach remains constant
at 70 ms as the number of IAB nodes increases to more
than 3. This shows that the proposed algorithm adheres to
reliable communication better than the other two baselines
by better imposing the probabilistic delay constraint in (15).
As expected, high throughput and lower transmission delays
are achieved at the cost of high energy consumption, and the
cost analysis of the proposed algorithm is considered in the
following subsection.

H. EVALUATION OF THE COST FUNCTION

The evaluation of the power-delay trade-off as a function of
the number of packets arriving at a node/link is the basic
and underlying objective of wireless networks, and it cannot
be overstated in IAB networks. Therefore, in this part this
trade-off is evaluated in terms of: (i) the time delay of the
learning process, (ii) the variation of mean delay and overflow
costs with packet arrival rate, (iii) packet holding costs and
power points as functions of packet arrivals.

1) TIME DELAY
The time complexity results in terms of populating useful
attributes for the cost function are shown in TABLE 4.

From TABLE 4 above, it can be seen that populating
the known attributes has higher time complexities than
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TABLE 4. Time complexity.

Populated attribute [ Attribute description | Elapsed time |

Power cost 0.261440
Known transition Froms — s 0.573529
probability function
Buffer cost 0.447494
Unknown transition | From § — s(t + 1) 0.013129
probability function
Unknown cost From § — s(t + 1) 0.003936
20 T w T T T T T 20
{1
15 >1 5
110

Mean delay points (sec)
=
Mean overflow cost

o
&
(3]

0 . . . . . . . 0
4 5 6 7 8 9 10

Packet arrival rate (nackets/slot)

L]
w

FIGURE 20. Mean delay points and mean buffer overflow costs vs packet
arrival rates.

populating the unknown ones. This is because with the tran-
sition s — § the initial policy is not yet tuned to the specific
traffic and channel conditions. The transition from § — s(¢ +
1) the policy has already been tuned, hence less transition
time is required.

2) DELAY POINTS - OVERFLOW COSTS

In this subsection, the cost function is evaluated using the
post-decision state learning scheme. The overflow cost is
actually the cost of delay, which is very crucial in agile
network prioritization as it makes it possible for decision
makers to consider the cost of keeping packets in the buffer
beyond a single time slot. The performance of the system
in terms of the mean delay and the mean overflow cost is
evaluated as a function of an increasing packet arrival rate
as shown in Fig. 20 below.

As shown in Fig. 20 above, both the mean delay and
the mean buffer overflow cost increase linearly in a similar
pattern as the packet arrival rate increases. In addition, the
linear rate of increase of the two quantities is the same, which
is about 1.25 per unit increase in packet arrival rate. The
increase in the delay points pushes the Lagrange multiplier
to its maximum, which results in the cost function weighting
the delays more and the power consumption less. This leads
to an increase in the buffer overflow cost as the system
begins penalizing every packet held in the buffer more than
necessary.
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FIGURE 21. Packet holding cost points and mean power points vs packet
arrival rate.

3) PACKET HOLDING COSTS - POWER POINTS

As the increasing delay forces the system to penalize any
packet that is held in the buffer beyond a single time slot,
the system will increase the transmission power in order to
increase the transmission rate. This is expected to cause a
decrease in the packet holding costs, however, at the cost of
an increase in power consumption. This kind of behavior is
verified in Fig. 21 below:

In Fig. 21 above, the system performance is evaluated in
terms of the packet holding costs and power consumption as
a function of increasing packet arrival rate. It can be observed
that the packet holding cost points are decreasing, while the
power consumption points increase. This is in line with the
hypothesis that was made above, but there is a slight decrease
in the packet holding cost points when the packet arrival
rate increases from 4 to 6, which is followed by a sudden
dip in power consumption. However, the power consumption
suddenly increases when the packet arrival rate increases
above 6 packets/slot. As the delay increases, the Lagrange
multiplier is driven to its predefined maximum value, leading
to an increase in power consumption, which then drives the
packet holding costs down. This relationship indicates that
in a system where packet losses are penalized, transmission
delays result in non-Markovian system behaviour.

VII. CONCLUSION AND FUTURE WORK

This article proposed a backhaul adaptation scheme for IAB
networks using DRL with RDCM in order to address the
challenges of backhaul availability and backhaul scalability.
The proposed scheme is controlled by the load on the access
side of the network as well as the number of traffic flows
being routed to the MBS. The problem is formulated as a
CMDP and solved using a dual decomposition approach due
to the existence of explicit and implicit constraints. A DRL
strategy that takes advantage of an RDCM was then pro-
posed and implemented. The advantage of the RDCM for
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this problem is that it incorporates choice aversion from
prospect theory and the reward is not the only factor affecting
the learning rates, but also the punishment. Optimal flow
allocations in the network topology and the degree of aver-
sion were derived using graph theory and RL. The Lagrange
equivalent of the CMDP with respect to the policy and the
punishment, and a cost function was also derived from the
goodput distribution, and post-decision state learning was
used to evaluate the power-delay cost trade-offs. The pro-
posed algorithm was compared with the conventional DRL,
i.e., without RDCM and GMBL algorithms, where it showed
better throughput and delay performance over the two base-
lines. The near-optimal delay performance of the system is
achieved before the optimal power consumption since the
power consumption can only be learned after satisfying the
packet holding cost constraint. The obtained results validate
the objectives that were set out and outlined in Section I-C.
It was observed that ML, in particular DRL, can be lever-
aged to improve throughput performance in mm-wave IAB
networks, more especially by incorporating the RDCM.

A. PROS AND CONS OF THE PROPOSED ALGORITHM

In routing problems, it is beneficial to incorporate the con-
cept of prospect theory that describes how decision makers
choose between different prospects and how they estimate the
perceived likelihood of each of these options. This is RL with
foresight. In this work, the optimization objective was defined
and the valuation function that was used was induced by an
acceptance level through the RDCM for value functions that
were specified in the prospect of route choices. These route
choices have associated costs which are aimed at assisting
in conflating observations in terms of alternatives leading to
different choices, as well as rewards resulting from different
choices of value function parameters from the characteristics
of the CMDP. However, computational complexity is the
main obstacle observed in the application of the proposed
algorithm. It must be noted that the complexity of the family
of RL strategies comes with the repeated learning updates
towards reaching the reward. The proposed DRL-RDCM dif-
fers from the conventional DRL in terms of task complexity
measures.

B. FUTURE RESEARCH WORK

Whether the system learns better by reward or by punishment,
as well as to what extent does the reward and/or the punish-
ment influence the learning rate of the system, have not been
considered in RL-based IAB research solutions. However,
it can be postulated, as an assumption, that the influence of
the reward and punishment on the learning rate is subject to
various complex mechanisms of the actions. For instance, the
reward and punishment appear to be processed in different
ways and the risk/loss aversion could also have an influence
on the reward and punishment as well as algorithmic sensi-
tivity to both the reward and punishment. It has been noted
that few studies have investigated the influence of reward and
punishment on learning rates, although this question has been
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addressed since the beginning of psychological research and
is still unresolved in many aspects. Further research is not
only required in the context of long-term effects (retention)
of reward and punishment, but also whether reward or pun-
ishment lead to a higher learning rate and if so, under what
conditions reward and punishment lead to higher learning
rates.

For other future work, an approach that incorporates the
RDCM with the GMBL algorithm could be developed and
compared to the proposed scheme. In addition, the network
model assumptions could be set to be the same as those
used in the 3GPP study on IAB networks, for performance
comparison with an established standard.
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