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ABSTRACT
Over the years, rapid urban growth has led to the conversion of
natural lands into large man-made landscapes due to enhanced
political and economic growth. This study assessed the spatio-
temporal change characteristics of impervious surface area (ISA)
expansion using its surface temperature (LST) at selected adminis-
trative subplace units (i.e., local region scale). ISA was estimated
for 1995, 2005 and 2015 from Landsat-5 Thematic Mapper (TM)
and Landsat-8 OLI (Operational Land Imager) and TIRS (Thermal
Infrared Sensor) images using a Random Forest (RF) algorithm.
The spatio-temporal trends of ISA were assessed using an optimal
analytical scale to aggregate ISA LST coupled with weighted
standard deviational ellipse (SDE) method. The ISA was quantified
with high predictive accuracy (i.e., AUROC ¼ 0.8572 for 1995,
AUROC ¼ 0.8709 for 2005, AUROC ¼ 0.8949 for 2015) using RF
classifier. More than 70% of the selected administrative subplaces
in Pretoria experienced an increase in growth rate (415.59%)
between 1995 and 2015. LST computations from the Landsat TIRS
bands yielded good results (RMSE ¼ �1.44OC, 1.40OC, �0.86OC)
for 1995, 2005 and 2015 respectively. Based on the hexagon poly-
gon grid (90x90), the aggregated ISA surface temperature
weighted SDE analysis results indicated ISA expansion in different
directions at the selected administrative subplace units. Our find-
ings can represent useful information for policymakers in evaluat-
ing urban development trends in Pretoria, City of Tshwane (COT).
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1. Introduction

Development is sometimes reflected by the chaotic expansion of urban expansion and the
spontaneous appearance of urban buildings in rural areas or on the peripheries of cities
(Bouzekri et al. 2015). This rapid urban landscape change as indicated by Odindi et al.
(2012) has been because of the exceptional increase in population concentration in cities.
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According to Demographia (2017) and Sahana et al. (2018) 53% of the global population
lives in urban settlements and by 2030 this number is expected to have increased more
than 60%. Developing countries are more likely to experience the highest rate of urbaniza-
tion and industrialization in the near future i.e., conversion of vegetation areas to imper-
vious surface materials (Sahana et al. 2018). Over the last decades, Pretoria, South Africa
has been facing major land use or cover changes, such as loss of natural land, i.e., forest
or plantations, agricultural lands and grasslands coupled with growing impervious surface
areas (ISA) such as roads, sidewalks, parking lots, rooftops and bare lands due to a con-
tinuous increase in the population (Adeyemi et al. 2015).

In past decades, depending upon the research objectives, many methods have been
proposed to extract impervious surfaces using satellite images. However, ISA mapping in
major cities in African in the body of literature is still very few. An overview of the meth-
ods for ISA mapping can be grouped into four major categories: classification-based (i.e.,
pixel or object-based), mixture analysis (i.e., sub-pixel-based), spectral index-based and
deep learning-based segmentation (Weng 2012; Yu et al. 2017; Tian et al. 2018; Wei and
Blaschke 2018; Zhang and Huang 2018; Hua et al. 2020; Adeyemi et al. 2021). Most classi-
fication-based methods (i.e., supervised classifiers) require training samples e.g., maximum
likelihood classifier (Masek et al. 2000), machine learning classifiers such as artificial
neural networks (ANN) (Hu and Weng 2009; van de Voorde et al. 2009), decision tree
(DT) (Xian and Crane 2006; Lu et al. 2011; Xu 2013), classification and regression tree
(CART) (Xu and Wang 2016), random forest (RF) (Zhang et al. 2014; Adeyemi et al.
2015; Xu et al. 2018), support vector machine (Sun 2011; Okujeni et al. 2015; Shi et al.
2017; Xu et al. 2017) and regression modelling (Okujeni et al. 2018; Yu et al. 2018).
Among the above-mentioned pixel-scale, classification-based methods on multispectral
imagery, the non-parametric Random Forest (RF) algorithm has been reported to perform
excellently in ISA estimation from multispectral imagery (Adeyemi et al. 2015).
Nonetheless, the potential and effectiveness of random forest machine learning algorithms
based on different training sample sizes in spatio-temporal analysis of urban impervious
surfaces in major cities in Africa using remote sensing is still very little and needs to
be explored.

Furthermore, the most significant environmental impact of the high degree of imper-
viousness as documented by many studies is land surface temperature (LST) and atmos-
pheric temperature variability (Deng and Wu 2013; Artmann 2014; McGregor et al.
2015; Morabito et al. 2016; Ward et al. 2016; Tian et al. 2018). With the development
of satellite thermal infrared remote sensing data, considerable LST measurements can be
retrieved (Nie and Xu 2015). Consequently, there have been several algorithms and
methods used for LST retrieval from remote sensing data. Qin et al. (2001) developed
the split window and mono window algorithm and demonstrated their effectiveness of
using Landsat data. Jim�enez-Munoz and Sobrino (2003) and Jim�enez-Mu~noz and
Sobrino (2010) also developed the single-channel algorithm for LST retrieval from
Landsat and ASTER data respectively. In this study, the single-channel algorithm was
employed due to its advantage of being used when the ground truth data is not avail-
able Alipour et al. (2011). Even though, increase in ISA results in surface temperature
rise due to change in land surface component distinctive radiative, thermal, moisture
and aerodynamic properties according to Owen et al. (1998), there is still limited expli-
cit information using surface temperature as a complementary metric for spatio-tem-
poral urban expansion trend analysis.

An analytical method such as standard deviational ellipse (SDE) (Lefever 1926) has
been widely used in recent studies to evaluate the spatial distribution evolution and trends
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in various fields ( Vanhulsel et al. 2011; Al-Kindi et al. 2017; Li et al. 2017; Xu et al.
2018), because it can reveal the spatial concentration of geographical phenomena and the
change characteristics of the geospatial distribution. Recent studies in developed countries
have used the SDE to examine the spatio-temporal dynamics of urban expansion over a
long-time period by using the impervious surfaces estimated with remote-sensing data
(Jian et al. 2016; Qiao et al. 2018; Xu et al. 2018; Man et al. 2019). Nevertheless, sufficient
spatio-temporal details may still be required to understand the spatio-temporal urban
expansion at different spatial scales coupled with the trends. Since none of this studies
have been performed in major cities in Africa, we undertook a study using selected
Pretoria administrative subplaces as a pilot area of comprehensive innovation reform. The
aim of this study was to improve understanding of the spatio-temporal developing trend
of ISA expansion at a local spatial scale based on surface temperature (i.e., a complemen-
tary metric) in Pretoria, South Africa during the past 30 years. The key research ques-
tions are:

1. Can the random forest algorithm based on different training sample subsets influence
the accuracy of estimated ISA from optical Landsat imagery?

2. At local spatial scale, can the spatio-temporal changes of the extracted ISA be
revealed within ten years interval time frame?

3. With an optimal analytical scale, is it possible to reveal the principle direction of
urban expansion at local region level using the weighted standard deviational ellipse
(SDE) method?

2. Materials and methods

The overall methodological workflow is summarized in the flowchart of Figure 1.

Figure 1. Flowchart depicting the methodological framework.
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2.1. Study area

The study covers Pretoria (Figure 2) which is a city in the north-northeast of
Johannesburg in the northeast of South Africa. It is located between S25�35’29.68"
E28�0’51.34" (top left) and S25�56’50.55" E28�28’37.59" (bottom right) of the central part
of the City of Tshwane Metropolitan Municipality. According to the South African
National Census (2011), Pretoria is situated in the Gauteng province with an estimated
population of 12.2 million people which is 25% of South Africa total population and indi-
cating it is the fastest-growing province that has witnessed a population grows of over
33% between 1996 and 2011. Pretoria has a topography 1330m above sea level has an
average temperature ranging from 29 �C max to 18 �C min in January; 19 �C max to 5 �C
in June and precipitation of 674mm South African Weather Service (2011). Similarly,
South African Weather Services (2013) reported that during a nationwide heatwave in
November 2011, Pretoria experienced temperatures that reached 39 �C which was unusual
for that time of the year. The all-time high recorded in Pretoria was 42 �C (108 �F) on 25
January 2013. The year 2014 saw one of the wettest years on record for the city with pre-
cipitation of 914mm experienced to the end of December.

2.2. Data collection and pre-processing

In this study, three cloud-free springtime images (Table 1) recorded by Landsat 5-TM
(Thematic Mapper) on 25th September 1995 at 07:03 h local time, 20th September 2005 at
07:50 h local time and Landsat-8 OLI (Operational Land Imager) and TIRS (Thermal
Infrared Sensor) on 16th September 2015 at 08:02 h local time were obtained from the
United States Geological Survey Global Visualization Viewer and reprojected to the UTM

Figure 2. The location of the study area relative to Pretoria, South Africa.
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Zone 35S projection system with WGS84 datum. The Landsat images were pre-processed
using two important steps: (1) converting digital numbers (DNs) to top-of-atmosphere
(TOA) radiance and then to TOA reflectance; and (2) conversion of the TOA reflectance
to surface reflectance using the Fast Line-of-sight Atmospheric Analysis of Hypercubes
(FLAASH) a first principle atmospheric correction tool that incorporates the standard
MODTRAN model in ENVI software (Felde et al. 2003; Krause 2005; Environment for
Visualizing Images ENVI 2015 2014). Also, in this study, we used the Pretoria administra-
tive shapefile boundary at Enumeration Area (EA) and subplace (SP) level source from
Statistics South Africa (STATSSA).

The dominant land use per EA was extracted by analysing the building-based land use
dataset and then rolled up to subplace level. As pilot areas, the following subplaces within
Pretoria were selected based on the dominant land use (EA type) i.e., Formal residential
(Arcadia, Capital Park, Claremont, Eastwood 2, Philip Nel Park, Riviera, Rietondale),
Commercial (Loftus Stadium, Pretoria Central, Pretoria West), Industrial (Kirkney,
Koedoespoort, Koedoespoort Industrial, Pretoria Industrial) and Collective living quarters
(Salvokop). Other data used in this study are listed in Table 1.

3. Methodology

3.1. Land surface temperature (LST) retrieval

The single-channel algorithm (SCA) developed by Jim�enez-Munoz and Sobrino (2003)
was employed to retrieve LST from the geometrically corrected TIR band 6 from Landsat
5-TM (10.44� 12.42 mm) and mean of band 10 and 11 from Landsat-8 TIRS
(10.6� 11.19mm) and (11.50� 12.51mm) respectively.

3.1.1. Conversion to at-satellite brightness temperature (TB)
The thermal bands digital numbers were first calibrated to minimize the noise caused by
aerosols, water vapour etc. before being converted to top-of-the-atmosphere (TOA) radi-
ance. The following formulas are used to perform this process (Equation 1):

Table 1. Summary of data used in research.

Data Types Datasets

Date Image type Path/Row
1995-09-25 Landsat 5-TM 170/78

Remote Sensing data 2005-09-20 Landsat 5-TM 170/78
2015-09-16 Landsat-8 OLI/TIRS 170/78

Boundary file 2011 Pretoria Administrative boundary shape dataset
based on Enumeration Area level (i.e., the smallest
geographical unit, with typically 100 to 250
households, into which the country is divided for
census or survey purposes) and subplace level (i.e.,
the second (lowest) level of the place name
category, namely a suburb, section or zone of an
(apartheid) township, smallholdings, village, sub-
village, ward or informal settlement.

Ancillary data 2012-2015 1:10,000 aerial photography from 2012-2015 with
spatial resolution of 0.5m and

2015 Google Earth Images
2015 NLC classification dataset of 2013-2014
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For Landsat 5TM:

R ¼ Lmax�Lmin

Qcalmax � Qcalmin

� �
Band 6DN � Qcalminð Þ þ Lmin (1)

Where: R is TOA radiance (watts/(meter squared � ster � lm), Qcalmax ¼ 255, Qcalmin

¼ 0 while Lmax and Lmin can be obtained from the header file of the Landsat 5TM
imagery (Markham and Barker 1985) in Equation 2:

For Landsat 8:

R ¼ M�
LBand10DN þ AL (2)

Where, R is TOA radiance (watts/(meter squared � ster � lm), ML and AL were also
obtained from the header file of the Landsat 8 image (United States Geological Survey
2013). Thereafter, the radiance (R) images of the two Landsat sensors were converted to
at-satellite brightness temperature, Tb i.e., blackbody temperature under the assumption
of a uniform emissivity in Equation 3:

Tb ¼ K2

ln K1=Rð Þ þ 1
(3)

Where, Tb is at-satellite brightness temperature or black body temperature, R is radi-
ance while K1 (Watts/Meter Squared � Ster � mm) and K2 (Kelvin) are constants which
are 774.89 and 1321.08 respectively. The K1 and K2 constant for Landsat sensors are pro-
vided in the image header file. As indicated by many authors, Tb is not the true surface
temperature due to atmospheric interference and variations in land cover (Weng and Lu
2008; Hu and Jia 2010). In this study, the (Sobrino et al. 2004) single channel atmospheric
correction method was used to remove the noise.

3.1.2. Determination of surface emissivity (e)
Firstly we derived the surface emissivity (e) which is commonly carried out by differen-
tiation of NDVI which has an advantage when the researcher has no detailed informa-
tion on derived land cover in the study area (Carlson and Ripley 1997). Surface
emissivity (e) varies with land covers on ground surfaces (Sun et al. 2017). In urban
environments, vegetated surfaces have stronger thermal holding capacity and higher
cooling effects than non-vegetated areas. The Normalized Difference Vegetation Index
(NDVI) was now used to estimate the Proportion of vegetation (Pv) which is to assess
the role of vegetation in each pixel of the satellite images (Gutman and Ignatov 1998).
The formula below was designed for calculating the NDVI and vegetation proportion
(Equation 4 and 5):

NDVI ¼ NIR�Red
NIRþ Red

(4)

Pv ¼ NDVI�NDVImin

NDVImax � NDVImin

� �
(5)

Where the NDVImin and NDVImax were the maximum and minimum values obtained
from the derived vegetation index image. (Sobrino et al. 2008) measured the relationships
between e and proportion of vegetation (Pv) on a variety of ground surfaces based on the
Landsat-extracted NDVI, at each 30m pixel with the formula established according to
(Sobrino et al. 2004) in Equation 6:

6



e ¼ f
0:979�0:035Red NDVI<NDVImin

0:986þ 0:004Pv NDVImin � NDVI � NDVImax

0:99 NDVI>NDVImax

g (6)

Where: e is the surface emissivity image and Red is the surface reflectance of the
red band

3.1.3. Conversion of at-satellite brightness temperature to LST
Finally, the calculated land surface emissivity for each Landsat image was used to convert
the brightness temperature image to Land Surface Temperature (LST) using the Planks
equation described in Equation 7 (Weng et al. 2004);

LST KELVINð Þ ¼ Tb

1þ kþ Tb=qð Þ � lne (7)

To convert the LST image to Celsius image using the Equation 8:

LST CELSIUSð Þ ¼ LST KELVINð Þ�273:15 (8)

Where: k is the wavelength of radiation emitted in Landsat 5 TM (11.5 mm) (Markham
and Barker 1985) and Landsat 8 LCDM (10.8 mm) (United States Geological Survey 2013).
q¼ h � c/r, r ¼ Stefan Boltzmann’s constant, h¼ Plank’s constant, C¼ velocity of light,
e ¼ surface emissivity image, LST¼ surface temperature image. The rescaled to 30m spa-
tial resolution daytime time retrieved surface temperature (LST) images were
also normalized.

3.2. Collection of training and validation samples

Training datasets are significant to understanding the features in real-world and to map a
mental picture of the land use or cover type while the validation samples were used for
independent validation of the obtained land cover maps (Bhaskaran et al. 2010; Aguilar
et al. 2014; Ishimwe et al. 2014). Although the selected Pretoria subplaces comprises of
the following dominant land use types formal residential, commercial, industrial and col-
lective living quarters, unfortunately, we were unable to visually inspect with a handheld
GPS receiver all ISA samples. As a result, the ISA used for validation samples were manu-
ally digitized from the reference data such as 1:10,000 aerial photography (0.5m), Google
Earth Engine (DigitalGlobe). The ISA polygons were uploaded using the ESRI ArcGIS
software (Table 2). These exposed ISA created on the multispectral images were used as
training and validation samples (obtained from reference datasets) for classification and
accuracy assessment. Furthermore, Ramezan et al. (2019) recently detailed that the size
and quality of training sample data coupled with sample selection method used can affect
the classification and accuracy assessments. Therefore, in this study, we similarly assess
the effect of the training sample sizes and the machine learning algorithm performance
based on the classification accuracies. We randomly divided the training sample dataset
into 4 different imbalanced datasets (i.e., tset_1,tset_2,tset_3,tset_4) with corresponding

Table 2. Summary of the ISA and NonISA classes assigned as training and validation dataset.

Samples Training (ISA/NonISA) Validation (ISA/NonISA) Total (
P

)

1995 183(112/71) 315(163/152) 498
2005 164(88/76) 441(166/275) 605
2015 154(93/61) 273(144/129) 427

1530
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sizes 20%, 40%, 60% and 80% of the total training data (Figure 1). The create Data
Partition function in the caret package in the R statistical software environment (RStudio,
Inc., Boston, MA, USA, Version 1.1.463) software was used to ensure that the number of
pixels chosen in each class for every sub-dataset to keep the most consistent size in the
imbalanced training sample size.

3.3. Random Forest classification

Random Forests (RF) classifier, developed by Breiman (2001), is an ensemble algorithm
developed in the field of machine learning that uses a similar but enhanced method of
bagging (bootstrap aggregation) operation (Adelabu et al. 2013; Cracknell and Reading
2014; Adeyemi et al. 2015). According to Loosvelt et al. (2012), RF classifier operates by
creating multiple classification trees, each trained on a bootstrapped sample of the original
training data. In this technique, the diversity of trees is increased by making them develop
from different training data subsets created through bagging (Breiman 1996). The major-
ity of ’votes’ from the assemblages of trees built by RF decide the class assignment of a
given pixel i.e., The majority ‘vote’ is used to predict the final class for each unknown
(Berhane et al. 2018; Maxwell et al. 2018; Guo et al. 2020). RF classifies the data that is
not in the trees as out-of-bag (OOB) data, and the average OOB error rates from all trees
give an error rate called the OOB classification error for each input variable i.e., an inde-
pendent estimate of the overall accuracy of the RF classification (Breiman 2001).
Furthermore, to implement the RF according to Breiman (2001), two parameters need to
be set up which are the number of trees (ntree) and the number of features in each split
(mtry). Regarding the mtry parameter, many studies use the default value mtry such as
the number of predictor variables or bands according to (Belgiu and Dr�agu 2016;
Shrestha et al. 2021) while Feng et al. (2015) stated that with ntree >¼ 200, RF could
achieve accurate results. Although some studies stated that satisfactory results could be
achieved with the default parameters while others indicated that large number of trees
will provide a stable result of variable importance (Thanh Noi and Kappas 2017; Shrestha
et al. 2021). In addition, RF classifier can determine the “best split” threshold of input val-
ues for given classes by implementing the Gini Index, which returns a measure of class
heterogeneity within child nodes as compared to the parent node (Waske and Braun
2009). Compared to other non-parametric classifiers, RF has a number of advantages
which are: (1) easy to implement as only two parameters (ntree and mtry) need to be
optimized (€Ozçift 2011), (2) can be more reliable than other iterative techniques that do
not always consider parameters as independent (Adelabu et al. 2013), (3) insensitive to
noise (Watts and Lawrence 2008), does not suffer from over-fitting or a long training
time (Loosvelt et al. 2012), faster computation and (4) ability to determine input variable
importance by comparing the OOB error rate (Rodriguez-Galiano et al. 2012) and can
handle imbalanced data sets (Maxwell et al. 2018).

3.4. Optimization for impervious surface area extraction

Thanh Noi and Kappas (2017) asserted that parameter tuning plays an important role in
producing high accuracy results when using machine learning algorithms. Therefore, in
this study to find the optimal RF classifier parameters that could accurately depict ISA,
we tested a series of values for the tuning process. From the Landsat 5TM and Landsat
8OLI, we used 6 bands (VIS-SWIR) equalling 6 input predictor variables for the param-
eter tuning of the RF classifier. Four different sub-datasets with corresponding sizes 20%,
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40%, 60% and 80% of the total training data were used to train the model and the rest to
test the model (Figure 1). Finally, a range of values was used for the parameterization of
both: ntree ¼ 500:3000 with a step size of 500.; mtry ¼ 1:6 with a step size of 1. We
implemented RF classification using Caret - RandomForest package in the R statistical
software environment (RStudio, Inc., Boston, MA, USA, Version 1.1.463).

3.5. Model performance evaluation

In this study, the RF classifier performance evaluation was to assess the accuracy of the
derived binary classification results for the three years based on stratified random evenly dis-
tributed samples obtained from reference data (aerial photo at 0.5m spatial resolution and
visual inspection on Google Earth).10-fold cross-validation was used to rearrange the samples
to ensure that each fold is a good representation of the whole datasets i.e., with a lower sam-
ple distribution variance compared to the hold-out cross-validation (Danjuma 2015). Finally,
we implemented the performance evaluation metrics using the area under the receiver oper-
ating characteristic curve (AUROC) which is a graph that summarizes the performance of
the indices (classifier) over all possible thresholds. The graph was generated by plotting the
true positive rate (y-axis) against the false positive rate (x-axis) (Wieland and Pittore 2014).
The performance evaluation metric was computed using InformationValue, plotROC and
ggplot2 packages in the R statistical software environment RStudio, Inc., Boston, MA, USA,
Version 1.1.463 (Prabhakaran2016; Sameen and Pradhan 2016).

3.6. Hexagon polygon grid to determine sampling scale

Grid analysis has been used to evaluate the composite effects due to its flexibility of ana-
lysis with scale variation, bounding of quantitative values and locations, and statistics of
area proportions in these regular shapes (Xiao et al. 2018). Regular rectangular or square
grid and hexagonal grid have also been compared in some studies and their relative merit
was also examined. Aiazzi et al. (2002) earlier analyzed hexagonal sampling under general
assumptions, compared with conventional rectangular sampling, and found out that hex-
agonal sampling was attractive for remote sensing applications where the acquisition pro-
cess is crucial to preserve image quality without introducing data transmission overheads.
He and Jia (2005) affirmed that hexagonal structure is considered to be preferable to the
rectangular structure due to its higher sampling efficiency, consistent connectivity and
higher angular resolution and is even proved to be superior to square structure in many
applications. Birch et al. (2007) in earlier research also investigated the use of rectangular
and hexagonal grids application in ecological observation, experiment and simulation
such as the role of nearest neighbourhood in experimental design, the representation of
connectivity in maps, and a new method for performing field surveys.

Since hexagonal grid is simpler and less ambiguous than a rectangular grid, we used
QGIS (version 3.8) software to create a hexagonal polygon grid with matching centroids
covering the RF extracted ISA extent for each year (i.e., 1995, 2005 and 2015) within the
study area with the origin coordinate system. The decision to use the grid size of
90mx90m is similar to the study of Xiao et al. (2018) after empirically testing various grid
sizes. At the optimal 90m grid-scale, we observed that the hexagon grid size is much
smaller than the impervious surface patches or thematic outputs, thereby preserving useful
geometry for the interpretation of corresponding variables such as LST pixels i.e., ensur-
ing that an adequate number of pixels is considered (Adeyemi et al. 2021). Afterward, the
hexagon polygon grids were used to aggregate the LST raster layer pixels (i.e., ISA surface
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temperature pixel values were averaged over the hexagon grid cells with the spatial analyst
tool “zonal statistics module” of ArcGIS software) finally used to measure the geograph-
ical distribution (i.e., weighted standard deviational ellipse).

3.7. Spatial analytic method

The standard deviational ellipse (SDE) (Lefever 1926) methods were widely used to assess
the spatial distribution evolution and distributional trends in many fields, because they can
reveal the spatial concentration of geographical phenomena and the change characteristics
of the geospatial distribution ( Al-Kindi et al. 2017; Li et al. 2017; Qiao et al. 2018; Xu et al.
2018 ). To measure at local region scale the spatio-temporal developing trends of urban
expansion in Pretoria, the weighted standard deviational ellipse (SDE) (Lefever 1926)
method based on ISA surface temperature was used in this study. We also put into consid-
eration the use of the Central Business District (CBD) as its reference point of expansion
from the center to suburbs in the form of concentric circles, Qian and Wu (2019). Based
on sampling hexagon polygon grid centroids representing the ISA surface temperature, the
calculated parameters of the weighted SDE representing the dispersion and directional
trends of the ISA at local region scale (sub-place units) were the long axis, short axis, and
rotation angle. The rotation angle of the weighted SDE is calculated as follows:

a ¼
Xn
i¼1

w2
i X

2
i

�
�
Xn
i¼1

w2
i Y

2
i

� !
(9)

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
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�
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�
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tan h ¼ aþ b

2
Pn

i¼1w
2
i Xi

�
Yi

�� � (11)

~Xi ¼ Xi��X
~Y i ¼ Yi��Y

�
(12)

where h is the rotation angle of the ellipse, indicating the angle measured clockwise from
the North to the long axis of the ellipse (Equation 9, Equation 10 and Equation 11). The
X and Y are the coordinates while �X and �Y are the mean X and Y coordinates (Equation
12). ~Xi and ~Yi are the deviation between the i-th grid center in the X and Y direction
respectively and wi is the weight. In this study, the weight wi indicates the ISA surface
temperature of the i-th grid. The standard deviations rx and ry of the ellipse in the X
and Y directions (Equation 13) are calculated as follows:

rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
wi~Xi cos h� wi~Y i sin h
� 	2

Xn

i¼1
wi

vuut

ry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
wi~Xi sin h� wi~Y i cos h
� 	2

Xn

i¼1
wi

vuut

8>>>>>><
>>>>>>:

(13)

The long axis, short axis and rotational angle represent the dispersion and directional
trends of the urban ISA i.e., as the rotation angle changes in the SDEs show the spatio-
temporal changes in the local impervious surfaces in a particular spatial direction.
Subsequently, ellipse centre was drawn from the above SDE parameters, allowing us to
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see the elongation of the spatial distribution of impervious surface and its particular
orientation. Lastly, we quantified the SDE using the spatial statistic “measuring geograph-
ical distribution” toolbox in ArcGIS.

4. Results

4.1. Random Forest classifier

The success of the RF classifier depended on the optimization of key parameters i.e., ntree
and mtry. The grid search method was used to optimize the RF classifier using 5-fold
cross-validation. The concept behind the grid search technique is that different pairs of
parameters were evaluated and the one yielding the highest level of accuracy is selected
similar to the study of Kavzoglu and Colkesen (2009). To find the optimal parameters for
the RF classifier, several values (mtry ¼ 1:6; ntree ¼ 500:3000) were tested for all 4 sub-
datasets. A sub-datasets of 80%, 20% and 80% respectively had the highest results for the
Landsat-derived ISA obtained with mtry equal to 2 or 3 for 1995, 1 for 2005 and 1 or 2
for 2015 (Figure 3a–c). Furthermore, Figure 3d–f show that out-of-bag (OOB) error
decreased sharply when ntree increased. Increase in ntree to �2000, �1000 and �1500
respectively based on different sub-datasets for each year had slightly different trends as
indicated in Figure 3a–c, however, generally, the OOBs were slightly reduced at all sub-
datasets (Figure 3d–f). Also, all OOBs of all sub-datasets remain stable when ntree
increase from 2000 to 3000, 1000 to 2000 and 1500 to 2500 respectively for each year
used in this study (Figure 3d–f). Hence, ntree ¼ 3000, 2000 and 2500 coupled with the
highest results of mtry were the best parameters used.

4.2. The performance evaluation of random Forest classifier on Sub-datasets

As shown in Figure 3a–c with the best sub-datasets for each year, the three highest accu-
racies were considered for the random forest model. The highest accuracy for the random

Figure 3. (a) – (c) Effect of the number of trees and the number of random split variables at each node (mtry) while
(d) –(f) shows the relationship between OOB error (y-axis) and ntree parameter (x-axis) of the RF classifier based on
the best sub-datasets of training sample data for 1995,2005 and 2015.
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forest model for 1995 and 2015 was observed when the training sample size was large
enough (80%) i.e., �97% and �98% accuracies respectively. Whereas the highest accuracy
for random forest model for 2005 occurred with 20% of the training samples i.e., �95%
(Figure 3b). In addition to visual examination of all the thematic images outputs shown
in Figure 4a–c, the area under the receiver operating characteristic curve (AUROC) was
used to evaluate the performance of the random forest classifier in extracting ISA or
built-up areas across the study area over the 30 year period. As shown in Figure 5a–c, the
computed AUROC values were: AUROC ¼ 0.8572 for 1995, AUROC ¼ 0.8709 for 2005,
AUROC ¼ 0.8949 for 2015 respectively. Therefore, based on the stratified 10-fold cross-
validation, the results indicate that the random forest classifier effectively depicted ISA
with relatively high precision.

4.3. Dynamic ISA change in the subplace units

Table 3 and Figure 6 reveal the spatial and temporal changes of the impervious surfaces
area during the 30 study years. Based on the selected dominant land use of the adminis-
trative sub places, the results show an increase from 1995 to 2015 in ISA (hectares, ha)
and growth rate(%) respectively. For instance, formal residential: Arcadia(�41ha to
�197ha; 53%), Capital Park(�31ha to �206ha; 51%), Eastwood 2(�13ha to �28ha; 11%),
Riviera(11 ha to �44ha; 29%); Commercial: Loftus Stadium(21 ha to 37 ha; 14%), Pretoria
Central(�140ha to 419 ha; 55%), Pretoria West(197 ha to 454 ha; 42%); Industrial:
Kirkney(�178ha to �277ha; �26%), Koedoespoort Industrial(�38ha to 53 ha; 28%),
Pretoria Industrial(�59ha to 543 ha; �74%) and Collective living quarters: Salvokop(8 ha
to �169ha; 21%). Although the ISA relatively decreased in other places during the same
period (e.g., Formal residential: Claremont(�264ha to 204.03 ha), Philip Nel Park(243 ha
to �168ha), Rietondale(�66ha to 59%) and Industrial: Koedoespoort(323 ha to 321 ha), it

Figure 4. Random forest ISA classification maps of different periods (a)1995, (b) 2005 and (c) 2015.
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is still observed that more than 70% of the selected administrative subplace units in this
study experienced dramatic growth in impervious surfaces.

Total Area ¼ 5263ha; 1ha ¼ pixel count X 900m2X 0:0001 (14)

4.4. Land surface temperature retrieval (LST) for ISA

Figures 7–9 illustrate the spatial pattern of absolute normalized LST retrieved for the
study. The computed LST map for the entire study area shows that for 1995, 2005 and

Figure 5. AUROC curve showing the performance evaluation of random forest ISA classification (a) 1995 (b) 2005
(c) 2015.

Table 3. Spatio-temporal analysis of the impervious surfaces area of selected sub-places in the study area.

Administrative
Subplace Dominant land use type ISA 1995 (ha) ISA 2005 (ha) ISA 2015 (ha)

Arcadia Formal residential 40.77 115.02 197.01
Capital

Park
Formal residential 30.51 149.76 206.10

Claremont Formal residential 102.24 263.61 204.03
Eastwood 2 Formal residential 12.87 21.96 27.54
Philip Nel-park Formal residential 195.12 243.27 167.67
Rietondale Formal residential 104.85 65.88 59.04
Riviera Formal residential 11.25 33.12 43.56
Loftus stadium Commercial 21.15 33.39 37.44
Pretoria central Commercial 135.99 302.04 418.86
Pretoria West Commercial 197.10 432 454.05
Kirkney Industrial 177.75 285.66 276.48
Koedoessport

Industrial
Industrial 37.80 52.74 53

Koedoessport Industrial 150.93 323.37 321.93
Pretoria Industrial Industrial 58.77 208.08 543.33
Salvokop Collective living quarters 82.44 189.63 168.75
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2015, LST values range between 14.20 �C � 39.13 �C, 16.72 �C � 44.23 �C and 18.15 �C �
48.25 �C respectively. This study revealed that the maximum LST for the whole area went
up by �9 �C from 1995 to 2015, which were 42.12 �C to 53.26 �C; the minimum tempera-
ture increased by 3 �C from 14.20 �C to 18.15 �C, during the same season with the ten-
year interval. This result indicates that the changes in land cover types thermal emittance
have resulted in climate change as reported by the South African Weather Service
(SAWS) in recent years. An earlier study by Adeyemi et al. (2015) revealed that ISA can

Figure 6. Variations in ISA growth rate for the selected administrative sub-places.

Figure 7. LST maps (OC) of selected sub-place in Pretoria city in 1995.
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Figure 8. LST maps (OC) of selected sub-place in Pretoria city in 2005.

Figure 9. LST maps (OC) of selected sub-place in Pretoria city in 2015.
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be used as a complementary metric for surface urban heat island studies, in this study we
also examined the variation in ISA thermal emittance for 1995, 2005 and 2015 based on
the above pixel samples. Based on the spatial distribution of land surface temperatures of
ISA derived from the Landsat images for the selected administrative subplace units study
years in Pretoria, the mean ISA surface temperature for 1995 was 22.51 �C (standard devi-
ation of 1.38 �C), followed by 2005 with a mean of 27.01 �C (standard deviation of
1.62 �C) and the highest mean ISA LST of 29.48 �C(standard deviation of 2.21) in 2015.
Also, we verified the overall metrics error between the predicted and actual LST to assess
the accuracy of the retrieved normalized LST image for the study area. The result indi-
cates that the overall retrieval error for the study area is quite low: �1.44 �C for RMSE
and �1.05 �C for MAE (1995), �1.40 �C for RMSE and �1.08 �C for MAE (2005) and
�0.86 �C for RMSE and �0.59 �C for MAE (2015) respectively. Thus, the thermal bands
of Landsat 5TM and Landsat 8 TIRS data employed for this study provided good results
and can be used for further temperature variability analysis.

4.5. Spatio-temporal developing trends of ISA expansion

In this study, the ISA surface temperature weighted standard deviation ellipse (SDE) was
used to further reveal the spatio-temporal developing trends of ISA expansion. We used
the rotation angle of SDE to analyse the spatial direction of impervious surface expansion
(Table 4 and Figure 10a–o. It can be seen from Figure 10a–o that the SDEs of 15 admin-
istrative subplaces at the local region scale indicated significantly different ISA expansion
directions. In Eastwood 2, with an approximated rotation angle of �92

�
the spatial direc-

tion of ISA expansion was eastern in 1995 and 2005 (Figure 10d). After that the rotation
angle decreased by 3.4

�
(Table 4), indicating a change in ISA distribution in an east-

north-east in 2015. In Riviera, the rotation was maintained at an angle of �114
�
- �116

�

from 1995-2015 (Figure 10n). This implies that during the study period, the ISA mainly
expanded towards the southeast. In Arcadia (Figure 10a), Pretoria Industrial (Figure 10k),
Rietondale (Figure 10m) and Salvokop (Figure 10o) with rotation angles > 90

�
, the ISA

mainly expanded to the east-south-east from 1995 and 2005. Also, a north-north-east ISA
expansion trend was observed from 1995-2015 in Claremont (Figure 10c), Koedoespoort
(Figure 10f), Loftus Stadium (Figure 10h) and Pretoria Central (Figure 10j) with rotation
angles < 45

�
. In Capital Park (Figure 10b) and Kirkney (Figure 10e) with rotation angles

slightly > 90
�
, the ISA expanded to the east. In Koedoespoort Industrial (Figure 10g),

Philip Nel Park (Figure 10i) and Pretoria West (Figure 10l), with rotation angle main-
tained < 90

�
, the ISA significantly expanded towards the east-northeast in these subplaces

during the study period.

5. Discussion

Over the years, the urban expansion experienced in the selected administrative subplaces
for this study in Pretoria is not only seen as a sign of growth and prosperity but has con-
tinuously brought about expanded infrastructure which are impervious surfaces (Adeyemi
et al. 2015). These increase in man-made features (i.e., ISA) and their sequential relation-
ship with climatic variables such as surface temperature (e.g., LST) are crucial to under-
standing urban sprawl (Tian et al. 2018). In this study, the ISA data extracted with
multispectral Landsat-5 TM and Landsat 8 with six bands (VIS-SWIR) images, were used
to investigate the spatio-temporal dynamics and the expansion direction of urban sprawl
at local administrative subplace units in Pretoria from 1995 to 2015. The first results in
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Figure 3 highlight the potential use of random forest classifier with different sample sizes
to estimate ISA from Landsat image for the entire study years. Based on the four sub-
datasets with corresponding sizes 20%, 40%, 60% and 80% of the total training data for
each year, two different trends were clear: when the training sample size was good enough
(80%), the highest accuracy for the RF model was observed for 1995 and 2015 i.e., �97%
and �98% respectively (Figure 3a and c). Whereas highest accuracy of �95% for rf model
for 2005 occurred with 20% of the training samples (Figure 3b). The RF model accuracies
can be attributed to the varying samples sizes of the imbalanced training data. Though
this might be contradictory to many past studies on different satellite images such as Jin
et al. (2014), Colditz (2015) and Mellor et al. (2015) to mention a few that asserted that
the bigger the land cover class area is, the more training samples that are required to pro-
duce the best classification accuracy. The use of RF modelling of ISA in our study reveals

Table 4. SDE parameters of impervious surface expansion from 1995 to 2015.

Subplace Dominant land use type Year Rotation angle (O) ISA Expansion Direction

Arcadia Formal Residential 1995 97.433 ESE-ESE-ESE
2005 97.532
2015 97.825

Capital Park Formal Residential 1995 95.234 E-E-E
2005 94.998
2015 95.261

Claremont Formal Residential 1995 11.915 NNE-NNE-NNE
2005 11.169
2015 10.763

Philip Nel Park Formal Residential 1995 66.276 ENE-ENE-ENE
2005 67.229
2015 67.625

Rietondale Formal Residential 1995 103.429 ESE-ESE-ESE
2005 98.664
2015 101.424

Riviera Formal Residential 1995 114.033 SE-SE-SE
2005 116.313
2015 116.343

Eastwood 2 Formal Residential 1995 91.457 E-E-ENE
2005 91.588
2015 88.604

Kirkney Industrial 1995 93.274 E-E-E
2005 96.762
2015 90.893

Koedoespoort Industrial 1995 28.309 NNE-NNE-NNE
2005 24.712
2015 21.535

Koedoespoort Industrial Industrial 1995 73.335 ENE-ENE-ENE
2005 73.995
2015 74.045

Pretoria Industrial Industrial 1995 101.356 ESE-ESE-ESE
2005 99.848
2015 100.258

Loftus Stadium Commercial 1995 18.671 NNE-NNE-NNE
2005 16.692
2015 11.769

Pretoria Central Commercial 1995 8.319 NNE-NNE-NNE
2005 8.005
2015 6.561

Pretoria West Commercial 1995 68.786 ENE-ENE-ENE
2005 68.396
2015 68.495

Salvokop Collective living quarters 1995 107.829 ESE-ESE-ESE
2005 110.535
2015 110.813
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similarity to the studies of Zhang et al. (2021), Liu et al. (2021), Shrestha et al. (2021),
Guo et al. (2020) and Emanuel Gombe et al. (2017). Also similar to the study of Thanh
Noi and Kappas (2017) the RF classifier employed in this study showed less sensitivity to
the imbalanced training data as long as the training sample size is representative enough
i.e., either large or small. After the visual examination of the random forest classifier the-
matic ISA outputs for the study years presented in Figure 4, their quantitative assessment

Figure 10. SDEs of ISA surface temperature for the selected administrative sub-places (i.e., local region scale) for dif-
ferent periods (continued overleaf).
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based on 10-fold cross-validation, the AUROC was used to assess the unbiased predictive
accuracy (Figure 5). Although the random forest classifier overall predictive accuracy was
fairly high (i.e., AUROC ¼ 0.8572 for 1995, AUROC ¼ 0.8709 for 2005, AUROC ¼
0.8949 for 2015) because of the selection of representative training samples or pixels
(Maxwell et al. 2018), there were still errors observed in the final thematic outputs due to
mixed pixels i.e., ISA and vegetation (Xu et al. 2018) associated with the use of medium
resolution multispectral satellite imagery. Secondly, we examined the ISA spatio-temporal

Figure 10. Continued.
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dynamics within ten years interval time frame (i.e., 1995� 2015) at local region level.
Results in Table 3 and Figure 6 above reveals while more than 70% of the selected admin-
istrative subplaces (i.e., Arcadia, Capital Park, Eastwood 2, Loftus Stadium, Koedoespoort
Industrial, Pretoria Central, Pretoria Industrial, Pretoria West, Riviera) in this study expe-
rienced dramatically increase in ISA growth rate. Generally, the ISA spatio-temporal
dynamics in the study area could be attributed to the incessant urban sprawl resulting in
many places across Pretoria. Since Pretoria is one of the three capital cities in South
Africa, the remarkable ISA growth over the years could also be due to political and socio-
economic factors. Finally in our study, guided by the previous study of Xiao et al. (2018)
on an optimal analytical scale, we used the hexagon polygon grid covering and aggregat-
ing the depicted ISA surface temperature pixels to examine the spatio-temporal character-
istics or developing trends of ISA expansion with the aid of weighted standard deviational
ellipse (SDE) method. Similar to the recent studies of Xu et al. 2018; Man et al. 2019 and
Hua et al. 2020), our results indicated that the ISA exhibited an expansion trend generally
in the east-south-east, east, north-north-east, east-north-east and south-east directions.
This can be attributed to the change ISA growth rate coupled with population and various
land use activities at the local administrative subplace units. In this study, it can therefore
be asserted that the spatio-temporal pattern of ISA surface temperature is an important
metric in understanding the principle direction of ISA expansion.

6. Conclusion

Satellite imagery that measures spatio-temporal dynamics of impervious surface areas
(ISA) in the context of rapid development, is key to understanding the process of urban
expansion. The information obtained this way can serve as valuable input when dealing
with challenges related to the environment, climate (for example shifts in land surface
temperature (LST)), population health, natural resources etc.). Using a combination of
quantitative remote sensing images such as Landsat 5 Thematic Mapper (TM), Landsat 8
Thermal Infrared Sensor (TIRS) and Operational Land Imager (OLI), and spatial statis-
tical methods, the study investigated the spatio-temporal direction of ISA expansion at a
local spatial scale, based on its surface temperature and within a time frame interval of
ten years. The study displayed two main strengths. Firstly, the use of random forest algo-
rithm (RF) based on different training sample subsets, enabled the researchers to accur-
ately estimate and reveal the spatio-temporal dynamics of ISA in selected administrative
sub place levels in Pretoria. Secondly, the researchers were able to identify the principal
direction of urban expansion at a local spatial scale in Pretoria by combining zonal statis-
tics with weighted SDE spatial statistical method. The findings of this study could be used
by policymakers and urban planners as a key measure to detect places where urbanization
is rapid, and prioritize areas of immediate attention and development of smart growth
strategies. Future studies should focus on spatio-temporal urban expansion at different
spatial scales (e.g., local and regional), depending on the coverage and commercial avail-
ability of fine resolution multispectral satellite imagery. Population, gross domestic prod-
uct (GDP), topography, hydrology, socio-economic settings etc. may also be considered as
drivers when modelling spatio-temporal urban dynamics.
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