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Abstract

The Rado graph, denoted R, is the unique (up to isomorphism) countably infinite random graph. It satisfies

the extension property, that is, for two finite sets U and V of vertices of R there is a vertex outside of both

U and V connected to every vertex in U and none in V . This property of the Rado graph allows us to prove

quite a number of interesting results, such as a 0-1-law for graphs. Amongst other things, the Rado graph is

partition regular, non-fractal, ultrahomogeneous, saturated, resplendent, the Fráıssé-limit of the class of finite

graphs, a non-standard model of the first-order theory of finite graphs, and has a complete decidable theory.

We classify the definable subgraphs of the Rado graph and prove results for finite graphs that satisfy a

restricted version of the extension property. We also mention some parallels between the rationals viewed as a

linear order and the Rado graph.
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Introduction

Imagine you have a piece of play dough. It can be any colour. It can be any size. And of course it can be

any shape. It’s soft enough so you can effortlessly mould it, but hard enough to keep shape. It’s just the right

amount of sticky, in that it does not stick to your hands while you mould it, but holds firm when you add two

pieces together. As you roll a piece of dough between your fingers you realise that the possibilities are endless.

You marvel at the fact that such a simple thing can be almost anything. Your heart starts racing at the dough’s

invitation to play and create and relive a moment of your youth.

You sigh, because you realise that the dough is only imaginary and quite soon this feeling of nostalgia will

be ripped away by some serious mathematical discussion. I wish to assure you, however, that the Rado graph

is quite like this play dough and it is indeed something to get excited about. You see, the Rado graph is the

treasure chest in which every mathematician can find a jewel which is to their liking. The valuables range from

graph theory to number theory to algebra to Ramsey theory to logic and the list goes on. It is easy now, to

feel a rush, a calling to dive in and see whether there is something for you.

While we are eager to embark on this journey of discovery, we must first make the necessary preparations.

Surely, we do not wish to go on a seven day hike without the right equipment. So let us start packing our bags.

Firstly, we cannot study something called the Rado graph if we are not clear on what a graph is. We will take

a graph to be a pair G = (V,E) consisting of vertices (V or V (G)), also called nodes, and edges (E or E(G)),

where the edges are two-element subsets of V . This is often referred to as a simple graph in the literature,

meaning that there are no loops (an edge connecting a vertex to itself) or multiple edges (sometimes called

parallel edges) between the same vertices. The easiest way to picture a graph is to use dots for vertices and line

segments, possibly curved, joining dots for edges.

We often identify a graph with its vertices, so instead of writing x ∈ V (G) we just write x ∈ G. Consequently

we identify the order of a graph, with the number of vertices in the graph, i.e. |G| = |V (G)|. We will also say

that a graph is on V rather than saying that the graph has vertex set V .

Next we need the notion of a random graph. We skip the detail of precise definition for now and play a

game instead. Quickly get a coin or a die or a stack of ordinary playing cards.

Have it? Great! Below we have drawn some vertices for a graph. Pick your two favourite vertices. Now flip

the coin or roll the die or draw a card. If you got heads, or an even number, or a red card, connect the two

vertices. Pick another pair of vertices and repeat. You should flip or roll or draw for each pair of vertices.

There! You have constructed a random graph. For those who want to be a bit more specific, for a given set

of vertices V , we independently join distinct vertices based on the outcome of some random experiment. We

call the resulting graph a random graph.

1
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Now, the Rado graph is a random graph on a countably infinite number of vertices. As it turns out, it is the

countably infinite random graph and so we can justify naming it.

Let’s pause here for a moment, and think again about how far reaching this flip-a-coin-graph is in the world

which we call Mathematics. Can you see now the similarity between the play dough and the Rado graph? It is

completely simple, but not at all ordinary.

“Are we ready? Can we start this adventure?” No, we need to familiarise ourselves with the terrain. The

beast which we are about to hunt is accustomed to all sorts of different landscapes. We will start by gathering

reports of the beast: what previous hunters saw, how they approached it and what tools they used on their

expedition. These reports will then be compared and compiled into a bestiary. Taking our completed bestiary

we will explore The Grassland of Graph Theory which the beast calls home. Here we will observe more closely

under what conditions the beast functions. How does it behave? Does it undergo seasonal changes? How does

it interact with other wildlife? We will then track the beast up into The Algebraic Alps and down into The

Marshes of Model Theory, all the while unveiling more of its secrets. Finally we will go after it into The 0-1

Forest, going the full circle back to probability.

Mathematically speaking, our journey will start in Chapter 1: The One Graph with the extension property

and different definitions of the Rado graph. In Chapter 2: The Grasslands of Graph Theory we will look at

the graph theoretical aspects of the Rado graph, like induced subgraphs, colourings and partition properties.

Chapter 3: The Algebraic Alps is all about ultrahomogeneity and automorphisms. Some basic concepts of model

theory are assumed for Chapter 4: The Marshes of Model Theory, in which we discuss the first-order theory of

the Rado graph, definable subsets, types, saturation, elimination, categoricity, Fräıssé limits and resplendence.

In Chapter 5: The 0-1 Forest we prove a 0-1 law for graphs and use it to show that there are finite graphs that

satisfy a weaker form of the extension property. The original contributions of this thesis include the non-fractal

nature of the Rado graph (discussed at the end of Chapter 2), classifying the definable subgraphs of the Rado

graph (found in Chapter 4), and work regarding finite graphs with r-extension, a weaker form of the extension

property (discussed in Chapter 5). We also give a brief overview of a certain similitude between the Rado graph

and the rationals viewed as a linear order as part of the appendices.

It is assumed that everyone joining the hunting party has some prior experience with mathematical wildlife.

They should know, for instance, what an isomorphism is or how modular arithmetic works. There are appendices

available for readers who wish to refresh their memory.

Are you ready to discover the mysteries of the Rado graph? Then let the adventure begin!

2
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Chapter 1

The One Graph

Deep in the land of Mordor, in the Fires of

Mount Doom, the Dark Lord Sauron forged a

master ring, and into this ring he poured his

cruelty, his malice and his will to dominate all

life.

One ring to rule them all.

Galadriel

The Lord of the Rings:

The Fellowship of the Ring (movie)

We begin our adventure by studying, in detail, the Rado graph which we will from now on denote as R.

We start off with what is probably the most important property of R, namely the extension property. Then we

take a look at different constructions of graphs which all turn out to be R. [Cam13] and [Hen19] both contain

nice summaries of the results in this chapter.

1.1 A key property:

The extension property

The extension property, which we will state now, is the key with which we will unlock the secrets of R.

Property 1.1.1 (The Extension Property, EP for short, see [ER63], Lemma 3, pg. 309). Let G be a graph.

Then G has the extension property if for all finite disjoint subsets U and V of G there is an x ∈ G \ (U ∪ V )

such that x is connected to every vertex in U and not connected to any vertex in V .

In this case we will call x a witness of EP for U and V , or if the situation is clear we will just say that x

witnesses EP.

We give an illustration of EP.

. . .
U

. . .
V

x

. . .

3
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CHAPTER 1. THE ONE GRAPH

Remarks 1.1.2. 1. The vertices of U and V may be connected; this will have no effect on EP. All that

matters is that U ∩ V = ∅.

2. U and V may be any disjoint finite subsets of vertices of G, including the empty set.

We will now use our master key to unlock the following result.

Theorem 1.1.3 (see [ER63], pg. 309). Any two countably infinite graphs satisfying EP are isomorphic.

We introduce some notation to shorten writing for the proof and throughout the text. Let G be a graph.

If two vertices x and y of G are connected, i.e. {x, y} ∈ E(G), we will write x ∼ y. In this case we may say

any of the following: x is connected to y, x is adjacent to y, x is a neighbour of y. When we are working with

more than one graph, we will use ∼ to indicate that vertices are connected for all the graphs involved, as no

confusion will arise. We may shorten writing even more by taking x ∼ U , where U is a set of vertices, to mean

that x is connected to every vertex from U , and x ̸∼ U to mean that x is not connected to any vertex from U .

Proof of Theorem 1.1.3. Let G and H be two countably infinite graphs satisfying EP. We construct an isomor-

phism between G and H using a back-forth-argument.

Consider enumerations {a1, a2, . . . } and {b1, b2, . . . } of the vertices of G and H respectively. We will suc-

cessively choose sequences (a′i : i ∈ N) in G and (b′i : i ∈ N) in H such that

a′i ∼ a′j iff b′i ∼ b′j . (1.1)

This will ensure that the mapping f : a′i 7→ b′i is a homomorphism.

Suppose we have already chosen a′i ∈ G and b′i ∈ H satisfying condition (1.1) for all i < n for some n ∈ N
and let A := {a′1, . . . , a′n−1} and B := {b′1, . . . , b′n−1}. So we have f : G ↾ A ∼= H ↾ B.

If n is even: let a′n be aj where j is the smallest index such that aj /∈ A. Take U := A ∩ {x : x ∼ aj} and

V := A ∩ {x : x ̸∼ aj}. Clearly U ∩ V = ∅ and so we will have that f [U ] and f [V ] are finite disjoint subsets

of H. Since H satisfies EP there is a b ∈ H \ (f [U ] ∪ f [V ]) such that b ∼ f [U ] and b ̸∼ f [V ]. In this case we

extend f by stipulating that f(a′n) = b.

If n is odd: let b′n be bj where j is the smallest index such that bj /∈ B. We take U := B ∩ {x : x ∼ bj} and

V := B ∩ {x : x ̸∼ bj} and so U ∩ V = ∅. It now follows that f−1[U ] and f−1[V ] are finite disjoint subsets of

G and since G satisfies EP there exists a ∈ G \ (f−1[U ] ∪ f−1[V ]) with a ∼ f−1[U ] and a ̸∼ f−1[V ]. So we can

extend f by letting f−1(b′n) = a.

This alternating method of choosing vertices to extend f will exhaust both G and H and so we end up with

a bijective map f : G → H, which, by condition (1.1), will be a homomorphism. This shows that f : G ∼= H

and we conclude that any two countably infinite graphs satisfying EP are isomorphic.

Up to this point we have not yet seen that R indeed satisfies EP. Hopefully one can still see how powerful

the previous result is. If R satsisfies EP, then what Theorem 1.1.3 is telling us, is that any countably infinite

graph with EP is (up to isomorphism) the Rado graph. Let’s now discuss the full weight of its implications.

4
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CHAPTER 1. THE ONE GRAPH

1.2 Different points of view:

Other definitions of the Rado graph

There is only one way to see things, until

someone shows us how to look at them with

different eyes.

Pablo Picasso

We remind ourselves how we defined R. Take a set with countably infinitely many vertices, and connect

each pair of vertices independently with probability 1
2 . This probabilistic definition was given by Erdős and

Rényi in [ER63].

Proposition 1.2.1 (see [ER63], Lemma 3, pg. 309). R satisfies EP.

Proof. Let U and V be disjoint finite sets of vertices of R. Now for any x ∈ R\(U ∪V ), the probability that x is

connected to, or not connected to a given vertex is 1
2 . So the probability that x ∼ U is 1

2|U| and the probability

that x ̸∼ V is 1
2|V | . Therefore, the probability of x witnessing EP for U and V is 1

2|U| × 1
2|V | = 1

2|U|+|V | . Since

there are infinitely many vertices outside U and V we will surely find such a witness.

Now we will look at constructions of countably infinite graphs which, at first glance, might not seem very

similar to that of R. Just for the fun of it, we will depict each of these constructions. Since you already had

some practice, you can do the probabilistic one from above. Go on then, grab that coin, or whatever you used

before and start connecting some dots.

. . .

The first construction we look at was given by Rado in [Rad64] and uses the BIT predicate. Given x, y ∈ N0

with x < y, BIT(y, x)=1 if the x-th bit of y is 1 when y is written in binary, ak . . . a1a0, where ai is the i-th bit

of y, and 0 otherwise. Take {0, 1, 2, . . . } to be vertices and connect i and j, with i < j, if BIT(j, i)=1.

0 1 2 3 4 . . .

. . . . . . . . .

. . . . . .

For our next construction we use for vertices the class of hereditary finite sets, i.e the class of finite sets

whose elements are again finite sets, constructed using only brackets. We connect two sets if one is an element

of the other, i.e. for hereditary finite sets x and y, we will join x and y if x ∈ y or y ∈ x.

{} {{}} {{{}}} {{{{}}}} {{}, {{}}} . . .

. . . . . . . . .

. . . . . .

The final construction uses a bit of number theory. We look to [Pin10] and [Dud09] for the definitions of

some basic concepts.

5
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CHAPTER 1. THE ONE GRAPH

Definition 1.2.2 (Congruence modulo n, see [Pin10] pg. 227). Let a and b be any two integers and n be

any positive integer. When we divide a and b by n and get the same remainder, then we say that a is congruent

to b modulo n. In this case we will write a ≡ b(mod n).

We take the set of primes congruent to 1 modulo 4 as vertices. There are infinitely many of these by

Dirichlet’s Theorem.

Dirichlet’s Theorem (see [Sel49])

Let integers k and l be relatively prime. The arithmetic progression

k + l, k + 2l, k + 3l, . . .

has infinitely many primes.

Definition 1.2.3 (Least residue modulo n, see [Dud09] pg. 13). An integer b with 0 ≤ b ≤ n − 1 and

a ≡ b(mod n) is called the least residue of a modulo n.

Definition 1.2.4 (Solution modulo n, see [Dud09] pg. 17). An integer c is a solution modulo n of the

congruence ax ≡ b(mod n) if

1. it satisfies the congruence, i.e. ac ≡ b(mod n) and

2. it is a least residue modulo n.

Definition 1.2.5 (Quadratic residue, see [Dud09] pg. 53). Let p be an odd prime and a be an integer with

1 ≤ a ≤ p − 1. If the congruence x2 ≡ a(mod p) has a solution then we say that a is a quadratic residue of p

modulo n. Otherwise we call a a quadratic non-residue of p modulo n.

Theorem 1.2.6 (Quadratic reciprocity, see [Dud09] pg. 61). Let p and q be distinct odd primes such that

neither of p and q is congruent to 3 modulo 4. Then q is a quadratic residue of p iff p is a quadratic residue of

q.

Given p and q from the set of primes congruent to 1 modulo 4, we let p ∼ q iff x2 ≡ p(mod q) is solvable,

i.e. iff p is a quadratic residue of q. From the statement of quadratic reciprocity (Theorem 1.2.6) we know this

happens exactly when x2 ≡ q(mod p) is solvable so there is no risk of having more than one edge between any

two vertices.

5 13 17 29 37 . . .

. . . . . . . . .

. . . . . .

Considering the figures above, these graphs clearly look different. And thinking about how these graphs

were constructed in a concrete manner, it is hard to imagine how any of them can give rise to R, since R was

completely randomly constructed.

It is here that the fun begins. We verify that each one of the above graphs has EP.

The graph constructed using the BIT predicate has EP.

Let G be the graph constructed using the BIT predicate, and let U = {a1, . . . , am} and V = {b1, . . . , bn} be

finite disjoint subsets of G. Then for x =
∑m

i=1 2ai we have BIT(x, ai)=1 for each i and BIT(x, bj)̸= 1 for each

j. So x will be connected to every vertex in U and none in V , i.e. x witnesses EP.

6
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CHAPTER 1. THE ONE GRAPH

The graph constructed using hereditary finite sets has EP.

Let H be the graph constructed using hereditary finite sets. We will need a bit of set-theory if we want to

show that H has EP.

Some ZFC (Zermelo–Fraenkel set theory with the axiom of choice)

We will state only those axioms which we need for our argument.

Axiom of extent: Two sets are equal iff they have the same elements.

Axiom of pairing: Given any two sets x and y there is a set z whose elements are exactly x and y.

The axiom of extent implies that the z in the axiom of pairing is unique, and we may write z = {x, y}.

We also write {x} instead of {x, x}.

Axiom of regularity(or sometimes called the axiom of foundation): Every non-empty set x has an

element which is disjoint from x.

Consider a set x. By the axiom of pairing {x} is a set. According to the axiom of regularity the set {x}
must have an element disjoint from itself. This means that x∩ {x} = ∅ which implies that x /∈ x. So no

set can be an element of itself. This is the part that we need.

Back to our graph on hereditary finite sets, let U = {a1, . . . , am} and V = {b1, . . . , bn} be finite disjoint

subsets of H and let x = U ∪{V }. Clearly x is hereditary, since it is finite and all elements of x are again finite

sets.

First we check that x /∈ U ∪V . Suppose, on the contrary that x ∈ U ∪V , then x ∈ U or x ∈ V . If x ∈ U ⊆ x

then x ∈ x, a contradiction. So x must be in V . In this case {x} ∩ V = x. Since V ∈ x this means that

V ∈ {x} ∩ V which implies that V ∈ V , but we know this is not possible. Hence x /∈ U ∪ V .

Now we need to check that x is connected to all of the vertices in U and none of the vertices in V . Note

that ai ∈ x for all ai ∈ U since U ⊆ x, so x is connected to every vertex in U . We will show via contradiction

that x is not connected to any vertex in V . We need to have both bj /∈ x and x /∈ bj for each j according to our

definition of H. Suppose bj ∈ x for some bj ∈ V . Since x = U ∪ {V } and bj ̸∈ U this means that bj = V and

hence V ∈ V , which cannot be the case. Therefore bj /∈ x for any j. Now suppose that x ∈ bj for some bj ∈ V .

Then {x} ∩ bj = x. Since V ∈ x, this implies that V ∈ {x} ∩ bj which in turn implies that V = x. This then

gives x ∈ x which cannot happen. Hence x /∈ bj for each j. This shows that x is not connected to any vertex

in V .

In conclusion, x = U ∪ {V } serves as a witness to EP.

The graph constructed using primes congruent to 1 modulo 4 has EP.

Let P be the graph on primes congruent to 1 modulo 4, and let U = {u1, . . . , um} and V = {v1, . . . , vn} be

finite disjoint subsets of P .

Let d = 4u1 · · ·umv1 · · · vn and consider the system of congruences

y ≡ 1(mod 4), y ≡ a1(mod u1), . . . y ≡ am(mod um), y ≡ b1(mod v1), . . . y ≡ bn(mod vn)

where ai is a quadratic residue of ui for each i, and bj is a quadratic non-residue of vj for each j.
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CHAPTER 1. THE ONE GRAPH

The Chinese Remainder Theorem (see [Dud09] pg. 21)

Given integers n1, . . . , nk which are pairwise relatively prime, the system of congruences

x ≡ c1(mod n1), x ≡ c2(mod n2), . . . x ≡ ck(mod nk)

has a unique solution modulo n1n2 . . . nk.

Using the Chinese Remainder Theorem we see that this system has a unique solution y, modulo d, of the

form y ≡ c(mod d). Now none of 1, a1, . . . , am, b1, . . . , bn are zero (by Definition 1.2.5) so y, and hence c,

cannot be a multiple of any of 4, u1, . . . , um, v1, . . . , vn. This implies that c and d are relatively prime. From

Dirichlet’s Theorem we have that c + d, c + 2d, c + 3d, . . . contains infinitely many primes. We take one of

these primes to be x, i.e. x = c+ kd for some k. This implies that x ≡ c(mod d) and hence x ≡ y ≡ c(mod d)

meaning that x satisfies the system of congruences.

So we have that x is a prime congruent to 1 modulo 4, i.e. x is a vertex in P , and it is not one of the ui’s

or the vi’s, since it’s not a multiple of any of 4, u1, . . . , um, v1, . . . , vn, i.e. x /∈ U ∪ V .

Also, x ≡ ai(mod ui) for each i, meaning it will be a quadratic residue of each ui which implies that x ∼ ui

for all ui ∈ U . Considering that x ≡ bj(mod vj) for each j we see that x will be a quadratic non-residue of each

vj , i.e. x ̸∼ vj for all vj ∈ V . This x will be our witness for EP.

Let’s summarise what we have seen. We have a probabilistic definition of R. Then we have a countably

infinite graph constructed using the BIT predicate. We also have the graph on hereditary finite sets and finally

we have a graph with a number theoretical definition. All of these are countably infinite. All of these satisfy EP.

Some knowledgeable and enthusiastic members of the hunting party exclaim, “These are all the same graph!”,

and we name1 the following result after them.

Theorem 1.2.7 (Aficionado, see [ER63], pg. 309). Any countably infinite graph satisfying EP is isomorphic

to R.

Proof. This follows from Proposition 1.2.1 and Theorem 1.1.3.

Now that we have a better understanding of R, and how seemingly different graphs all give rise to it, let’s

move on to some graph theory to see what secrets lie there.

1This is just for ease of referencing, as we will be using this result many times throughout our work.
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Chapter 2

The Grasslands of Graph Theory

If being human is not simply a matter of being

born flesh and blood. . .

If it is instead a way of thinking, acting and

feeling, then I am hopeful that one day I will

discover my own humanity.

Data

Star Trek: The Next Generation

For convenience, we restate some basic definitions. Other concepts will be defined when they are needed.

We take a graph to be a pair G = (V,E) consisting of vertices (which we may refer to as nodes or points),

V , and edges (or sometimes lines), E, such that the edges are two-element subsets of V . In this case we will

say that G is on V .

As convention we will always write V (·) and E(·) to denote the vertices and edges of a graph, so even if the

graph under consideration is H = (X,Y ) we will still write V (H) for its set of vertices and E(H) for its set of

edges. We will also write v ∈ G or e ∈ G instead of v ∈ V (G) and e ∈ E(G).

Given a vertex v and edge e with v ∈ e we say that v is incident with e. If e = {x, y} we will say that x and

y are adjacent or connected . We may also call them neighbours and we will write x ∼ y. For a set of vertices

U , x ∼ U means that x is connected to every vertex in U , and x ̸∼ U means that x is not connected to any

vertex in U .

2.1 Divide and conquer:

Subgraphs of the Rado graph

Can’t cut it out, it will grow right back.

Rafiki

The Lion King

Now that we have caught up on the needed terminology, we continue our quest. In this section we will

observe just how robust the beast is. We will stab and slash in an attempt to draw blood.

First we need to sharpen our blades. We define some operations on graphs. For a graph G and vertex x ∈ G,

we can delete x to get a new graph H with V (H) = V (G) \ {x} and E(H) = {e ∈ E(G) : x /∈ e}. Flipping

an edge will turn an edge into a non-edge. We can similarly flip non-edges to edges. Given a set of vertices

9
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CHAPTER 2. THE GRASSLANDS OF GRAPH THEORY

X ⊆ G, we switch G with respect to X if we flip all the edges and non-edges between vertices in X and vertices

in G \X. We give an illustration of these operations.

1 2

34

5
X

(a) A graph G

1 2

4

5

(b) Deleting vertex 3

1 2

34

5

(c) Switching w.r.t. X

Let G = (V,E) and H = (V ′, E′) be graphs. We say H is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. We will

denote this by H ⊆ G. If, in addition, H contains all the edges {x, y} ∈ E for x, y ∈ V ′, then H is an induced

subgraph of G. The following illustrates this concept.

(a) A graph G (b) A subgraph of G

(c) An induced subgraph of G

Proposition 2.1.1 (see [Cam13], Proposition 1, pg. 4). Given finite disjoint subsets, U and V , of vertices of

R, and X the set of vertices that witness EP for U and V , this X induces a subgraph of R which is isomorphic

to R.

Proof. Let G be the subgraph of R induced by X. First we show that G is countably infinite.

Suppose not, then |G| = n for some n ∈ N. This means that there are only n witnesses, say x1, x2, . . . , xn

to EP for U and V . Now consider the sets U ′ := U ∪ {x1, x2, . . . xn} and V . These are finite disjoint subsets of

R. Since R has EP we will be able to find x ∈ R \ (U ′ ∪ V ) such that x ∼ U ′ and x ̸∼ V . In particular x is

connected to every point in U and no point in V and x ̸= xi for any of the xi’s. Hence we have n+ 1 witnesses

of EP for U and V , contradicting the assumption that there were only n witnesses. So G is countably infinite.

Now we show that G has EP. Let U ′ and V ′ be finite disjoint subsets of X. Then U ∪ U ′ and V ∪ V ′ are

finite disjoint subsets of R and since R has EP we are able to find an x such that x ∈ R \ (U ∪ U ′ ∪ V ∪ V ′)

and x ∼ U ∪U ′ and x ̸∼ V ∪V ′. This x will be in X since x ∼ U and x ̸∼ V , i.e. since it is a witness for U and

V . We also have that x ∈ X \ (U ′ ∪ V ′) such that x ∼ U ′ and x ̸∼ V ′, hence x is a witness to EP for U ′ and

V ′ in G.

10
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CHAPTER 2. THE GRASSLANDS OF GRAPH THEORY

In conclusion, G is countably infinite and satisfies EP. Therefore, by Aficionado, G is isomorphic to R as

required.

We can use EP in the same way as above to prove the following two propositions.

Proposition 2.1.2. Every vertex of R has infinitely many neighbours.

Proof. Suppose, on the contrary, that a given x ∈ R has only n neighbours, for n ∈ N. Let U be the set

consisting of the neighbours of x together with x, and let V be a finite subset of R such that U ∩ V = ∅. Then,

since R has EP there is a z from R, not already in U or V s.t z ∼ U and z ̸∼ V . This means that z ∼ x and

hence we have n+ 1 neighbours of x, a contradiction.

Therefore x has infinitely many neighbours.

Proposition 2.1.3. Every vertex of R has infinitely many non-neighbours.

Proof. This is the same as the proof for Proposition 2.1.2, but with the word “neighbours” replaced by “non-

neighbours” and the roles of U and V interchanged.

We are ready for our first attack on R. We try to hack away at it. . .

Proposition 2.1.4 (see [Cam13], Proposition 2, pg. 5). R is isomorphic to the resulting graph under each of

the following operations:

1. deleting a vertex of R,

2. deleting a finite subset of vertices of R,

3. flipping an edge (resp. non-edge) of R,

4. flipping a finite number of edges (resp. non-edges) of R,

5. and switching with respect to a finite subset of vertices of R.

Proof. First note that in any of the above cases, the resulting graph will still be countably infinite. Hence, by

Aficionado, it is enough to show that EP is satisfied in each resulting graph. Let U and V be finite disjoint

subsets of vertices of the graph obtained under each operation.

1. If x is the required witness, then we can delete any other vertex of R without running into trouble. In

the case where we delete x we can just pick one of the infinitely many other witnesses which exists by

Proposition 2.1.1.

2. This follows from 1.

3. Let x be the required witness, i.e. x ∼ U and x ̸∼ V . Flipping an edge (or non-edge) not incident with x

would not give rise to any problems. In case we do flip an edge (or non-edge) incident with x we might

have that x ̸∼ u for some u ∈ U or x ∼ v for some v ∈ V , which is not what we want. Again we can use

Proposition 2.1.1 to choose some other witness.

4. This follows from 3.

5. Let X be a finite subset of vertices of R. We are going to switch R with respect to X.

Consider the sets A := (U \X)∪ (V ∩X) and B := (V \X)∪ (U ∩X). A and B are finite disjoint subsets

of R, which satisfies EP and so we can find a witness x for A and B. After switching, this x will be a

witness for U and V . We give a sketch for clarity.

11

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. THE GRASSLANDS OF GRAPH THEORY

. . . . . .
U

. . . . . .
V

. . .

X

x

Figure 2.3: Before switching

. . . . . .
U

. . . . . .
V

. . .

X

x

Figure 2.4: After switching

This shows that each resulting graph satisfies EP and is therefore isomorphic to R.

Remark 2.1.5. Consider the proof of point 5 above. Switching R with respect to X is not the same as flipping

a finite amount of edges. This is because Proposition 2.1.1 implies that there are infinitely many edges and

infinitely many non-edges connected to vertices in X, meaning there are infinitely many edges and non-edges

that are going to be flipped.

. . . but it is futile. We can see that removing a vertex or edge or finitely many of each, does not have any

effect on R.

The next two results are not very surprising, but they do hint at the richness of R.

Theorem 2.1.6 (see [Cam13], Proposition 6, pg. 6). 1. Every countably infinite graph and 2. every finite

graph is isomorphic to an induced subgraph of R.

Proof of Theorem 2.1.6 part 1. Let G be any countably infinite graph and let {a1, a2, . . . } be an enumeration

of the vertices of G. We define an embedding f : G→ R inductively.

Let f0 = ∅. Now suppose that fn : {a1, . . . , an} → R has already been chosen such that it is an isomorphism

preserving the induced subgraphs of G and R.

Next let U := {a1, . . . , an} ∩ {Neighbours of an+1} and V := {a1, . . . , an} ∩ {Non-neighbours of an+1}.

Then fn(U) and fn(V ) are finite disjoint subsets of R. Since R has EP there is an x such that x ∼ fn(U) and

x ̸∼ fn(V ) and we define fn+1(an+1) = x to extend fn.

Finally take f :=
⋃

n≥0 fn. This is the required embedding, and so we have that G is an induced subgraph

of R.

Proof of Theorem 2.1.6 part 2. This is can be done in the same way as the proof for part 1, but ending the

process after a finite amount of steps.

Our next move is to split up and divide R’s attention. Maybe in this way it will lose its power.

Theorem 2.1.7 (Partition-regularity, see [Cam13], Proposition 3, pg. 5). The induced subgraph of at least

one cell of any finite partition of the vertices of R is isomorphic to R.
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CHAPTER 2. THE GRASSLANDS OF GRAPH THEORY

Proof. Suppose on the contrary that there is a partition P := {P1, . . . , Pn} of R for which this is not true. Then

none of the graphs Gi, induced by each Pi, has EP. In this case we will be able to find, for each i, finite disjoint

sets Ui and Vi which are counterexamples to EP in Gi. So the sets U := U1 ∪ · · · ∪ Un and V := V1 ∪ · · · ∪ Vn
will be a counterexample to EP in R, a contradiction.

This proves that for any finite partition P := {P1, . . . , Pn} of R there is at least one Pi for which the induced

subgraph Gi is isomorphic to R. In this case Gi, and hence Pi, is countably infinite.

We state the following result without proof.

Theorem 2.1.8 (see [Hen19], Theorem 4, pg. 6). The only countably infinite graphs with partition regularity

are the complete graph (i.e. a graph with all possible edges), the null graph (i.e. a graph with no edges) and R.

Even when our enemy is divided, we are no match. But take heart, for as David struck down Goliath with

a simple pebble, so we will bring down R with something as simple as a vertex.

Proposition 2.1.9. The graph obtained from R by adding a vertex and no new edges is not isomorphic to R.

Proof. Without loss of generality, suppose x ̸∈ R. Let G be the graph obtained from R by adding x as a vertex

with no new edges. We give a counterexample to show that EP is not satisfied. This will imply the result.

Consider the sets U := {x} and V := ∅. These are clearly finite and disjoint, but no vertex of G is connected

to x, and so, there is no witness to EP for U and V in G.

Proposition 2.1.10. Let G be the graph obtained from R by adding a vertex x and letting x ∼ r for each

r ∈ R. Then G ̸∼= R.

Proof. Again, we only need to show that EP is not satisfied.

Consider the sets U := ∅ and V = {x}. U and V are finite disjoint subsets of G, but every vertex of G is

connected to x, hence there is no witness to EP for U and V in G.

We see that R is resilient against removing, but not adding vertices. If we want R to recover from getting

an extra vertex, some work needs to be done. If we add too few edges or too many edges (as in the cases above)

then EP won’t be satisfied. We need to add just the right amount of edges. So now, after breaking R down,

we show how to rebuild it.

Proposition 2.1.11. Let G be the graph obtained from R by adding a vertex x and letting x ∼ r for each

vertex r ∈ R independently with probability 1
2 . Then G ∼= R.

Proof. Clearly G is countably infinite and so, by Aficionado, we only need to show that G has EP.

Let U and V be disjoint finite sets of vertices of G. Any y ∈ G\(U ∪V ) has probability 1
2|U|+|V | of witnessing

EP. Since there are infinitely many vertices outside U and V we will be able to find such a witness.

Remark 2.1.12. Note that we cannot add only a finite number of edges to recover R after adding a single

vertex x to R. If we add only a finitely number of edges, say x ∼ ri for each ri ∈ {r1, . . . , rn} ⊆ R, then we

can choose U := {x, r1, . . . , rn} and V := ∅, leaving us with no witness to EP for U and V in the new graph.

We have seen how to take R down, by striking at its core, by aiming directly at EP.
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CHAPTER 2. THE GRASSLANDS OF GRAPH THEORY

2.2 Walking and leaping:

The connectedness of the Rado graph

Walking is good exercise and so we must include it to ensure that this dissertation stays healthy. Definitions

in this section follow those as in [Die00]. The results from this section and the next are derived from analogous

results as found in [Cam13].

Diestel defines a walk in a graph as a sequence of vertices and edges of the form v0e0v1e1 . . . vk−1ek−1vk and

such that vi, vi+1 ∈ ei for all i < k. We will write this sequence only as v0v1 . . . vk, since the edges needed for

the walk will be clear. Such a walk is of length k, i.e. we count the number of edges traversed. In case all the

vertices are distinct we say path instead of walk.

Proposition 2.2.1 (see [Cam13] pg. 6). Any two vertices of R can be connected with a finite walk. In particular

any two vertices of R can be connected with a walk of length 2.

Proof. Consider any two points, say x, y ∈ R. We want to find a finite walk between these two points. Let

U = {x, y} and V = ∅. Since R has EP we will be able to find a vertex r ∈ R \ (U ∪ V ) with edges connecting

r to both x and y. We therefore have a walk, consisting of two edges, with vertex sequence xry.

Thus, we can find a finite walk between any two points of R. In fact, we can find a walk of length 2 between

any two points of R.

Remark 2.2.2. We can replace the word “walk” with “path” in the above result without changing the outcome.

This is because EP allows us to choose vertices for the finite walk in such a way that each of them are distinct,

giving us the required path.

Following Diestel again, we take the distance between two vertices, say x and y, of a graph to be the shortest

path beginning in x and ending in y. The diameter of a graph is then the greatest distance between any two

vertices of the graph.

The following result is thus a direct consequence of Proposition 2.2.1.

Corollary 2.2.3. R has diameter 2.

If we can find a path between any two vertices of a graph, then we call that graph connected . We thus have

another consequence of Proposition 2.2.1.

Corollary 2.2.4. R is connected.

We can say more about the connectedness of R.

Definition 2.2.5 (k-connected, see [Die00] pg. 10). Let k ∈ N. A graph G with |G| > k is k-connected if

G \X is connected for all X ⊆ V (G) with |X| < k.

Proposition 2.2.6. R is k-connected for every k ∈ N.

Proof. Fix k ∈ N and let X ⊆ R with |X| < k.

Note that {R \ X,X} constitute a partition of the vertices of R. Now by the partition-regularity of R

(Theorem 2.1.7) the graph induced by one of these will be isomorphic to R. Since X is finite, it follows that

the graph induced by R \X is isomorphic to R.

Finally, since R is connected we will also have that R \X is connected. Hence R is k-connected.

This works for any k ∈ N, giving the result.

Definition 2.2.7 (k-edge-connected, see [Die00] pg. 10). Let k ∈ N. A graph G with |G| > 1 is k-edge-

connected if G \X is connected for all X ⊆ E(G) with X having fewer than k edges.
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CHAPTER 2. THE GRASSLANDS OF GRAPH THEORY

Proposition 2.2.8. R is k-edge-connected for every k ∈ N.

Proof. Let k ∈ N and let X be any finite subset of E(R).

Note that R \X will be the graph we obtain by flipping all the edges in X. We know from Proposition 2.1.4

that the isomorphism type of R is unchanged under flipping with respect to a finite amount of edges.

Hence R \X is isomorphic to R and so it is connected.

This result holds for all k ∈ N, so we have that R is k-edge-connected for every k ∈ N.

While connecting the dots (vertices) of R, you might be thinking that this will take forever, which technically

it will, so we stop trying to connect more dots and try to see if we can find parts of R which are not connected.

Proposition 2.2.9 (see [Cam13] pg. 6). For each n ∈ N with n ≥ 2, there is a set of n vertices of R such that

none of the vertices in the set are connected.

Proof. We know from Theorem 2.1.6 that every finite graph is an induced subgraph of R. Specifically, for each

n ∈ N, the null graph on n vertices is an induced subgraph of R and hence will constitute a set of n vertices of

R such that none of the vertices in the set are connected.

One might be thinking that Proposition 2.2.9 can be used to oppose the connectedness of R, but it is EP

that flows like ichor in the veins of R that has given us both the connection and isolation of the vertices of R.

The fact that these two opposing ideas can co-exsist in R should just be another reminder of how mysterious

our beast is.

2.3 I see your true colours:

Vertex- and edge-colourings of the Rado graph

At this point we have a good rough sketch of our beast. However, going into the wilds with just a rough

sketch will be of no use to us. We might end up wandering around aimlessly, losing sight of the great mysteries

which we started off looking for. So we stay on the beast’s trail, following it closely in an attempt to observe it

in more detail.

We are now going to, quite literally, colour our rough sketch. We will take a colouring (more specifically a

vertex -colouring) of a graph to be a mapping that assigns to each vertex of the graph a colour, i.e. c : V → C

is a colouring and C is a set of colours. We give an illustration of this concept.

(a) A graph G

1 2

23

3

(b) A colouring V → {1, 2, 3}

(c) A colouring V →{•,•,•,•}

Figure 2.5: Colourings of a graph
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CHAPTER 2. THE GRASSLANDS OF GRAPH THEORY

Now a proper colouring of a graph is a colouring such that no two connected vertices have the same colour.

Neither of the colourings in the above illustration are proper, but the one in the next illustration is.

Figure 2.6: A proper colouring V →{•,•,•,•}

How many colours do we need to properly colour a graph? More specifically how many colours do we need

to properly colour R? The easy answer is infinitely many colours, so let’s rephrase the question. What is the

least amount of colours we need to properly colour a graph? To answer this question we introduce the concept

of k-colourability. A graph G is said to be k-colourable if there is a proper colouring c : V → C with |C| ≤ k

for some k ∈ N, i.e. G is k-colourable if we can properly colour G with at most k colours.

Proposition 2.3.1. R is not k-colourable for any k ∈ N.

Proof. Let U be a set of k vertices of R, with each vertex coloured a different one of k colours and let V = {x}
where x is any vertex from R\U . Since R has EP, we can find a vertex y ∈ R\ (U ∪V ) such that y is connected

to every vertex in U and not to x.

We want a proper colouring of R, so we need a new colour, which is not one of the k colours already used,

with which to colour y.

Hence R is not k-colourable.

Remark 2.3.2. A k-colouring of a graph can also be seen as a partition of the vertices of the graph into k sets.

We can use this to restate Theorem 2.1.8 in the following way. The complete graph, the null graph and R are

the only countably infinite graphs for which any finite colouring contains a monochromatic copy (i.e. consisting

of only one colour) of the original graph.

Now that we know we need infinitely many colours to properly colour R, and that we can find a monochro-

matic copy of R in any finite colouring of R, the next interesting question is, what other monochromatic

configurations can we find in R? Assuming we can use infinitely many colours, and supposing we colour each

vertex a different colour, then the only configurations we will get are single vertices, which are not very inter-

esting. So let’s rephrase this question also. What monochromatic configurations can we find in R using only

finitely many colours? As it turns out, we can find a monochromatic copy of any finite or countably infinite

graph. This is due to Theorem 2.1.7 and Theorem 2.1.6. Using only finitely many colours is the same as

partitioning the vertices of R into finitely many sets. We know from Theorem 2.1.7 that at least one of the

cells of the partition will be isomorphic to R. This gives us a monochromatic copy of R. Next, Theorem 2.1.6

tells us that any finite or countably infinite graph is an induced subgraph of R, and so we have monochromatic

copies of every finite or countably infinite graph.

We summarise this discussion with the following proposition.

Proposition 2.3.3. 1. Any k-colouring of R, with k ∈ N, will contain a monochromatic copy of R as an

induced subgraph.

2. Given a finite or countably infinite graph G, there is a k-colouring of R, with k ∈ N, that contains a

monochromatic copy of G as an induced subgraph.
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CHAPTER 2. THE GRASSLANDS OF GRAPH THEORY

The next thing we consider when colouring a graph is the edges. An edge-colouring is a mapping from the

edges of the graph to a set of colours, i.e. c : E → C is an edge-colouring and C is a set of colours. We give an

illustration of this concept.

(a) A graph G

1

2

23

3

1 2

1

(b) A colouring E → {1, 2, 3}

(c) A colouring V →{•,•,•,•}

Figure 2.7: Edge-colourings of a graph

Like for vertices, we will be looking at proper edge-colourings of graphs. A proper edge-colouring of a graph

will be one where no two edges that share a vertex have the same colour. So Fig. 2.7c is an example of a proper

edge-colouring of G.

It is natural to ask the same types of questions for edge-colourings, as vertex-colourings. We skip the

formulation of these questions and just give the results.

Proposition 2.3.4. R is not k-edge-colourable for any k ∈ N, i.e. it is not possible to properly colour the edges

of R using at most k colours.

Proof. Let U = {u} and V = {v}. From Proposition 2.1.1 there are infinitely many witnesses to EP for U and

V and for each of these witnesses, the edge connecting u and the witness will need to be a different colour.

Hence we need infinitely many colours.

Now for the monochromatic configurations (configurations with all the edges coloured with the same colour),

we use Ramsey theory to show that we have a monochromatic complete graph on m vertices, denoted by Km,

for each m ∈ N.

Ramsey’s Theorem (see [Bru10], Theorem 3.3.1, pg. 78)

For all c,m ≥ 2 there is an n ≥ m such that every c-edge-colouring of Kn has a monochromatic copy of

Km.

Fix an m ∈ N with m ≥ 2. Since 2,m ≥ 2 we now have from Ramsey’s Theorem that there is an n ≥ m

such that every 2-edge-colouring of Kn has a monochromatic copy of Km. In particular we can find, for this n,

a copy of Kn in R with a specific 2-edge-colouring. And so we will also have a monochromatic copy of Km in

R. Since each finite graph on m vertices is an induced subraph of Km, and this holds for each m ∈ N, we have

a monochromatic copy of every finite graph in R.

If we consider a colouring of the edges of R with finitely many colours, there need not be a monochromatic

copy of R ([EHP75]), but in [PS96] it is shown that there is a copy of R containing at most two of the colours.

The next proposition sums up this discussion.

Proposition 2.3.5. 1. (see [PS96], pg. 509) Any k-edge-colouring of R contains a copy of R of which the

edges are coloured using at most two of the colours, as an induced subgraph.
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CHAPTER 2. THE GRASSLANDS OF GRAPH THEORY

2. Given a finite graph G, there is a k-edge-colouring of R that contains a monochromatic copy of G as an

induced subgraph.

2.4 The never ending story:

The non-fractal nature of the Rado graph

If we find ourselves with a desire that nothing

in this world can satisfy, the most probable

explanation is that we were made for another

world.

C.S. Lewis

Fractals occur everywhere in nature. Yes, even here in the grasslands which we are exploring we will see

fractals. By now we know R quite well. We have seen that it is self-similar in nature, and therefore expect it

to be fractal. We will show that it is not. We will then define what it means for a graph to be self-similar in

order to try and retain this aspect of R. Unfortunately, we will see that R is also not self-similar, at least not

in the sense that we want it to be.

We need the idea of a lexicographic product of graphs. Let G and H be any graphs. Then the lexicographic

product of H by G, denoted H ◦G, is the graph with vertex set V (H)×V (G) and vertices (h1, g1) and (h2, g2)

are connected iff either

1. h1 ∼ h2 or

2. h1 = h2 and g1 ∼ g2.

In layman’s terms, when taking the lexicographic product of H by G we replace each vertex in H with a copy

of G and we add all the possible edges between two copies exactly when the vertices of H were connected. Here

we give an illustration.

H G

=

Figure 2.8: The lexicographic product of H by G

Definition 2.4.1 (Fractal graph, see [IW19] pg. 53). A graph G is fractal if G ∼= H ◦G for some graph H

having at least two vertices.

Let’s see if R is fractal. Let H be any graph with at least two vertices and consider H ◦R. For this product

to be isomorphic to R it must be countably infinite and satisfy EP.

So we pick H such that H ◦R is countably infinite. All we need to do now is check that EP is satisfied and

then we will be able to strike again with the mighty Aficionado.

There are a few cases to consider when looking for a witness for sets U and V in this lexicographic product of

H by R. At this point some excited members of the hunting party have already begun to consider the different

cases. We will not be going down each of these paths. Instead we are only going to follow the one which is

meaningful to our journey.
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CHAPTER 2. THE GRASSLANDS OF GRAPH THEORY

If two vertices of H are connected, this means that the corresponding copies of R in H ◦R will be connected.

So any x from the one copy of R will be connected to all other vertices from the other copy of R. In this case

there are too many edges to find a witness for EP.

If two vertices of H are not connected, then the corrsponding copies of R in H ◦R will not be connected.

Now any x from the one copy of R will have no edges connecting it to any vertex from the other copy of R. In

this case there are too few edges to find a witness for EP.

Let’s formalise this discussion.

Proposition 2.4.2. R is not a fractal graph.

Proof. Let H be countable. Then H ◦R will be countably infinite.

Given any two vertices a and b of H, let R1 and R2 be the copies of R with which we replace the two

given vertices. Take U to be the set containing u1 ∈ R1 and u2 ∈ R2 and take V to be the set containing

v1 ∈ R1 \ {u1} and v2 ∈ R2 \ {u2}.

Suppose that a ∼ b in H: then R1 is connected to R2 meaning that every vertex of R1 is connected to every

vertex of R2. If x witnesses EP for U and V in H ◦R then x ̸∈ R1 otherwise x ∼ v2. Also, x ̸∈ R2 otherwise

x ∼ v1. So x must be in some other copy of R. This copy needs to be connected to both R1 and R2 to ensure

that x ∼ u1 and x ∼ u2. But then we will again have the problem that x ∼ v1 and x ∼ v2. In this case we

won’t be able to find a witness to EP.

Suppose now that a ̸∼ b in H: then there are no edges between R1 and R2. Let x be the required witness,

i.e. x is connected to each vertex of U and no vertex in V . If x ∈ R1 then x ̸∼ u2, so this cannot be the case.

If x ∈ R2 then x ̸∼ u1, so this is also not the case. If x is in any other copy of R then we want this copy to

be connected to both R1 and R2 so that x ∼ u1 and x ∼ u2. But then we also have that x ∼ v1 and x ∼ v2.

Again we are not able to find a witness to EP.

This shows that EP is not satisfied in H ◦R and hence that R is not fractal.

Our enemy has managed to elude us once again. We pace up and down, thinking, how did we fall for this

trap? Utterly convinced of its self-similar nature, and partly because we like using Aficionado, we try to find a

new way of showing that R has fractal properties.

When looking at the proof for Proposition 2.4.2, we see that the original lexicographic product is creating

too many edges for our witness. We try to get rid of these undesired edges by defining a weak lexicographical

product. For graphs G and H the weak lexicographical product, H⋄G, is the graph with vertex set V (H)×V (G)

and vertices (h1, g1) and (h2, g2) are connected iff either

1. h1 ∼ h2 and g1 ∼ g2 or

2. h1 = h2 and g1 ∼ g2.

We give an illustration to show how this differs from the lexicographic product.

H

⋄

G

=

Figure 2.9: The weak lexicographic product of H by G

We introduce the notion of a self-similar graph.

Definition 2.4.3 (Self-similar graph). A graph G is said to be self-similar if there is a graph H with at least

two vertices such that G ∼= H ⋄G.
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CHAPTER 2. THE GRASSLANDS OF GRAPH THEORY

We now have a hope to capture the self-similar nature of R.

Let H be countable so that H ⋄R is countable. To check if EP is satisfied there are many cases for U and

V which we need to consider. We will only look at those cases which are meaningful.

Let U = {(a, r), (b, s)} and V = {(b, r)}. Now, if (x, y) witnesses EP then it is incident with both (a, r) and

(b, s). From this, and the definition of ⋄, we are in one of the following cases.

1. Either x = a and y ∼ r and x = b and y ∼ s or

2. x = a and y ∼ r and x ∼ b and y ∼ s or

3. x ∼ a and y ∼ r and x = b and y ∼ s or

4. x ∼ a and y ∼ r and x ∼ b and y ∼ s.

In cases 1 and 3 we have x = b and y ∼ r which implies that (x, y) is connected to (b, r). In cases 2 and 4 we

have x ∼ b and y ∼ r, so (x, y) is connected to (b, r). This shows that there is no witness to EP for U and V .

We thus have another woeful result.

Proposition 2.4.4. R is not self-similar.

And so the beast evades us again. Even with this weaker version of the lexicographical product, the conditions

under which we connect vertices are still too strict. An easy way to fix this would be to connect vertices (h1, g1)

and (h2, g2) of the new graph independently with probability 1
2 whenever h1 ∼ h2, or if h1 = h2 and g1 ∼ g2.

We can then verify that EP is satisfied using probability, as we did in Chapter 1, when we verified that R

satisfies EP. This means that if we take a countable graph H, and replace each vertex of H with a copy of R,

and then randomly connect the vertices of the copies corresponding to the connected vertices in H, we get a

graph which is isomorphic to R. This process boils down to the way in which we constructed R to begin with,

and so we don’t really get anything new from this.

We conclude this section with the following idea. R is “fractal” in the sense that when we zoom in on it,

we find copies of R. This is demonstrated in Theorem 2.1.7. But R is not fractal (as defined in this section) in

that when we zoom out, we don’t find copies of R.

This brings an end to our journey in the grasslands.
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Chapter 3

The Algebraic Alps

Our fate lives within us; you only have to be

brave enough to see it.

Merida

Brave

We now enter the realm of algebra. Though there are many things we could possibly discuss, we will only

focus on the automorphisms and ultrahomogeneity of R.

3.1 Another weapon:

The ultrahomogeneity of the Rado graph

Before reading any further it is important that we are in agreement about what automorphisms and iso-

morphisms are. Intuitively, isomorphisms are structure preserving mappings. So if a structure M has certain

properties and gets mapped to N through an isomorphism, then N will also have these properties. Now an

automorphism is an isomorphism from a structure to itself. In other words, an automorphism scrambles the

elements of a structure without having any effect on the properties of the structure. Readers who wish to see a

more detailed account of these mappings are referred to Appendix A.4.

We have seen in the previous chapter that R has a certain level of indestructibility. Internal changes do not

affect the beast’s appearance. In this section we explore these internal changes in more depth.

We introduce the following concept from model theory, stated in terms of graphs.

Definition 3.1.1 (Ultrahomogeneous, see [Rot00] pg. 135). A graph G is ultrahomogeneous if every iso-

morphism between finite induced subgraphs of G can be extended to an automorphism of G.

We can now state the following, somewhat unsurprising, result.

Proposition 3.1.2 (see [Cam13], Proposition 9, pg. 7). R is ultrahomogeneous.

We have sort of already seen the proof of this. Remember the back-forth-argument we used to prove

Theorem 1.1.3? We use the same argument here, with a few minor tweaks.

Proof. Consider two enumerations of the vertices of R, {a1, a2, . . . } and {b1, b2, . . . }.

Let f be any isomorphism between finite induced subgraphs A and B of R, i.e. f : A ∼= B with

V (A) := {a′1, . . . , a′n−1} and V (B) := {b′1, . . . , b′n−1} for some n ∈ N such that f(a′i) = b′i. We want to extend f

to an automorphism of R.
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CHAPTER 3. THE ALGEBRAIC ALPS

If n is even: let a′n be aj where j is the smallest index such that aj /∈ A. Take U := A ∩ {Neighbours of aj}
and V := A ∩ {Non-neighbours of aj}. Clearly U ∩ V = ∅ and so we will have that f [U ] and f [V ] are finite

disjoint subsets of R. Since R satisfies EP there is a b ∈ R \ (f [U ]∪ f [V ]) such that b ∼ f [U ] and b ̸∼ f [V ]. So

we extend f by letting f(a′n) = b.

If n is odd: let b′n be bj with j is the smallest index such that bj /∈ B. We take U := B ∩ {Neighbours of bj}
and V := B ∩ {Non-neighbours of bj} and so U ∩ V = ∅. It now follows that f−1[U ] and f−1[V ] are finite

disjoint subsets of R and since R satisfies EP there exists a ∈ R \ (f−1[U ]∪ f−1[V ]) such that a ∼ f−1[U ] and

a ̸∼ f−1[V ]. So we extend f by letting f−1(b′n) = a.

This alternating method of extending f will exhaust R and so we end up with a bijective map f : ai 7→ bi,

which will be a homomorphism. This shows that f : R ∼= R and so we have the required automorphism.

The ultrahomogeneity of R will prove to be a very useful weapon for our adventure. The following illustrates

how powerful it can be.

Definition 3.1.3 (Vertex-transitive, see [Die00] pg. 50). A graph, G, is vertex-transitive if for any g1, g2 ∈ G

there is an automorphism that maps g1 to g2.

Proposition 3.1.4. R is vertex-transitive.

Proof. Let a and b be any two vertices of R and consider the induced subgraphs with vertex sets {a} and {b}
respectively. It is easy to find an isomorphism between these two graphs. It now follows from Proposition 3.1.2

that this isomorphism can be extended to an automorphism of R.

This can be done for any two vertices of R, and so we have the result.

3.2 Treasures in the mountainside:

Some results about the automorphisms of the Rado graph

We dig up diamonds by the score

A thousand rubies, sometimes more

Dwarfs

Snow White and The Seven Dwarfs (movie)

We have only scratched the surface of the mine in the previous section. We now delve deeper into the

mountains and hope to find something valuable. We will state most of the results in this section without proof,

since this is not our main focus, and we use [Pin10] as a guide for some basic concepts.

The most common example of a binary operation is perhaps addition. Intuitively we know that a binary

operation takes two numbers of a set and combines them into a new number of the same set. We define this in

terms of arbitrary sets.

Definition 3.2.1 (Binary operation, see [Pin10] pg. 19). A binary operation on a set A is a rule which

assigns to every (a, b) ∈ A×A a unique element in A which we denote as a ∗ b.

Binary operations may have various properties.

A binary operation on a set G is called associative if

a ∗ (b ∗ c) = (a ∗ b) ∗ c
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CHAPTER 3. THE ALGEBRAIC ALPS

for all elements a, b and c from G. An element e ∈ G such that

a ∗ e = a = e ∗ a

for all a from G, is called an identity element with respect to ∗. In this case, an element b ∈ G such that

a ∗ b = e = b ∗ a

is called an inverse of a under ∗. Inverses, if they exist, are unique. We will write a−1 to denote the inverse of

a.

Definition 3.2.2 (Group, see [Pin10] pg. 25). Let G be a set and ∗ be a binary operation on G such that

1. ∗ is associative,

2. there is an element of G which is an identity element with respect to ∗ and,

3. every element of G has an inverse in G under ∗.
Then the pair ⟨G, ∗⟩ is a group.

We will often leave out the operation when it is clear from the context and just write G instead of ⟨G, ∗⟩.
Consider Aut(R), the set of all automorphism of R. This set forms a group under function composition.

Proposition 3.2.3 (see [Cam13], Proposition 13, pg. 12). |Aut(R)| = 2ℵ0 .

Remark 3.2.4. The fact that there are continuum many automorphsims of R follows easily from the fact that

R is countably infinite and resplendent (see Theorem 4.6.2), but we will only discuss resplendence in the next

chapter.

We review some more algebra before going forward.

Definition 3.2.5 (Subgroup, see [Pin10] pg. 44). Let ⟨G, ∗⟩ be a group and let S be a nonempty subset of G.

If both

1. a ∗ b ∈ S for all a, b ∈ S (S is closed w.r.t. ∗) and

2. a−1 ∈ S for all a ∈ S (S is closed w.r.t. inverses under ∗),
then ⟨S, ∗⟩ is a subgroup of ⟨G, ∗⟩.

Again, if the context is clear then we will just say that S is a subgroup of G without writing out the binary

operation explicitly.

Definition 3.2.6 (Normal subgroup, see [Pin10] pg. 140). Let G be a group and H be a subgroup of G. We

say H is a normal subgroup of G if for any a ∈ H and b ∈ G we have that b ∗ a ∗ b−1 ∈ H.

Remark 3.2.7. The element b∗a∗ b−1 is called the conjugate of a and so we can say that a subgroup is normal

if it is closed with respect to conjugates.

Definition 3.2.8 (Simple group, see [Wil09] pg. 17). A group G is called simple if the only normal subgroups

of G are the trivial group (consisting only of the identity element), and G itself.

Proposition 3.2.9 (see [Cam13], Theorem 8, pg. 12). Aut(R) is simple.

We conclude this section with the following nice result. The proof and other content needed for the proof

are located too deep in the mine for our adventure to continue there.

Proposition 3.2.10 (see [Cam05]). Let G be an ultrahomogeneous graph with |G| < 2ℵ0 and Aut(G) ∼= Aut(R).

Then G ∼= R.
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Chapter 4

The Marshes of Model Theory

I can’t think of any better representation of

beauty than someone who is unafraid to be

herself.

Emma Stone

Our journey has brought us to model theory. This will be the longest part of our adventure so far. Sometimes

it will feel like we are walking on solid ground, other times we might feel like we are basically swimming through

the wetlands, but so long as we don’t get stuck in the mud and reeds, we will discover many secrets about our

beast. Basic notions of model theory, as presented by [Rot00], can be found in Appendix A, and are stated

where needed throughout this chapter.

4.1 Basic instincts:

The first-order theory of the Rado graph

Consider a signature with no constant symbols, no function symbols and only the relation symbol ∼, as

introduced in Chapter 1, meaning “is connected to”. So x ∼ y reads x is connected to y. It is quite obvious that

R is a structure of this signature, or of the language L(∼). In due course we will see that our beast, studied as

a structure, has many interesting properties.

The first thing we look at is the beast’s most basic rules.

Definition 4.1.1 (Theory of, see [Rot00] pg. 33). Let K be a class of L-structures. The L-theory, or just

theory of K is the the set of L-sentences which are true in all nonempty structures from K, and we denote this

set by Th(K).

We will write ThM instead of Th({M}).

In particular we have that ThR is the set of all L(∼)-sentences which are true in R. So ThR says everything

about R that there is to say in terms of first-order sentences. We already know that there is a lot to say about

R, that’s the whole point of this adventure, but here in model theory we wonder how we can say everything

that needs to be said, using as few as possible words. Let’s get some terminology out of the way.

Definition 4.1.2 (Consequence, see [Rot00] pg. 28). An L-sentence φ is a consequence of a set of L-sentences

Σ if every model of Σ is also a model of φ. In this case we write Σ |= φ.

Definition 4.1.3 (Deductive closure, see [Rot00] pg. 29). The deductive closure of a set of L-sentences Σ

is the set Σ|= consisting of all consequences of Σ.
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CHAPTER 4. THE MARSHES OF MODEL THEORY

In case Σ = Σ|= we say that Σ is deductively closed.

Definition 4.1.4 (Contradiction, see [Rot00] pg. 31). An L-sentence of the form φ ∧ ¬φ is called a contra-

diction.

Definition 4.1.5 (Consistency, see [Rot00] pg.31). A set of L-sentences Σ is consistent if Σ|= contains no

contradictions. Otherwise Σ is inconsistent.

Definition 4.1.6 (L-theory, see [Rot00] pg. 32). A deductively closed and consistent set of L-sentences is

called an L-theory.

You might be asking yourself if ThR is an L-theory in the sense of Definition 4.1.6. The answer is, yes.

Let’s check this. It follows easily enough from the definition of consequence that ThR is deductively closed.

Consistency follows from the fact that R cannot model both φ and ¬φ.

Definition 4.1.7 (Axiomatize, see [Rot00] pg. 34). An L-theory T is axiomatized by a set of L-sentences,

Σ, if Σ ⊆ T ⊆ Σ|=.

Remark 4.1.8. Σ axiomatizes T exactly when the class of models of Σ and the class of models of T are the

same, or equivalently, when Σ|= = T .

We want to axiomatize ThR, thereby “summing up” the theory of R. There are, in effect, two major points

that we need to cover. We need to say that R “is countably infinite” and “satisfies EP”. This guides us as to

what L(∼)-sentences we need to include in our axiomatization.

Let’s get the technical detail out of the way first. We need

(∀x, y)((x ∼ y) → (x ̸= y))

to say that ∼ is not reflexive, i.e. there are no loops. Then we need

(∀x, y)((x ∼ y) → (y ∼ x))

for the symmetry of ∼. Now for the countably infinite part we need, for each n ∈ N, a sentence

ξn := (∃x1, . . . , xn)

(∧
i̸=j

xi ̸= xj

)

saying that there are at least n distinct points. And finally we need, for each m,n ∈ N, an extension axiom

φm,n := (∀x1, . . . , xm, y1, . . . , yn)

(( ∧
∀i,∀j

xi ̸= yj

)
→ (∃z)

((∧
∀i

z ∼ xi

)
∧

(∧
∀j

z ̸= yj ∧ z ̸∼ yj

)))

which ensures that EP is satisfied.

We collect all these axioms in the set ΣR. The question now is, can we get away with fewer axioms? Can

we possibly use only a finite number of axioms?

Well, we can do away with the ξn’s and just use (∃x, y)(x ̸= y). This means that there are at least two

distinct vertices. The rest is taken care of by the extension axioms. To see this, take φ1,1, which implies the

existence a z different from both x and y. So we have at least three distinct vertices. Now take φ2,1, which

implies the existence of a z′, different from x, y and z, i.e. we have at least four distinct vertices. We can

continue in this way to find at least n vertices for each n ∈ N, giving a countably infinite amount of vertices.
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CHAPTER 4. THE MARSHES OF MODEL THEORY

All that’s left for us to possibly get rid of now is some of the extension axioms. Suppose that we could

get away with only using finitely many of the φm,n’s. In this case we will be able to find the largest indices,

say n1 and m1, for which φm1,n1
is part of our axiomatization. But then we have no guarantee that EP will

be satisfied for sets of cardinality n1 + 1 and m1 + 1 respectively. It is entirely possible to find a model of

ΣR \ {φm,n : m > m1, n > n1} that does not model φm1,n1 . The details of this will become clear in Section 5.2.

So excluding some of our extension axioms won’t do the trick.

The question remains, can we axiomatize ThR with finitely many L(∼)-sentences? You might be thinking,

didn’t ΣR and the fact that we need all the φm,n’s answer this question already? Technically, yes, but we

need to do a bit more to back this argument. There might be another axiomatization of ThR, different to ΣR,

consisting of only finitely many axioms.

We now give the necessary results to see that this is not the case.

Theorem 4.1.9 (Compactness Theorem1, see [Hod93], Theorem 6.1.1, pg. 265). Let T be an L-theory. T

has a model iff every finite subset of T has a model.

Corollary 4.1.10 (see [Rot00], Corollary 4.3.3, pg. 47). Let Σ be a set of L-sentences. Every consequence of

Σ is a consequence of some finite subset of Σ.

Definition 4.1.11 (Finitely axiomatizable, see [Rot00] pg. 34). An L-theory is finitely axiomatizable if it

can be axiomatized by a finite set of L-sentences.

Proposition 4.1.12 (see [Rot00], Exercise 4.3.2, pg. 47). If a set of L-sentences Σ, axiomatizes a finitely

axiomatizable L-theory T , then T is axiomatized by a finite subset of Σ.

Proof. Suppose that T is axiomatized by Σ and a finite set ∆.

Let φ be the conjunction of all the sentences from ∆, and M be any model of Σ. Then M is a model of T

which implies that M would also be a model of ∆ and hence a model of φ. This shows that every model of Σ is

also a model of φ and we have that Σ |= φ. It now follows from Corollary 4.1.10 that there is some finite subset

of Σ, say A, such that A |= φ. We will show that A and T have the same models, i.e. that A axiomatizes T .

To see that all models of A are models of T , let M be any model of A. Then M is a model of φ and hence

a model of ∆. So M is a model of T .

Next we show that every model of T is a model of A. Suppose on the contrary that there is an M |= T such

that M ̸|= A. Then there is some sentence ψ ∈ A such that M ̸|= ψ. Since A ⊆ Σ we now have ψ ∈ Σ with

M ̸|= ψ, so M ̸|= Σ. This is a contradiction since M |= T and Σ axiomatizes T .

This shows that A and T have the same models. In conclusion A axiomatizes T and A is a finite subset of

Σ, as required.

This then answers our question. No, we cannot axiomatize ThR with finitely many L(∼)-sentences. If it

were possible, then according to Proposition 4.1.12, we would have been able to do so with a finite subset of

ΣR, but we know having only finitely many of the φm,n’s won’t do. We bring this discussion together with the

following result.

Proposition 4.1.13. ThR is not finitely axiomatizable.

We might not be able to cut down on the number of axioms we use, but maybe we can say something about

the form they take on.

Every L-formula φ, is logically equivalent to a formula in the same free variables of the from Q1x1 . . . Qnxnψ,

where the Qi’s are quantifiers, i.e. ∀ or ∃, and ψ is quantifier free. If ∀ does not occur in ψ then φ is called an

1This is sometimes called the Finiteness Theorem.
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CHAPTER 4. THE MARSHES OF MODEL THEORY

existential or ∃-formula. If ∃ does not occur in ψ then φ is called an universal or ∀-formula. We denote the

classes of such formulas by ∃ and ∀ respectively.

Now, for an arbitrary set of L-formulas, ∆, we say that an L-theory T is a ∆-theory if it can be axiomatized

using only sentences from ∆.

We investigate whether or not ThR is an ∀-theory or an ∃-theory. The easiest way to check this is to use

preservation theorems. We remind ourselves of some needed model theoretic concepts.

We say that an L-theory, T , is preserved in substructures if M |= T implies N |= T for all nonempty

L-structures N ⊆ M. If N |= T implies M |= T for all nonempty L-structures N ⊆ M then we say that T is

preserved in extensions.

Theorem 4.1.14 ( Loś-Tarski Preservation Theorem, see [Rot00] pg. 74). A theory is an ∀-theory iff it is

preserved in substructures.

Theorem 4.1.15 ( Loś Preservation Theorem, see [Rot00] pg. 75). A theory is an ∃-theory iff it is preserved

in extensions.

Let’s check now if ThR is an ∀-theory or an ∃-theory.

We know from Theorem 2.1.6 that any finite graph is a substructure of R. Let M ⊆ R with |M| = n. Then

the sentence, say ξn+1 ∈ ThR, expressing that there are at least n+ 1 elements will not be satisfied in M, i.e.

we have R |= ξn+1 but M ̸|= ξn+1. This shows that ThR is not preserved in substructures and hence is not an

∀-theory.

Consider the graph, N , resulting from adding a vertex and no edges to R. Clearly R ⊆ N and N will not

satisfy EP. This means that the φm,n’s are not satisfied in N and so we have R |= φm,n but N ̸|= φm,n for each

m,n. This shows that ThR is not preserved in extensions and hence is not an ∃-theory.

This gives us the following result.

Proposition 4.1.16. ThR is neither an ∀-theory nor an ∃-theory.

The beast’s theory is as elusive as the beast. We might not have been able to finitely axiomatize ThR or

axiomatize ThR using only ∃- or ∀-sentences, but we can still say other things about ThR. We do this in the

next section.

4.2 Putting an end to quantifiers:

Quantifier elimination and the implications thereof

To know your enemy, you must become your

enemy.

Sun Tzu

Definition 4.2.1 (Elimination, see [Rot00] pg. 127). Let ∆ be a set of L-formulas and T an L-theory. Then

T admits elimination up to formulas in ∆ if for every L-formula φ there is δ ∈ ∆ such that T |= ∀x̄(φ ↔ δ).

In this case we say that T has ∆-elimination.

When we speak of quantifier-free formulas, we mean exactly what we say, a formula without any quantifiers.

We denote the class containing all such formulas by qf .

Note that any boolean combination of atomic formulas, i.e. formed using only ¬ and ∧, will be a qf formula.

Remark 4.2.2. It might seem that ∧ and ¬ are too few symbols to work with, but remember that
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CHAPTER 4. THE MARSHES OF MODEL THEORY

1. φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ),

2. φ→ ψ ≡ ¬φ ∨ ψ and

3. φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ).

Definition 4.2.3 (Quantifier elimination, see [Rot00] pg. 130). An L-theory has quantifier elimination if

it admits elimination up to formulas in qf .

We want to show that ThR has quantifier elimination. This can be done directly via induction, but we opt

for the more interesting indirect way. To this end we introduce some other nice properties of ThR.

Definition 4.2.4 (Categorical, see [Rot00] pg. 122). Let κ be a cardinal. An L-theory T is κ-categorical if

it has, up to isomorphism, exactly one model of power κ.

Proposition 4.2.5. ThR is ℵ0-categorical.

We have actually seen this argument already, without labelling the outcome. We give the argument again.

Proof. Let M and N be any two countably infinite models of ThR. They will both satisfy EP and so by

Aficionado we have that both M ∼= R and N ∼= R, hence M ∼= N , which is the required result.

Definition 4.2.6 (Complete theory, see [Rot00] pg. 36). We call an L-theory T complete if for every

L-sentence φ, either φ ∈ T or ¬φ ∈ T .

The next result follows from a more general statement about first-order theories in [Gai64] (see pg. 16).

Theorem 4.2.7. ThR is complete.

We can show that ThR is complete in a number of ways. We will discuss three proofs for the completeness

of ThR. We need the following results.

Definition 4.2.8 (Elementary substructure, see [Rot00] pg. 115). Let M and N be L-structures and ∆ be

an arbitrary set of L-formulas. If M ⊆ N , and for all φ ∈ ∆ ∩ L and matching tuples ā from M we have that

N |= φ(ā) if and only if M |= φ(ā), then we write M ≼∆ N .

If L = ∆ then we write M ≼ N or N ≽ M and say that M is an elementary substructure of N or N is

an elementary extension of M.

Theorem 4.2.9 (Downward Löwenheim-Skolem Theorem, see [Rot00], Theorem 8.4.1, pg. 119). Every

infinite L-structure has an elementary substructure of power ≤ |L|.

Proof 1 of Theorem 4.2.7. We know that any model of ThR will have to satisfy each extension axiom and hence

will be infinite.2

Suppose on the contrary that ThR is not complete. Then there is an L-sentence, say φ, and models M and

N of ThR with M |= φ and N |= ¬φ. Since both M and N are infinite, it follows from Theorem 4.2.9 that

there are countable models M′ and N ′ of ThR such that M′ |= φ and N ′ |= ¬φ. But from the ℵ0-categoricity

of ThR (Proposition 4.2.5) M′ and N ′ must be isomorphic, a contradiction.

Hence ThR must be complete.

The next way of proving that ThR is complete is similar to what we have just done.

Theorem 4.2.10 ( Loś-Vaught Test, see [Rot00], Theorem 8.5.1, pg. 123). A categorical theory has no finite

models iff it is complete.

2This was discussed in the previous section.
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CHAPTER 4. THE MARSHES OF MODEL THEORY

The proof of this uses the Downward Löwenheim-Skolem Theorem. In effect, our first proof was just a

specific case of this more general result.

Proof 2 of Theorem 4.2.7. ThR is categorical and has no finite models. Hence from Theorem 4.2.10 it is

complete.

Before we give the final proof of the completeness of ThR, we return to the subject of quantifier elimination.

Theorem 4.2.11 (see [Rot00], Exercise 9.2.4, pg. 136). Let T be a κ-categorical and complete L-theory with

κ ≥ |L|. If the (up to isomorphism) model of T of power κ is ultrahomogeneous, then T has quantifier elimina-

tion.

We need some additional terminology and results to prove Theorem 4.2.11.

Definition 4.2.12 (Diagram, see [Rot00] pg. 69). The diagram of an L-structure M is the set of all L(M)-

literals that are also sentences and that are true in M. We denote this set by D(M).

Definition 4.2.13 (Substructure-complete, see [Rot00] pg. 131). Let K be the class of all L-structures.

Then an L-theory T is said to be substructure-complete if, for every M |= T and every N ⊆ M with N ∈ K,

the deductive closure of T ∪D(N ) is a complete L(N)-theory.

Theorem 4.2.14 (see [Rot00], Theorem 9.2.2, pg. 133). An L-theory admits quantifier elimination iff it is

substructure-complete.

Theorem 4.2.15 (Upward Löwenheim-Skolem Theorem, see [Rot00], Theorem 8.4.3, pg. 120). Every

infinite L-structure, M, has an elementary extension of power ≥ |L| + |M |.

Proof of Theorem 4.2.11. Let T be an L-theory which is κ-categorical and complete with κ ≥ |L|. Let M and

N be any two models of T with a joint substructure A. If we can show that (M, A) ≡ (N , A), this implies that

any two models of T ∪D(A) are elementarily equivalent, so we will have that T is substructure complete, by

Proposition 4.2.19. Hence T will also have quantifier elimination by Theorem 4.2.14.

Since T is categorical and complete, it follows from the  Loś-Vaught Test (Theorem 4.2.10) that T has no

finite models. We therefore have that both M and N are infinite L-structures. In the case where |M| ≥ κ we

can use the Downward Löwenheim-Skolem Theorem (Theorem 4.2.9) to find M0 ≼ M with |M0| = κ. In the

case where |M| ≤ κ we can use teh Upward Löwenheim-Skolem Theorem (Theorem 4.2.15) to find M ≼ M0

with |M0| = κ. In both these cases we will have that (M, A) ≡ (M0, A). Similarly, we can find N0 of power κ

which is an elementary substructure or extension of N and (N , A) ≡ (N0, A).

Now since T is κ-categorical we have that M0 is isomorphic to N0 and we will have that (M0, A) ≡ (N0, A) iff

(M0, A0) ≡ (N0, A0) for every finite A0 ⊆ A. But we have that the model of T of power κ is ultrahomogeneous,

i.e. M0
∼= N0 is ultrahomogeneous and so (M0, A0) ∼= (N0, A0), which implies the latter.

In conclusion, (M, A) ≡ (M0, A) ≡ (N0, A) ≡ (N , A), which is the required result.

Gaifman introduced a way to eliminate quantifiers (see [Gai64], pg. 17) from which we can obtain the

following result. Our proof, however, does not follow that of Gaifman.

Theorem 4.2.16. ThR admits quantifier elimination.

Proof. We have from Theorem 4.2.7 and Proposition 4.2.5 that ThR is complete and ℵ0-categorical. We also

have from Proposition 3.1.2 that R is ultrahomogeneous, hence from Theorem 4.2.11 we have that ThR admits

quantifier elimination.

We are getting closer to the third proof that ThR is complete.
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Definition 4.2.17 (Elementarily equivalent, see [Rot00] pg. 69). Two L-structures M and N are elemen-

tarily equivalent, denoted M ≡ N , if M |= φ iff N |= φ for all L-sentences φ.

This is the same as saying that ThM = ThN .

We use the following lemma without proof. Hunters who wish to see the detail are referred to [Rot00]’s

guide.

Lemma 4.2.18 (see [Rot00], Lemma 3.5.1, pg. 36). Let T be any L-theory. The following are equivalent.

1. T is complete.

2. T = ThM for all M |= T .

Proposition 4.2.19 (see [Rot00], Proposition 8.1.2, pg 112). An L-theory T is complete iff all its models are

elementarily equivalent.

Proof. For the forward implication, let T be a complete L-theory. Then for any M |= T we have by Lemma 4.2.18

that T = ThM. Hence for any two models M and N of T we have ThM = T = ThN , which means that M
and N are elementarily equivalent.

For the converse, suppose that T is not complete. Then for any M |= T we have that T ⊊ ThM, so there

is a φ ∈ ThM\ T . Then T ̸|= φ and T ∪ {¬φ} will be consistent, and hence have a model, say N of T such

that N |= ¬φ. So we have two models of T which are not elementarily equivalent.

This proves the result.

Proof 3 of Theorem 4.2.7. Since our language, L(∼), is a language without constants, one can easily verify that

we cannot form any atomic sentences. The only atomic, or quantifier free sentences, by convention, are then ⊥
and ⊤. Since quantifier free sentences are just boolean combinations of atomic sentences, this means that all

quantifier free sentences are logically equivalent to ⊥ or ⊤. But ⊤ is true in every structure and ⊥ is true in

none.

Now since ThR admits quantifier elimination, this means that every L(∼)-sentence is ThR-equivalent to

a quantifier free sentence which, by the argument above, is logically equivalent to ⊥ or ⊤. So for any two

models, M and N of ThR and any L(∼)-sentence φ, we have that M |= φ iff N |= φ, i.e. M ≡ N . Hence by

Proposition 4.2.19 ThR is complete.

This last argument may seem a bit circular, as we originally used the completeness of ThR to show that it

admits quantifier elimination. But this can also be proved directly as mentioned, via induction, so there is no

danger of being circular.

We mention one more thing about ThR.

Definition 4.2.20 (Decidable, see [EFT94] pg. 145). Given an L-theory T , and an L-sentence φ, if there is

an algorithm3 that determines whether or not φ belongs to T , then T is decidable.

Theorem 4.2.21 (see [EFT94], Theorem 6.5, pg. 166). Every complete axiomatizable L-theory is decidable.

Theorem 4.2.22. ThR is decidable.

Proof. This follows from Theorem 4.2.21 and the fact that ThR is axiomatizable (discussed in the previous

section) and complete (Theorem 4.2.7).

3Refer to Appendix B for more on this.
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4.3 Rado’s type:

The n-types of the Rado graph

In this section we will discuss the types of R, and by types we do not mean love interests. This is probably

obvious; that we will be discussing mathematical concepts instead of love, but at some point of a mathematician’s

life the line between the two does get a bit blurry. One can easily go on about how it first caught your attention

and how it drew you in closer with each satisfying solution or each rigorous argument and don’t let me mention

the marvellous proofs . . . Let’s not get distracted. We introduce some concepts.

Definition 4.3.1 (n-type, see [Rot00] pg. 166). Let M be an L-structure and x̄ and arbitrary n-tuple of

variables. A set Φ(x̄) ⊆ L(M) is an n-type of M if it is simultaneously satisfied by an n-tuple c̄ for some

N ≽ M, that is c̄ ∈ Nn and N |= φ(c̄) for all φ ∈ Φ.

In this case we call c̄ a realization of Φ in N and we may write c̄ |=N Φ. We also say that Φ is realized in

N .

If all the parameters of Φ are contained in a set A ⊆M , then we say that Φ is an n-type of M over A. We

will just say type if the arity need not be specified.

We give an example of this concept.

Example 4.3.2 (see [Rot00] pg. 167). Let M be an infinite structure. Then {x ̸= a : a ∈ M} is a 1-type of

M which is realized in N ≽ M by those elements which are not in M . We can guarantee the existence of such

an N by the Upward  Löwenheim-Skolem Theorem (Theorem 4.2.15).

We can now, if we wanted to, talk about the types of R, but love is complicated so we avoid this conversation

until we have a bit more detail and experience. We will say this however, types describe elements in a way

similar to that in which theories describe models.

Definition 4.3.3 (Complete type, see [Rot00] pg. 169). Let M be an L-structure, x̄ be an arbitrary n-tuple

of variables and A ⊆M . An n-type Φ of M over A is complete if either φ ∈ Φ or ¬φ ∈ Φ for all φ(x̄) ∈ L(A).

Given an n-tuple ā from M the set tpM(ā/A) := {φ(x̄) ∈ L(A) : M |= φ(ā)} is the complete type of ā over

A in M.

If it is clear from the context what structure M we are considering, we will omit the superscript M. Also,

we will write tp(ā) in case A = ∅.

Every n-type of M over A ⊆M is contained in a complete n-type of M over A. To see this we just realize

the type by a tuple ā in some N ≽ M and take tpN (ā/A), which will also be a type of M. This means that

every complete type is of this form.

Definition 4.3.4 (Isolated type, see [Rot00] pg. 175). Let M be an L-structure, x̄ be an arbitrary n-tuple

of variables and A ⊆ M . An n-type Φ of M is isolated over A (respectively principal) if there is φ(x̄) ∈ L(A)

(respectively φ ∈ Φ) satisfiable in M such that M |= ∀x̄(φ→ ψ) for all ψ ∈ Φ.

In this case φ is said to isolate Φ and we write φ ≤M Φ.

Remark 4.3.5. Note that every isolated type of M is realised in M, since M |= ∃x̄φ and φ ≤M Φ (i.e.

M |= ∀x̄(φ→ ψ) for all ψ ∈ Φ) gives a realization of Φ in M.

This implies that R will realize all of its isolated types. But what other types do R realise? We don’t expect

R to realize all of its types, since {x ̸= a : a ∈ R} (like in Example 4.3.2) will not be realized in R, but maybe

we can put some restriction on the amount of parameters we use. This brings us to the next definition.
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Definition 4.3.6 (Saturated, see [Rot00] pg. 185). Let κ be an infinite cardinal and M an L-structure. If

M realizes all of its n-types, for each n, over A ⊆M with |A| < κ, then M is κ-saturated.

We just say saturated if M is |M|-saturated.

From this we gather that R will be saturated if it realizes all of its n-types in finitely many parameters, for

each n.

For an L-theory T , we define a type of T to just be a type (in the sense mentioned above) of some model of

T . We can then use the following result to show that R is saturated.

Proposition 4.3.7 (see [Rot00] pg. 167). Let M |= T . Then every type of M over A ⊆ M can be realised in

some model of T with power ≤ |A| + |L|.

Proposition 4.3.8. R is saturated.

Proof. Clearly any type of R will also be a type of ThR. Now, let A be any finite set of parameters from R.

Then by Proposition 4.3.7 every n-type, say Φ of R can be realized in some countably infinite model, say M of

ThR. That is, there is an n-tuple c̄ from M such that M |= φ(c̄) for each φ ∈ Φ. But from the ℵ0-categoricity

of ThR (Proposition 4.2.5) it follows that f : M ∼= R, and since M |= φ(c̄) for each φ ∈ Φ we have that

R |= φ(f [c̄]) for each φ ∈ Φ. In other words, Φ is realized in R.

This holds for all n-types over a finite set of parameters, and we can therefore say that R is saturated.

Now that we know R realizes all of its n-types (particularly all its complete n-types) in finitely many

parameters, we might ask ourselves, how much is this “all”?

To answer this question we need the following result.

Theorem 4.3.9 (Homogeneity, see [Rot00], Theorem 12.1.1, pg. 186). Let M be a countably infinite saturated

structure and A ⊆ M finite, and ā and b̄ tuples of the same length from M . Then tpM(ā/A) = tpM(b̄/A) iff

there is an automorphism f of M such that f ↾A= idA and f [ā] = b̄.

Since R is countably infinite and saturated we have, from Theorem 4.3.9 that tpR(ā) = tpR(b̄) iff there is

an f ∈ AutR such that f(ā) = b̄. Note that if we restrict f to ā this will give rise to an isomorphism between

the induced subgraphs of ā and b̄ in R. The reverse is also true. From the fact that R is ultrahomogeneous we

are able to extend any isomorphism between the subgraps induced by ā and b̄ to an automorphism of R which

in turn will ensure the equality of the complete types tpR(ā) = tpR(b̄).

So the number of complete n-types will be exactly the number of graphs up to isomorphism on n vertices.

In other words the number of complete n-types depends upon how the vertices in the n-tuple are related to

one another. This is a good illustration of the fact that types describe elements in the same way that theories

describe models.

4.4 Defining moments:

Classifying the definable subgraphs of the Rado graph

There is no king who has not had a slave

amongst his ancestors, and no slave who has

not had a king amongst his.

Helen Keller

In this section we look at what structures we can get from R. We have already seen a bit of this in Chapter

2 in that every countable and every finite graph is an induced subgraph of R. Now we will look at it from a

model theoretic point of view. As usual, we introduce some terminology first.
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Definition 4.4.1 (Definable set, see [Rot00] pg. 26). Let M be an L-structure and φ be an L-formula in n

free variables. The set

φ(M) := {ā ∈Mn : M |= φ(ā)}

is the set defined by φ in M or the solution set of φ in M.

A set A ⊆Mn is definable in M if A = φ(M) for some φ.

Definition 4.4.2 (Parametrically definable, see [Rot00] pg. 27). Let φ(x̄, ȳ) be an L-formula where x̄ is

an n-tuple and ȳ an m-tuple of variables with no variables in common. For c̄ ∈Mm, the formula φ(x̄, c̄) is an

instance of φ(x̄, ȳ). The set

φ(M, c̄) := {ā ∈Mn : M |= φ(ā, c̄)}

is the set defined by φ(x̄, c̄) in M and we call c̄ the parameter tuple.

A set A ⊆Mn is parametrically definable if A = φ(M, c̄) for some c̄ ∈Mm and some φ(x̄, ȳ).

We can now ask two questions. Firstly, what sets can we define in R without any parameters? And what

sets can we define in R with parameters?

The first, most obvious sets we can define are the empty set, by using the formula x ̸= x and R itself, using

x = x.

Defining the most obvious sets are not the aim of the game, so let’s see if we can do something more

interesting. Let’s consider the formula x ∼ y. Then we get the set {(x, y) : x ∼ y in R}, where (x, y) are pairs

of vertices of R. This set is, as it says, just a set and not a structure. We might use it as the universe of a

structure, but for now we will leave it as it is. If we view the ordered pair as a sequence of vertices, this set can

be described as all the walks of length 1 in R.

Now let’s look at x ∼ y∧y ∼ z. In this case we get a set of ordered triples (x, y, z) of vertices from R, which

we can again view as a sequence of vertices to get all the walks of length 2 in R. In a similar fashion, we can use

φ := x0 ∼ x1 ∧ · · · ∧ xn−1 ∼ xn to define the set containing all walks of length n. Considering φ ∧ x0 ̸= xn we

get the set containing all open walks and φ∧ x0 = xn gives all closed walks. We can also take φ∧
∧

i̸=j xi ̸= xj

to get all paths of length n. As interesting goes, this does not quite hit the mark.

Remark 4.4.3. Note that whenever we use a formula in n free variables to define a set in R, then this set

will contain ordered n-tuples. To turn this set into a graph we will first have to define a relation. We are not

interested in doing this. For this reason we will from now on only focus on what we can define with formulas in

only one free variable.

Before we continue to the case with parameters, let’s make it clear what we are looking for. We want to

define sets which, given the existing relation on R, are induced subgraphs of R. As per the above remark we

therefore only need to consider L(∼)-formulas in one free variable. This does not mean exactly one variable,

but only one of the variables used may be free, for example ∃x(x ∼ y). Many L(∼)-formulas will define the

same graph. Our true aim thus is to classify the definable induced subgraphs. This means we will have to check

all L(∼)-formulas and the graphs which they define. Checking this will be, to say the least, extremely tedious.

We introduce some concepts to lessen the amount of work that needs to be done.

Definition 4.4.4 (Disjunctive normal form, see [Rot00] pg. 30). For an L-formula φ, a disjunctive normal

form of φ is a formula of the form
∨

i

∧
j φij where each φij is a literal and φ ≡

∨
i

∧
j φij.

Remark 4.4.5. We will call the
∧

j φij part, i.e. a conjunction of literals, of the disjunctive normal form a

conjunctive form.
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Note that every quantifier free formula is logically equivalent to a boolean combination of literals and hence

to a disjunctive normal form of such a formula. Since ThR has quantifier elimination, i.e. every L(∼)-formula

is ThR-equivalent to a quantifier free one, we only have to look at the sets defined by formulas of the form∨
i

∧
j φij , for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, with each φij a literal.

This makes our work less, but still very tedious. Let’s see what happens when we use only one parameter,

say a. Then the literals we can use are x = a, x ∼ a, x ̸= a, x ̸∼ a. Using only these literals we can respectively

define the trivial graph, R (by Proposition 2.1.1), R (by Proposition 2.1.4) and a countably infinite graph (by

Proposition 2.1.3) with vertex a isolated. The last graph mentioned is just R (by Proposition 2.1.1) with an

extra vertex a which is not connected to any vertex in R.

Since we are only considering disjunctions of conjunctions of literals, i.e. disjunctive normal forms, the above

discussion describes all the possible outcomes when using only one literal in the disjunctive normal form. Next

we will need to consider the possible outcomes when using two literals and thereafter all the possible outcomes

when using three literals and then after that four literals and so on. Having discussions, as the one above,

for each of these scenarios (using one, two, three, etc. literals) seems the most natural rout to take from here

since the results from these discussions aren’t loaded enough to be grouped under the banner “Proposition” or

“Lemma”. However, following this rout leaves the arguments somewhat unstructured and hence also slightly

harder to follow. To provide some structure to our arguments we introduce “Cases”, under which we will state

the situation to be considered, and “Conclusions”, under which we will state the outcomes of the discussion.

We also introduce some notations to shorten writing. We label

φ1 : x = a φ3 : x ̸= a

φ2 : x ∼ a φ4 : x ̸∼ a

and write disjunctive normal form simply as DNF. For the rest of this chapter we will use ≡ to denote logical

equivalence and ≡R for R-equivalence, i.e. for two L(∼)-formulas φ(x) and ψ(x), φ(x) ≡R ψ(x) if for all r ∈ R

we have R |= φ(r) iff R |= ψ(r).

Our first discussion, following the case-conclusion structure, presents as follows.

Case. DNF’s using one literal in one free variable and one parameter

• φ1 defines the trivial graph.

• φ2 defines R by Proposition 2.1.1.

• φ3 defines R by Proposition 2.1.4.

• φ4 defines a graph with vertex set {Non-neighbours of a}∪{a}. The {Non-neighbours of a} part gives R,

using Proposition 2.1.1, and the {a} part is an extra vertex, isolated in this case.

Conclusion. Every one-literal-DNF in one free variable and one parameter is R-equivalent to itself and hence

defines either the trivial graph, R, or a graph consisting of a copy of R and an isolated vertex.

The obvious next case would be DNF’s using two literals. We will take the less obvious, but somewhat more

streamline approach and first consider only conjunctive forms (CF’s) of literals, and once these have all been

worked out consider taking disjunctions of the CF’s.

Case. CF’s using two literals in one free variable and one parameter

• φ1 ∧φ2 ≡R ⊥ which does not define a subgraph of R. In fact any formula equivalent to ⊥ won’t define a

subgraph of R and we will leave it at that.

• φ1 ∧ φ3 ≡ ⊥
• φ1 ∧ φ4 ≡R φ1 which puts us in the case of one literal.

• φ2 ∧ φ3 ≡R φ2 also putting us in the case of one literal.
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• φ2 ∧ φ4 ≡ ⊥
• φ3 ∧ φ4 defines R by Proposition 2.1.1.

Conclusion. Every two-literal-CF in one free variable and one parameter is R-equivalent to either ⊥, a one-

literal-DNF (specifically φ1 or φ2), or φ3∧φ4 and hence defines either R, or a graph already defined using only

one literal, or no graph at all.

Next we look at conjunctions of three literals, but we don’t have to consider all possible conjunctions. Any

conjunction containing ⊥ will just be logically equivalent to ⊥. Due to the associativity of ∧, and the equivalence

from the case above, any conjunction containing both φ1 and φ4 can be written without φ4 and similarly any

conjunction containing φ2 and φ3 can be written without φ3. So the only possible new graphs would come from

conjunctions containing φ3 ∧ φ4.

Case. CF’s using three literals in one free variable and one parameter

• φ1 ∧ φ3 ∧ φ4 ≡R φ1 ∧ φ3 ≡ ⊥
• φ2 ∧ φ3 ∧ φ4 ≡R φ2 ∧ φ4 ≡ ⊥

Conclusion. Each of the above three-literal-CF’s in one free variable and one parameter is R-equivalent to ⊥
and hence defines no graph at all.

This covers all possible CF’s we need to consider. Technically we can continue to take conjunctions with

four and five and so forth literals, but these will all just be R-equivalent to either ⊥, φ1, φ2 or φ3 ∧ φ4. We

therefore continue to cases concerning disjunctions of the above one-literal-DNF’s and CF’s.

Case. DNF’s using two literals in one free variable and one parameter

• φ1 ∨ φ2 defines a graph with vertex set {Neighbours of a} ∪ {a}. The {Neighbours of a} part gives R by

Proposition 2.1.1 and {a} is an extra vertex connected to every vertex in the copy of R.

• φ1 ∨ φ3 ≡ ⊤ and will define R. In fact, any formula equivalent to ⊤ will define R and we will leave it at

that.

• φ1 ∨ φ4 ≡R φ4 taking us back to the case of one literal.

• φ2 ∨ φ3 ≡R φ3 also taking us back to the case of one literal.

• φ2 ∨ φ4 ≡ ⊤
• φ3 ∨ φ4 ≡R ⊤

Conclusion. Each of the above two-literal-DNF’s in one free variable and one parameter is R-equivalent to

either φ1 ∨φ2, a one-literal-DNF (specifically φ3 or φ4), or ⊤, and therefore defines either a graph consisting of

a copy of R and an extra vertex connected to every vertex in the copy of R, or R, or a graph already defined

using only one literal.

For the DNF’s to follow, any disjunction containing ⊥ can be written without ⊥ and any disjunction

containing ⊤ is logically equivalent to ⊤. Also, since φ1 ∧ φ4 ≡R φ1 and φ2 ∧ φ3 ≡R φ2 we only have to

consider disjunctions of φ1 and φ2 with φ3 ∧ φ4.

Case. DNF’s using three literals in one free variable and one parameter

• φ1 ∨ (φ3 ∧ φ4) ≡ (φ1 ∨ φ3) ∧ (φ1 ∨ φ4) ≡R ⊤ ∧ φ4 ≡ φ4 defining a graph as in the one-literal case above.

• φ2 ∨ (φ3 ∧ φ4) ≡ (φ2 ∨ φ3) ∧ (φ2 ∨ φ4) ≡R φ3 ∧ ⊤ ≡ φ3 also defining a graph as in the one-literal case

above.

Conclusion. Each of the above three-literal-DNF’s in one free variable and one parameter is R-equivalent to

either ⊤, or a one-literal-DNF (viz. φ3 or φ4) and defines a graph already defined in a previous case.

This covers all possible outcomes of disjunctions of conjunctions of literals in the case of one parameter.

Again, technically we can continue taking disjunctions, but these will just be ThR-equivalent to one of the

disjunctions above. We can summarize the above conclusions with the following result.
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Proposition 4.4.6. The graphs definable in R using one parameter are

1. the trivial graph,

2. R itself,

3. the countably infinite graph Ga∼ consisting of a copy of R and one vertex connected to every vertex in the

copy of R,

4. and the countably infinite graph Ga̸∼ consisting of a copy of R and an isolated vertex.

We discuss the case of two parameters before looking at a general finite number of parameters just to get a

really good grip on the types of definable graphs. We will structure the arguments as before, using cases and

conclusions. We take two parameters, say a and b with a ̸= b, and label the literals in one free variable4 as

follows:

φ1 : x = a, ψ1 : x = b,

φ2 : x ∼ a, ψ2 : x ∼ b,

φ3 : x ̸= a, ψ3 : x ̸= b,

φ4 : x ̸∼ a, ψ4 : x ̸∼ b.

There are a great deal of cases to consider. The different definable graphs, using two parameters, are

summarized at the end of the considered cases.

Note that a formula containing only φi’s or ψj ’s will define graphs as in the case for one parameter. We

therefore only have to consider formulas containing at least one φi and one ψj . Also, the roles of a and b are

interchangeable, so we have to consider, for example, only one of φi ∧ ψj and φj ∧ ψi for i ̸= j. Almost all of

the following statements can be justified using Proposition 2.1.1, Proposition 2.1.2, Proposition 2.1.3, Propo-

sition 2.1.4 or a combination of them. We will therefore just state the claims, and give additional arguments

where necessary.

Like before, we streamline the argument by first considering only CF’s.

Case. CF’s using two literals in one free variable and two parameters

• φ1 ∧ ψ1 ≡R ⊥
• φ1 ∧ ψ2 is R-equivalent to φ1 if a ∼ b and ⊥ if a ̸∼ b defining (in both cases) graphs as in the case with

one parameter.

• φ1 ∧ ψ3 ≡R φ1 defining a graph as in the case with one parameter.

• φ1 ∧ψ4 is R-equivalent to ⊥ if a ∼ b and φ1 if a ̸∼ b also defining graphs as in the case of one parameter.

• φ2 ∧ ψ2 defines R.

• φ2 ∧ ψ3 ≡R φ2 if a ̸∼ b. In case a ∼ b then the graph defined has vertex set {Neighbours of a} \ {b}. But

the neighbours of a is just (up to isomorphism) R and so we can easily delete b and still be left with R.

In this cas the graph defined by φ2 ∧ ψ3 is isomorphic to the graph defined by just φ2.

• φ2 ∧ ψ4 defines a graph with vertex set {x : x ∼ a ∧ x ̸∼ b} ∪ {b}, i.e. a copy of R and isolated vertex b if

a ∼ b, and R if a ̸∼ b.

• φ3 ∧ ψ3 defines R.

• φ3 ∧ ψ4 ≡R ψ4 when a ∼ b. The graph defined in case a ̸∼ b will have vertex set

({Non-neighbours of b} \ {a}) ∪ {b}.

Ignoring b for the moment we just have a copy of R. So, the graph defined consists of a copy of R and

4Remember, using only one free variable ensures that the set defined can be interpreted as a graph. Using more than one free
variable will give rise to sets containing ordered tuples, which is not what we want.
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isolated vertex b and hence is isomorphic to the graph defined using just ψ4 as in the case of one literal.

• φ4 ∧ ψ4 defines R if a ∼ b, and if a ̸∼ b, defines a graph with vertex set {x : x ̸∼ a ∧ x ̸∼ b} ∪ {a, b}. This

is just a copy of R and two isolated vertices a and b.

Conclusion. Every two-literal-CF in one free variable and two parameters defines either (up to isomorphism) a

graph already definable with one parameter, or a graph consisting of a copy of R and two isolated vertices.

From the case of one parameter we know that for the next case we only need to consider CF’s containing

ψ3 ∧ ψ4 and one of the φi’s. The remaining CF’s will either be R-equivalent to ⊥ or one of the CF’s above.

Case. CF’s using three literals in one free variable and two parameters.

• φ1 ∧ ψ3 ∧ ψ4 ≡R φ1 ∧ ψ4 defining a graph as in the case with two literals.

• φ2 ∧ ψ3 ∧ ψ4 defines R.

• φ3 ∧ ψ3 ∧ ψ4 defines R for both a ∼ b and a ̸∼ b.

• φ4 ∧ ψ3 ∧ ψ4 defines R if a ∼ b and a graph consisting of a copy of R and isolated vertex a if a ̸∼ b.

Conclusion. Every three-literal-CF in one free variable and two parameters defines (up to isomorphism) a graph

already defined in a previous case.

There is one last CF to consider, the remaining CF’s will either be equivalent to ⊥ or one of the conjunctions

above.

Case. CF’s using four literals in one free variable and two parameters

• φ3 ∧ φ4 ∧ ψ3 ∧ ψ4 which defines R.

Conclusion. Every four-literal-CF in one free variable and two parameters defines (up to isomorphism) a graph

already defined in a previous case.

As in the case with one parameter, we can technically continue looking at conjunctive forms of these literals,

but the remaining conjunctions will be R-equivalent to either ⊥ or one of the CF’s in the above cases. Next we

have to look at disjunctions of the above CF’s and one-literal-DNF’s. We can reduce the number of combinations

of literals to consider, by noting that any disjunction with φ3 (similarly ψ3) will just define R.

Case. DNF’s using two literals in one free variable and two parameters

• φ1 ∨ ψ1 defines a graph on two vertices. If a ∼ b then we get the complete graph on two vertices and if

a ̸∼ b we get the empty graph on two vertices. Note that these are all possible graphs on two vertices.

• φ1∨ψ2 ≡R ψ2 if a ∼ b. For a ̸∼ b we get a countably infinite graph with vertex set {Neighbours of b}∪{a}.

Now EP will be satisfied for all the neighbours of b. The only problem might possibly be, finding a witness

for sets containing a. Consider, for example, the sets U = {a} and V = {v} for some v ∼ b. Now, U ∪{b}
and V will have a witness in R, say w. This w will be in the newly defined graph and will be a witness

to EP for U and V . In a similar way, we can find a witness to EP for any sets containing a by just

augmenting the first set (to which the witness must be connected) with b. So the graph defined is (up to

isomorphism) just R. We will call this type of argument an augmentation argument. The graph defined

is thus the same (up to isomorphism) as the one defined with just ψ2.

• φ1 ∨ ψ4 ≡R ψ4 if a ̸∼ b. If a ∼ b then we get a graph with vertex set {Non-neighbours of b} ∪ {a, b}.

Ignoring a and b for the moment, we can show that {Non-neighbours of b} has EP (by Proposition 2.1.1).

So the graph defined consists of a copy of R and extra vertices, a and b, where b is not connected to any

vertex in the copy of R. We illustrate the graph below.
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a b

Non-neighbours of b

The dashed line between a and the non-neighbours of b indicates that a might be connected to some of

the non-neighbours of b.

• φ2 ∨ ψ2 defines R in case a ̸∼ b. This is because the sets defined by φ2 ∨ ψ2 and φ4 ∧ ψ4 ≡ ¬(φ2 ∨ ψ2)

partition R, R is partition regular, and the graph defined by φ4 ∧ ψ4 was not (up to isomorphism) R.

In case a ∼ b we get a countably infinite graph not isomorphic to R, since every vertex in the graph will

be connected to at least one of a and b and hence U = ∅ and V = {a, b} will have no witness to EP. We

depict the graph below.

Neighbours of a Neighbours of b

a b

Before moving on to the next disjunction of this case, consider the formula φ2 ∨ ψ2 ∨φ1 ∨ ψ1. This formula

defines a similar looking graph, in fact the same graph (up to isomorphism) in case a ∼ b. If a ̸∼ b we get the

same graph, but with a not connected to b, as in the diagram below.

Neighbours of a Neighbours of b

a b

“Why this formula? It’s out of nowhere.” It will be clear shortly. Let’s continue with taking disjunctions.

• φ2 ∨ ψ4 defines R if a ∼ b. This is also due to partition regularity like above. If a ̸∼ b then we get a

countably infinite graph, not isomorphic to R, since the sets U = {b} and V = {a} won’t have a witness

to EP. We draw the graph below.

Neighbours of a Non-neighbours of b

a b

The dashed line indicates that b might have some neighbours in common with a.
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We return for a brief moment to “nowhere” and consider the formula φ2∨ψ4∨φ1 in case a ∼ b. This defines

a similar graph to the one above, but with a ∼ b.

Neighbours of a Non-neighbours of b

a b

Note that in all four of the graphs drawn above, if we ignore the vertices a and b, the remaining vertices

constitute a graph isomorphic to R. This can be shown using a relevant augmentation argument. We can see

a pattern arising; a copy of R and some extra vertices connected to the points of the copy of R in some way.

• φ4 ∨ψ4 defines a countably infinite graph not isomorphic to R because the sets U = {a, b} and V = ∅ will

have no witness. This is the case for both a ∼ b and a ̸∼ b. We get the following two graphs.

Non-neighbours of a Non-neighbours of b

a b

Non-neighbours of a Non-neighbours of b

a b

The dashed lines indicate that b might be connected to some of the non-neighbours of a, and similarly a

might be connected to some of the non-neighbours of b.

Conclusion. Every two-literal DNF in one free variable and two parameters is ThR-equivalent to either φ3,

φ1 ∨ ψ1, φ1 ∨ ψ2, φ1 ∨ ψ4, φ2 ∨ ψ2, φ2 ∨ ψ4, or φ4 ∨ ψ4 and defines either a graph on two vertices, or a graph

consisting of a copy of R and either one or two extra vertices connected to the copy of R in some way, or a

graph already defined (up to isomorphism) as in one of the previous cases.

We are by no means done, there are still many cases of disjunctions of CF’s to consider; considering DNF’s

with three, four, five etc. literals, but by looking at the cases above we can already see a pattern.

Apart from a few exceptions, most of the formulas just define R (up to isomorphism). Using only literals

with the = symbol in the DNF is either R-equivalent to ⊥ or defines a finite graph. In fact, for the case of two

parameters, we are be able to define all finite graphs of order ≤ 2. The definable countably infinite graphs, not

isomorphic to R, all consist of a copy of R and either one or two extra vertices, connected to the copy of R

in some specific way. Notice that the ways in which the extra vertices are connected to the copy of R depend

only on the combination of the literals φ2, φ4, ψ2 and ψ4 in the DNF.

The most interesting thing to take note of is this: CF’s containing ∼-literals5 in only one parameter, i.e

x ∼ a and x ̸∼ a but not x ∼ b or x ̸∼ b, define up to isomorphism the same graph as the given CF written

5These are literals using the only the symbols ∼ and ̸∼.
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without x ̸= b. This is obvious if the CF does not contain x ̸= b to begin with. It is however, harder to believe

if the given CF contains x ̸= b.

Note that if we want the CF to define a graph it can contain at most one of φ2 and φ4. We therefore only

have to prove the claim for the CF’s

1. x ∼ a ∧ x ̸= b,

2. x ̸∼ a ∧ x ̸= b,

3. x = a ∧ x ∼ a ∧ x ̸= b,

4. x = a ∧ x ̸∼ a ∧ x ̸= b,

5. x ̸= a ∧ x ∼ a ∧ x ̸= b,

6. and x ̸= a ∧ x ̸∼ a ∧ x ̸= b.

Claim. The graphs defined by x ∼ a ∧ x ̸= b and x ∼ a are isomorphic.

Proof. Let G be the graph defined by x ∼ a∧x ̸= b, so G has vertex set {Neighbours of a} which might possibly

include b. G is, with or without b, isomorphic to R and hence isomorphic to the graph defined by x ∼ a.

Claim. The graphs defined by x ̸∼ a ∧ x ̸= b and x ̸∼ a are isomorphic.

Proof. Let G be the graph defined by x ̸∼ a∧x ̸= b. Then G has vertex set {Non-neighbours of a}∪{a}, where

the {Non-neighbours of a} part without a might possibly include b. {Non-neighbours of a} without a is, with

or without b, isomorphic to R. Therefore G consists of a copy of R and an isolated vertex a. But this is exactly

(up to isomorphism) the graph defined by x ̸∼ a.

Claim. The graphs defined by x = a ∧ x ∼ a ∧ x ̸= b and x = a ∧ x ∼ a are isomorphic.

Proof. Note that both x = a ∧ x ∼ a ∧ x ̸= b and x = a ∧ x ∼ a are R-equivalent to just x = a. It is clear in

this case that both CF’s thus define the trivial graph, giving the required result.

Claim. The graphs defined by x = a ∧ x ̸∼ a ∧ x ̸= b and x = a ∧ x ̸∼ a ∧ x ̸= b are isomorphic.

Proof. As in the proof above, both these formulas are R-equivalent to just x = a, implying the required

result.

Claim. The graphs defined by x ̸= a ∧ x ∼ a ∧ x ̸= b and x ̸= a ∧ x ∼ a are isomorphic.

Proof. Let G be the graph defined by x ̸= a ∧ x ∼ a ∧ x ̸= b, then G has vertex set {Neighbours of a} which

might possibly include b. G is, with or without b, isomorphic to R and hence isomorphic to the graph defined

by x ̸= a ∧ x ∼ a.

Claim. The graphs defined by x ̸= a ∧ x ̸∼ a ∧ x ̸= b and x ̸= a ∧ x ̸∼ a are isomorphic.

Proof. Let G be the graph defined by x ̸= a ∧ x ̸∼ a ∧ x ̸= b. Then G has vertex set {Non-neighbours of a}
excluding a. This is, with or without b, isomorphic to R, and hence isomorphic to the graph defined by

x ̸= a ∧ x ̸∼ a.

It should be clear that we can “delete” literals of the form x ̸= b from a CF, if the ∼-literals in the CF are

only in terms of a, without changing (up to isomorphism) the graph defined. The question now becomes, can

we do the same if such a CF is part of a DNF? Well, not exactly.
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Example 4.4.7. Let G be the graph defined by x ∼ b ∨ (x ∼ a ∧ x ̸= b), and H be the graph defined by

x ∼ b ∨ x ∼ a. Suppose that a ∼ b. Then H is countably infinite and not isomorphic to R since the sets U = ∅
and V = {a, b} does not have a witness.

But G is isomorphic to R. To see this, note that G has vertex set {Neighbours of b} ∪ ({Neighbours of a} \
{b}). Now G \ a will satisfy EP, by Proposition 2.1.1, so the only sets U and V that might possibly not have

a witness are sets containing the vertex a. Let U = {a, u1, . . . , um} and V = {v1, . . . , vn} be finite disjoint

subsets of G. In this case they will also be finite disjoint subsets of R and hence has a witness w1, with w1 ∼ a

and w1 ∼ U and w1 ̸∼ V . So w1 ∈ G and witnesses EP for U and V in G. Now if U = {u1, . . . , um} and

V = {a, v1, . . . , vn}, then U ′ := U ∪ {b} and V are finite disjoint subsets of R, and so has a witness to EP, say

w2, such that w2 ∼ b, w2 ∼ U and w2 ̸∼ V . Hence w2 ∈ G and witnesses EP for U and V in G. This shows

that G has EP and is therefore isomorphic to R. So G and H are not isomorphic. In this case, we see that we

cannot “delete” the literal x ̸= b and get away with it.

We can, however, define up to isomorphism, the graph G with just x ∼ a. So, even though we cannot just

“delete” the literal x ̸= b, we can still define, up to isomorphism, the same graph with a DNF not containing

x ̸= b.

For the case of n parameters we will prove in detail, that any DNF consisting of L(∼)-literals defines up to

isomorphism the same graph as a DNF without any literals in the symbol ̸=. The fact that we can do without

literals in the symbol ̸= is enough for now.

Our conclusion for the case of two parameters is then that, if the graph defined consists of a copy of R

and extra vertex a, then, the way in which a is connected to the copy of R depends only on whether or not

the literals x ∼ a and x ̸∼ a are present in the DNF. This means we can effectively define, in the case of two

parameters, all the graphs consisting of a copy of R and one extra vertex, by taking the literal x = a (to add

the extra vertex) and also every possible ∼-literal in the parameter a to be CF’s in the DNF. Similarly, we can

define all the graphs consisting of a copy of R and two extra vertices by adding x = a ∨ x = b via disjunction

to the DNF (to add the two extra vertices), and also every possible (unique up to R-equivalence) CF consisting

of ∼-literals in possibly both the parameters a and b in the DNF.

We can now summarize all the above conclusions and discussion in the following proposition.

Proposition 4.4.8. The graphs definable in R using two parameters are (and are defined for example by)

1. the trivial graph (x = a),

2. R itself (x ∼ a)6,

3. the countably infinite graph Ga∼ consisting of a copy of R and one vertex connected to every vertex in the

copy of R (x = a ∨ x ∼ a),

4. the countably infinite graph Ga̸∼ consisting of a copy of R and one isolated vertex (x = a ∨ x ̸∼ a),

5. all possible graphs on two vertices (x = a ∨ x = b),

6. the countably infinite graph G∼a consisting of a copy of R and two extra vertices, such that one of the

two extra vertices is connected to every vertex in the copy of R and a ̸∼ b

(x = a ∨ x = b ∨ x ∼ a),

7. the countably infinite graph G̸∼a consisting of a copy of R and two extra vertices, such that one of the

two extra vertices is not connected to any vertex in the copy of R and a ∼ b

(x = a ∨ x = b ∨ x ̸∼ a),

8. the countably infinite graph Ga∼,b∼ consisting of a copy of R where both a and b are connected to every

vertex in the copy of R and either a ∼ b or a ̸∼ b

6The formula x = x is perfectly acceptable to define R and might even be viewed as a “better” formula to do the job than we
did here. We do however wish to highlight defining graphs with parameters, and so in this sense the formula x ∼ a does a “better”
job than x = x.
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(x = a ∨ x = b ∨ (x ∼ a ∧ x ∼ b)),

9. the countably infinite graph Ga∼,b̸∼ consisting of a copy of R where a is connected to every vertex in the

copy of R and b is connected to none of the vertices in copy of R, and either a ∼ b or a ̸∼ b

(x = a ∨ x = b ∨ (x ∼ a ∧ x ̸∼ b)),

10. the countably infinite graph Ga̸∼,b̸∼ consisting of a copy of copy of R where neither of a and b are connected

to any vertex in the copy of R, and either a ∼ b or a ̸∼ b

(x = a ∨ x = b ∨ (x ̸∼ a ∧ x ̸∼ b)),

11. the countably infinite graph G∼a,b consisting of a copy of R where every vertex in the copy of R is connected

to at least one of a and b, and either a ∼ b or a ̸∼ b

(x = a ∨ x = b ∨ (x ∼ a ∨ x ∼ b)),

12. the countably infinite graph G∼b→∼a consisting of a copy of R where every vertex in the copy of R that

is connected to b will also be connected to a, and either a ∼ b or a ̸∼ b

(x = a ∨ x = b ∨ (x ∼ a ∨ x ̸∼ b)),

13. the countably infinite graph G̸∼a,b consisting of a copy of R where every vertex in the copy of R is connected

to at most one of a and b, and either a ∼ b or a ̸∼ b

(x = a ∨ x = b ∨ (x ̸∼ a ∨ x ̸∼ b)),

14. the countably infinite graph G∼b↔∼a consisting of a copy of R where every vertex in the copy of R is

connected to b iff it is connected to a, and either a ∼ b or a ̸∼ b

(x = a ∨ x = b ∨ (x ∼ a ∧ x ∼ b) ∨ (x ̸∼ a ∧ x ̸∼ b)),

15. and the countably infinite graph G∼a,∼b consisting of a copy of R where every vertex in the copy of R is

connected to either a or b, but not both, and either a ∼ b or a ̸∼ b

(x = a ∨ x = b ∨ (x ∼ a ∧ x ̸∼ b) ∨ (x ̸∼ a ∧ x ∼ b)).

Just to recap, what this proposition is saying, is that the graphs definable in R with two parameters are

1. all finite graphs of order ≤ 2,

2. R itself,

3. and graphs consisting of a copy of R and a finite graph on either one or two vertices, with the vertices of

the finite graph connected to the copy of R in a specific way.

Note that the “specific ways” includes all possible ways expressible by a first order formula in which the vertices

can be connected to the copy of R.

Remark 4.4.9. To distinguish, for example, between the two graphs Ga∼,b∼ where a ∼ b and a ̸∼ b, we may

denote the two graphs as Ga∼b
a∼,b∼ and Ga̸∼b

a∼,b∼ respectively. We can use a similar notation for the other graphs

of the same type, i.e. that are definable with the same L(∼)-formula.

This gives us an idea for what will happen in the general case of n parameters. We can see from the case of

two parameters that there are two types of conjunctive forms in the disjunctive normal form that influence the

graph defined. That is, literals with = and conjunctions with either ∼, ̸∼ or a combination of the two.

We can write this formally as follows.

Definition 4.4.10 (Moment). Let ā be an n-tuple of vertices of R.

The formula φ=(x, a) : x = a is the =-moment of a.

The formula φ∼(x, ā) : x ∼ a1 ∧ · · · ∧ x ∼ an is the c-moment (“c” for connected) of ā.

The formula φ̸∼(x, ā) : x ̸∼ a1 ∧ · · · ∧ x ̸∼ an is the n-moment (“n” for not connected) of ā.7

Let b̄ be a j-tuple and c̄ be a k-tuple of vertices of R where j + k = n, with no vertices in common.

7There are two n’s in use at the moment, one for n parameters, and one for an n-moment. Note that the one, the “n”, denotes
a number, specifically an integer. The other, the “n”, denotes an alphabet letter. There should hopefully be no confusion between
the two.
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The formula φ∗(x, b̄, c̄) : x ∼ b1 ∧ · · · ∧ x ∼ bj ∧ x ̸∼ c1 ∧ · · · ∧ x ̸∼ ck is the cn-moment of b̄ and c̄.

Lemma 4.4.11. Let φ(x, ā) be a CF of L(∼)-literals in at most n parameters, such that φ(x, ā) contains x ̸= a1,

. . . , x ̸= ak, relabelling the parameters if necessary, but no ∼-literal in any of a1, . . . , ak. Then the graph defined

by φ(x, ā) in R is isomorphic to one defined by a moment.

Proof. Let φ(x, ā) be as stated above and let G be the graph defined by φ(x, ā). Note that if φ(x, ā) contains

x = aj for some j, then either φ(x, ā) ≡R ⊥ or φ(x, ā) ≡R x = aj and we have nothing to prove. We suppose

therefore the φ(x, ā) does not contain x = aj for any j. Also, if φ(x, ā) contains only the literals x ̸= a1, . . . ,

x ̸= ak, then it defines R which is isomorphic to the graph defined by any c-moment and we are done.

So suppose that φ(x, ā) contains at least some literals of the form x ∼ ai and/or x ̸∼ ai. We may write

φ(x, ā) as x ̸= a1 ∧ · · · ∧ x ̸= ak ∧ x ∼ ak+1 ∧ · · · ∧ x ∼ al ∧ x ̸∼ al+1 ∧ · · · ∧ x ̸∼ am where m ≤ n. Let G be the

graph defined by φ(x, ā). Then G has vertex set

A := {x : x ̸= a1 ∧ · · · ∧ x ̸= ak ∧ x ∼ ak+1 ∧ · · · ∧ x ∼ al ∧ x ̸∼ al+1 ∧ . . . x ̸∼ am}.

Let A′ = A \ {al+1, . . . , am}. Then A′ is isomorphic to R, by Proposition 2.1.1 and Proposition 2.1.4. Hence,

G consists of a copy of R and extra vertices {al+1, . . . , am} such that the vertices in the copy of R are not

connected to any of the vertices in {al+1, . . . , am}.

Let H be the graph defined by the n-moment x ̸∼ al+1 ∧ · · · ∧ x ̸∼ am. Then H consists of a copy of R and

extra vertices {al+1, . . . , am} such that the vertices in the copy of R are not connected to any of the vertices in

{al+1, . . . , am}.

Clearly G ∼= H, and H is defined by a moment, which is the required result.

Lemma 4.4.12. Let φ(x, ā) be a CF of L(∼)-literals in at most n parameters, such that φ(x, ā) contains x ̸= a1,

. . . , x ̸= ak and x ̸∼ a1, . . . , x ̸∼ ak, relabelling the parameters if necessary. Then the graph defined by φ(x, ā)

in R is isomorphic to one defined by a moment.

Proof. Let φ(x, ā) be as stated above and let G be the graph defined by φ(x, ā). Note that if φ(x, ā) contains

x = aj for some aj , then either φ(x, ā) ≡R ⊥ or φ(x, ā) ≡R x = aj and we have nothing to prove. Suppose

therefore that φ(x, ā) does not contain x = aj for any j. Also, φ(x, ā) cannot contain x ∼ aj for any j ≤ k,

otherwise φ(x, ā) ≡ ⊥, and again there is nothing to prove. If φ(x, ā) contains only the literals x ̸= a1, . . . ,

x ̸= ak, and x ̸∼ a1, . . . , x ̸∼ ak then it defines R which is isomorphic to the graph defined by any c-moment

and we are done.

Suppose therefore that φ(x, ā) contains at least some literals of the form x ∼ ai and/or x ̸∼ ai for i > k, so

that we are not in the case above. Then we can write φ(x, ā) as

k∧
i=1

(x ̸= ai ∧ x ̸∼ ai) ∧
l∧

i=k+1

(x ∼ ai) ∧
m∧

i=l+1

(x ̸∼ ai).

So G has vertex set

A :=

{
x :

k∧
i=1

(x ̸= ai ∧ x ̸∼ ai) ∧
l∧

i=k+1

(x ∼ ai) ∧
m∧

i=l+1

(x ̸∼ ai)

}
.

Let A′ = A \ {al+1, . . . , am}. Then A′ is isomorphic to R, by Proposition 2.1.1. Hence, G consists of a copy

of R and extra vertices {al+1, . . . , am} such that the vertices in the copy of R are not connected to any of the

vertices in {al+1, . . . , am}.
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Let H be the graph defined by the n-moment x ̸∼ al+1 ∧ · · · ∧ x ̸∼ am. Then H consists of a copy of R and

extra vertices {al+1, . . . , am} such that the vertices in the copy of R are not connected to any of the vertices in

{al+1, . . . , am}.

Clearly G ∼= H, and H is defined by a moment, which is the required result.

Lemma 4.4.13. Let φ(x, ā) be a CF of L(∼)-literals in at most n parameters, such that φ(x, ā) contains x ̸= a1,

. . . , x ̸= ak and x ̸∼ a1, . . . , x ̸∼ aj with j < k, relabelling the parameters if necessary. Then the graph defined

by φ(x, ā) in R is isomorphic to one defined by a moment.

Proof. Let φ(x, ā) be as stated above and let G be the graph defined by φ(x, ā). Note that if φ(x, ā) contains

x = aj for some aj , then either φ(x, ā) ≡R ⊥ or φ(x, ā) ≡R x = aj and we have nothing to prove. Suppose

therefore that φ(x, ā) does not contain x = aj for any j. Also, φ(x, ā) cannot contain x ∼ ai for any i ≤ j,

otherwise φ(x, ā) ≡ ⊥, and again there is nothing to prove. If φ(x, ā) contains only the literals x ̸= a1, . . . ,

x ̸= ak, and x ̸∼ a1, . . . , x ̸∼ aj then it defines R (by Proposition 2.1.1 and Proposition 2.1.4) which is

isomorphic to the graph defined by any c-moment and we are done.

Suppose therefore that φ(x, ā) contains at least some literals of the form x ∼ ai and/or x ̸∼ ai for i > k, so

that we are not in the case above. Then we can write φ(x, ā) as

j∧
i=1

(x ̸= ai ∧ x ̸∼ ai) ∧
k∧

i=j+1

(x ̸= ai) ∧
l∧

i=k+1

(x ∼ ai) ∧
m∧

i=l+1

(x ̸∼ ai).

So G has vertex set

A :=

{
x :

j∧
i=1

(x ̸= ai ∧ x ̸∼ ai) ∧
k∧

i=j+1

(x ̸= ai) ∧
l∧

i=k+1

(x ∼ ai) ∧
m∧

i=l+1

(x ̸∼ ai)

}
.

Let A′ = A \ {al+1, . . . , am}. Then A′ is isomorphic to R, by Proposition 2.1.1 and Proposition 2.1.4. Hence,

G consists of a copy of R and extra vertices {al+1, . . . , am} such that the vertices in the copy of R are not

connected to any of the vertices in {al+1, . . . , am}.

Let H be the graph defined by the n-moment x ̸∼ al+1 ∧ · · · ∧ x ̸∼ am. Then H consists of a copy of R and

extra vertices {al+1, . . . , am} such that the vertices in the copy of R are not connected to any of the vertices in

{al+1, . . . , am}.

Clearly G ∼= H, and H is defined by a moment, which is the required result.

Proposition 4.4.14. A CF consisting of L(∼)-literals in at most n parameters is either R equivalent to ⊥, or

it is a moment itself, or it defines (up to isomorphism) the same graph as a moment.

Proof. Let φ(x, ā) be as stated above and let G be the graph defined by φ(x, ā). Note that if φ(x, ā) contains

x = aj for some aj , then either φ(x, ā) ≡R ⊥, or φ(x, ā) ≡R x = aj , in which case φ(x, ā) defines up to

isomorphism the same graph as an =-moment.

We can now suppose that φ(x, ā) does not contain x = aj for any aj . If φ(x, ā) contains only literals of the

form x ∼ aj and/or x ̸∼ aj then it is either a c-, n- or cn-moment.

So suppose therefore that φ(x, ā) contains at least some literals of the form x ̸= aj . Then, we can write

φ(x, ā) as ∧
i∈I

x ̸= ai ∧
∧
j∈J

x ∼ aj ∧
∧
k∈K

x ̸∼ ak.

Note that if J ∩K ̸= ∅ then φ(x, ā) ≡R ⊥. Suppose therefore that J ∩K = ∅.
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Next, if I ∩ J ̸= ∅ then φ(x, ā) is R-equivalent to

∧
i∈I\J

x ̸= ai ∧
∧
j∈J

x ∼ aj ∧
∧
k∈K

x ̸∼ ak

so we can, without loss of generality, suppose that I ∩ J = ∅.

Now, if I ∩K = ∅, then the result follows from Lemma 4.4.11. Suppose, however, that I ∩K ̸= ∅. In case

I ⊆ K, then the result follows from Lemma 4.4.12. If K ⊆ I then φ(x, ā) defines R, by Proposition 2.1.1 and

Proposition 2.1.4, and we can define up to isomorphism the same graph using any c-moment. Finally, it might

be the case that I and K are not subsets of each other, but only have some elements in common, the result

then follows from Lemma 4.4.13.

Lemma 4.4.15. Let φ(x, ā) and ψ(x, ā) both be CF’s consisting of L(∼)-literals in at most n parameters. Then

the graph defined by φ(x, ā) ∨ ψ(x, ā) in R is isomorphic to one defined by a disjunction of moments.

Proof. First note that, from Proposition 4.4.14, that φ and ψ is either R-equivalent to ⊥, or is a moment,

or defines up to isomorphism the same graph as a moment. If both φ and ψ are R-equivalent to ⊥ then

φ(x, ā) ∨ ψ(x, ā) does not define a subgraph of R and we have nothing to prove. In only one of φ and ψ, say

φ is R-equivalent to ⊥, then φ ∨ ψ ≡ ψ and the result follows directly from Proposition 4.4.14. So we suppose

that neither of φ and ψ are R-equivalent to ⊥.

In case both φ(x, ā) and ψ(x, ā) are either =-, c-, n-, or cn-moments themselves we have the required result.

So we suppose that at least one of φ(x, ā) and ψ(x, ā) is not a moment. Without loss of generality let ψ(x, ā)

be the non-moment, then it must contain at least one literal of the form x ̸= ai.

Note that if ψ(x, ā) :=
∧

i x ̸= ai then φ(x, ā) ∨ ψ(x, ā) will just define a copy of R which is isomorphic to

the graph defined by any c-moment, which is the required result. We suppose therefore that

ψ(x, ā) :=

j∧
i=1

(x ̸= ai ∧ x ̸∼ ai) ∧
k∧

i=j+1

(x ̸= ai) ∧
l∧

i=k+1

(x ∼ ai) ∧
m∧

i=l+1

(x ̸∼ ai)

where I, J , K and L are mutually disjoint. J and K can, without loss of generality be mutually disjoint, since

R |= x ∼ ak → x ̸= ak.

If φ(x, ā) is an =-moment: Suppose that φ(x, ā) : x = as. Let

A = {as}

and

B =

{
x :

j∧
i=1

(x ̸= ai ∧ x ̸∼ ai) ∧
k∧

i=j+1

(x ̸= ai) ∧
l∧

i=k+1

(x ∼ ai) ∧
m∧

i=l+1

(x ̸∼ ai)

}
.

Then the graph defined by φ(x, ā) ∨ ψ(x, ā) has vertex set A∪B. Note that B might possibly contain as. If B

does contain as then s ∈ {l+1, . . . ,m}. Arguing as in Lemma 4.4.13 we can show that B′ := B \{al+1, . . . , am}
is isomorphic to R and that the graph defined by φ(x, ā) ∨ ψ(x, ā) is isomorphic to the one defined by the

n-moment
∧m

i=l+1(x ̸∼ ai). Suppose that B does not contain as. Then it is either the case that s ∈ {1, . . . , j},

or s ∈ {j + 1, . . . , k}, or s ∈ {k + 1, . . . , l},or s ̸∈ {1, . . . ,m}.

- In case s ∈ {1, . . . , j} then, B′ is isomorphic to R, and hence the graph defined by φ(x, ā)∨ψ(x, ā) consists

of a copy of R and extra vertices {as, al+1, . . . , am} such that no vertex in the copy of R is connected

to any of the vertices in {as, al+1, . . . , am}. This is isomorphic to the graph defined by the n-moment∧m
i=l+1(x ̸∼ ai).
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- In case s ∈ {j + 1, . . . , k}, we know that B′ is isomorphic to R. Now B′ ∪ {as} will also satisfy EP. To

see this, let U and V be finite disjoint subsets of B′ ∪ {as}, then the only sets possibly without a witness

are sets containing as. Let as ∈ U . Then U ′ = U ∪ {ak+1, . . . , al} and V ′ = V ∪ {a1, . . . , aj , al+1, . . . , am}
will be finite disjoint subsets of R and hence have a witness, say w such that w ∼ U ′ and w ̸∼ V ′. This

implies w ∈ B′ and w ∼ U , in particular w ∼ as, and w ̸∼ V , i.e w is the needed witness in B′ ∪ {as}. A

similar argument can be used if as ∈ V , hence B′ ∪ {as} is isomorphic to R. Therefore the graph defined

by φ(x, ā) ∨ ψ(x, ā) consists of a copy of R and extra vertices {al+1, . . . , am} such that no vertex in the

copy of R is connected to any of the vertices in {al+1, . . . , am}. This is isomorphic to the graph defined

by the n-moment
∧m

i=l+1(x ̸∼ ai).

- In case s ∈ {k + 1, . . . , l} then B′ is isomorphic to R, and hence the graph defined by φ(x, ā) ∨ ψ(x, ā)

consists of a copy of R and extra vertices {as, al+1, . . . , am} such that each vertex in the copy of R is

connected to as and not connected to any of the vertices in {al+1, . . . , am}. This is isomorphic to the

graph defined by the disjunction of moments x = as ∨ ((x ∼ as) ∧
∧m

i=l+1(x ̸∼ ai)).

- In case s ̸∈ {1, . . . ,m} the set B′′ := B′ ∪ {as} is countably infinite, and we argue that it has EP

using augmentation. Let U and V be disjoint finite subsets of B′′. Then U ′ = U ∪ {ak+1, . . . , al} and

V ′ = V ∪ {al+1, . . . , am} are disjoint finite subsets of R and will therefore have a witness, w with w ∼ U ′

and w ̸∼ V ′. This implies that w ∈ B′′ and w ∼ U and w ̸∼ V , and hence w is the needed witness. So

the graph defined by φ(x, ā) ∨ ψ(x, ā) consists of a copy of R and extra vertices {al+1, . . . , am} such that

no vertex in the copy of R is connected to any of the vertices in {al+1, . . . , am}. This is isomorphic to the

graph defined by the n-moment
∧m

i=l+1(x ̸∼ ai).

In each case the graph defined by φ(x, ā) ∨ ψ(x, ā) is isomorphic to a disjunction of moments, which is the

required result.

If φ(x, ā) is a c-moment: Suppose that φ(x, ā) :
∧

s∈S(x ∼ as). Let

A =

{
x :
∧
s∈S

(x ∼ as)

}

and

B =

{
x :

j∧
i=1

(x ̸= ai ∧ x ̸∼ ai) ∧
k∧

i=j+1

(x ̸= ai) ∧
l∧

i=k+1

(x ∼ ai) ∧
m∧

i=l+1

(x ̸∼ ai)

}
.

Then the graph G defined by φ(x, ā) ∨ ψ(x, ā) has vertex set A ∪B.

Note that the indices s and i might possibly overlap, but this will not make a difference in the argument.

Let B′ := B \ {al+1, . . . , am} and let U and V be finite disjoint subsets of A ∪B′. Then U ′ := U ∪ {as : s ∈ S}
and V are finite disjoint subsets of R and has a witness w such that w ∼ U ′ and w ̸∼ V . This implies that

w ∈ A ∪ B′ and w ∼ U and w ̸∼ V , so that w is a witness to EP for U and V in A ∪ B′. So G consist of a

copy of R and extra vertices {al+1, . . . , am} with the vertices of R connected to the vertices in {al+1, . . . , am}
depending only on the appearance of the parameters al+1, . . . , am in φ(x, ā) and the

∧m
i=l+1(x ̸∼ ai) part of

ψ(x, ā). Therefore G is isomorphic to the graph defined by the disjunction of moments

∧
s∈S

(x ∼ as) ∨
m∧

i=l+1

(x ̸∼ ai).

If φ(x, ā) is an n-moment: Suppose that φ(x, ā) :
∧

s∈S(x ̸∼ as). Let

A =

{
x :
∧
s∈S

(x ̸∼ as)

}
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and

B =

{
x :

j∧
i=1

(x ̸= ai ∧ x ̸∼ ai) ∧
k∧

i=j+1

(x ̸= ai) ∧
l∧

i=k+1

(x ∼ ai) ∧
m∧

i=l+1

(x ̸∼ ai)

}
.

Then the graph G defined by φ(x, ā) ∨ ψ(x, ā) has vertex set A ∪B.

Again the indices s and i might possibly overlap, but this will not make a difference in the argument. Let

A′ := A \ {as : s ∈ S} and B′ := B \ {al+1, . . . , am}. Consider for a moment the graph on only the vertices

A′ ∪ B′ and let U and V be finite disjoint subsets of A′ ∪ B′. Then U and V ′ := V ∪ {as : s ∈ S} are finite

disjoint subsets of R and has a witness w such that w ∼ U and w ̸∼ V ′. This implies that w ∈ A′ ∪ B′

and w ∼ U and w ̸∼ V , so that w is a witness to EP for U and V in A′ ∪ B′. So G consist of a copy

of R and extra vertices {as : s ∈ S} ∪ {al+1, . . . , am} with the vertices of R connected to the vertices in

{as : s ∈ S}∪{al+1, . . . , am} depending only on the appearance of the parameter as for s ∈ S, and al+1,. . . , am

in φ(x, ā) and the
∧j

i=1(x ̸∼ ai) ∧
∧l

i=k+1(x ∼ ai) ∧
∧m

i=l+1(x ̸∼ ai) part of ψ(x, ā). Therefore G is isomorphic

to the graph defined by the disjunction of moments

∧
s∈S

(x ̸∼ as) ∨ (

j∧
i=1

(x ̸∼ ai) ∧
l∧

i=k+1

(x ∼ ai) ∧
m∧

i=l+1

(x ̸∼ ai)).

If φ(x, ā) is a cn-moment: Suppose that φ(x, ā) :
∧

s∈S(x ∼ as) ∧
∧

t∈T (x ̸∼ at). Let

A =

{
x :
∧
s∈S

(x ∼ aS) ∧
∧
t∈T

(x ̸∼ at)

}

and

B =

{
x :

j∧
i=1

(x ̸= ai ∧ x ̸∼ ai) ∧
k∧

i=j+1

(x ̸= ai) ∧
l∧

i=k+1

(x ∼ ai) ∧
m∧

i=l+1

(x ̸∼ ai)

}
.

Then the graph G defined by φ(x, ā) ∨ ψ(x, ā) has vertex set A ∪B.

The indices s and t might possibly overlap with the index i, but as before this will not make a difference

in the argument. Let A′ := A \ {at : t ∈ T} and B′ := B \ {al+1, . . . , am}. Consider for a moment the

graph on A′ ∪ B′ and let U and V be finite disjoint subsets of A′ ∪ B′. Then U ′ := U ∪ {as : s ∈ S} and

V ′ := V ∪ {at : t ∈ T} are finite disjoint subsets of R, and have a witness w such that w ∼ U ′ and w ̸∼ V ′.

This implies that w ∈ A′ ∪ B′ and w ∼ U and w ̸∼ V , so that w is a witness to EP for U and V in A′ ∪ B′.

So G consist of a copy of R and extra vertices C := {at : t ∈ T} ∪ {al+1, . . . , a + m}, with the vertices of R

connected to the vertices in C depending only on the appearance of the parameter from C in φ(x, ā) and the∧j
i=1(x ̸∼ ai)∧

∧l
i=k+1(x ∼ ai)∧

∧m
i=l+1(x ̸∼ ai) part of ψ(x, ā). Therefore G is isomorphic to the graph defined

by the disjunction of moments

∧
t∈T

(x ̸∼ at) ∨
j∧

i=1

(x ̸∼ ai) ∧
k∧

i=j+1

(x ̸= ai) ∧
l∧

i=k+1

(x ∼ ai) ∧
m∧

i=l+1

(x ̸∼ ai).

There is of course also the possibility of both φ(x, ā) and ψ(x, ā) being non-moments. In this case, let

φ(x, ā) :=
∧
h∈H

(x ̸= ah ∧ x ̸∼ ah) ∧
∧
i∈I

(x ̸= ai) ∧
∧
j∈J

(x ∼ aj) ∧
m∧

k∈K

(x ̸∼ ak)
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with H, I, J and K mutually disjoint, and let

ψ(x, ā) :=
∧
l∈L

(x ̸= al ∧ x ̸∼ al) ∧
∧

m∈M

(x ̸= am) ∧
∧
s∈S

(x ∼ as) ∧
∧
t∈T

(x ̸∼ at)

with L, M , S and T mutually disjoint. There might be an overlap of indices, but we know from the cases above

that this is not a problem. Let

A =

{
x :

∧
h∈H

(x ̸= ah ∧ x ̸∼ ah) ∧
∧
i∈I

(x ̸= ai) ∧
∧
j∈J

(x ∼ aj) ∧
m∧

k∈K

(x ̸∼ ak)

}

and

B =

{
x :
∧
l∈L

(x ̸= al ∧ x ̸∼ al) ∧
∧

m∈M

(x ̸= am) ∧
∧
s∈S

(x ∼ as) ∧
∧
t∈T

(x ̸∼ at)

}
.

Let G be the graph defined by φ(x, ā) ∨ ψ(x, ā). Then G has vertex set A ∪B.

Let A′ := A \ {ak : k ∈ K} and B′ := B \ {at : t ∈ T}. We show that A′ ∪B′ satisfies EP. Let U and V be

finite disjoint subsets of A′ ∪B′. Then

U ′ := U ∪ {aj : j ∈ J}

and

V ′ := V ∪ {ah : h ∈ H} ∪ {ak : k ∈ K}

are finite disjoint subsets of R. So we will be able to find a witness w such that w ∼ U ′ and w ̸∼ V ′. This w

will be in A′ ∪ B′, and w ∼ U and w ̸∼ V , so that w is a witness to EP for U and V in A′ ∪ B′. This implies

that G consists of a copy of R and extra vertices C := {ak : k ∈ K} ∪ {at : t ∈ T}. Whether or not the vertices

in the copy of R are connected to the vertices in C depend only on the inclusion of these parameters in the

∧
h∈H

(x ̸∼ ah) ∧
∧
j∈J

(x ∼ aj) ∧
m∧

k∈K

(x ̸∼ ak)

part of φ(x, ā) and the ∧
l∈L

(x ̸∼ al) ∧
∧
s∈S

(x ∼ as) ∧
∧
t∈T

(x ̸∼ at)

part of ψ(x, ā). Hence G is isomorphic to the graph defined by the disjunction of moments( ∧
h∈H

(x ̸∼ ah) ∧
∧
j∈J

(x ∼ aj) ∧
m∧

k∈K

(x ̸∼ ak)

)
∨

(∧
l∈L

(x ̸∼ al) ∧
∧
s∈S

(x ∼ as) ∧
∧
t∈T

(x ̸∼ at)

)
.

Remarks 4.4.16. 1. Supposing in the above proof that

ψ(x, ā) :=
k∧

i=1

(x ̸= ai) ∧
l∧

i=k+1

(x ∼ ai) ∧
m∧

i=l+1

(x ̸∼ ai)

or

ψ(x, ā) :=
k∧

i=1

(x ̸= ai ∧ x ̸∼ ai) ∧
l∧

i=k+1

(x ∼ ai) ∧
m∧

i=l+1

(x ̸∼ ai)
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CHAPTER 4. THE MARSHES OF MODEL THEORY

rather than

ψ(x, ā) :=

j∧
i=1

(x ̸= ai ∧ x ̸∼ ai) ∧
k∧

i=j+1

(x ̸= ai) ∧
l∧

i=k+1

(x ∼ ai) ∧
m∧

i=l+1

(x ̸∼ ai)

makes no difference in the steps or outcomes of the arguments, as should be clear from the two proofs of

Lemma 4.4.11, Lemma 4.4.12, and Lemma 4.4.13.

2. Notice that the disjunction of moments, which define a graph H that is isomorphic to the graph G defined

by φ(x, ā) ∨ ψ(x, ā), can be written using only parameters that were present in φ(x, ā) ∨ ψ(x, ā). So in

case the graph G defined by φ(x, ā) ∨ ψ(x, ā) is finite, or consists of a copy of R and some finite number

of extra vertices, then the finite part of G is in fact exactly the same graph as the finite part of H (not

just isomorphic to) defined by a disjunction of =-moments.

Proposition 4.4.17. Every DNF consisting of L(∼)-literals in at most n parameters defines, up to isomor-

phism, the same graph as a disjunction of moments.

Proof. Let φ(x, ā) be a DNF as described above.

Suppose that φ(x, ā) does not contain a literal of the form x ̸= aj then each constituent CF will only contain

literals of the form x = aj , x ∼ aj and x ̸∼ aj , and hence is a moment. Therefore φ(x, ā) defines up to

isomorphism the same graph as a disjunction of moments.

Next suppose that φ(x, ā) contains literals of the form x ̸= aj . If φ(x, ā) contains x ̸= aj as a CF for some

j, then φ(x, ā) defines a graph isomorphic to R and so defines the same graph, up to isomorphism, as any

c-moment.

Suppose therefore that if φ(x, ā) contains literals of the form x ̸= aj then it is part of a CF that contains

other literals also. φ(x, ā) might possibly contain more than one CF with literals of the form x ̸= aj . Let’s

write φ(x, ā) as ψ1 ∨ · · · ∨ ψm ∨
∨

i∈I φi, where each ψj is a CF containing literals of the form x ̸= aj and each

φi is a CF with no such literals. In this case each φi is a moment and so
∨

i φi is a disjunction of moments.

Let H be the graph defined by ψm ∨ φk for some k ∈ I and F be the graph defined by
∨

i∈I\{k} φi. From

Lemma 4.4.15 we have that H is isomorphic to a graph H ′ defined by a disjunction of moments, say
∨

j∈J φj .

Simply considering the graph on V (H ′) ∪ V (F ) it is easy to argue that this graph need not be isomorphic to

the one defined by ψm ∨
∨

i∈I φi, i.e. the one on V (H) ∪ V (F ), since we also have to consider how the vertices

of H might be connected to the vertices of F . But, from Remark 4.4.16 (2), the finite parts (if there are any) of

H and H ′ are the same graphs, that is, on the exact same parameters, since
∨

j∈J φj can be written using only

the parameters present in ψm ∨ φk. In this case the vertices in the finite part of H ′ will be connected to the

vertices in F in exactly the same way as the vertices in the finite part of H. The only problem might then be

the countably infinite parts (if there are any) of the graphs under consideration. We know however, from the

proofs of Lemma 4.4.11, Lemma 4.4.12, Lemma 4.4.13 and Lemma 4.4.15, that these countably infinite parts

are just copies of R, and so we can establish, using an augmentation argument and the fact that R has EP (in

the same way as in the proofs of the mentioned lemmas), the necessary connections between H ′ and F such

that the graph on V (H ′) ∪ V (F ) is isomorphic to the one on V (H) ∪ V (F ).

This implies that ψm∨
∨

i∈I φi defines up to isomorphism the same graph in R as a disjunction of moments,

say
∨
k ∈ Kφk.

We can repeat this argument to show that ψm−1 ∨
∨
k ∈ Kφk defines up to isomorphism the same graph

in R as a disjunction of moments, say
∨
l ∈ Lφl, and again to show that ψm−2 ∨

∨
l ∈ Lφl defines up to

isomorphism the same graph in R as a disjunction of moments. Repeating the argument m − 3 more times,

i.e. until ψ1 ∨ µ, where µ is a disjunction of moments, shows that φ(x, ā) defines, up to isomorphism, the same

graph as a disjunction of moments, which is the required result.
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CHAPTER 4. THE MARSHES OF MODEL THEORY

We can now state and prove the main result of this section.

Theorem 4.4.18. The graphs definable in R using n parameters are

1. all finite graphs of order ≤ n,

2. R itself,

3. and for each k ≤ n, a graph consisting of a copy of R and a finite graph on say {a1, . . . , ak}, with the

vertices of R connected to the vertices of {a1, . . . , ak} depending only on use of the literals x ∼ aj or

x ̸∼ aj for aj ∈ {a1, . . . , ak}, in the L(∼)-formula which defines the graph.

Proof. 1. From Theorem 2.1.6 every finite graph is an induced subgraph of R. Let G be such a graph and

let each vertices in G be a parameter in an =-moment. Then we can define G in R with
∨

g∈G x = g.

2. The formula x ∼ a will be enough to define R.

3. As discussed in the beginning of this chapter, every quantifier free formula is logically equivalent to a

boolean combination of literals and hence to a disjunctive normal form of such a formula. Since ThR

has quantifier elimination, i.e. every L(∼)-formula is ThR-equivalent to a quantifier free one, all possible

graphs definable in R will be defined by formulas of the form
∨

i

∧
j φij , for i and j finite, with each φij

a literal. Proposition 4.4.17 implies that each such DNF defines in R a graph isomorphic to one defined

by a disjunction of moments. This means that each graph definable in R is definable by a disjunction of

moments.

Now, each graph definable in R, consisting of a copy of R and a finite graph on say {a1, . . . , ak}, defined

using a disjunction of moments, and hence, the vertices of R will be connected to the vertices of {a1, . . . , ak}
depending only on the use of aj ∈ {a1, . . . , ak} as a parameter in this disjunction of moments, which is

the required result.

Remark 4.4.19. Note that we could just as well have used x = x to define R in the proof above. We used

x ∼ a instead, to emphasize that all the graphs definable in R, are definable using moments.

4.5 Age is not just a number:

Fräıssé’s Theorem and the Rado graph

We have seen many wonderful properties of our beast on our journey so far and now the time has come for

us to look at its age.

Definition 4.5.1 (Generated substructure, see [Rot00] pg. 76). Let M be an L-structure and X ⊆ M .

The structure MX , called the substructure generated by X in M, is the substructure of M with universe

∩{N : X ⊆ N,N ⊆ M}.
In case M = MX we say that M is generated by X.

When a structure is generated by a finite set X, we will say that it is finitely generated.

Definition 4.5.2 (Age, see [Hod93] pg. 324). Let M be an L-structure. The class K consisting of all finitely

generated structures embeddable in M is called the age of M.

Let G be the class of all finite graphs. Now for something much easier than carbon dating, it is clear from

Theorem 2.1.6 that all finite graphs are embeddable in R. This means that G is the age of R. Let’s see if we

can get more information on the age of our beast.

Let K be the age of some L-structure M. K can have any of the following properties.
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CHAPTER 4. THE MARSHES OF MODEL THEORY

Property 4.5.3 (The Hereditary Property, HP for short, see [Hod93] pg. 324). Let N0 ∈ K and N1 be a

finitely generated substructure of N0, then there is an N ∈ K such that N ∼= N1.

Property 4.5.4 (The Joint Embedding Property, JEP for short, see [Hod93] pg. 324). For N0,N1 ∈ K

there is an N ∈ K such that N0 and N1 are embeddable in N .

Property 4.5.5 (The Amalgamation Property, AP for short, see [Hod93] pg. 325). Let N0,N1,N2 ∈ K

with e : N0 ↪→ N1 and f : N0 ↪→ N2. Then there is an N ∈ K with g : N1 ↪→ N and h : N2 ↪→ N and

g ◦ e = h ◦ f .

It is not hard to show that G has HP and JEP, but what about AP? We have previously defined what it

means for a graph to be ultrahomogeneous. We give a more general definition in terms of structures.

Definition 4.5.6 (Ultrahomogeneous, see [Rot00] pg. 135). Consider an L-structure M. If every isomor-

phism between finitely generated substructures of M can be extended to an automorphism of M, then we say

that M is ultrahomogeneous.

Definition 4.5.7 (Weakly homogeneous, see [Hod93] pg. 326). We say that an L-structure M is weakly

homogeneous if for any finitely generated substructures N0 and N1 of M with N0 ⊆ N1 and f : N0 ↪→ M, there

is an embedding g : N1 ↪→ M which extends f .

In case a structure is ultrahomogeneous, it is easy to see that it will also be weakly homogeneous.

The next result will help us to see whether G has AP.

Theorem 4.5.8 (see [Hod93], Theorem 7.1.7, pg. 329). Let L be a countable language and K be the age of a

finite or countable ultrahomogeneous L-structure, M. Then K

1. is non-empty,

2. has at most countably many isomorphism classes and

3. has HP, JEP and AP.

Proof. Let K be the age of a finite or countable ultrahomogeneous L-structure, M.

K is non-empty: This follows from the fact that K will contain all finitely generated substructures of M.

K has at most countably many isomorphism classes: Each structure in K will be isomorphic to a structure

generated by a finite subset of M . Since there are at most countably many finite subsets of a countable set,

there will be at most countably many isomorphism classes.

K has HP: Let N0 ∈ K with f : N0 ↪→ M. Now for any N1, which is a finitely generated substructure of

N0, restricting f to N1 gives and embedding of N1 into M. This means that N1 ∈ K, and of course N1
∼= N1,

which is the required result.

K has JEP: Let N0,N1 ∈ K. This means that N0
∼= M′ ⊆ M and N1

∼= M′′ ⊆ M. Both M′ and M′′ will

be finitely generated substructures of M, say by X and Y . Then the structure N generated by Z = X ∪Y will

be in K with both N0 and N1 embeddable in N .

K has AP: Let N0,N1,N2 ∈ K with e : N0 ↪→ N1 and f : N0 ↪→ N2. Since N0 is embeddable in M
we can find an isomorphism k0 : N0

∼= N ′
0 where N ′

0 is a substructure of M. Note that k0 ◦ e−1 will give an

embedding of e[N0] into M. But M is ultrahomogeneous and hence weakly homogeneous, so there is a g which

extends k0 ◦ e−1 to an embedding of N1 into M. In a similar way we can find an h which extends k0 ◦ f−1

to an embedding of N2 into M. Let N be the structure generated by g[N1] ∪ h[N2]. Then g : N1 ↪→ N and

h : N2 ↪→ N . Also

(g ◦ e)([N0]) = (k0 ◦ e−1 ◦ e)([N0]) = k0[N0] = (k0 ◦ f−1 ◦ f)([N0]) = (h ◦ f)([N0])

which is saying that g ◦ e = h ◦ f , as needed. Hence K has AP.
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CHAPTER 4. THE MARSHES OF MODEL THEORY

Theorem 4.5.9. G has HP, JEP and AP.

Proof. From Theorem 4.5.8, Proposition 3.1.2 (R is ultrahomogeneous) and the fact that G is the age of R, we

have that G has HP, JEP and AP.

We can take this further.

Theorem 4.5.10 (Fräıssé’s Theorem, see [Hod93] pg. 326). Consider a countable language L and let K be

a non-empty finite or countable set of finitely generated L-structures and suppose that K has HP, JEP and AP.

Then there is an L-structure M such that

1. |M| ≤ ω,

2. K is the age of M and

3. M is ultrahomogeneous.

M is unique up to isomorphism and we call M the Fräıssé limit of K.

The proof of Fräıssé’s Theorem consists of a uniqueness proof and an existence proof. We will not go into

the details here, or anywhere along the journey. Those who are interested to see these proofs are referred to

[Hod93].

Theorem 4.5.11. R is the Fräıssé limit of the class of all finite graphs.

Proof. We know from Theorem 4.5.9 that G has all the necessary properties, so from Theorem 4.5.10 there is

a countable ultrahomogeneous graph G such that G is the age of G. But this G is unique up to isomorphism,

hence R ∼= G, i.e. R is the Fräıssé limit of G.

4.6 Glowing splendor:

The resplendence of the Rado graph

There must be a beginning of any great matter,

but the continuing unto the end until it be

thoroughly finished yields the true glory.

Sir Francis Drake

As we look upon the beast which we have pursued on this journey, we are captured by its brilliance. One

might describe it as resplendent, without knowing how accurate the description is.

Definition 4.6.1 (Resplendent, see [Kos11] pg. 813). Let M be an L-structure. We say that M is resplendent

if for each sentence φ(ā, R) with a new (not already in L) relation symbol R and ā from M, if {φ(ā, R)} is

consistent with Th(M, ā), then φ(ā, R) is satisfied in some expansion of M, i.e. φ(ā, R) is true in (M, RM )

for some relation RM on M .

This is the same as saying that if any elementary extension of M has a relation with a first-order property,

then M also has such a relation. This is the definition of a resplendent structure in [BS76].

Before we see that R is, in every sense of the word, resplendent, we list some properties of resplendent

structures in the next theorem, which enables us to see why resplendent structures are resplendent.
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Theorem 4.6.2 (see [BS76] pg. 534 and [Kos11] pg. 813). 1. Every L-structure M has a resplendent ele-

mentary extension, say M′, of the same cardinality.

2. Let M be a resplendent L-structure and (M, ā) ≡ (M, b̄) with n-tuples ā and b̄ from M . Then there is

an automorphism, f of M such that f(ai) = bi for all i = 1, . . . , n. This is the same as saying that M is

ultrahomogeneous.

3. Every infinite resplendent L-structure has nontrivial automorphisms.

4. Every countably infinite resplendent L-structure has continuum many nontrivial automorphisms.

5. Every infinite resplendent L-structure is isomorphic to one of its own proper elementary substructures.

6. Every infinite definable subset of a resplendent L-structure M has the same power as M.

7. For every countably infinite resplendent L-structure M, the expansion (M, RM ), with RM as in Defini-

tion 4.6.1, is also resplendent. This is known as chronic resplendence.

This list is not exhaustive of all the properties or applications in which resplendent structures are involved,

but we hope that it has shed some light on why resplendency is such a marvellous quality for a structure to

have.

It is mentioned in [Kos11] (see pg. 813) that “any finite structure is resplendent”. The proof of is fact is

routine, and we consider it before looking at the resplendence of R.

Proposition 4.6.3. Every finite L-structure is resplendent.

Proof. Let M be any finite L-structure, but suppose on the contrary that M is not resplendent. Then there is

an N ≽ M and an L(R)-formula ∃Rφ(x̄, R) such that N |= ∃Rφ(ā, R) but M ̸|= ∃Rφ(ā, R), with ā from M.

But M ≼ N implies that M ≡ N and since M is finite, this is equivalent to M ∼= N , which is in

contradiction with the statement that N |= ∃Rφ(ā, R) but M ̸|= ∃Rφ(ā, R).

Hence, M must be resplendent.

Let us return now to the topic of R and its resplendence.

Theorem 4.6.4. R is resplendent.

We will go about showing that R is resplendent in two ways.

Definition 4.6.5 (Recursive set, see [BBJ02]). A recursive set of L-formulas, Φ, is a set for which there is

an algorithm8 to determine whether a given L-formula belongs to Φ.

Definition 4.6.6 (Recursively saturated, see [BS76] pg. 531). We say that an L-structure M is recursively

saturated if, for every recursive set Φ(x, ȳ) of L-formulas, with ȳ an n-tuple (possibly empty), we have that

M |= ∀ȳ

( ∧
Φ0⊆Φ;Φ0 finite

∃x
∧

Φ0(x, ȳ) → ∃xΦ(x, ȳ)

)
.

Before we continue, we mention the following result that will help us make a connection between the concepts

of saturated and recursively saturated.

Proposition 4.6.7. The following are equivalent.

1. Φ is a type of M.

2. M |= ∃x̄
∧

Φ0 for every finite subset Φ0 ⊆ Φ.

8Refer to Appendix B for more on algorithms.
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Proof. Note firstly that a type of M is nothing more that a set of L(M)-formulas which is consistent with

Th(M,M). For an n-tuple c̄ of new constant symbols, we can write this more clearly as Th(M,M) ∪ Φ(c̄) is

consistent.

It now follows, from the Compactness theorem (Theorem 4.1.9), that Φ is a type of M iff every finite subset

of Φ is a type of M. This is the same as saying, for every finite subset Φ0 ⊆ Φ, that
∧

Φ0 is satisfied in some

elementary extension of M and hence also in M. This gives the required result.

Notice that the “
∧

Φ0⊆Φ;Φ0 finite ∃x
∧

Φ0(x, ȳ)” part of Definition 4.6.6 together with Proposition 4.6.7 tells

us that Φ is a 1-type of M. If M is saturated then it would realize Φ so we get the “∃xΦ(x, ȳ)” part of

Definition 4.6.6. This means that any saturated structure will be recursively saturated.

Here is the result needed for our first method.

Lemma 4.6.8 (see [BS76] pg. 534). Let M be any countably infinite L-structure. If M is recursively saturated,

then M is resplendent.

Proof 1 of Theorem 4.6.4. We know that R is countably infinite and so, by Lemma 4.6.8, if we can show that

R is recursively saturated, then we will have that R is resplendent.

So let Φ(x, ȳ) be any recursive set of L-formulas, with ȳ an n-tuple of variables. Suppose that

R |= ∀ȳ
(
∃x
(∧

Φ0(x, ȳ)
))

for every finite subset Φ0 ⊆ Φ.

We can restate this as R |= ∃x
(∧

Φ0(x, ā)
)

for all n-tuples ā from R. Using Proposition 4.6.7, this gives us

that Φ is a type of R.

We have seen, as stated in Proposition 4.3.8, that R is saturated, meaning that it realises all its n-types

over finitely many parameters. So R |= ∃xΦ(x, ā) for all n-tuples ā form R. Now we have

R |= ∀ȳ(∃xΦ(x, ȳ).

In conclusion, R is recursively saturated, and hence resplendent.

Now let’s do the other proof.

Proof 2 of Theorem 4.6.4. Firstly, by Theorem 4.6.2 part 1, we are able to find a resplendent elementary ex-

tension M of R such that M is countably infinite. But now, using the ℵ0-categoricity of ThR we have that

R ∼= M. Therefore we have that R is resplendent.

We can extend this argument to give a more general result.

Proposition 4.6.9 (see [Kos11] pg. 813). Any model of a κ-categorical theory of power κ, is resplendent.

Proof. Let T be a κ-categorical L-theory and M a model of T with |M| = κ.

Using Theorem 4.6.2 part 1, we can find a resplendent N ≽ M with |N | = κ. Since T is κ-categorical, we

have that N ∼= M, giving the resplendency of M.
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Chapter 5

The 0-1 Forest

How often have I said to you that when you

have eliminated the impossible, whatever

remains, however improbable, must be the

truth?

Sherlock Holmes

The Sign of the Four

When working in probability theory, a 0-1 law states that under specific conditions, certain events have

either a probability of 0 or a probability of 1 of occurring. We are going to use R to obtain a 0-1 law for graphs,

i.e. that an L(∼)-sentence has either probability 0 or probability 1. We will also use this 0-1 law to prove some

other nice results about R.

5.1 Law-abiding citizens:

A 0-1 law for graphs

Before deriving a 0-1 law for graphs, we need to define what we mean by the probability of a sentence, and

give conditions under which they will have either probability 0 or 1. Let’s tie up these loose ends.

Definition 5.1.1 (Probability of a sentence, see [Abr18] pg. 5). Consider an L-sentence φ and let Pn(φ)

be the fraction of all L-structures of size n that model φ. Then the limit P (φ) := lim
n→∞

Pn(φ), if it exists, is the

(labeled asymptotic) probability of φ.

If P (φ) = 1 we say that φ is almost surely true and in case P (φ) = 0 we say that φ is almost surely false.

Intuitively one would imagine that if a sentence is not almost surely true, then it must be almost surely

false. Similarly, if two sentences are almost surely true, it feels natural to say that their conjunction must also

be almost surely true. The next lemma shows that this is in deed the case.

Lemma 5.1.2 (see [Abr18] pg. 6). 1. P (φ) = 1 iff P (¬φ) = 0.

2. P (φ ∧ ψ) = 1 iff P (φ) = 1 and P (ψ) = 1.
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Proof. 1. Note that if an L-structure models φ then it cannot be a model of ¬φ and vise versa. This means

that Pn(¬φ) = 1 − Pn(φ). We thus have

1 − P (φ) = 1 − lim
n→∞

Pn(φ)

= lim
n→∞

(1 − Pn(φ))

= lim
n→∞

Pn(¬φ)

= P (¬φ)

giving us P (¬φ) = 0 in case P (φ) = 1.

The reverse implication is obtained in the same way.

2. Suppose that P (φ∧ψ) = lim
n→∞

Pn(φ∧ψ) = 1. For any L-structure to model φ∧ψ it needs to model both

φ and ψ. This implies that Pn(φ) > Pn(φ∧ψ) since a model of φ need not be a model of ψ. For the same

reason Pn(ψ) > Pn(φ∧ψ). It now follows that both P (φ) = lim
n→∞

Pn(φ) = 1 and P (ψ) = lim
n→∞

Pn(ψ) = 1.

For the other way, suppose that P (φ) = 1 and P (ψ) = 1. From the inclusion-exclusion principle we have

that Pn(φ) + Pn(ψ) − Pn(φ ∧ ψ) ≤ 1. This gives us Pn(φ) + Pn(ψ) − 1 ≤ Pn(φ ∧ ψ) ≤ 1. Finally we take

the limit as n goes to ∞ to obtain 1 ≤ P (φ ∧ ψ) ≤ 1, which means that P (φ ∧ ψ) = 1.

Restricting our attention to graphs, we need only to consider L(∼)-sentences. So for any L(∼)-sentence, φ,

Pn(φ) is the number of graphs on n vertices that model φ divided by the total number of graphs on n vertices.

Theorem 5.1.3 (0-1 Law for Graphs, see [Fag76] pg. 52). Every L(∼)-sentence is either almost surely true

or almost surely false.

As mentioned, we need the help of R or at least the essence of R to prove this law. Recall from Chapter 4

the extension axioms φm,n which were used to describe EP.

φm,n := (∀x1, . . . , xm, y1, . . . , yn)

(( ∧
∀i,∀j

xi ̸= yj

)
→ (∃z)

((∧
∀i

z ∼ xi

)
∧

(∧
∀j

z ̸= yj ∧ z ̸∼ yj

)))

Lemma 5.1.4 (see [Hed04], Lemma 5.35, pg. 218). Each φm,n is almost surely true.

Proof. Fix m,n ∈ N0 and let k = N + n+m for some N ∈ N.

Let G be a graph on k vertices and let U = {x1, . . . , xm} and V = {y1, . . . , yn} be sets of vertices of G with

U ∩ V = ∅. If G |= φm,n then there is a z ∈ G \ (U ∪ V ) such that z ∼ U and z ̸∼ V . We will calculate the

probability that this is not the case.

For any of the N vertices left to choose from G, the probability of being connected to each vertex in U is
1
2m and the probability of not being connected to any vertex in V is 1

2n . Hence, the probability of a given z

witnessing φm,n for U and V is 1
2m+n . The probability of a given z not witnessing this sentence is therefore

1 − 1
2m+n := δ. This means that the chance of none of the N vertices being the needed z is δN .

This needs to be done for all possible choices of sets U and V . There are
(

k
m+n

)
ways to pick vertices for

U and V and
(
m+n
m

)
ways to choose m of these vertices for U and the remaining n vertices for V . This means

that there are
(

k
m+n

)(
m+n
m

)
possible choices of sets U and V .

For G |= ¬φm,n we need to find only once choice of U and V for which there is no z. So

Pk(¬φm,n) =

(
k

m+ n

)(
m+ n

m

)
δN

=
k!

N !m!n!
δN
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Note that

k!

N !
=

(N +m+ n)!

N !

=
(N +m+ n)(N +m+ n− 1) · · · (N + 1)(N)(N − 1) · · · (2)(1)

(N)(N − 1) · · · (2)(1)

= (N +m+ n)(N +m+ n− 1) · · · (N + 1)

≤ (N +m+ n)m+n

= km+n

and hence

Pk(¬φm,n) ≤ km+n

m!n!
δN

≤ km+nδk−(m+n)

=
km+nδk

δm+n
.

Now lim
k→∞

km+nδk = 0 because the polynomial km+n increases much slower than the exponential δk decays.1

This implies that P (¬φm,n) = lim
k→∞

Pk(¬φm,n) = 0, which, from Lemma 5.1.2, means that P (φm,n) = 1, i.e.

each φm,n is almost surely true.

Proof of Theorem 5.1.3. Recall from Chapter 4 the axioms (∀x, y)((x ∼ y) → (x ̸= y)) and (∃x, y)(x ̸= y) and

(∀x, y)((x ∼ y) → (y ∼ x)), which are used to define the class of graphs. It is easy to see that of each of these

sentences is almost surely true and from Lemma 5.1.4 each φm,n is almost surely true. This means that each

sentence in the axiomatization, say ΣR, of ThR is almost surely true.

Now each φ ∈ ThR will be a consequence of ΣR, meaning that every graph which models ΣR will also

model φ. So Pn(φ) ≥ Pn(ψ) where ψ ∈ ΣR. This means that P (φ) = limn→∞ Pn(φ) ≥ limn→∞ Pn(ψ) = 1. So

P (φ) = 1 for each φ ∈ ThR.

ThR is complete, by Theorem 4.2.7, that is for each L(∼)-sentence φ, either φ ∈ ThR or ¬φ ∈ ThR. This

implies that either P (φ) = 1 or P (¬φ) = 1, so every L(∼)-sentence is either almost surely true, or almost surely

false.

Remark 5.1.5. We have mentioned before that ThR is the set of all L(∼)-sentences that hold in R. We can

now also say that ThR is the set of almost surely true L(∼)-sentences.

It is quite surprising to be able to relate probability theory to graph theory in this way. It should be less

surprising that the 0-1 Law for Graphs can be generalized to a 0-1 Law for Logic. We know that the language

of graphs has only one relation symbol to worry about, and so we are tempted to wonder what will happen if

we have to deal with a finite amount of relation symbols.

Theorem 5.1.6 (0-1 Law for Logic, see [Abr18], Theorem 3.2, pg. 9). Let L∗ be a language with finitely

many relation symbols. Then every L∗-sentence is either almost surely true or almost surely false.

Obviously, relational L-structures need not be the same as graphs, and so to prove this new 0-1 law we would

need to augment some of the necessary results. We are, being hunters of a great beast, only truly interested in

the details of things which concern or are related to R is some direct way. So instead of stating and proving in

full detail these results, we will just discuss the important principles and steps needed to prove Theorem 5.1.6.

[Abr18] gives all the detail, for those who are interested.

1One can formally use L’Hospital’s rule to prove that the limit is 0.

57

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  
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Firstly, we will need a property which does the same work as EP, but for finitely many relation symbols.

This property will ensure the existence of some element x in the structure, which relates to all the elements in

a finite subset, precisely in the way that we want it to.

The next point will be that there is in fact a countably infinite L-structure, satisfying this property and that

any two countably infinite L-structures with this property are isomorphic. This will ensure the completeness

of the theory of structures with this property. To axiomatize this theory we will have to use relevant extension

axioms2. These sentences will play the same role in the proof of Theorem 5.1.6 as the φm,n’s played in the proof

of Theorem 5.1.3.

Each of these extension axioms will be almost surely true (just like before), and one can then argue in a

similar fashion to what we did, using completeness of the theory, that each L∗-sentence is either almost surely

true or almost surely false.

Theorem 5.1.3 puts certain restrictions on what can be said with L(∼)-sentences.

Example 5.1.7. There is no L(∼)-sentence which says that a graph has an even number of vertices. This is

because the limit of any such sentence does not converge, with Pn(φ) being 1 for all even n and 0 for all odd n.

For the same reason, there is no L(∼)-sentence which says that a graph has an odd number of vertices.

Theorem 5.1.3 also tells us something about large finite graphs.

Example 5.1.8. In Proposition 2.2.1 we showed that R has a walk of length 2 between any two vertices. We

can also say that R has diameter 2. This can be expressed with the L(∼)-sentence

δ2 := ∀x, y(x ̸= y → ∃z(z ∼ x ∧ z ∼ y)).

So R |= δ2 and δ2 ∈ ThR. It now follows that δ2 is almost surely true, so for a large n, a finite graph of order

n will likely have diameter 2.

5.2 Playing games:

Finite graphs with r-extension

Wait. . . I know you. . .

Guard

The Elder Scrolls V: Skyrim

Apart from putting restrictions on what we can say with L(∼)-sentences, the 0-1 law for graphs helps us to

determine if we can find finite graphs with certain properties.

Consider the extension axioms, or the φm,n’s and let r = m + n. We fix the notation ϵr = φm,n and we

will say that a graph G has r-extension if G |= ϵr. It should be clear that R has r-extension for each r. The

more interesting case will be a finite graph with r-extension. In this section we show that finite graphs with

r-extension are (r+ 1)-equivalent to R. We give explicit examples of graphs with 1- and 2-extension, and then

determine some lower bounds for the order of finite graphs with r-extension. Most of the results follow easily

enough from the relevant definitions.

Proposition 5.2.1 (see [BH79], Theorem 1, pg. 228). For each r there is a finite graph G such that G |= ϵr,

i.e. that has r-extension.

2These will be different to the extension axioms that we used.
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Proof. Suppose on the contrary that there does not exist a finite graph with r-extension. Then for each k ∈ N
no graph on k vertices will satisfy ϵr = φm,n. This implies that Pk(ϵr) = 0 for each k ∈ N and hence that

P (ϵr) = 0, but we know that this is not the case from Lemma 5.1.4.

It should be clear that if a graph has r-extension it will also have n-extension for each n ≤ r. We explore

this concept in a bit more depth.

Definition 5.2.2 (Quantifier rank, see [Doe96] pg. 27). The quantifier rank of an L-formula φ, denoted

qr(φ), is recursively computed as follows.

1. An atomic formula has quantifier rank equal to 0.

2. qr(¬φ) = qr(φ)

3. qr(φ ∧ ψ) = max(qr(φ), qr(ψ))

4. qr(∃xφ) = qr(φ) + 1

Intuitively, the quantifier rank of a formula is the largest number of nested quantifiers in the formula. For

example, the L(∼)-formula ∃x(∀y(y = x ∼ y) ∧ ∃z(x ∼ z)) has quantifier rank 2.

Definition 5.2.3 (n-equivalence, see [Doe96] pg. 28). L-structures M and N are n-equivalent if they satisfy

the same L-sentences of quantifier rank ≤ n. In this case we write M ≡n N .

The easiest way to show that two structures are n-equivalent is through using Ehrenfeucht-Fräıssé games.

We define such a game on graphs specifically, but these games can be played on arbitrary L-structures as in

[Doe96].

Definition 5.2.4 (Ehrenfeucht-Fräıssé game, see [Doe96] pg. 22). Let G and H be two graphs and n ∈ N.
The Ehrenfeucht-Fräıssé game of length n on G and H consist of two players, called Di and Sy, taking alternate

turns. Di plays the first move, and both players are allowed n moves. In each round of the game Di can choose

a vertex from either G or H, which Sy counters by choosing a vertex form the other graph. That is, if Di played

a vertex from G (resp. H) then Sy has to play a vertex of H (resp. G).

Each game can only have one winner. Each game establishes n pairs, which we can view as a mapping

f := {(g1, h1), . . . , (gn, hn)} from G to H. If f is an isomorphism between the induced subgraphs on {g1, . . . , gn}
and {h1, . . . , hn}, of G and H respectively, then Sy has won. Otherwise Di has won.

In case a player is not able to play, due to a lack of vertices, then that player loses.

[Doe96] describes the idea behind the game beautifully.

Di sees differences all around; each of her moves is accompanied by some exclamation “hey, Sy,

look: here I’ve found an extraordinary element in this [structure] you can’t find the equal of in the

other one!”. On the other hand, to Sy every two [structures] appear to be similar and every move

of Di is countered with some “oh yeah? then what about this one!”

We illustrate such a game in the following example.

Example 5.2.5. Consider the following two graphs.

(a) A graph G (b) A graph H
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Di and Sy are going to play a game of length 3 on these two graphs. Di starts by choosing the center vertex

of G, and Sy responds by picking the center vertex of H. Now Di decides to play the top left vertex of H and

Sy counters with the bottom right vertex of G. Finally Di plays the top left vertex of G to which Sy plays the

top right vertex of H. The resulting induced subgraphs are drawn below.

(a) Induced subgraph of G (b) Induced subgraph of H

Clearly the two induced subgraphs are isomorphic and hence Sy wins the game.

When considering Ehrenfeucht-Fräıssé games, the specific elements chosen aren’t really that important.

What we care about is who wins the game. In other words, we really want to know who has a winning strategy,

Di or Sy? It can be shown that exactly one of the two players has a winning strategy for the game. We are

rooting for Sy to win, and we write Sy(G,H, n) if Sy has a winning strategy for the game on G and H of

length n. The reason we like it when Sy wins is the following.

Theorem 5.2.6 (see [Doe96], Theorem 3.18, pg. 28). Two graphs G and H are n-equivalent iff Sy(G,H, n).3

Let’s bring this section back to r-extension.

Theorem 5.2.7. Let G be a finite graph with r-extension, then G ≡r+1 R.

Proof. From Theorem 5.2.6 it is enough to show that Sy has a winning strategy for the game on G and R of

length r + 1. Note that a non-empty graph satisfying ϵr will have at least r + 1 vertices, so there is no danger

of either Di or Sy running out of vertices to choose from.

We describe Sy’s responses for the first three rounds of the game, before giving a general winning strategy

for Sy.

For the first round of the game Di can play a vertex from either G or R. Suppose that Di plays g1 from G

as first move, then Sy can respond by playing any vertex of R, say r1. If on the other hand Di plays r1 form

R first, then Sy can respond by playing any vertex g1 from G. Either way we have chosen {g1} from G and

{r1} from R, and the induced subgraphs on {g1} and {r1} are isomorphic.

For the second round of the game Di can again choose from either G or R. Suppose that Di plays g2 from

G. In case g1 ∼ g2 then Sy can counter with any of the infinitely many neighbours of r1 (Proposition 2.1.2) and

if g1 ̸∼ g2 then Sy can counter with any of the infinitely many non-neighbours of r1 (Proposition 2.1.3), call

this vertex r2. Suppose instead that Di plays r2 from R. If r1 ∼ r2 then Sy has to choose g2 from G such that

g1 ∼ g2. Since G has r-extension then G also has 1-extension, which implies the existence of such a g2 ∈ G. In

case r1 ̸∼ r2, then the r-extension, and hence 1-extension of G again implies the existence of a g2 ∈ G such that

g1 ̸∼ g2. In either case Sy can respond to Di’s move by using the r-extension of G to pick a vertex g2. So the

induced subgraphs of G and R on {g1, g2} and {r1, r2} are isomorphic.

Suppose for the third round of the game that Di plays g3 from G. We consider the following cases:

• g3 ∼ g1 and g3 ∼ g2: Let U = {r1, r2} and V = ∅, then Sy can counter with any of the infinitely many

witnesses to EP for U and V in R (Proposition 2.1.1).

• g3 ∼ g1 and g3 ̸∼ g2: Let U = {r1} and V = {r2}, then Sy can counter with the infinitely many witnesses

to EP for U and V in R.

3Like Ehrenfeucht-Fräıssé games, this can be generalised to arbitrary L-structures.
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• g3 ̸∼ g1 and g3 ∼ g2: Let U = {r2} and V = {r1}. So Sy can counter with the infinitely many witnesses

to EP for U and V in R.

• g3 ̸∼ g1 and g3 ̸∼ g2: Let U = ∅ and V = {r1, r2}. Again Sy can counter using of the infinitely many

witnesses to EP for U and V in R.

Di might also start the third round by playing r3 from R.

• r3 ∼ r1 and r3 ∼ r2: Let U = {g1, g2} and V = ∅, then since G has r- and hence 2-extension there exists

a vertex, say g3 ∈ G, with which Sy can respond such that g3 ∼ g1 and g3 ∼ g2.

• r3 ∼ r1 and r3 ̸∼ r2: Let U = {g1} and V = {g2}, then since G has r- and hence 2-extension there exists

a vertex, say g3 ∈ G, with which Sy can respond such that g3 ∼ g1 and g3 ̸∼ g2.

• r3 ̸∼ r1 and r3 ∼ r2: Let U = {g2} and V = {g1}, then since G has r- and hence 2-extension there exists

a vertex, say g3 ∈ G, with which Sy can respond such that g3 ̸∼ g1 and g3 ∼ g2.

• r3 ̸∼ r1 and r3 ̸∼ r2: Let U = ∅ and V = {g1, g2}, then since G has r- and hence 2-extension there exists

a vertex, say g3 ∈ G, with which Sy can respond such that g3 ̸∼ g1 and g3 ̸∼ g2.

After this round of the game the induced subgraphs of G and R on {g1, g2, g3} and {r1, r2, r3} are isomorphic.

The game will continue like this. We can put this into a winning strategy as follows.

If Di plays as first move g1 ∈ G (resp. r1 ∈ R), then Sy can counter with any vertex of R (resp. G).

Suppose that {g1, . . . , gn} and {r1, . . . , rn} for 1 ≤ n < r+1 have already been chosen such that the induced

subgraphs are isomorphic.

Now at step n + 1 if Di plays gn+1 from G then Sy constructs sets U = {ri : gn+1 ∼ gi for 1 ≤ i ≤ n}
and V = {ri : gn+1 ̸∼ gi for 1 ≤ i ≤ n}. Using Proposition 2.1.1 Sy can play any of the infinitely many

witnesses to EP of U and V in R. Labelling the chosen witness rn+1 results in the sets {g1, . . . , gn+1} and

{r1, . . . , rn+1} such that gi ∼ gj iff ri ∼ rj for each i, j ∈ {1, . . . , n+ 1}. Thus, the induced subgraphs of G and

R on {g1, . . . , gn+1} and {r1, . . . , rn+1} will be isomorphic.

If, at step n + 1, Di plays rn+1 from R then Sy constructs sets U = {gi : rn+1 ∼ ri for 1 ≤ i ≤ n} and

V = {gi : rn+1 ̸∼ ri for 1 ≤ i ≤ n}. Note that |U |+ |V | can be at most n < r+ 1. Since G has r-extension, and

hence also n-extension, there exists a vertex in G which Sy can play as gn+1 to give sets {g1, . . . , gn+1} and

{r1, . . . , rn+1} such that gi ∼ gj iff ri ∼ rj for each i, j ∈ {1, . . . , n+ 1}. So, the induced subgraphs of G and R

on {g1, . . . , gn+1} and {r1, . . . , rn+1} will be isomorphic.

This shows that Sy has a winning strategy for the game of length r + 1 on G with r-extension and R, i.e.

G ≡r+1 R.

Definition 5.2.8 (Complement of a graph, see [Die00] pg. 4). The complement of a graph G, denoted G,

is a graph on the same vertices as G such that g ∼ h in G iff g ̸∼ h in G.

Proposition 5.2.9 (see [BEH81], pg. 438). A graph G has r-extension iff its complement has r-extension.

Proof. Suppose that G has r-extension, but that G does not. Then there exist disjoint sets U = {u1, . . . , um}
and V = {v1, . . . , vn} of vertices of G, with m + n ≤ r, such that there does not exist g ∈ G with g ∼ U and

g ̸∼ V . Note that U and V are also disjoint subsets of vertices of G, and since G has r-extension, there exists

a vertex h ∈ G such that h ∼ V and h ̸∼ U . This vertex h will also be in G, but with h ∼ U and h ̸∼ V , a

contradiction to our previous claim. This implies that G must also have r-extension.

Supposing that G has r-extension, but that G does not, gives the same contradiction.

Hence G |= ϵr iff G |= ϵr.

We can now ask ourselves, how do these finite graphs with r-extension look?
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Example 5.2.10. The following graph has 1-extension.

This means that for every vertex of the graph we should be able to find a vertex connected to it and one not

connected to it. This is checked easily enough.

Example 5.2.11. The following graph has 2-extension.

So for any two vertices we should be able to find a vertex connected to both, one not connected to either,

and one connected to the one vertex but not the other. Note that we do not literally need to check this for each

pair of vertices. Due to the symmetry of the situation we only need to check some cases.

We will circle the chosen pair of vertices in blue, and mark with green a vertex connected to both, with red

a vertex not connected to either, and with purple one connected to only one of the vertices.
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We can also represent this graph with its adjacency matrix . This is just a square matrix with a row and

column for each vertex, and entry ai,j = 1 if vertices i and j are connected, and is 0 otherwise. Note that the

diagonal of an adjacency matrix will consist only of 0’s, since no vertex is connected to itself.

Example 5.2.12. We enumerate the vertices of the graph.

This gives the adjacency incidence matrix.



0 1 0 0 1 1 1 0 0 0 0

1 0 1 0 0 0 1 1 0 0 0

0 1 0 1 0 0 0 1 1 0 0

0 0 1 0 1 0 0 0 1 1 0

1 0 0 1 0 1 0 0 0 1 0

1 0 0 0 1 0 0 1 1 0 1

1 1 0 0 0 0 0 0 1 1 1

0 1 1 0 0 1 0 0 0 1 1

0 0 1 1 0 1 1 0 0 0 1

0 0 0 1 1 0 1 1 0 0 1

0 0 0 0 0 1 1 1 1 1 0
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To see that 2-extension is satisfied, we need to check for every two rows, i and j, that

1. (ai,k, aj,k) = (0, 0) for some k ∈ {1, . . . , 11} \ {i, j}
(this means that there is a vertex not connected to either of i or j),

2. (ai,l, aj,l) = (0, 1) for some l ∈ {1, . . . , 11} \ {i, j, k}
(this means that there is a vertex connected to j but not i),

3. (ai,m, aj,m) = (1, 0) for some m ∈ {1, . . . , 11} \ {i, j, k, l}
(this means that there is a vertex connected to i but not j), and

4. (ai,n, aj,n) = (1, 1) for some n ∈ {1, . . . , 11} \ {i, j, k, l,m}
(this means that there is a vertex connected to both i and j).

This can be checked easily with the relevant program found in Appendix D.

Let’s see how this will work for the more general case of r-extension.

Consider the set of vectors S := {x̄ : x̄ ∈ {0, 1}r}. If we want to check that an m×m adjacency matrix has

r-extension, then we have to check for every r rows, i1, i2, . . . , ir, that

1. (ai1,j , ai2,j , . . . , air,j) = x̄1 where x̄1 ∈ S for some j ∈ {1, . . . ,m},

2. (ai1,k, ai2,k, . . . , air,k) = x̄2 where x̄2 ∈ S \ {x̄1} for some k ∈ {1, . . . ,m} \ {j},

3. (ai1,l, ai2,l, . . . , air,l) = x̄3 where x̄3 ∈ S \ {x̄1, x̄2} for some l ∈ {1, . . . ,m} \ {j, k},
...

2r. (ai1,n, ai2,n, . . . , air,n) = x̄2r where x̄2r ∈ S \ {x̄1, x̄2, . . . , x̄2r−1}
for some n ∈ {1, . . . ,m} \ {All previously used column indices}.

Notice that in this process we exhaust S, i.e. we need to find all possible vectors in {0, 1}r as column vectors

for the matix’s graph to satisfy r-extension.

Note that the graphs in Example 5.2.10 and Example 5.2.11 are not the only finite graphs with 1- and

2-extension respectively. Instead of trying to find all such graphs, we aim rather to discover some of the basic

properties such graphs might possess.

Let’s start with the possible orders of a graph with r-extension. It is clear from the work we did in Section 5.1

that the larger the graph is, the more likely it is to have r-extension. The interesting question is then, how

small can these graphs be?

Proposition 5.2.13. A graph with r-extension has at least r + 1 vertices.

Proof. We know from Proposition 5.2.1 that there is a nonempty graph G with r-extension. Then G has

k-extension for each k ∈ {1, . . . , r}. Let g1 be a vertex from G.

Since G has 1-extension there exists a vertex g2 ∈ G \ {g1} which is either connected to, or not connected

to g1, so G has at least 2 vertices. Whether or not there is an edge is not important for this proof; we are only

concerned with the number of vertices in G. Now, since G has 2-extension, for sets U and V obtained from

only the vertices g1 and g2, there exists a vertex g3 ∈ G \ {g1, g2} connected to the two vertices g1 and g2 in

some way, so G has at least 3 vertices. Next, considering sets U and V obtained from only the vertices g1, g2

and g3, together with the fact that G has 3-extension gives a vertex g4 ∈ G \ {g1, g2, g3}, hence G has at least

4 vertices.

Continuing, in this way, we use the k-extension of G, for k ≤ r, to show that there are at least k+ 1 vertices

in G. The r-extension of G, i.e. where k = r, shows that G has at least r + 1 vertices.

Alternatively, we can write for a graph G, if G |= ϵr then |G| ≥ r + 1.

So a graph with 1-extension has at least 2 vertices. But having only two vertices is surely not enough. If a

graph has only two vertices labeled 1 and 2, these two vertices can either be connected or not. In case they are
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connected we won’t be able to find a vertex not connected to 1. If they are not connected we won’t be able to

find a vertex connected to 1. So this graph will not satisfy 1-extension. We can make the bound more accurate

by considering the ways in which the vertices should be connected to each other.

For a graph with 1-extension, for every vertex there is a vertex connected to it and also another vertex not

connected to it. In this case there should be at least 3 vertices. We can write this as 1 +
(
1
0

)
+
(
1
1

)
: 1 for the

chosen vertex,
(
1
0

)
for the number of ways in which a vertex can be not connected to the chosen vertex, and

(
1
1

)
for the number of ways in which a vertex can be connected to the chosen vertex.

For a graph with 2-extension, for every two vertices there should be a vertex connected to both, a vertex

connected to one vertex but not the other, and a vertex not connected to either. This means there should be at

least 6 vertices. We can write this as 2 +
(
2
0

)
+
(
2
1

)
+
(
2
2

)
, again counting the number of ways in which a vertex

can be connected to none, one, or both of the vertices.

We can now give the following bound.

Proposition 5.2.14. A graph with r-extension has at least r + 2r vertices.

Proof. Let G be a graph with r-extension. Then there are at least r vertices from which we can make sets U

and V for which ϵr will be satisfied.

We focus on the number of ways in which a vertex can be connected to exactly k vertices, for k ∈ {0, . . . , r}.

This gives the following expression: (
r

0

)
+

(
r

1

)
+ · · · +

(
r

r

)
.

This counts one witness for each of the possible sets U and V made up of the r vertices.

So G has at least r+
(
r
0

)
+
(
r
1

)
+ · · ·+

(
r
r

)
vertices. We use the binomial expansion to simplify this expression.

Binomial Formula (see [Pin10] pg. 179)

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk

If we let both a and b be 1 in the binomial formula, we get 2n = (1 + 1)n =
∑n

k=0

(
n
k

)
1n−k1k =

∑n
k=0

(
n
k

)
.

Hence, G has at least r + 2r vertices.

This bound does a lot better than just r + 1, but it is not perfect. Consider the following graph.

1 2

3

For vertex 3 there is no node connected to it, so the graph does not have 1-extension. Connecting it to

either 1 or 2 does not fix the problem, since then either 1 or 2 will be connected to every other vertex, so we

won’t find a vertex not connected to it. This implies that we need a fourth point.

If we consider graphs with 2-extension then, according to our bound, the graph needs to have at least 6

vertices. The graph from Example 5.2.11 has 11 vertices. Our bound suggests that we can do with less, and in

fact we can.
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Example 5.2.15. The following two graphs, with 10 and 9 vertices respectively, each have 2-extension.4

We can, however, not do with less than 9 vertices. This can be tested with the sequential-binary-fill-program

from Appendix D. We can say more about the order of finite graphs with r-extension.

Proposition 5.2.16. If there is a graph of order n that satisfies r-extension, then there is also a graph of order

> n that satisfies r-extension.

Proof. Let G be a graph such that G |= ϵr and |G| = n. Suppose, on the contrary, that G is the largest graph

with r-extension. That is, for each H with |H| > n, H ̸|= ϵr. This implies that Pk(ϵr) = 0 for each k > n. But

then limk→∞ Pk(ϵr) = 0, which is not the case. Therefore G cannot be the largest graph with r-extension, i.e.

there is a graph of order > n with r-extension.

Apart from the order of graphs with r-extension, we might also look at how the vertices of such a graph are

connected.

Proposition 5.2.17 (see [BH79], Corollary 13, pg. 231). In every graph with r-extension, where r ≥ 2, there

is a walk of length ≤ 2 between any two vertices, i.e. the graph has diameter 2.

Proof. Let r = 2 and suppose that a graph G has r-extension. Then, for any two vertices u and v of G we will

be able to find a third vertex (there are enough vertices to do this by Proposition 5.2.14) such that the third

vertex is connected to both u and v. This yields a walk of length 2 between u and v. If the chosen vertices were

already connected, then we have a walk of length 1.

Now let r > 2 and suppose that a graph G has r-extension. Then certainly G has 2-extension, and we use

the same argument as above to find a walk of length 1 or 2.

This proves the claim.

In [BR05] it is mentioned that the existence or non-existence of finite triangle free graphs (i.e. graphs of

which K3 is not an induced subgraph) with r-extention is uncertain. The following result will clear up this

uncertainty.

Proposition 5.2.18 (see [BH79], Corollary 14, pg. 232). Every graph with r-extension contains a complete

graph on r + 1 vertices. In fact, a graph with r-extension contains a complete graph on k vertices for each

k ∈ {2, . . . , r + 1}.
4This can be checked by setting up an adjacency matrix and using the relevant program from Appendix D. The graph of order

10 was originally discovered using the random-binary-fill-program. The graph of order 9 was discovered after staring, for hours on
end, at the graph of order 10.
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Proof. Let G be a graph with r-extension. Then G will also satisfy k-extension for each 1 ≤ k < r. Let g0 be a

vertex from G.

Now since G has 1-extension there is a g1 ∈ G such that g0 ∼ g1, giving a complete graph on 2 vertices.

Next, since G has 2-extension there is a g2 ∈ G such that g2 ∼ g0 and g2 ∼ g1. So we have a complete graph on

3 vertices. Using the 3-extension of G we can find a vertex g3 ∈ G connected to each of g0, g1 and g2, resulting

in a complete graph on 4 vertices. We can continue using the i-extension of G to construct a complete graph

on i+ 1 vertices. The final step would be to use the r-extension of G, giving a complete graph on r+ 1 vertices

as required.

So, in particular, if G is a finite graph with r-extension, and r ≥ 2, then it has K3 as an induced subgraph

and hence G cannot be triangle free. In this case non-existence is clear. It is, however possible for a triangle

free graph to satisfy 1-extension, as in Example 5.2.10, which makes existence clear.

Note that the vertex g0 in the proof above was arbitrarily chosen. We can therefore give the following result.

Proposition 5.2.19. Let G be a graph with r-extension. Then, for k ∈ {2, . . . , r+ 1}, every vertex of G is also

a vertex of an induced subgraph H of G, where |H| = k and H is complete.

At this stage one might be wondering if there is a way to construct a finite graph with r-extension. There

are, but these constructions are either very large or the details are more complicated than we care to go into.

We will just outline the ideas of the constructions here. Readers who wish to see them in detail are referred to

the relevant articles.

A graph is said to be strongly regular if it is regular , i.e. all vertices have the same number of neighbours, and

there exist m and n such that each connected pair of vertices have m mutual neighbours, and each disconnected

pair of vertices have n mutual neighbours. Cameron and Stark [CS02] use probabilistic methods to construct

strongly regular graphs that have r-extension. The smallest graph, as constructed in [CS02], with 1-extension

has 4 624 vertices, and with 2-extension has 1 065 024 vertices.

For a prime p congruent to 1 modulo 4, take the elements of the field of order p, Fp, to be the vertices of

a graph Gp, and let two vertices be adjacent when their difference is a quadratic residue modulo p. The graph

Gp is called a Paley graph of order p. In [BEH81] it is shown that Paley graphs satisfy the following version of

the r-extension property for sufficiently large primes.

A graph satisfies Axiom n if, for any sequence of 2n of its [vertices], there is another [vertex] adjacent

to the first n and not any of the last n.

Here, a sufficiently large prime is a prime p with p > n224n. The fact that (large enough) Paley graphs have

r-extension, in the sense that we have defined it, comes from the proof of Theorem 3 in [BT81]. According to

[BEH81], the smallest Paley graph guaranteed by their results to satisfy 1-extension then has 17 vertices; to

satisfy 2-extension has 1 033 vertices.

[BR05] uses combinatorial methods to construct graphs that satisfy r-extension, but these are larger and

more complicated than the Paley graphs.

We know from the examples above that there are much smaller graphs that satisfy the extension axioms

and ideally we would want to give a better construction of a finite graph with r-extension than those mentioned

above. Better in the sense that the construction is simpler, and the graph obtained is smaller. As it turns out

this is not such a simple undertaking as we had hoped.

Having thought of and come up with no feasible solutions, at least not any that work to construct a graph

with 3-extension or higher, we leave those who joined in the adventure with the constructions above and the

few interesting properties of finite graphs with r-extension.
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5.3 An unexpected model:

The Rado graph as a non-standard model

My mama always said, “Life is like a box of

chocolates. You never know what you’re gonna

get.”

Forrest Gump

In this section we will talk about the first-order theory of finite graphs, and one might be thinking, “why

would we want to do this? Isn’t R infinite?” Well, yes, R is infinite, but that is not the point. We have already

seen some of the connections between finite graphs and R, like the finite graphs being induced subgraphs of

R or that R is the Fräıssé limit of the class of all finite graphs. It must be worthwhile then to talk about the

theory of finite graphs.

If you are feeling faint you might wish to sit down for the next part. R is a model of the first-order theory

of finite graphs. Now you must be thinking that I am out of it. Didn’t we just say that R is infinite? And now

I want you to believe that it is a model of something which describes finite structures! All right, so maybe the

claim was stated in such a way as to vex you a bit, but let me put this right by explaining the matter.

Theorem 5.3.1. R is a non-standard model of the first-order theory of the class of finite graphs.

Proof. Consider the class of all finite graphs G and let T be the theory of G.

We know, for any L(∼)-sentence, in particular for any φ ∈ T , that being true in R is equivalent to being

almost surely true.

Now any φ ∈ T is true in all finite graphs and so we will have that Pn(φ) = 1 for all n. Hence P (φ) = 1,

i.e. φ is almost surely true. This then is equivalent, as mentioned above, to R |= φ.

In conclusion R |= φ for all φ ∈ T , i.e. R |= T as required.

Do you remember where this adventure began? Has the beast turned into a magnificent creature, one that

you can admire for all its brilliant characteristics? Is it really possible that we got such beauty by just flipping

a coin?
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Directions for future work

Don’t adventures ever have an end? I suppose

not. Someone else always has to carry on the

story.

Bilbo Baggins

The Lord of the Rings:

The Fellowship of the Ring

Our adventure has uncovered many interesting secrets of R, but there are still many truths to be discovered.

We classified the definable subgraphs of R in this dissertation in which EP played a big role. Another

problem in this direction would be to determine the number of non-isomorphic graphs definable in the Rado

graph, with an arbitrary finite amount of parameters. Also, we did not consider definability in countably infinite

elementary extensions of R, nor definability in finite graphs with r-extension. These might also be interesting

problems to consider.

Speaking of finite graphs with r-extension, our bound for the minimum amount of vertices a graph needs to

have r-extension still needs a bit of work, as is clear from the examples. It has also been a tremendous struggle

to find a construction better than those mentioned in Section 5.2 for producting graphs with r-extension. We

were able to, given a graph with 1-extension, construct from it a graph with 2-extension, that does much better

than the constructions from [CS02] and [BEH81]. In fact we found a few such constructions, but none of

them worked to construct, from a graph with 2-extension, a graph with 3-extension; accordingly, we did not

present those constructions here. Finding better constructions, in the sense that the construction is simpler and

the graph produced is smaller, than those from [BEH81], [BR05], [BT81] and [CS02] is thus still a very open

problem.

With this we greet all who joined in our exploration of the Rado graph, and bid them safe travels on their

journey ahead.
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Appendix A

Model theory background

A.1 Structure

Definition A.1.1 (Signature, see [Rot00] pg. 3). A signature σ = (C,F,R, σ′) is a quadruple consisting of

1. a (possibly empty) set C of constant symbols,

2. a (possibly empty) set F of function symbols,

3. a (possibly empty) set R of relation symbols and

4. a signature function σ′ which assigns to each function and relation symbol an arity.

It is assumed that C, F and R are pairwise disjoint.

Constant, function and relation symbols are called non-logical symbols and we will identify the signature

with these. For this reason the cardinality of the signature, i.e. |σ|, is equal to |C ∪ F ∪R|.
In the case where C = ∅ we say that the signature is without constants. Similarly σ is without functions

or without relations if F = ∅ or R = ∅ respectively. A signature with both F = ∅ and C = ∅ is called purely

relational.

Definition A.1.2 (σ-structure, see [Rot00] pg. 4). Let σ be a signature.

A σ-structure M = (M,CM, FM, RM) is a quadruple consisting of

1. an arbitrary set M , called the universe of M,

2. CM = (cM : c ∈ C) where cM ∈M for all c ∈ C,

3. FM = (fM : f ∈ F ) where fM is a σ′(f)-ary function from M to M for each f ∈ F and

4. RM = (rM : r ∈ R) where rM is a σ′(r)-ary relation on M for each r ∈ R.

cM is called the interpretation of the constant symbol c in M. Similarly fM (resp. rM) is called the interpre-

tation of the function (resp. relation) symbol f (resp. r) in M.

The cardinality of M is just |M |.

Definition A.1.3 (Substructure, see [Rot00] pg. 8). Let σ be a signature, M be a σ-structure and N ⊆M .

If 1. cM ∈ N for all c ∈ C and 2. fM(ā) ∈ N for all f ∈ F and all σ′(f)-tuples ā from N then we get a

σ-structure N by setting

a. cN = cM for all c ∈ C,

b. fN (ā) = fM(ā) for all f ∈ F and all σ′(f)-tuples ā from N and

c. rN (ā) whenever rM(ā) for all r ∈ R and all σ′(r)-tuples ā from N .

N is the restriction of M onto N . We call N a substructure of M and write N ⊆ M.

We may also call M a superstructure or extension of N and write M ⊇ N .
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Remark A.1.4. A constant symbol c can be viewed as a 0-place function with constant value c. We can

therefore reformulate conditions 1 and 2 of Definition A.1.3 by saying that N is closed in M under functions

from σ.

A.2 Language

Words - so innocent and powerless as they are,

as standing in a dictionary, how potent for

good and evil they become in the hands of one

who knows how to combine them.

Nathaniel Hawthorne

We fix the signature σ = (C,F,R, σ′).

Definition A.2.1 (Alphabet, see [Rot00] pg. 11). A σ-alphabet consists of the following.

1. Logical symbols which are

(a) ¬ for negation (not),

(b) ∧ for conjunction (and),

(c) the existential quantifier ∃ (there exists) and

(d) =.

2. Countably many variables, denoted x, y, z or x0, x1, . . . , etc.

3. constant, function and relation symbols from σ, called non-logical symbols,

4. and parentheses, i.e. ( and ).

The list of logical symbols might seem a bit scant, but it will become clear later that these are in fact

adequate.

Definition A.2.2 (Term, see [Rot00] pg. 12). A σ-term is defined recursively as follows:

1. all variables and constant symbols are σ-terms.

2. For f ∈ F with σ′(f) = n and σ-terms t1, . . . , tn, f(t1, . . . , tn) is a σ-term.

3. Nothing else is a σ-term, i.e. all σ-terms can be obtained from 1 and 2 in finitely many steps.

Terms will be interpreted as elements of structures, but we will see this in more detail later.

Definition A.2.3 (Formula, see [Rot00] pg. 13). A σ-formula is defined recursively as follows:

1. for σ-terms t1 and t2, t1 = t2 is a σ-formula.

2. For r ∈ R with σ′(r) = n and σ-terms t1, . . . , tn, r(t1, . . . , tn) is a σ-formula.

3. If φ and ψ are σ-formulas and x is a variable, then

(a) ¬φ,
(b) φ ∧ ψ and

(c) ∃xφ
are σ-formulas.

4. Nothing else is a σ-formula, i.e. all σ-formulas can be obtained from 1, 2 and 3 in finitely many steps.

Formulas will be interpreted as statements about elements of structures.

Formulas in the form of 1 or 2 from Definition A.2.3 are known as atomic formulas and for a given signature

we will denote the class containing all such formulas by at. Atomic formulas and negations of atomic formulas

are also called literals.

71

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



APPENDIX A. MODEL THEORY BACKGROUND

Definition A.2.4 (Language, see [Rot00] pg. 13). The language L = L(σ) is the set containing all σ-formulas.

Take note that languages can only differ in their non-logical symbols. This correspondence between a

language and its signature allows us to write “L-terms” or “L-formulas”.

We will write t1 ̸= t2 instead of ¬t1 = t2.

We mentioned before that formulas will say something about the elements of a structure, and variables are

the placeholders for elements in a formula. We therefore look at different occurrences of variables in formulas.

Consider the formula ∃xφ. Here φ is the scope of the quantifier. The occurrence of x after the quantifier

∃ as well as any occurrence of x in the scope φ is called a bound occurrence of x. An occurrence of a variable

is called free if it is not bound by a quantifier. This means that in the formula ∃x(x = y ∨ ∃y(x ̸= y)) all

occurrences of x are bound and the first occurrence of y is free, while the last two are bound (see [Rot00] pg.

16).

Formulas with no free variables are called sentences.

We discuss an example of substitution before giving the definition. Consider the language L with constant

symbol 0 and function symbol +. If we substitute x by y + y in the L-term x + z we get (y + y) + z. If we

substitute x by y + y in ∃y(x+ y = 0) then y from the term y + y will fall under the scope of ∃y. We call this

a collision of variables. We can avoid this by renaming the variable y to z, giving the formula ∃z(x + z = 0),

and then substituting y + y for x to obtain ∃z((y + y) + z = 0).

Definition A.2.5 (Substitution, see [Rot00] pg. 18). Let x1, . . . , xn be pairwise distinct variables and

t1, . . . , tn be arbitrary L-terms.

Let t be an L-term. Then tx1...xn
(t1, . . . , tn) denotes the result of substituting ti for each occurrence of xi

in t for all i ∈ {1, . . . , n}.
Let φ be an L-formula. Then φx1...xn

(t1, . . . , tn) denotes the result of simultaneously substituting ti for each

free occurrence of xi in t for all i ∈ {1, . . . , n}, renaming variables, if necessary, to avoid collision of variables.

One might ask whether tx1...xn(t1, . . . , tn) is an L-term or not, and indeed it is an L-term. This can be

shown via induction on complexity, that is the number of function symbols occurring in tx1...xn
(t1, . . . , tn). In

a similar way, one can do induction on the number of ¬, ∧ and ∃ symbols in φx1...xn
(t1, . . . , tn) to show that it

is an L-formula.

A.3 Semantics

We finally come to the connection between structures and languages. We remind ourselves that we have

fixed a signature σ = (C,F,R, σ′) and are working with the corresponding language L.

Consider an L-structure M. We choose, for every a ∈ M , a new (in the sense that it is not already in the

alphabet of L) constant symbol, denoted a, and we let M = {a : a ∈ M}. Adding these to our language as

constant symbols, we expand our language, and denote this expansion by L(M). Now M∗ := (M,M) denotes

the L(M)-structure in which the constant symbol a is interpreted as a for all a ∈ M . We make this more

precise.

Definition A.3.1 (Interpretation, see [Rot00] pg. 23). Let M be an L-structure and t be an L(M)-term

without any variables. We define the value or interpretation of t in M∗, denoted by tM
∗
, as follows.

1. If t is a constant c ∈ C then tM
∗

= cM.

2. If t is a constant a for a ∈M then tM
∗

= a.

3. If t is of the form f(t1, . . . , tn), where f ∈ F with σ′(f) = n and all the ti’s are L(M)-terms without any

variables, then tM
∗

= fM(tM
∗

1 , . . . , tM
∗

n ).
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Definition A.3.2 (Satisfaction, see [Rot00] pg. 23). Let M be an L-structure and φ be an L(M)-sentence.

We define that φ is true in M∗, denoted M∗ |= φ, as follows.

1. If φ is t1 = t2 then M∗ |= φ iff tM
∗

1 = tM
∗

2 .

2. If φ is r(t1, . . . , tn), where r is a relation symbol, then M∗ |= φ iff rM(tM
∗

1 , . . . , tM
∗

n ).

3. If φ = ¬ψ then M∗ |= φ iff M∗ ̸|= ψ, i.e. not M∗ |= ψ.

4. If φ is ψ1 ∧ ψ2 then M∗ |= φ iff M∗ |= ψ1 and M∗ |= ψ2.

5. If φ is ∃xψ then M∗ |= φ iff there is a ∈M such that M∗ |= ψx(a).

In case M∗ |= φ we say that φ is true or holds in M∗. We may also say that M∗ satisfies φ.

We extend the meaning of value and satisfaction to L-terms and -formulas in general. Let x̄ be an n-tuple

of variables, M an L-structure and ā a n-tuple from M . We write t(x̄) to denote that the variables of t are

amongst those in x̄. Similarly we write φ(x̄) to denote that the free variables of φ are contained in x̄.

The value of the L-term t(x̄) at ā in M, denoted tM(ā), is tx̄(ā)M
∗
. The L-formula φ(x̄) is satisfied

by ā in M if M∗ |= φx̄(ā) and we write M |= φ(ā). This notation is extended to sets of formulas, so for

Ψ(x̄) = {φi(x̄) : i ∈ I}, if we write M |= Ψ(ā) this means that M |= φi(ā) for each i ∈ I. We say that an

L-formula φ is valid in M if every tuple (of the correct length) in M satisfies φ. In this case we write M |= φ.

Definition A.3.3 (Model, see [Rot00] pg. 28). Let Σ be a set of L-sentences and M be a non-empty

L-structure. If M |= Σ we say that M is a model of Σ.

Now back to the symbols that one might expect to be included in the language. We are missing ⊤ (verum)

and ⊥ (falsum). We also want ∨ for disjunction (or), → for implication (implies), ↔ for equivalence (if and

only if or iff) and the universal quantifier ∀ (for all). Thanks to logical equivalence, we can leave these out.

Here is a reminder.

Definition A.3.4 (Logical equivalence, see [Rot00] pg. 29). The L-sentences φ and ψ are said to be logically

equivalent, denoted φ ≡ ψ, when for each L-structure M, M |= φ iff M |= ψ.

⊥ ≡ ∃x(x ̸= x)

⊤ ≡ ¬⊥

φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ)

φ→ ψ ≡ ¬φ ∨ ψ

φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ)

∀xφ ≡ ¬∃x¬φ

A.4 Mappings

Mappings that preserve certain features of mathematical structures are useful when we want to compare

different structures.

Definition A.4.1 (Homomorphism, see [Rot00] pg. 5). Let M and N be σ-structures. h : M → N is a

homomorphism if

1. h(cM) = cN for all constant symbols c ∈ C,

2. h(fM(ā)) = fN (h[ā]) for all function symbols f ∈ F and all tuples ā ∈Mσ′(f) and

3. if rM(ā) then rN (h[ā]) for all relation symbols r ∈ R and all tuples ā ∈Mσ′(r).

In this case we write h : M → N .
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Definition A.4.2 (Monomorphism, see [Rot00] pg. 5). A monomorphsim from M to N is an injective

homomorphism h : M → N such that for all relation symbols r ∈ R and all tuples b̄ ∈ h[M ]σ
′(r) with rN (b̄),

there is a tuple ā ∈Mσ′(r) such that rM(ā) and h[ā] = b̄. We write h : M ↪→ N .

Definition A.4.3 (Isomorphism, see [Rot00] pg. 5). A surjective monomorphism h : M ↪→ N is called an

isomorphism and we write h : M ∼= N .

Remarks A.4.4 (see [Rot00] pg. 6). 1. A monomorphism between M and N may also be called an iso-

morphic embedding of M into N .

2. An endomorphism is a homomorphism from a structure to itself.

3. An automorphism is an isomorphism from a structure to itself.

A.5 Chains

Definition A.5.1 (Chain, see [Rot00] pg. 151). Let α be an ordinal. A sequence of L-structures, (Mi : i < α)

is called a chain if Mi ⊆ Mj for each i < j < α.

Definition A.5.2 (Continuous chain, see [Rot00] pg. 151). If
⋃

i<δ Mi = Mδ for each limit ordinal δ < α

then the chain (Mi : i < α) is said to be continuous.

Definition A.5.3 (Union of chain, see [Rot00] pg. 151). The union of the chain (Mi : i < α), denoted⋃
i<α Mi, is the canonical L-structure on the set

⋃
i<αMi.

Note that Mj ⊆
⋃

i<α Mi for all j < α since Mi ⊆ Mj for each i < j < α.

Definition A.5.4 (Elementary chain, see [Rot00] pg. 151). The chain (Mi : i < α) is elementary if it is

continuous and Mi ≼ Mi+1 for all i < α.

Theorem A.5.5 (On elementary chains, see [Rot00] pg. 151). For any elementary chain (Mi : i < α) we

have that Mj ≼
⋃

i<α Mi for all j < α.
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Appendix B

Turing machines

Turing machines are largely associated with computability and recursion theory. In this dissertation they

are only used for the topic of decidability. We give an informal description first.

Imagine an infinite tape marked into squares, with all of the squares blank except for a finite number of

squares which have a stroke. Now, place a cart with no bottom over some square of the tape. Inside the cart

is a small man who will be carrying out computations on this tape.

The small man is able to read one square on the tape, erase or write a stroke in this square and then move

one square left or right. He also has a finite list of instructions, telling him what to do when he is in a given

state. The instructions can be any one of the following.

1. Erase whatever is in the square.

2. Write a stroke in the square.

3. Move one square left.

4. Move one square right.

5. Stop the computation.

The tape, cart and man make up a Turing machine (as described in [BBJ02]). Formally a Turing machine

can be viewed as a transition function.

Definition B.1 (see [End97] pg. 531). A Turing machine is a function f such that, for some n ∈ N,

domain(f) ⊆ {0, 1, . . . , n} × {0, 1} and

range(f) ⊆ {0, 1} × {L,R} × {0, 1, . . . , n}.

Pairs in the domain of f have the form (q, a) where

1. q denotes the present “state” or “instruction” that the machine is in,

2. and a is either a 0 or a 1, indicating whether the present square contains a stroke.

Triples in the range of f have the form (b,M, r) where

1. b is either 0 or 1, indicating whether the new symbol in the present square should be a stroke or not,

2. M is either L or R, indicating whether the machine should move a square to the left or right of the present

square once its symbol has been overridden,

3. and r indicates the new state of the machine.

Example B.2 (see [End97] pg. 531). If f(3, 1) = (0, L, 2) this means that, whenever the machine (man in the

cart) comes to instruction number 3 (on his finite list of instructions) while reading a square with a stroke, he

has to erase the stroke, creating a blank square (represented by the 0), move the cart one square left, and then
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APPENDIX B. TURING MACHINES

continue to instruction number 2.

The sense in which we use Turing machines is in the form of an algorithm. That is, we use it to answer the

yes-no-question: “Is this sentence in the theory?” (Section 4.1). In more general terms a class of yes-no-problems

is solvable if there is a fixed algorithm (or equivalently a Turing machine) such that, given a problem from the

class as input, the computation stops at some point and gives the output “yes” or “no”. The Church-Turing

Thesis (see [BA05] pg. 2) states that a process is an algorithm iff it can be carried out by a Turing machine.

A detailed description and explanation of this can be found in Section 1.5 of [Man03]. For the purpose of this

dissertation, it is enough to know that a Turing machine can be used to determine whether or not a given

L-sentence is in a given decidable L-theory.
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Appendix C

Orderings

C.1 Partial, linear, and dense orders

Definition C.1 (Partial order, see [Rot00] pg. 59). A binary relation < defines a partial order on a set X

if it is

1. irreflexive, i.e. x ̸< x for all x ∈ X

2. and transitive, i.e. if x < y and y < z then x < z for all x, y, z ∈ X.

We use T< to denote the first-order theory of all partial orderings.

Definition C.2 (Linear order, see [Rot00] pg. 59). A binary relation < defines a linear order (or total order)

on a set X if

1. it is a partial order

2. and for any x, y ∈ X it is either the case that x < y or y = x or y < x.

We use LO to denote the first-order theory of all linear orderings.

Definition C.3 (Dense linear order, see [Rot00] pg. 59). A binary relation < defines a dense linear order

on a set X if

1. it is a linear order

2. and for any x, y ∈ X with x < y there exists a z ∈ X such that x < z < y.

We use DLO to denote the first-order theory of all dense linear orderings.

We might add the sentence ∀x∃y∃z(y < x∧x < z), saying that there are no left or right endpoints, to DLO.

This gives the theory, DLO−−, of all dense linear orderings without endpoints.

C.2 The fellowship of Rational and Rado

See? He’s her lobster.

Phoebe

Friends

We have come across lots of properties of R and grouped them together in our guide to the Rado graph.

But it all seems vaguely familiar. Haven’t we seen these properties coming together before?

In this final chapter we discuss the resemblance between our beast, R and (Q, <), the rationals viewed as a

linear order. We will give the results in parallel. We are not going to prove any of the results in this chapter,

readers are referred to the relevant texts for proofs.
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APPENDIX C. ORDERINGS

(Q, <) is countably infinite R is countably infinite

(Q, <) is dense and without endpoints R satisfies EP

Any two countably infinite dense linear orderings

without endpoints are isomorphic.

(Cantor’s Theorem, see [Rot00] Theorem 7.3.1 pg.

89)

Any two countably infinite graphs with EP are iso-

morphic. (Theorem 1.1.3)

Any countably infinite dense linear order without

endpoints is isomorphic to (Q, <).

Any countably infinite graph with EP is isomorphic

to R.

The ordering obtained by deleting an element (or

finitely many elements) from (Q, <) will be isomor-

phic to (Q, <).

The graph obtained by deleting a vertex (or finitely

many vertices) of R is isomorphic to R. (Proposi-

tion 2.1.4)

Every countably infinite and finite linear order is iso-

morphic to a suborder of (Q, <). ([Fre14] pg. 330)

Every countably infinite and finite graph is isomor-

phic to a induced subgraph of R. (Theorem 2.1.6)

(Q, <) is ultrahomogeneous. (See [Cam15]) R is ultrahomogeneous. (Proposition 3.1.2)

DLO−− is ℵ0-categorical. (See [Rot00] pg. 123) ThR is ℵ0-categorical. (Proposition 4.2.5)

DLO−− is complete. (See [Rot00] pg. 123) ThR is complete. (Theorem 4.2.7)

DLO−− admits quantifier elimination. (See [Rot00]

pg. 137)

ThR admits quantifier elimination.

(Theorem 4.2.16)

(Q, <) is saturated. (See [Rot00] pg. 186) R is saturated. (Proposition 4.3.8)

The class of all finite linear orderings is the age of

(Q, <). (See [Hod93] pg. 325)

The class of all finite graphs is the age of R.

The class of all finite linear orderings has HP, JEP

and AP. (See [Hod93] pg. 325)

The class of all finite graphs has HP, JEP and AP.

(Theorem 4.5.8)

(Q, <) is the Fräıssé limit of the class of all finite

linear orderings. (See [Hod93] pg. 324)

R is the Fräıssé limit of the class of all finite graphs.

(Theorem 4.5.11)
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Appendix D

Python code used for r-extension

Python was a great help in finding graphs with 2-extension. It also helped a great deal in testing whether

certain methods of constructing graphs with r-extension would work or not. The code used for different parts

are displayed and explained below.

D.1 Testing a given graph for r-extension

The first step is to set up the hard-coded matrix you want to test. We use the matrix for the graph in

Example 5.2.15 in the example below.

1 import numpy as np

2

3 test_matrix=np.array ([

4 [0, 1, 1, 1, 0, 0, 1, 0, 0],

5 [1, 0, 1, 0, 1, 0, 0, 1, 0],

6 [1, 1, 0, 0, 0, 1, 0, 0, 1],

7 [1, 0, 0, 0, 1, 1, 1, 0, 0],

8 [0, 1, 0, 1, 0, 1, 0, 1, 0],

9 [0, 0, 1, 1, 1, 0, 0, 0, 1],

10 [1, 0, 0, 1, 0, 0, 0, 1, 1],

11 [0, 1, 0, 0, 1, 0, 1, 0, 1],

12 [0, 0, 1, 0, 0, 1, 1, 1, 0]

13 ])

Next we have to set up the parameters of our program. We tell it the size of the matrix, 9 in this case. We

also have to tell it what to look for. In this case specifically we want to test for 2-extension, so for each two

rows of the matrix, there should be column vectors containing (0, 0), (0, 1), (1, 0) and (1, 1). We also set up a

flag variable, Eureka, of which the value will change if the program does not find all the needed column vectors.

1 matrix_size =9

2

3 look_for =[

4 [0,0],

5 [0,1],

6 [1,0],

7 [1,1]

8 ]

9

10 Eureka=’Yes’
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APPENDIX D. PYTHON CODE USED FOR R-EXTENSION

The program will loop through the rows and columns of the matrix to search for the column vectors. We

initialize indices as follows.

1 row_index_1 =0

2 col_index =0

We can now start with the loops. For two distinct rows i and j we only have to compare one of the rows to

the other. So the first loop will run through all the rows of the matrix, and the second loop will run through

all rows i > j if the first loop is currently at row j. Next we loop through the columns to search for the column

vectors.

1 while row_index_1 <matrix_size :

2 row_index_2=row_index_1 +1

3

4 while row_index_2 <matrix_size :

5 #This creates an empty array , we fill it in the next step.

6 look_for_temp = [None] * len(look_for)

7

8 for i in range(0, len(look_for)):

9 #This fills the empty array with the same values as look_for.

10 #If the column vector is found , it gets deleted from this new array.

11 look_for_temp[i] = look_for[i];

12

13 while col_index <matrix_size :

14 #This ensures that the column checked is different from both rows.

15 if col_index == row_index_1 or col_index == row_index_2 :

16 col_index +=1

17

18 else :

19 #This creates the column vector for the two rows.

20 temp_array =[

21 test_matrix[row_index_1 ,col_index],

22 test_matrix[row_index_2 ,col_index]

23 ]

24 if temp_array in look_for_temp :

25 #This deletes the column vector found.

26 look_for_temp.remove(temp_array)

27

28 #This moves to the next column

29 col_index +=1

30

31 #This indicates if all the necessary column vectors were found.

32 if len(look_for_temp)!=0 :

33 print(’Row’,row_index_1 +1,’and’,row_index_2 +1,’unsuccessful.’)

34 #This shows the missing column vector(s).

35 print(look_for_temp)

36 #Failure to find all the column vectors changes the flag variable ...

37 Eureka=’No’

38 #...and breaks out of the inner loop.

39 break

40 else :

41 print(’Row’,row_index_1 +1,’and’,row_index_2 +1,’works!’)

42

43 #This resets the column index.

44 col_index =0

45 row_index_2 +=1

46
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APPENDIX D. PYTHON CODE USED FOR R-EXTENSION

47 if Eureka ==’No’ :

48 break

49

50 row_index_1 +=1

51

52 #This indicates that the column vectors were found for all pairs of rows.

53 #In other words , the graph of the matrix has 2-extension.

54 if Eureka ==’Yes’ :

55 print(’Eureka!’)

56

57 else :

58 print(’Matrix , you shall not pass!’)

Note that this program tests only for 2-extension. If we want it to work for 3-extension we have to look for

more column vectors, namely:

1 look_for =[

2 [0,0,0],

3 [0,0,1],

4 [0,1,0],

5 [1,0,0],

6 [0,1,1],

7 [1,0,1],

8 [1,1,0],

9 [1,1,1]

10 ]

and then just add another loop on the outside of the current loops, running through the rows. Of course,

some details in the inner part of the loops will have to change accordingly, but the idea of the program stays

the same and can be followed for setting up these details.

D.2 Random-binary-fill

Setting up and hard-coding possible matrices is not the most ideal way to find matrices of graphs with

r-extension. The following program fills matrices of a given size with random binary numbers and checks if the

matrix’s graph will satisfy 2-extension. This is also not the ideal solution, but much better than trying to find

matrices that work by hand.

1 #This imports the needed packages.

2 import numpy as np

3 import random

4

5 #Here we choose the size of the matrix to be filled.

6 matrix_size =10

7

8 #This generates a matrix of the given size filled with zeros.

9 matrix=np.zeros(( matrix_size ,matrix_size))

10

11 #We only need to fill the matrix above the diagonal.

12 #These entries will be reflected about the diagonal to create a symmetric matrix.

13 #Here we calculate the length of the binary string needed to fill the top half of the matrix.

14 length =( matrix_size **2- matrix_size)//2

15

16 #Next we work out the decimal value of the largest binary number ,

17 #i.e. the longest sting of 1’s,that can be filled in the top half of the matrix.

18 #We will use this number as an upper limit when generating random numbers.
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APPENDIX D. PYTHON CODE USED FOR R-EXTENSION

19 power=0

20 max_num =0

21

22 while power <length:

23 max_num +=2** power

24 power_pos +=1

25

26 #Here we initialize the number of random numbers to be checked ...

27 iteration =1

28 #...and the number of matrices found that works.

29 success =0

30 #We also choose how many randomly filled matrices we want to check.

31 check_up_to =100

32

33 while iteration <check_up_to +1 :

34 #This generates a random number between 0 and max_num.

35 num=random.randint(0,max_num)

36 #This converts the random number to its equivalent in binary.

37 bin_num=format(num ,’b’)

38 #The binary number is then converted to a string , which we use to fill matrix.

39 x=str(bin_num)

40 bin_string=x.zfill(length)

41

42 #Here we initialize loops to fill the top half of the matrix.

43 row_pos =0

44 col_pos=row_pos +1

45 bin_pos =0

46

47 while row_pos <matrix_size :

48 while col_pos <matrix_size and bin_pos <length:

49 #This fills the top half of the matrix with the binary string.

50 matrix[row_pos ][ col_pos ]= bin_string[bin_pos]

51 #This reflects the entries about the diagonal.

52 matrix[col_pos ][ row_pos ]= bin_string[bin_pos]

53 bin_pos +=1

54 col_pos +=1

55

56 row_pos +=1

57 col_pos=row_pos +1

58

59 #Here we start the process of checking if the matrix ’s graph has 2-extension.

60 #This is the same as the code from the previous section.

61 look_for =[[0,0],

62 [0,1],

63 [1,0],

64 [1,1]]

65

66 Eureka=’Yes’

67

68 row_index_1 =0

69 col_index =0

70

71 while row_index_1 <matrix_size :

72 row_index_2=row_index_1 +1

73

74 while row_index_2 <matrix_size :
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APPENDIX D. PYTHON CODE USED FOR R-EXTENSION

75 look_for_temp = [None] * len(look_for)

76

77 for i in range(0, len(look_for)):

78 look_for_temp[i] = look_for[i];

79

80 while col_index <matrix_size :

81

82 if col_index == row_index_1 or col_index == row_index_2 :

83 col_index +=1

84

85 else :

86 temp_array =[

87 matrix[row_index_1 ,col_index],

88 matrix[row_index_2 ,col_index]

89 ]

90 if temp_array in look_for_temp :

91 look_for_temp.remove(temp_array)

92

93 col_index +=1

94

95 if len(look_for_temp)!=0 :

96 Eureka=’No’

97 break

98

99 col_index =0

100 row_index_2 +=1

101

102 if Eureka ==’No’ :

103 break

104

105 row_index_1 +=1

106

107 #Here we show the matrix if its graph has 2-extension.

108 if Eureka ==’Yes’ :

109 print(’This matrix works!’)

110 print(matrix)

111 success +=1

112

113 iteration +=1

114

115 print(success , ’iterations successful.’)

116 print(iteration -1-success ,’iterations unsuccessful.’)

D.3 Sequential-binary-fill

We can do better than filling the matrix with random binary numbers and then checking to see if the matrix

satisfies the necessary conditions. We only need to fill the half of the matrix, above the diagonal, and then

reflect these entries to the half below the diagonal. This is because the diagonal entries are all 0 (since ∼ is

irreflexive) and the adjacency matrix is symmetrical. So we might consider all possible binary strings of the

correct length to fill the top half of the matrix with, and then check all of these matrices for 2-extension. This

program is mostly the same as for random-binary-fill, except for a few minor differences.

1 #This imports the needed package.

2 import numpy as np
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3

4 #Here we choose the size of the matrix to be filled.

5 matrix_size =6

6

7 #This generates a matrix of the given size filled with zeros.

8 matrix=np.zeros(( matrix_size ,matrix_size))

9

10 #Here we calculate the length of the string needed to fill half of the matrix.

11 length =( matrix_size **2- matrix_size)//2

12

13 #Here we set the number we start filling the matrix with.

14 num=0

15 success =0

16

17 power=0

18 max_num =0

19

20 while power <length :

21 max_num +=2** power

22 power +=1

23

24

25 while num <= max_num:

26 bin_num=format(num ,’b’)

27 x=str(bin_num)

28 bin_string=x.zfill(length)

29

30 row_pos =0

31 col_pos=row_pos +1

32 bin_pos =0

33

34 while row_pos <matrix_size :

35 while col_pos <matrix_size and bin_pos <length:

36 matrix[row_pos ][ col_pos ]= bin_string[bin_pos]

37 matrix[col_pos ][ row_pos ]= bin_string[bin_pos]

38 bin_pos +=1

39 col_pos +=1

40

41 row_pos +=1

42 col_pos=row_pos +1

43

44 look_for =[[0,0],

45 [0,1],

46 [1,0],

47 [1,1]]

48

49 row_index_1 =0

50 col_index =0

51

52 Eureka=’Yes’

53

54 while row_index_1 <matrix_size :

55 row_index_2=row_index_1 +1

56

57 while row_index_2 <matrix_size :

58 look_for_temp = [None] * len(look_for)
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59

60 for i in range(0, len(look_for)):

61 look_for_temp[i] = look_for[i];

62

63 while col_index <matrix_size :

64

65 if col_index == row_index_1 or col_index == row_index_2 :

66 col_index +=1

67

68 else :

69 temp_array =[

70 matrix[row_index_1 ,col_index],

71 matrix[row_index_2 ,col_index]

72 ]

73 if temp_array in look_for_temp :

74 look_for_temp.remove(temp_array)

75

76 col_index +=1

77

78 if len(look_for_temp)!=0 :

79 Eureka=’No’

80 break

81

82 col_index =0

83 row_index_2 +=1

84

85 if Eureka ==’No’ :

86 break

87

88 row_index_1 +=1

89

90 if Eureka ==’Yes’ :

91 print(’This matrix works!’)

92 print(matrix)

93 success +=1

94

95 num +=1

96

97 print(success , ’matrices successful.’)

98 print(num -success ,’matrices unsuccessful.’)

This program was used to show that there are no matrices of sizes 6, 7 and 8 with 2-extension.
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adjacency matrix, 63
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algorithm, 76
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alphabet, 71

amalgamation property, 51

automorphism, 74
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boolean combination, 27

bound variable, 72

categorical, 28

chain, 74

continuous, 74
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union of, 74

Chinese Remainder Theorem, 8
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colourable

k-, 16

colouring, 15

edge-, 17

proper (vertex), 16

vertex-, 15

colours, 15

complement, 61

complete theory, 28

congruence modulo n, 6

conjunctive form, 33

connected, 4, 9

k-, 14

k-edge-, 14

consequence, 24

consistent, 25

contradiction, 25

decidable0, 30

deductive closure, 24

definable

parametrically, 33

set, 33

delete, 9

dense linear order, 77

diagram, 29

diameter of a graph, 14

disjunctive normal form, 33

Downward Löweneheim-Skolem Theorem, 28

edge, 1, 9

edge-connected

k-, 14

elementarily equivalent, 30

elementary

chain, 74

extension, 28

substructure, 28

elimination, 27

endomorphism, 74

equivalent

n-, 59

logically, 73

existential formula, 27

extension, 70

r-, 58

extension property, 3

finitely axiomatizable, 26

flipping, 9

formula, 71

atomic, 71

Fräıssé limit, 52
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Fräıssé’s Theorem, 52
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finitely, 50

generated substructure, 50

graph, 1, 9
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fractal, 18

Rado, 2

random, 1

self-similar, 19

simple, 1

sub-, 10

group, 23

simple, 23

hereditary property, 51

homogeneous

ultra-, 51

weakly, 51

homomorphism, 73

incident, 9

inconsistent, 25

instance, 33

interpretation, 70, 72

isomorphic embedding, 74

isomorphism, 74

joint embedding property, 51

Löwenheim-Skolem Theorem

Downward, 28

Upward, 29

language, 72

least residue modulo n, 6

lexicographic product, 18

weak, 19

linear order, 77

literal, 71

logically equivalent, 73

model, 73

moments, 42

monomorphism, 74

neighbour, 4, 9

order

of a graph, 1

Paley graph, 67

parameter, 33

partial order, 77

partition-regularity, 12

path, 14

principal, 31

probability of a sentence, 55

quadratic non-residue, 6

quadratic reciprocity, 6

quadratic residue, 6

quantifier

-free, 27

elimination, 28

quantifier rank, 59

recursive set, 53

recursively saturated, 53

regular, 67

strongly, 67

resplendent, 52

chronically, 53

satisfaction, 73

saturated, 32

recursively, 53

scope, 72

sentence, 72

signature, 70

signature function, 70

solution modulo n, 6

solution set, 33

strongly regular, 67

structure, 70

subgraph, 10

induced, 10

subgroup, 23

normal, 23

substituting, 72

substructure, 70

generated, 50

substructure-complete, 29

superstructure, 70

switch, 10

symbol

constant, 70

function, 70

logical, 71

non-logical, 70

relation, 70
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term, 71

theory

L-, 25

theory of, 24

truth, 73

Turing machine, 75

type

n-, 31

complete, 31

isolated, 31

ultrahomogeneous, 21, 51

universal formula, 27

universe, 70

Upward Löwenheim-Skolem Theorem, 29

validity, 73

vertex, 1, 9

vertex-transitive, 22

walk, 14

of length, 14

weakly homogeneous, 51

witness, 3
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