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A B S T R A C T

This study investigates the efficacy of Explainable Artificial Intelligence (XAI) methods, specifically Gradient-
weighted Class Activation Mapping (Grad-CAM) and Shapley Additive Explanations (SHAP), in the feature
selection process for national demand forecasting. Utilising a multi-headed Convolutional Neural Network
(CNN), both XAI methods exhibit capabilities in enhancing forecasting accuracy and model efficiency
by identifying and eliminating irrelevant features. Comparative analysis revealed Grad-CAM’s exceptional
computational efficiency in high-dimensional applications and SHAP’s superior ability in revealing features
that degrade forecast accuracy. However, limitations are found in both methods, with Grad-CAM including
features that decrease model stability, and SHAP inaccurately ranking significant features. Future research
should focus on refining these XAI methods to overcome these limitations and further probe into other XAI
methods’ applicability within the time-series forecasting domain. This study underscores the potential of XAI
in improving load forecasting, which can contribute significantly to the development of more interpretative,
accurate and efficient forecasting models.
1. Introduction

Accurate short-term load forecasts are essential to the optimal man-
agement of energy production and consumption. Load forecasting can
be challenging due to the ever-growing demand of an expanding econ-
omy, changes in weather conditions, shifts in consumer behaviour,
and rapid advancements in technology like solar panels and electric
vehicles. These factors can alter the energy landscape in unpredictable
ways [1]. When these forecasts are applied to utility companies, small
improvements in accuracy can have significant financial benefits [2],
thus the pursuit of higher load forecasting accuracy is worthwhile.
In recent years, artificial intelligence (AI) and machine learning (ML)
techniques have been applied to energy forecasting with promising
results [3,4], but a major challenge remains in the lack of transparency
and interpretability during the energy forecast process. It is possible
to examine the internal computations of simpler models, such as lin-
ear regression or decision trees, to uncover the reasoning behind the
model predictions. As moving towards more complex model structures
like deep neural networks, which can have millions of parameters,
interpreting the computations becomes an endeavour far beyond hu-
man understanding. The inability to understand ML models ultimately
makes it difficult to trust the output of the models [5].

The eXplainable Artificial Intelligence (XAI) focuses on making ML
models more comprehensible and transparent. The XAI methods pro-
vide interpretability to machine learning models by mapping abstract
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concepts learned by the model to a domain that can be understood
by humans [6]. A popular approach in XAI is to identify feature
attributions, which are scores assigned to each input of the model
that quantifies their significance to the prediction made by the model.
Consequently, by discerning the features that have a significant impact
on the model, the output produced by the XAI can be interpreted
as an explanation for the given prediction. Although XAI has been
used primarily to understand the decision-making processes employed
by the ML models, it has also been demonstrated to be an effective
feature selection tool [7]. The rationale behind this approach is that
features with low attribution scores are minimally used by the model
and can thus be removed without significant adverse effects to the
model performance.

As it is difficult to know in advance which features should be
included in the model, users tend to include all the available features,
believing that the model training process will decide which features
are important [8]. It is common for datasets with a large number
of features to contain irrelevant ones [9], and including nonessential
features that may negatively impact the performance of the model.
Thus, a process is required to effectively select and retain only the most
relevant features. This process, known as feature selection, involves
identifying and retaining a subset of significant features that pre-
serves high predictive performance, while removing the less relevant
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ones [10]. Feature selection exhibits the ability to enhance model accu-
racy, improve computational efficiency, and tend to make models more
interpretable [11,12]. When dealing with datasets that contain a multi-
tude of features, implementing feature selection is essential to mitigate
computational load, especially during the iterative process of model
design and improvement. This makes tasks like hyperparameter tuning
of ML models more feasible. Furthermore, the enhanced interpretability
is vital in high-risk applications where the rationale behind predictions
is as important as the accuracy of the predictions themselves. This is
the realm where XAI proves invaluable in facilitating an understanding
of the decision-making processes within the models.

Extensive advancements have been made in the domain of XAI,
however its application in multivariate time series forecasting models
is largely unexplored, especially as a feature selection tool. Time-series
data, with its inherent chronological ordering and numerous interacting
variables, is often high-dimensional and non-intuitive. In such cases,
incorporating XAI could not only enhance the interpretability of the
model but also aid in feature selection by identifying which variables in
these high-dimensional datasets have the most influential contribution.
Existing literature has shed light on the capacity of XAI to reveal the
inner working mechanisms of ML models. Evaluating the quality of the
explanations provided by different XAI methods remains a challenging
task [13]. Our study aims to assess the potential of XAI as a tool
for feature selection, in an effort to improve the performance of a
deep learning load forecasting model. We undertake a comparative
analysis of Gradient-weighted Class Activation Mapping (Grad-CAM)
and SHapley Additive exPlanations (SHAP) by examining their ability
to systematically rank predictive features based on their contributions
to forecast accuracy. We start by adapting Grad-CAM and SHAP for
use with multi-headed CNNs, thereby broadening their compatibility
with a wider range of deep learning architectures. Subsequently, we
employ Grad-CAM and SHAP to assign feature attributions, first to the
inputs of a single prediction, offering in-depth insight into the XAI
methodologies. Finally, we evaluate the feature rankings through an
ablation study to observe the performance of the model when low-
attribution features are gradually removed. Although the application of
XAI techniques for feature selection is still in its infancy, our analysis
of Grad-CAM and SHAP provides valuable insights into their respec-
tive strengths and limitations, thereby informing both their future
refinement and broader applicability.

2. Related studies

2.1. Traditional feature selection

Feature selection methods generally fall into three categories: filters,
wrappers, and embedded methods [11]. Filter methods evaluate feature
importance based on the characteristics of the data, such as statistical
properties between features and the predicted variable [14]. They often
utilise metrics such as Euclidean distance, Pearson correlation, and
mutual information, to name a few [14]. As they do not depend on the
use of any learning algorithm, filter methods are generally more com-
putationally efficient and scalable to high-dimensional datasets than
wrapper methods. However, the filters do not account for interactions
with specific models, potentially leading to feature sets that are not
optimised for a particular model [15]. Studies have found that filter
methods generally perform poorly compared to wrapper and embedded
methods [16].

Wrapper methods wrap the feature selection around a learning algo-
rithm and use the accuracy of the algorithm to evaluate the predictive
power of the feature set [17]. Feature selection is thus turned into an
optimisation problem where a search algorithm is employed to find
the subset of features that maximises the performance of the learning
algorithm. As a result, wrapper methods often yield better accuracy
than filter methods. However, the wrapper-based approach requires
repeatedly training the learning algorithm to assess the effectiveness
2

of various feature combinations. Consequently, they can be computa-
tionally demanding [10]. The computationally demanding nature of
wrapper methods poses a challenge to their practicality and effective-
ness when implemented with complex models and high-dimensional
datasets [18]. One popular strategy to reduce the computational load is
to use a less complex, and hence more computationally efficient model
for feature selection that allows for quicker training times. For instance,
researchers in [19] used an extreme learning machine (ELM) combined
with particle swarm optimisation (PSO) and genetic algorithm (GA)
to select the optimal subset of features for a day-ahead electricity
price prediction model. Subsequently, the proposed long short-term
memory (LSTM) deep neural network, trained using the optimal feature
subset, exhibited superior performance. Note that when employing sim-
pler models for feature selection, the effectiveness of chosen features
may not be consistent across different machine learning models [20].
For a more comprehensive exploration of wrapper methods and their
applications, readers can consult [21–23].

Embedded methods exploit the properties of the learning algorithm,
where feature importance is obtained directly from the patterns learned
by the model [11]. They are implemented by algorithms that possess
their own built-in feature selection methods [10]. For instance, Deci-
sion Trees and derivative algorithms like Random Forest or Gradient
Boosting allow for measuring feature importance directly from the
model [24,25]. The Least Absolute Shrinkage and Selection Operator
(LASSO) forces some of the coefficient estimates to be exactly zero
when the regularisation parameter is sufficiently large [26]. Features
with zero coefficients are effectively removed from the model, thereby
performing feature selection.

Hybrid methods integrate various feature selection techniques to
harness the strengths of each approach. Combining a fast method with a
slower, more thorough one can strike a balance between computational
efficiency and feature selection quality. For example, in a study fo-
cused on multivariate financial time series forecasting, the researchers
first employed RReliefF [27] for preliminary feature reduction. Sub-
sequently, they identified the optimal feature set using a wrapper
approach, which combined a multi-objective binary grey wolf optimiser
with Cuckoo search and ELM [28]. Another popular method, recursive
feature elimination with support vector machines (RFE-SVM), combines
both embedded and wrapper approaches [29]. The RFE-SVM involves
training an SVM on all features, ranking them by the magnitude of their
weights, and then recursively eliminating the least important features.
Although RFE-SVM is effective in identifying valuable features, it can
be computationally intensive because the SVM model must be retrained
each time a feature is eliminated.

2.2. XAI

The XAI methods for feature selection do not strictly fall into the
traditional categories of the filter, wrapper, or embedded methods.
Instead, they constitute a different kind of approach that we could
term ‘‘interpretability-based methods’’. The XAI methods share simi-
larities with the traditional methods; like embedded methods, feature
importance is obtained from the trained model and does not require
iterative training of the model. However, the goal of XAI methods
extends beyond merely improving prediction accuracy. They also aim
to provide insights into the model’s decision-making process. The abil-
ity to understand the contribution of each feature to a prediction can
guide the feature selection process, highlighting those features that are
truly significant versus the features that are insignificant. Early model
interpretation methods are detailed in [6]. Since then, the diversity of
XAI methods has expanded significantly, finding application in time
series classification [30], as well as being utilised extensively within
the power and energy systems domain [5].

XAI methods can broadly be divided into two categories: model-
specific methods and model-agnostic methods. Model-specific methods
are interpretability techniques tailored to specific types of models. They
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leverage the intrinsic structure of a particular type of model to provide
insights about the learned relationships. Model-agnostic methods are
designed to interpret any machine learning model, regardless of its
internal working mechanism or structure. Model-agnostic methods aim
to make the predictions of any machine learning model understandable,
irrespective of the complexity.

The output of XAI methods, often termed as ‘‘explanations’, varies
in scope. The local explanations generated by the XAI methods focus on
understanding why the model made a particular prediction for a single
example or instance in the dataset. For instance, in a load forecasting
model, a local explanation focuses on why the model predicted high
energy consumption at a specific time instance. In contrast, global
explanations attempt to provide a broad understanding of the model’s
general prediction process across all predictions. For instance, it aims
to highlight which features, like time of day or weather conditions are
generally most important for the model’s energy predictions.

Grad-CAM, which stands for Gradient-weighted Class Activation
Mapping, is a model-specific XAI technique designed to work with deep
learning models that contain Convolutional Neural Networks (CNNs).
Grad-CAM exploits a property of CNNs where the spatial relationship
in the data is maintained after it passes through the convolutional lay-
ers [31]. Multi-layer perceptrons (MLP), also known as fully connected
layers, do not preserve the spatial relationships within the data, making
it challenging to map important regions back to their original locations
in the input. The convolution operation applies filters or kernels that
slide over the input to generate feature maps. Each filter is trained to
recognise and respond to a specific pattern in the input and highlights
the areas in the input where that pattern is present. The sensitivity of
the model’s output to minor changes in the feature map determines the
importance of that feature map. By collecting the weighted contribution
of the feature maps, Grad-CAM is able to highlight features that are
important to the model’s prediction.

Originally designed to explain the outputs of image classification
models, Grad-CAM has been applied in time series forecasting, notably
to explain the predictions of a residential energy consumption model
that employs a CNN-LSTM architecture [32]. By selecting a 2D CNN
the authors in [32] treated the batched multivariate time series data
as an image. Grad-CAM is not exclusively used with 2D CNNs. It
has been effectively applied to 1D CNNs as well, shedding light on
key contributors to Heating, Ventilation, and Air Conditioning (HVAC)
faults [33]. Grad-CAM has been applied to time series classification
models, used to explain the predictions of a power quality disturbance
classifier by highlighting the regions in the signal that led to the
classification [34]. The researchers behind MTEX-CNN [35] introduced
a combined approach using both 2D and 1D CNNs to generate spatio-
temporal explanations with the help of Grad-CAM. The 2D CNN’s role
is to assign importance to individual features, while the 1D CNN is
used to determine the overall temporal significance over time. This
dual-layered structure enables a comprehensive understanding of both
spatial and temporal aspects, providing a more complete picture of the
features’ importance during modelling processes. It is noted that if only
a 1D CNN is used for the multivariate time series, it would combine the
influence of all the different features at each time step into a single
value. This means that a 1D CNN would not be able to distinguish
the importance of specific features at each time step. Instead, it would
highlight which time steps are important overall, taking into account
all features. Hence, the study [35] chose to use 2D CNNs. Diverging
from the conventional use of Grad-CAM as a local explainer, the study
in [35] extended its application to generate predictions across the
entire test dataset. By collecting positive feature attributions from each
forecast, they effectively use Grad-CAM as a global explainer. The
reliability of the global feature attributions is confirmed by observing a
minimal impact on prediction accuracy when low-attribution features
are excluded from model training. Grad-CAM was effectively used to
identify which channels of the electroencephalography (EEG) are most
3

informative for classifying different intentions or mental states [36]. By
applying Grad-CAM as a feature selection tool, the model maintained
a decoding performance of 92.31% while reducing the number of
channels by nearly half, thereby improving the decoding rate of the
system.

In [37], an eXplainable convolutional neural network for Multi-
variate Time Series (MTS) classification extends the work of [35] by
proposing the use of 2D and 1D CNNs within a parallel architec-
ture with the purpose of achieving high-resolution explanations. The
study [37] suggest that the necessity for upscaling, an operation per-
formed when the size of the feature maps created by the CNN is smaller
than the original input, can lead to a reduction in the resolution of the
ensuing explanations. The term ‘‘resolution’’ refers to the precision in
identifying key features in the time series that are most influential in
the prediction.

Local Interpretable Model-agnostic Explanations (LIME) [38] is a
model-agnostic XAI method, which has been popular in numerous
classification tasks. However, its applicability to time series models has
been called into question. Studies have shown that both the classic im-
plementation and its time series implementation, LimeforTime, struggle
to identify key features or time steps that contribute significantly to
model predictions [34,39,40].

Shapley values, which originate from cooperative game theory, are
adopted to quantify each player’s individual contribution to a game.
The Shapley values facilitate the fair distribution of the total gain
generated by a game among its players based on their contributions.
In machine learning, the SHapley Additive exPlanations (SHAP) ap-
proach [41] views the model’s prediction for a given instance as the
game and the features used in the model as the players. Previous
studies have applied SHAP to explain time series models [42,43]. The
application of SHAP in these studies does not extend to deep learning
models. The study by [44] includes comparisons to deep learning
models, however they, along with other studies [42,43,45,46], perform
what we refer to as mixed multivariate time series forecasting. Mixed
multivariate time series forecasting uses a combination of time series
and singular values to represent exogenous variables to predict future
values of the target variable. In contrast, pure multivariate time series
forecasting involves predicting a target variable solely based on the
values of multiple time series variables. This allows the model to learn
from the interdependencies between different time series variables,
capturing complex temporal patterns that might be missed when ex-
pressed as only singular values. However, the application of SHAP in
deep learning models for pure multivariate time series forecasting has
not been extensively explored. The study [39] uses a deep learning
model, ResNet, to classify maritime traffic by analysing the multivariate
time series data of vessels. The study [39] conducts a comparative
analysis of several model explanation techniques including DeepSHAP
and GradientSHAP, both variants of SHAP, along with Path Integrated
Gradients (PIG), as well as LimeforTime. In [39], it is found that
SHAP variants produced the best explanations, whereas LimeforTime
performed the worst in identifying the key features. Although the exact
methodology used to generate SHAP values is not explicit, speculation
based on their use of ResNet, a model that utilises 2D CNNs, suggests
that the authors may have used the same approach as [32] and treats
the multivariate time series as an image. Furthermore, the SHAP doc-
umentation [47] includes examples of its application to images using
the ResNet architecture, which reinforces this hypothesis.

Despite the merits of SHAP, there are some notable caveats. Given
that the SHAP’s feature attributions are relative to a baseline, the choice
of this baseline significantly influences the resulting explanations [48].
The intricacies of choosing a suitable baseline are explored in detail in
the works of [49,50]. Moreover, some researchers argue that SHAP is
not inherently designed for time series models as its sampling method-
ology may generate instances that violate the temporal ordering of
the data [51]. As a result, the model could be perturbed by unseen
data, leading to excessively large responses and ultimately produce

artificially inflated attributions. The study in [52] argues that while
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Fig. 1. Overview of feature selection methods.
he Shapley value is theoretically sound, it may not always align with
he goals of feature selection in XAI. This is due to its axioms, such
s model averaging, which may not accurately reflect the performance
f features in optimal submodels or account for interactions with
ominant features.

Despite the criticisms of SHAP, it has been demonstrated to select
eatures more effectively than ANOVA, Mutual Information, and Re-
ursive Feature Elimination [53]. Additionally, in a study comparing
ilter, wrapper, and embedded methods on environmental data, SHAP
onsistently excelled in terms of stability and overall efficacy [16]. It
s worth noting that the study in [16] did not compare any swarm
ntelligence based wrapper methods which leaves doubt as to how
HAP performs to the most accurate feature selection methods.

.3. Feature selection in load forecasting

Various methods, including filter techniques, have been employed
o enhance the prediction accuracy of load forecasting models. In [54],
t implemented a two-stage mutual information feature selection tech-
ique (MIT-MIT). In [55], the minimal redundancy maximum relevance
mRMR) method was used. Both studies demonstrated improved fore-
asting accuracy compared to models without feature selection. Yet,
ithout comparative analysis against other techniques, assessing the
ptimality of their chosen feature sets becomes challenging. Research
n multivariate time series energy forecasting for buildings found that
rapper methods outperformed filter methods, though they also high-

ighted the high computational costs associated with the former [56].
n [15], IT used a wrapper-based approach with an artificial neural
etwork (ANN) for short-term demand prediction. Alongside this, they
ncorporated a binary genetic algorithm (GA) to search for the most
ffective feature set. While the GA-ANN approach was effective when
pplied to an ANN with 24 features, its suitability for datasets with
larger number of features remains uncertain. This is because the

omplexity of the ANN increases with the number of features, which
n turn makes the training process and the evaluation of the features
ore time-consuming. In [57], a hybrid feature selection method was
sed for industrial load forecasting. The approach reduced the 44
nitial features using Gradient Boosting Decision Trees (GBDT) and
earson correlation by removing those with low contribution or high
orrelation.

Previous studies have also utilised XAI for feature selection in load
4

orecasting. A study by [58] utilised SHAP to analyse the influence
of features on predictions, grouping them according to their Shapley
values. The performance of the selected features was then validated
through an ablation study, in which an LSTM model was retrained
using only those selected features. The study [58] found that models
with high Shapley value features ensured high forecasting accuracy,
while those with low Shapley values underperformed. However, the
study [58] is limited to models that perform single-step forecasts and
use mixed multivariate time series data, shaped into a 1D vector, as
input.

In summary, Fig. 1 provides a detailed visual summary of the
diverse feature selection methods discussed.

2.4. Energy forecasting models

CNNs are known for their ability to extract local features and
patterns from input data while maintaining spatial invariance, which
has made them a popular choice in image classification models [59].
However, the CNN application to time series has not been as widely
acknowledged compared to Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) networks. Studies employed CNNs for en-
ergy forecasting have reported considerable success. For instance, [60]
demonstrated that 1D CNNs outperformed LSTM and GRU networks
in predicting hourly electricity load for the city of İstanbul. Similarly,
a study comparing the performance of different CNNs for national
peak demand forecasting found that 1D CNNs provide superior fore-
casting accuracy compared to other deep learning models, including
LSTM [61]. Interestingly, the study [61] also reported that multi-
headed CNNs ranked second, closely following 1D CNNs, while 2D
CNN-LSTM and LSTM often failed to model the demand accurately.
These promising results underscore the potential of CNNs for time series
forecasting, especially in the energy sector.

2.5. Contribution

In summary, filter methods, known for their scalability, operate
independently of machine learning algorithms. While they have been
shown to improve forecasting accuracy, they are generally considered
to perform poorly compared to wrapper and embedded methods. While
wrapper methods often produce more acceptable results, they are com-
putationally demanding and might be infeasible for multivariate time
series. Furthermore, wrapper methods only provide the user with an

optimal feature set and do not offer insight into how the features affect
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the model. Embedded methods, on the other hand, show promise as
an effective feature selection tool for high-dimensional datasets, which
typically reveal only the magnitude of a feature’s significance, not the
specific nature of its influence on the model.

XAI offers computational benefits for feature selection by elimi-
nating the need for iterative model training. Additionally, given that
features are selected based on patterns learned by the model, feature
interactions, temporal dependencies, and how features interact with
the model are accounted for. Lastly, XAI methods furnish insights into
the model’s decision-making process, shedding light on the specific
influence exerted by each feature. However, challenges remain in the
application of XAI to various types of models and data. In the literature,
there appears to be a significant lack of diversity in the deep learning
model architectures explained using SHAP. The application of SHAP
has been largely limited to either ANNs or LSTM networks, with the
notable exception of the study cited in [39]. Furthermore, there is
lack of research on the application of Grad-CAM to multivariate time
series forecasting models. Those found in literature only apply to
classification tasks [35–37].

Our key contributions are as follows:

1. Our study is the first to directly compare the utility of two
XAI techniques, namely Grad-CAM and SHAP, in the context of
feature selection in load forecasting with multivariate time series
data.

2. We adapt Grad-CAM and SHAP for use with multi-headed CNNs,
making them compatible with a wider range of deep learning
architectures. Specifically, we demonstrate that by adding a
layer into the model pipeline that performs the necessary array
manipulations, SHAP can be adapted to suit diverse model ar-
chitectures. To the best of our knowledge, our study is also the
first to use Grad-CAM as a feature selection tool for multivariate
time series load forecasting.

3. We perform a comparison of Grad-CAM and SHAP in their
ability to rank predictive features based on their contributions to
forecast accuracy. Through an ablation study, we assess how the
removal of low-attribution features affects model performance,
thereby validating the feature rankings provided by the XAI
methods.

4. Our research offers a nuanced understanding of both the
strengths and limitations of Grad-CAM and SHAP. This insight
is invaluable for assessing the suitability of these methods for
specific applications. Furthermore, it serves as a roadmap for
enhancing these techniques and for exploring alternative ap-
proaches in the field of XAI.

The multi-headed CNN was chosen for this study for several strate-
ic reasons. First, it allows for compatibility with Grad-CAM. Given
hat Grad-CAM can only be applied to models that contain a CNN, it
xcludes models such as LSTM. While 1D CNNs are effective for the task
t hand, they have limitations when used with Grad-CAM, particularly
n attributing importance to individual features in multivariate time
eries data. Secondly, the architecture is designed to inherently account
or the varying importance of different features. Since not all feature
aps generated by the CNNs within each head of the model contribute

qually to the prediction, Grad-CAM can effectively capture these dif-
erences in significance, thereby enabling the assignment of attribution
cores to individual features. Thirdly, although 2D CNN-based models,
s cited in [32,39], could have been suitable for our study, the multi-
eaded CNN serves as a versatile platform that showcases the flexibility
f our methodology, enabling the application of both Grad-CAM and
HAP. This is particularly noteworthy given the limited diversity in
eep learning architectures that can be explained using SHAP, as
bserved in existing literature. Given that SHAP is widely regarded as
ne of the most prevalent methods in the field of XAI, we believe our
daptation has the potential for significant impact within this domain.
5
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Finally, it is worth noting that the primary aim of our study is not
to devise the most accurate forecasting model per se. Nonetheless,
the multi-headed CNN has exhibited competitive performance as evi-
denced by previous research [61], making it a suitable choice for our
investigative purposes.

3. Methodology

The methodology begins with the pre-processing and transforming
of the original tabular time series data into batch series data. This pro-
cess, described in detail in Section 3.1, allows for the transformed data
to be utilised for subsequent model training and testing. Following data
preparation, we outline the design and evaluation criteria of the multi-
headed CNN in Sections 3.2 and 3.4. Local and global explanations
for individual and multiple test samples are produced using Grad-CAM
and SHAP. The feature importance scores from the multiple samples
are then combined to generate an overall ranking of the significance
of each feature. The intricacies of generating feature attributions are
laid out in Section 3.3. Finally, the rankings of feature importance are
assessed through an ablation study and then compared to validate their
effectiveness.

3.1. Data preparation

Data enrichment and augmentation
Date and time information is extracted and divided into separate

columns, which are represented as integers for the hour, day of the
week, day of the month, month, and year. Each holiday throughout the
year is denoted as an integer, and a binary representation is included.
Sinusoidal transformations are applied to periodic features 𝑥𝑐 , such as
he hours of the day, days of the week, days of the month, months of
he year, and holidays of the year.

𝑐,𝑗 (𝑖) = cos
( 2𝜋𝑥𝑗 (𝑖)

𝑃𝑗

)

, (1)

where 𝑃𝑗 is the period of the series, 𝑖 is the index an individual data
point within the series of feature 𝑗. First-order differences of all time
series variables are incorporated to explore the effects of the rate of
change of these variables. To improve forecast performance, lead series
for calendar events and weather data are shifted forward, providing
insights into upcoming time intervals and expected weather conditions
that may affect energy consumption. Lead series are found by,

𝑥𝑙𝑒𝑎𝑑,𝑗 (𝑖) = 𝑥𝑗 (𝑖 + 𝑇 ), (2)

where 𝑇 is the length of the load forecast horizon.

Data preprocessing
The dataset undergoes normalisation, where each feature’s time

series is transformed to have a mean of zero and a standard deviation
of one. This transformation can be represented by

𝑥𝑠𝑡𝑑,𝑗 (𝑖) =
𝑥𝑗 (𝑖) − 𝜇𝑗

𝜎𝑗
, (3)

where 𝜇𝑗 , 𝜎𝑗 , and 𝑥𝑗 (𝑖) correspond to the mean, standard deviation, and
the value at the 𝑖th time step of the 𝑗th feature, respectively.

Sliding window algorithm
After scaling the data, we apply the sliding window algorithm. This

technique, commonly used in time series analysis, involves moving a
fixed-length window along the time series, advancing one data point at
a time. This procedure transforms the tabular dataset into a batched
series. The resultant three-dimensional array (𝑄,𝑁, 𝐽 ) consists of 𝑄
batched samples of (𝑁 , 𝐽 ), where 𝐽 is the number of features in the
dataset and 𝑁 is the length of each series. The final step involves
ransforming the batched time series into a 2 dimensional, tabular array
𝑄, (𝑁 × 𝐽 )) to prepare it for use in the SHAP algorithm. This is done
y transforming each (𝑁 , 𝐽 ) sample into a 1D array ((𝑁 × 𝐽 ), 1), by

oncatenating the end of one series to the start of another.
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Fig. 2. Methodology overview.
3.2. Model design and setup

The existing SHAP tool for tabular datasets, operates by processing a
single row of data from the input table at a time and thus requires the
model to accept only one-dimensional inputs. This creates a problem
as state-of-art deep learning architectures, such as those in [35,37,62],
do not conform to this requirement. This restricts the architectures
that can be explained using SHAP which might contribute to the lack
of diversity in deep learning architectures observed in the literature.
This constraint can be overcome by first transforming the batched time
series samples (𝑄,𝑁, 𝐽 ) into a tabular format (𝑄, (𝑁 × 𝐽 )), as done
in previous studies [42,43,45,46], and designing the deep learning
model to it accepts a 1D input vector. An arbitrary architecture can be
explained using SHAP, by adding a layer to the model’s architecture,
after the input layer, that manipulates the shape of the input array to
the required shape that is compatible with desired architecture.

The multi-headed CNN as illustrated in Fig. 2, is designed with
this solution in mind. It accepts a one-dimensional array ((𝑁 × 𝐽 ), 1),
transforms it into a two-dimensional array (𝑁, 𝐽 ), and assigns each
feature’s time series (𝑁, 1) to a corresponding head in the architecture.
The number of heads in the model thus corresponds to the number of
time-series variables in the input data. The model consists of multiple
parallel 1D CNNs, with each head containing two sequential 1D CNNs.
Notably, no pooling operation is performed after any of the CNNs, and
padding is used to maintain the dimensions of the feature maps. The
output of the last CNN in each head is concatenated and fed into a
fully connected layer. The final layer is another fully connected layer
that generates the predictions, with the number of neurons in this last
layer being dictated by the number of steps in the prediction.

Given the large input dimensions and model parameters, hyperpa-
rameter optimisation is computationally intensive. Instead, we use a
trial-and-error approach, incrementally increasing network sizes until
further accuracy improvements become marginal. To prevent overfit-
ting during model training, we implement early stopping, stopping
training when the performance on the validation set plateaus. This
6

strategy obviates the need to compare training and testing metrics or
determine the optimal number of training epochs. Given that multi-
headed CNN’s internal parameters initialise with random values at the
start of the training process, we train 10 models for each experiment
to capture the variance in model performance.

3.3. XAI methods

In this section, we apply and compare the SHAP and Grad-CAM
explainability techniques in the context of load forecasting. We detail
how each method assigns attributions scores to features and discuss
their application to the multi-headed CNN.

3.3.1. SHAP
The fundamental idea underpinning SHAP is the assignment of a

score to each feature in a given data point that quantifies the degree to
which that feature contributed to the model’s prediction. These scores
are based on the Shapley values from cooperative game theory, which
is an approach to attributing the value of a collective effort to each
individual participant. The exact Shapley values 𝜙𝑗 for feature 𝑗 are
computed as follows:

𝜙𝑗 =
∑

𝑆⊆𝑋⧵𝑗

|𝑆|!(|𝑋| − |𝑆| − 1)!
|𝑋|!

[

𝑓 (𝑥𝑗 ) − 𝑓𝑆 (𝑥𝑗 )
]

, (4)

where 𝑋 is the set of input features, 𝑆 ⊆ 𝑋 ⧵ 𝑗 is a subset of features
that does not include feature 𝑗, 𝑓 (𝑥𝑗 ) is the model’s prediction for the
input sample 𝑥𝑗 , 𝑓𝑆 (𝑥𝑗 ) is the model’s prediction for the input sample
𝑥𝑗 with the features in 𝑆 set to their expected values.

Computing the exact Shapley values requires 2𝐽 calculations, which
is impractical in practice. Therefore, approximation techniques are
used to estimate Shapley values. The SHapley Additive exPlanations
(SHAP) [41] method provides an efficient way of estimating the Shap-
ley values for a specific model and dataset and while not exact, has
shown its efficacy in real-world applications and machine learning
interpretability research. KernelSHAP, GradientSHAP, and TreeSHAP
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are some of algorithms that estimate Shapley values.1 In this study,
DeepSHAP is utilised, which is specifically designed for deep learning
models.

The SHAP algorithm generates an attribution score for each feature
in the model’s input, 𝜙𝑗 , which quantifies its contribution to each
output of the model. The fundamental notion is that the sum of all
feature contributions approximates the difference between the baseline
𝜙0 and the prediction 𝑓 (𝑥) being explained.

𝑓 (𝑥) ≈
𝑁
∑

𝑗
𝜙𝑗 (𝑥) + 𝜙0, (5)

where each 𝜙𝑗 (𝑥) represents the contribution of feature 𝑗 towards
riving the model’s output away from its baseline value 𝜙0 for the given
nput 𝑥. The baseline output of the model over all inputs, 𝜙0, can be

calculated by taking the average of the model’s output over the entire
input distribution

𝜙0 = E𝑥[𝑓 (𝑥)]. (6)

The baseline, also called the expected or average SHAP value, rep-
resents the average model prediction when all features are considered
absent [41]. In our study, the we randomly select a thousand samples
from the whole dataset to represent the baseline. Additionally, we draw
a hundred random samples from the test set from which global feature
attributions are obtained.

The SHAP algorithm produces feature attributions for all 𝑄 samples
that relate the inputs of the model (𝐽 × 𝑁) to all the 𝑇 outputs of
the model. Thus, the output of the algorithm produces a 3D array
(𝑄, 𝐽 × 𝑁, 𝑇 ). The SHAP values are transformed to (𝑄, 𝐽 ,𝑁, 𝑇 ) to
identify which set of attributions belong to which set of inputs. Finally,
the global feature importance 𝛷𝑗 for the 𝑗th feature is the total impact
of the feature taken over the length of the series 𝑁 , across all 𝑄 samples
and for all 𝑇 the model outputs, given by

𝛷𝑗 =
1
𝑄

𝑁
∑

𝑛

𝑄
∑

𝑞

𝑇
∑

𝑡

|

|

|

𝜙𝑗,𝑞,𝑛,𝑡
|

|

|

. (7)

3.3.2. Grad-CAM
The Grad-CAM for 1D CNNs is obtained using the same process as

for 2D CNNs, but with one dimension less. A forward pass is carried
out in the model, which essentially processes the input data through
the network’s successive layers until an output is obtained, represented
as 𝑦. During this process, the model also generates a series of feature
maps 𝐴𝑘. The total number of chosen hyperparameter that determines
the number of filters or kernels in the CNN is noted as 𝐾. These feature
maps are outputs of the CNNs that capture and represent different
learned patterns from the input data. For Grad-CAM, we are only
interested in the feature maps produced by the last CNN layer in the
model that is closest to the output. The last CNN layer is chosen as it is
able to capture the most complex and abstract patterns in the data [31].

At this juncture, our method departs from the strategies employed
in classification-based models, in which gradients are computed with
regard to a particular class, or to put it differently, a singular output.
Given that our forecast model predicts multiple future time points, our
objective is to comprehend the influence of each feature across all these
predictions, rather than focusing on a single future time point. Thus, we
take the gradient of all the outputs with respect to each feature map.
The feature attributions 𝛺𝑗 for the 𝑗th feature are represented by the
weighted sum of the feature maps, calculated using

𝛺𝑗 = 𝑅𝑒𝐿𝑈

( 𝐾
∑

𝑘=1
𝑤𝑘

𝑗𝐴
𝑘
𝑗

)

, (8)

where the weights 𝑤𝑘
𝑗 of the 𝑗th feature represent the importance of

each feature map 𝐴𝑘
𝑗 . The rectified linear unit (ReLU) function ensures

1 https://shap-lrjball.readthedocs.io/en/latest/index.html
7

that only positive contributions are considered. As 𝐴𝑘
𝑗 has already been

found in the forward propagation of the model, the weight 𝑤𝑘
𝑗 of the

th filter is found by computing the gradient of all the output values
ith respect to each feature map, given by

𝑘
𝑗 = 1

𝑁

𝑁
∑

𝑖=1
max

(

0,
𝜕𝑦

𝜕𝐴𝑘
𝑖,𝑗

)

. (9)

This method sums up all the positive gradients at index 𝑖 of the feature
map 𝐴𝑘

𝑗 and averages them based on the number of elements in the
feature map 𝑁 . The strategy of considering only positive gradients
is reported to offer superior resolution and emphasise the most con-
sequential input components to the prediction [31]. Given that we
use padding in the CNNs, feature map 𝐴𝑘

𝑗 and 𝑗th input series 𝑥𝑗
have the same dimensions. Deep learning frameworks like TensorFlow
and PyTorch have built-in functionalities for automatic differentiation,
which simplifies the computation of these gradients. To obtain the
computational benefits claimed in this study, the feature maps of each
head must be obtained together in the same forward pass of the
model. Attribution scores for each feature are obtained by iteratively
calculating Eqs. (8)–(9).

In [35], global feature attributions, which are also referred to as
average feature importance, are derived by making predictions for the
entire test set of 365 non-overlapping samples, and then combining the
feature attributions of the individual forecasts.

3.4. Performance evaluation

The coefficient of determination (𝑅2), Root Mean Square Error
(RMSE), and Mean Absolute Percentage Error (MAPE) are used to
evaluate the accuracy of the forecasting model,

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑇

𝑇
∑

𝑡=1
(𝑦𝑡 − 𝑦𝑡)2, (10)

𝐴𝑃𝐸 = 100%
𝑇

𝑇
∑

𝑡=1

|

|

|

|

𝑦𝑡 − 𝑦𝑡
𝑦𝑡

|

|

|

|

, (11)

𝑅2 = 1 −
∑𝑇

𝑡=1(𝑦𝑡 − 𝑦𝑡)2
∑𝑇

𝑡=1(𝑦𝑡 − �̄�)2
, (12)

here 𝑇 is the number of predictions, 𝑦𝑡 is the actual value of the 𝑡th
bservation, 𝑦𝑡 is the predicted value of the 𝑡th observation, and �̄� is
he mean of the observed values.

Given that feature attributions are obtained using the patterns
earned by the model, their credibility is inherently tied to the model’s
roficiency in fitting the data. To ensure robust feature rankings via
AI methods, we train the multi-headed CNN ten times on all features,
electing the top-performing model to generate the rankings. By apply-
ng both Grad-CAM and SHAP on the same model, a fair comparison of
heir performance is ensured. The evaluation of these feature rankings
s conducted through a feature ablation study. This technique involves
raining a model using all features initially, then removing features
ased on its importance as ranked by the XAI method. It is antici-
ated that as more features are removed, particularly those ranked as
mportant by the XAI method, there will be a corresponding decrease
n the model’s predictive accuracy. A greater decrease in accuracy is
ndicative of greater feature significance.

. Case study

Panama, strategically positioned in Central America, serves as a
and bridge connecting North and South America. The country’s cli-
ate is predominantly tropical, characterised by high temperatures

nd humidity. In this study, we utilise a dataset that captures the
ourly national demand of Panama. This dataset also includes weather
onditions from three major cities: Tocumen, which is near the capital,
anama City, home to the Panama Canal and a significant hub for

https://shap-lrjball.readthedocs.io/en/latest/index.html
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Table 1
Description of dataset variables.

Description Feature name Unit/range

Demand Demand MW

Weather features

Temperature Temp - Toc, San, Dav ℃
Specific humidity Hum - Toc, San, Dav kg/kg
Precipitation Rain - Toc, San, Dav liters/m2

Wind speed Wind - Toc, San, Dav m/s

Calendar features

Holiday ID Hol ID [1–22]
Holiday indicator is hol [0, 1] Holiday = 1
School holiday is scho [0, 1] School = 1
Weekend indicator isweekend [0, 1] Weekend = 1

Date and time features

Hour of day hour [0–23]
Day of the week dayofweek [0–6] Monday = 0
Day of month day [1–31]
Month of the year month [1–12]
Year year [2015–2019]

Augmented features

Lead features Future - [Weather, Calendar]
Differenced features diff - [Demand, Weather ,

Calendar, Date and Time]
Sinusoidal features cyclic - [Hol ID, hour,

day, dayofweek, month]
[1 to −1]

Toc = Tocumen, San = Santiago city, Dav = David city

Table 2
Multi-headed CNN architecture setup and parameters.

Layer Parameters

Input_j shape = [1 × 168]
1D CNN_(0,j) filters = 16, kernel size = 2, padding = same, activation = ReLU
1D CNN_(1,j) filters = 16, kernel size = 2, padding = same, activation = ReLU
Concatenation axis = −1 (default)
Dense_0 neurons = 200, activation = ReLU
Dense_1 (Output) neurons = 24

commerce; David City, the third-largest urban centre; and Santiago,
a centrally located key regional centre influencing both urban and
rural demands. Additionally, the dataset incorporates public and school
holidays, which can impact energy demand patterns [63]. The dataset
spans from 3 January 2015 to 27 June 2020. However, we exclude
data from 2020 because the COVID-19 pandemic caused significant
deviations in demand. Previous studies have also reported a steady
increase in peak demand [61].

After data preprocessing and time series batching using the sliding
window algorithm, 43 200 data points are available for training and
testing. Table 1 describes the 65 input variables (𝐽=65) used in this
study and supplied to the model.

The multi-headed CNN is trained using data from the years 2015
to the end of 2018. Multivariate time series data from the last 7 days,
collected at hourly intervals, is used to establish a 168-hour (𝑁 = 168)
look-back window which serves as the input for multi-headed CNN.
This data is then employed to generate an hourly forecast for the
upcoming 24 h (𝑇 = 24). The multi-headed CNN is tested using 2019
data. Every test sample initiates at the day’s onset, precisely at 00:00,
covering a 24-hour period. This approach yields 356 non-overlapping
test instances throughout the year. The multi-headed CNN parameters
used in this study are listed in Tables 2–3.

The tests are performed using the following platforms; Python 3.10,
Keras 2.8, Tensorflow 2.8.0, shap 0.41.0 and executed on an Intel
i9-12900 CPU with 32 GB RAM.
8

Table 3
Training hyperparameters.
Parameter name Parameter value

Batch size, Epochs, Steps per epoch 16, 300, 100
Learning rate 0.001 (Default)
Optimiser Adam
Loss function Mean Square Error (MSE)
Early stopping Patience = 20, Monitor = val_loss
Validation split 0.1

Table 4
Elapsed computation time for XAI explanations.
Scope Grad-CAM SHAP

Local explanation 0.144 s 138 s
Global explanation 59 s 5580 s

Fig. 3. National demand forecast for the holiday on Wednesday, 1 May 2019.

4.1. XAI results

Table 4 summarises the computation time needed for generating
feature attributions using Grad-CAM and SHAP. Local and global expla-
nations denote the computation time for generating feature attributions
for single and multiple predictions, respectively, with the latter pro-
viding the feature rankings. The computational demand for global
explanations is naturally higher due to the greater quantity of predic-
tions. The Grad-CAM method proves to be computationally faster than
the SHAP method for both local and global explanations, owing to its
simpler computational complexity and reduced number of calculations.
For instance, to generate an explanation for a single prediction, Grad-
CAM only necessitates one forward propagation of input data through
the model and a partial back-propagation of the gradients to the feature
maps. Conversely, the SHAP method requires multiple iterations of
model propagation using various input samples.

4.1.1. Local explanations
Fig. 3 showcases the predicted national demand for Wednesday,

1 May 2019, derived from a week’s historical data encompassing 65
distinct features. On examining this figure, one can observe that both
the actual and predicted demand profiles for this Wednesday closely
mirror those usually seen on weekend, which are often indicative of
reduced economic activities. Interestingly, this particular Wednesday
was not just any weekday: it was National Labour Day in Panama, a
public holiday. The noticeable dip in demand on this day indicates
the influence of the public holiday. This observation aligns with the
intuitive understanding that public holidays, much like weekends, lead
to a slowdown in economic activities and, consequently, a reduction in
demand.

The decision to focus on this specific day was deliberate. The con-
trast in demand, influenced by the public holiday, stands out clearly,
making it an ideal candidate for analysis. Furthermore, this scenario
provides a unique lens to explore the explanations offered by XAI. We
anticipate that the XAI methods will emphasise the holiday feature,
assigning it high attribution scores due to its evident impact. However,
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Fig. 4. Overlay of feature attribution on the input data, utilised for predicting national
holidays.

while the holiday’s influence is clear in this instance, it is essential to ac-
knowledge that the dataset contains numerous other features. Although
these other features may also significantly contribute to demand, their
impact might not be as easily discernible solely from the profiles in
Fig. 3

Figs. 4–5 provide a detailed view of the local feature attributions
related to the prediction in Fig. 3, using Grad-CAM and SHAP. These
feature attributions represent the local explanations for the predicted
demand of the holiday. Fig. 4 is obtained by overlaying the feature
attributions belonging to a specific feature onto the input data, which
allows us to see which characteristics of the series were the most
influential. The colour bar measures the importance of the feature at
specific time steps. The time axis of ‘‘Future Temp Toc’’ and ‘‘Future
9

Hol ID’’ is shifted to signify that theses feature contains future in-
formation. Fig. 5 abstracts the detail of the input data and provides
an overview of feature attributions in the form of a heatmap. As all
features’ attribution scores are measured by the same colour bar, the
heatmap representation makes it easy to compare the attributions of
different features. Furthermore, these attributions are aligned with the
original input data, which visualises the segments of the input data that
influenced the model’s prediction the most. It is important to mention
that the heatmap for SHAP feature attributions displays the absolute
SHAP values, which makes a visual comparison simpler. The bar chart
in Fig. 6 displays the average feature attributions for the prediction of
the holiday.

When the feature attribution scores produced by Grad-CAM are
superimposed onto the original data in Fig. 4(a), it can be seen that
high feature attributions for ‘‘Demand’’ are often associated with high
values for demand. Notably, the highest attribution scores are assigned
to the day with the highest demand. A similar trend is observed
in ‘‘Future Temp Toc’’, where high temperatures coincide with high
feature attributions. This trend extends to ‘‘isweekend’’, ‘‘dayofweek’’,
‘‘cyclic hour’’ and ‘‘diff isweekend’’.

Looking at Fig. 5, it can be seen that Grad-CAM highlights ‘‘Future
Temp Toc’’ more than ‘‘Temp Toc’’. This signifies that the model
considers future temperature to be more important than current and
historic temperature records. This agrees with domain knowledge as
the current temperatures are more likely to affect current demand.
It thus follows that predicted temperatures affect predicted demand.
However, a contradiction arises when looking at ‘‘Future Temp Toc’’
in Fig. 5(a), more closely. Despite the high attributions for ‘‘Future
Temp Toc’’ shown in Fig. 5(a), in Fig. 4(a) temperatures from the past
4–6 days are assigned the highest attribution scores instead of future
temperature, represented by hours 1–24. This inconsistency highlights
a discrepancy in the reasoning provided by Grad-CAM which warrants
further investigation. A closer look at the Grad-CAM explanations in
Fig. 5(a) suggests that the holiday is not the sole feature influencing
the prediction. However, without prior knowledge that the predicted
demand corresponds to a holiday, pinpointing the exact reason for the
dip in demand would arguably be a challenging endeavour.

In contrast, local explanations produced by SHAP, shown in
Fig. 5(b), prominently displays the pronounced effect of national hol-
iday on demand. SHAP also emphasises the significant influence of
the most recent historical demand. Within these explanations, the
temperatures forecasted for the next 1–24 h, denoted as ‘‘Future Temp
Toc’’, are highlighted by SHAP as particularly impactful. Looking at
the average attributions produced by SHAP in Fig. 6(b), ‘‘Future is
hol’’ is the most significant feature. The insights derived from SHAP
align closely with our intuitive understanding of the factors influencing
demand.

4.1.2. Global explanations
The feature rankings for both Grad-CAM and SHAP are illustrated

in Fig. 7. These feature rankings display the global feature attributions,
which are formed by aggregating individual feature attributions across
all predictions made on the test set. This aggregation process captures
the average importance of each feature and is displayed in Fig. 7 in
descending order of importance. An inspection of the top 15 features
ranked by both XAI methods, reveals a set of common features: ‘‘De-
mand’’, ‘‘diff Demand’’, ‘‘Future Temp Toc’’, ‘‘Future Temp Rain’’, ‘‘diff
Rain Dav’’, and ‘‘year’’. It is observed that Grad-CAM assigns higher
attribution scores to features with future information, while SHAP
emphasises the differenced features. When it comes to identifying the
most relevant features, the top 5–10 features as ranked by Grad-CAM in
Fig. 7(a) seem to be the most significant, given that they constituent the
largest proportion of the total attributions scores. However, when we
evaluate the feature rankings of SHAP shown in Fig. 7(b), determining
the threshold between relevant and irrelevant features becomes notably
more challenging. Researchers in [58] separated features into groups
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Fig. 5. Feature attribution heatmaps for the forecast of national holiday forecast on 1 May 2019.
Fig. 6. Local average feature attributions scores that rank features in descending order of importance.
according to their attributions scores, however it is not clear how
threshold that divides these groups were selected. This highlights a
10
current limitation of XAI for feature selection, as there is a lack of a
clear and widely accepted rule for setting this threshold.
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Fig. 7. Global average feature attributions scores that rank features in descending order of importance.
The ablation study in Fig. 8 indicates that discarding half of the
owest ranked features from both Grad-CAM and SHAP enhances fore-
asting accuracy and peak model performance is obtained when using
he top 10 features from both XAI methods. This reinforces the idea
hat XAI methods are successful in pinpointing irrelevant features and
onsequently results in a tenfold reduction in model training time. The
esults also highlight how the inclusion of all features can degrade
odel performance.

In Fig. 8, a significant decrease in accuracy is observed when
educing the number of features from Grad-CAM’s top 3 to top 2
eatures, suggesting that ‘‘Future Holiday ID’’ contributed significantly
o forecasting accuracy. This implies that providing the model with
nformation about upcoming holidays notably enhances the accuracy
f forecasts. In comparison, the most significant drop in performance
sing SHAP feature rankings is observed when reducing the number of
eatures from 7 to 5. This drop in model accuracy is likely due to the
emoval of ‘‘Future Is hol’’ given the demonstrated importance of the
oliday feature. It is interesting to note that Grad-CAM assigned greater
mportance to the integer representation of the holiday feature whereas
HAP highlights the binary representation.

The multi-headed CNN trained using the top 10 to 33 features, as
anked by SHAP, generally outperforms those trained with features
dentified by Grad-CAM. This is evident from the lower average RMSE
nd MAPE shown in Fig. 8, suggesting superior forecasting accuracy.
hile the model seemingly achieved superior peak accuracy with the

op 10 features from Grad-CAM, models trained using SHAP-selected
eatures displayed greater consistency, evident from the reduced vari-
nce in their accuracy. This suggests that the model trained on features
elected by SHAP results in better model stability and are less prone to
verfitting than those trained on features identified by Grad-CAM. It is
hus found that SHAP is better at identifying irrelevant features than
rad-CAM.

Despite the clear impact of holiday features on model accuracy,
HAP surprisingly ranks it as the 6th most important which ultimately
11
leads to a premature ablation of the feature. This indicates that SHAP
does not strictly rank features according to their predictive content.
The same can be said about Grad-CAM where the ‘‘year’’ feature,
ranked as the 2nd most significant feature, degrades model stability
and contributes little in terms of predictive content. In Fig. 8 when 7
features remain, we see that SHAP feature rankings provide superior
model accuracy compared to Grad-CAM, indicating that significant
features are better preserved by SHAP during the feature elimination
process. However this trend does not continue, as the top 3 and 5
features from Grad-CAM are shown to produce better performance.
These findings underscore that neither XAI method provides a ranking
of features strictly in order of their contribution to forecasting accuracy.

5. Discussion

A distinct advantage of XAI methods over wrapper methods is their
computational efficiency, attributed to the elimination of the need
for iterative model training required by wrapper methods. Grad-CAM
demonstrates its computational efficiency in this high-dimensional ap-
plication by providing feature rankings in 59 s, which based on previ-
ous studies [18], yields performance similar to that of filter methods.
While our dataset only consists of 65 features, each feature carries 168
individual attributions. This amounts to a substantial total of 10 920
attributions. SHAP’s computation for feature ranking takes roughly 100
times longer than Grad-CAM, requiring 1 h and 33 min to produce
10 920 attributions, which can be attributed to iterative perturbations
of the model. To put this result in context, a study comparing wrapper
methods found the best performing search algorithm identified the
optimal feature set in 1778 s after 10 000 evaluations [22]. Given
that the dataset in [22] comprises 1080 data points, in contrast to our
dataset of 43 000 entries, it is reasonable to anticipate that a wrapper-
based approach would necessitate a considerably longer duration in
our case. SHAP’s computational demands can be mitigated in various
ways. Reducing the number of baseline and global attribution samples
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Fig. 8. Ablation study — Model response to retraining with reduced features.

can save time, provided the data distribution remains adequately rep-
resented to avoid bias. Additionally, shortening input lengths from 168
to 24 h, optimising the CNN architecture or selecting a simpler model
can significantly improve SHAP’s computational efficiency.

Computational efficiency alone would not be of much value if the
XAI methods perform poorly as feature selection tools. Our experiments
reveal that eliminating half of the irrelevant features identified by Grad-
CAM and SHAP, lead to an improvement in forecasting accuracy and
roughly 50% reduction in training time. For even better results, one
can continue to prune lower-ranked features until there is a noticeable
decline in the model’s forecasting accuracy. While Grad-CAM’s feature
rankings yield model performance comparable to those chosen by
SHAP, especially when considering the top 10 to 16 features, SHAP
typically delivers superior model accuracy on average.

Using XAI for feature selection presents challenges similar to those
found in filter and embedded methods that rank features by impor-
tance. Determining the boundary between relevant and irrelevant fea-
tures becomes challenging when examining the feature ranking in 7.
Without a universally accepted guideline for choosing the optimal
number of features, one is compelled to continuously assess feature
rankings to reach peak performance. While this method is computation-
ally simple for our dataset, its practicality may be called into question
for datasets containing a significantly larger number of features.

It is also interesting to analyse the variability in model performance
during the ablation study. Since both Grad-CAM and SHAP are applied
to the same model architecture and utilise the same training and testing
data, any underlying differences can be attributed to the features
selected by each method. Our findings indicate that features chosen
by SHAP lead to more consistent model performance, as evidenced by
the reduced variance in accuracy. This suggests that SHAP is better
at identifying irrelevant features and may reduce the possibility of
overfitting.

An important observation arises when abating higher ranked fea-
tures. While removing the ‘‘Future Is hol’’ feature led to the most
notable decline in model accuracy, SHAP ranked this feature as only
the 6th most influential feature. It is not easy to pinpoint the precise
cause for SHAP’s inability to rank a crucial feature highly, however,
we speculate that the selection of samples used to rank global impor-
tance might be the contributing factor. Given that the global feature
attributions are an average magnitude of the local feature attributions,
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it is critical to select samples such that there is even an distribution
of features. Fig. 5(b) aims to substantiate this point. There are 22
holidays in Panama out of the 365 days in a year. When using SHAP
to interpret the forecast differences between a holiday and a regular
weekday, it is evident that holiday features have no influence on a
standard weekday forecast, yet they significantly impact the demand
forecast on a holiday. If the holiday features are overshadowed by
other features or outweighed by non-holiday samples, then the average
becomes disproportionately skewed, leading to potentially misleading
interpretations. This is a point of criticism of SHAP highlighted in a
previous study [52]. Though the task of selecting an even distribution
of features may be simple for discrete features, it is not clear how one
should proceed for continuous features such as ‘‘temperature’’.

Grad-CAM also encounters issues with feature ranking. Contrary to
assigning a low rank to a crucial feature, it ranked the ‘‘year’’ as the
second most significant feature, even though it had minimal impact on
forecasting accuracy. This is because, although the ‘‘year’’ feature is
shown to contribute to the prediction in Fig. 5(a), its consistent average
contribution might overshadow other features that have intermittent,
yet critical, significance for specific forecasts. Intriguingly, the signif-
icance attributed to ‘‘year’’ does reflect the rising national demand of
Panama. Yet, as demonstrated in Figs. 6(b)–7(b), SHAP suggests that
variations in this feature exert only minimal effects on demand, in
comparison to other factors.

It is important to note that Grad-CAM is sensitive to the scaling
of data. Our initial tests indicate that when unscaled data is used, it
appears to assign the highest attributions to features with the largest
numerical values. Consequently, it not effective as a feature selection
tool.

Another source of error in the feature rankings produced by Grad-
CAM might stem from the fact that this method only measures positive
influences on the forecast, neglecting factors that drive the magnitude
of the forecast down. This is evident in Fig. 5(a) where low feature
attributions are assigned to ‘‘Future Hol ID’’ or ‘‘Future is hol’’ between
hours −24 and 0. This period of the features provides information to
the model that the upcoming day will be a holiday. Such an oversight
could result in a biased understanding of explanations and feature
attributions. In [33], it was demonstrated that neglecting negative
gradients can result in the inability to accurately identify certain faults
in HVAC systems.

While XAI methods like SHAP and Grad-CAM assign feature attri-
butions based on relevance to model predictions, these attributions
are not direct indicators of predictive accuracy. This is observed in
our ablation study, which shows that feature rankings do not strictly
align with contributions to the model forecast accuracy. In this study,
there is no assurance that the most effective feature combinations are
necessarily among those ranked highest by either SHAP or Grad-CAM.
Further research is warranted to truly assess the efficacy and optimal
combinations of features.

Delving into local explanations offers insights not just about the
rankings, but also about how individual features influence specific
forecasts. When interpreting SHAP values, it is important to remember
that they quantify the marginal contribution of that feature that led to
the different between the prediction and the baseline. In the context
of predicting the holiday on 1 May 2019, the feature ‘‘Future is hol’’
has the highest SHAP value, signifying its pivotal role in influencing
the prediction relative to the baseline. Here, the baseline embodies
the notion of an ‘‘average day’’. However, understanding this ‘‘average
day’’ is nuanced. In our study, it is derived from the mean of demand
profiles across the days sampled from the whole dataset. Given the
composition of a week, where weekdays dominate with five out of
the seven days, this baseline tends to resemble a standard weekday
more than a weekend. This context underscores why the significant
attribution to ‘‘Future is hol’’ corresponds to the observed reduction
in demand on the holiday.
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In contrast to SHAP, which quantifies a feature’s impact relative
to a specific baseline, we find that Grad-CAM offers a different per-
spective to the model’s decision-making process. In Grad-CAM, feature
attributions are computed through a weighted sum of the feature maps
generated by the CNNs. These attributions are presumably anchored
to a zero baseline, as they are not calculated relative to any baseline.
To contextualise difference in perspectives provided by the XAI, we
make use of the framework proposed by [64], which categorises various
types of explanations. We find that Grad-CAM offers insights into the
procedural mechanics of the model’s prediction, akin to how multivari-
ate linear regression explains the mathematical relationship between
variables and the outcome. In short, Grad-CAM loosely explains how
the model arrived at the predict and falls short in delivering causal
explanations. For example, from Fig. 5(a), it is indeterminable what the
cause of observed decline in demand is however it is evident that many
feature played a role. Conversely, SHAP focuses on causal explanations
rather than procedural explanations. It specifically highlights the in-
fluence of the holiday feature, aiding in understanding why a certain
prediction was made.

6. Conclusion

This study examines Grad-CAM and SHAP as feature selection tools
within the realm of multivariate time series load forecasting. Using
XAI, we distil the multi-headed CNN’s learned patterns into feature
attributions, gauging their significance to predictions and facilitating
feature selection by discarding low-attribution features. Furthermore,
we have showcased that with the right array manipulations within the
model pipeline, SHAP can be applied to explain even arbitrary model
architectures.

Both Grad-CAM and SHAP have demonstrated their mettle by effec-
tively identifying and eliminating irrelevant features from the model.
This has led to tangible benefits such as improved forecast accuracy,
reduced training time, and a diminished risk of overfitting. While Grad-
CAM demonstrated its computational efficiency and its capability to
identify features that frequently align with the performance bench-
marks set by SHAP, several issues come to light. Not only does it
manifest challenges in selecting features that produces consistent model
performance, but it also does not offer intuitive explanations to the
prediction of the model. Future studies can improve the Grad-CAM by
accounting for factors that decrease predicted demand or explore the
effects on the explanations by varying the kernel size of the CNN.

On the other hand, SHAP, despite its more intensive computational
demands, consistently demonstrates an enhanced ability to identify
pivotal features. Its strength lies in its capacity to offer intuitive and
insightful explanations of the influencing factors behind forecasts, the
selection of features that improve model performance, and the ability
to be applied to any machine learning model. Nevertheless, there are
times when even SHAP may not rank influential features with the
precision one would expect. Future studies can attempt to improve
SHAP’s feature rankings by using sampling techniques that ensure
an even distribution of features, especially when dealing with sparse
features like holidays. Given the critical role that the baseline plays in
interpreting SHAP values, there is an imperative need for establishing
clear guidelines on the selection of an appropriate baseline set.

The explanations provided by the XAI are invaluable to the pro-
cess of feature selection. Unlike traditional feature selection methods,
Grad-CAM and SHAP provide context to the factors driving individual
predictions. Since feature rankings are derived from aggregating attri-
butions across all test set predictions, users gain a deeper understanding
of the rationale behind these rankings. This transparency not only in-
stills confidence but also enables users to apply expert judgement when
necessary. In high-stakes domains, this level of insight is particularly
vital, as relying solely on a model’s overall test set performance can be
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misleading for assessing how it will behave in practice.
The potential of Grad-CAM to efficiently generate feature attri-
butions, especially in applications with an exceptionally large set of
features, holds great value and promises exciting developments in
the field. One promising application is the forecasting of day-ahead
electricity prices in European markets. This involves a wide array
of features such as demand, energy production, electricity prices,
weather patterns, forecasts and consumer behaviour across various
countries [44]. The ability of Grad-CAM to handle such a vast range of
features hints at its considerable potential for facilitating improvements
in this area.

Looking ahead, further research is needed to refine these XAI meth-
ods and overcome the limitations identified in our study. In particular,
there is a need for more effective methods for selecting the top number
of features, and for further exploration of other XAI methods in time
series forecasting domain. Future research could extend this work by
contrasting the outcomes with wrapper-based methods to gauge the
optimality of the features identified by XAI methods. Such a comparison
would provide deeper insights into the efficacy of different feature
selection strategies and offer a more nuanced understanding of the
role and potential of XAI methods in model improvement and inter-
pretability. Through this ongoing research, we can continue to unlock
the full potential of these tools to foster more transparent, accurate, and
interpretable forecasting models, paving the way for a brighter, more
informed future.
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