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Abstract 

Sodium fluoride (NaF) is one of the neglected environmental pollutants. It is ubiquitously 
found in the soil, water, and environment. Interestingly, fluoride has been extensively utilized 
for prevention of dental caries and tartar formation, and may be added to mouthwash, mouth 
rinse, and toothpastes. This study is aimed at mitigating fluoride-induced hypertension and 
nephrotoxicity with clofibrate, a peroxisome proliferator–activated receptor-alpha (PPARα) 
agonist. For this study, forty male Wistar rats were used and randomly grouped into ten rats 
per group, control, sodium fluoride (NaF; 300 ppm) only, NaF plus clofibrate (250 mg/kg) and 
NaF plus lisinopril (10 mg/kg), respectively, for 7 days. The administration of NaF was by 
drinking water ad libitum, while clofibrate and lisinopril were administered by oral gavage. 
Administration of NaF induced hypertension, and was accompanied with exaggerated 
oxidative stress; depletion of antioxidant defence system; reduced nitric oxide production; 
increased systolic, diastolic and mean arterial pressure; activation of angiotensin-converting 
enzyme activity and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB); 
and testicular apoptosis. Treatment of rats with clofibrate reduced oxidative stress, improved 
antioxidant status, lowered high blood pressure through the inhibition of angiotensin-
converting enzyme activity, mineralocorticoid receptor over-activation, and abrogated 
testicular apoptosis. Taken together, clofibrate could offer exceptional therapeutic benefit in 
mitigating toxicity associated with sodium fluoride. 

Keywords: Sodium fluoride toxicity; Hypertension; Oxidative stress; Cell signalling; 
Apoptosis; Antihypertensive 

 

Introduction 

Sodium fluoride (NaF) is one of the neglected environmental pollutants in the world. It is 
ubiquitously found in the soil, water and the environment [65]. Fluoride is present in 
mouthwash, mouth rinse and toothpastes and has been used medically for the prevention of 
dental caries and tartar formation [39, 55]. Human activities have been found to enhance the 
release of fluorides from the environment into groundwater [50, 57, 95]. Previously in our 
laboratory, we have shown that free radical generation, reactive oxygen species (ROS) and 
oxidative stress are the major culprits in fluoride-induced nephrotoxicity [64]. Lipid 
peroxidation products and ROS are also known to play key roles in the pathophysiology of 
fluoride toxicities leading to damage of DNA, lipids and proteins and enhance induction of 
apoptosis [14, 73, 82]. Fluoride toxicity has also been shown to precipitate skeletal fluorosis 
leading to osteoporosis of the bones and osteosclerosis [37, 80]. Other findings have 
documented target organs and tissues affected by NaF toxicity to include the kidney, brain, 
liver, testes and blood [1, 20, 69, 71]. Interestingly, toxicity associated with NaF has been 
shown to precipitate hypertension and cardiovascular complications from our previous studies 
[64,65,66,67]. 

Hypertension is one of the most silent killers in the world. It has a plethora of risk factors 
including dietary, genetic and environmental [9, 72]. Globally, billions of dollars are spent 
annually for the management and treatment of hypertension in low-income and middle-income 
countries (LMICs) of the world [28]. For the past two decades, the impact of financial burden 
coupled with side effects from the antihypertensive is alarming [44, 58]. However, 
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nutraceuticals and phytochemicals have been used in ameliorating fluoride toxicity [65,66,67]. 
Recently, drug repurposing is increasingly becoming attractive for the management of various 
disease conditions [12, 75]. In the present study, we hypothesized that clofibrate, a PPARα 
agonist, could be repurposed for mitigating hypertension and complications arising from 
sodium fluoride toxicity. 

The lipid sensor peroxisome proliferator–activated receptor-alpha (PPAR- α) is a well-known 
master regulator of lipid metabolism [60]. The fibrates including clofibrate are a class of drugs 
that have been established to lower high blood cholesterol and prevent cardiovascular diseases 
[48, 54, 88]. Interestingly, previous studies have reported the antihypertensive effect of 
clofibrate on spontaneously hypertensive rats (SHR), salt-loaded hypertensive rats and saline-
induced endothelial dysfunction [17, 78, 97]. The renin-angiotensin-aldosterone system 
(RAAS) plays an important role in regulating blood pressure and body fluid, which contribute 
to the pathophysiology of hypertension and cardiovascular/renal diseases [5, 6, 61]. In the 
present study, we examined the molecular mechanism of action of clofibrate as a novel 
antihypertensive agent against NaF-induced hypertension in an experimental rat model. 

We hypothesized that mineralocorticoid receptor (MCR)/angiotensin-converting enzyme 
(ACE)/kidney injury molecule (Kim-1)/angiotensin II receptor type 1 (AT1 receptor) 
signalling pathway could serve as molecular therapeutic targets for clofibrate in reducing high 
blood pressure and mitigating renal damage associated with fluoride toxicity. 

Materials and Methods 

Chemicals 

Clofibrate, trichloroacetic acid (TCA), sodium hydroxide, O-dianisidine, hydrogen peroxide 
(H2O2), xylenol orange (XO), potassium hydroxide, reduced glutathione (GSH), oxidized 
glutathione (GSSG), sodium fluoride, thiobarbituric acid (TBA) and 1,2-dichloro-4-
nitrobenzene were purchased from Sigma (St. Louis, MO, USA). Normal goat serum, 
biotinylated antibody and horseradish peroxidase (HRP) system were purchased from (KPL, 
Inc., Gaithersburg, MD, USA). Anti-nuclear factor kappa beta (NF-κB), mineralocorticoid 
receptor (MCR), angiotensin-converting enzyme (ACE), angiotensin II receptor type 1 (AT1 
receptor) and caspase 3 were purchased from Sigma-Aldrich Bryanston, Sandton, 2021, South 
Africa. 3,3′-Diaminobenzidine (DAB) tablets were purchased from AMRESCO LLC. (OH, 
USA). All other chemicals were of analytical grade. 

Experimental Animals and Design 

For this study, forty male Wistar rats (100–110 g) were used and randomly grouped into ten 
rats per group, control (normotensive), NaF (300 ppm; hypertensive) only, hypertensive plus 
clofibrate (250 mg/kg) and hypertensive plus lisinopril (10 mg/kg), respectively, for 7 days. 
The dosage of NaF was chosen according to our previous study [64], clofibrate [97] and 
lisinopril [59]. The administration of NaF was by drinking water ad libitum, while clofibrate 
and lisinopril were administered by oral gavage. The rats were kept in wire mesh cages under 
controlled light cycle (12-h light/12-h dark) and liberally supplied with commercial rat chow 
and water ad libitum. The rat chow was purchased from Ladokun Feeds Limited, Ibadan, 
Nigeria. The final weights of the rats were taken 24 h (day 7) before the sacrifice which was 
on day 8. 
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Blood Pressure Measurement 

The blood pressure parameters of the rats were taken on day 8 with an automated blood pressure 
monitor (CODA S1, Kent Scientific Corporation, CT, USA). The systolic (SBP), diastolic 
(DBP) and mean arterial (MAP) blood pressures were determined non-invasively in conscious 
animals by tail plethysmography as recently reported from our laboratory [68]. 

Blood Sample Collection and Serum Preparation 

Rats were humanely handled, and about 3 ml of blood was collected through the retro-orbital 
venous puncture with the aid of capillary tubes into plain bottles and allowed to clot. The 
clotted blood was centrifuged at 4000 × g for 10 min. Clear serum was harvested and stored at 
4°C until analysis. Ethical regulations were followed in accordance with national and 
institutional guidelines for the protection of animal welfare during experiments [27]. The 
kidney, testes and epididymis were harvested and weighed for the determination of organ 
weight and relative organ weights, respectively. 

Determination of Serum Testosterone 

Serum testosterone was assayed using an enzyme immunoassay kit (DRG Diagnostics, 
Germany). The sensitivity of the testosterone assay was 0.08% taking into consideration other 
androgen derivatives like methyl testosterone, androstenedione and 5 alpha-
dihydrotestosterone. We also adhered strictly to variation in intra-assay coefficient following 
manufacturer’s instruction. 

Preparation of Renal and Testicular Post-mitochondrial Fractions 

For the preparation of tissue homogenates, the kidney and testes were quickly excised, rinsed, 
blotted with filter paper, weighed, chopped into bits and homogenized with homogenizing 
buffer (0.1-M phosphate buffer, pH 7.4) using a Teflon homogenizer for thirty strokes each. 
The resulting homogenate was centrifuged at 10,000 × g for 10 min with a cold centrifuge at 
−4°C to obtain post-mitochondrial fractions (PMFs). The supernatants (PMFs) were used for 
biochemical assays. 

Biochemical Assays 

Determination of Antioxidant Defence System 

The superoxide dismutase (SOD) assay was carried out by the method of Misra and Fridovich 
[59], with slight modification from our laboratory [68]. The glutathione peroxidase (GPx) 
activity was also measured according to Beutler et al. [8], while the activity of glutathione S-
transferase (GST) was estimated by the method of Habig et al. [34] using 1-chloro-2,4-
dinitrobenzene as substrate. Further, the reduced glutathione (GSH) content was estimated by 
the method of Jollow et al. [47], while the protein thiol (PSH) and non-protein thiol (NPSH) 
contents were determined as previously described by Ellman [22]. 

Estimation Makers of Oxidative Stress 

The hydrogen peroxide (H2O2) generation was estimated according to the method of  Wolff 
[90]. The vitamin C contents were measured as earlier described by Jacques-Silva et al. [43]. 
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Protein carbonyl (PCO) contents as index of protein oxidation in the renal and testicular tissues 
were measured using the method of [76]. The malondialdehyde (MDA) content as an index of 
lipid peroxidation was quantified in the PMFs of testicular and renal tissue according to the 
method of Varshney and Kale [86]. The absorbance was measured against blank at 532 nm. 
Lipid peroxidation index was calculated with a molar extinction coefficient of 1.56 × 
105/M/cm. The advanced oxidation protein product (AOPP) contents were determined, and 
contents of AOPP were calculated using the extinction coefficient of 261 cm−1 mM−1 and 
expressed as μmoles/mg protein as described by Kayali et al. [51]. The serum nitric oxide 
concentrations were measured spectrophotometrically at 548 nm according to the method 
of Olaleye et al. [62]. 

Protein Determination 

Serum and tissue protein contents were assayed according to Biuret’s method as described by 
Gornal et al. [30]. 

Histopathology 

Kidney and testicular tissues were fixed in 10% formalin and Bouin’s solution, respectively, 
embedded in paraffin wax, and sections of 5–6 mm in thickness were made and thereafter 
stained with haematoxylin and eosin (H&E) as previously described [21]. 

Immunohistochemistry 

The immunolocalization of mineralocorticoid receptor (MCR), nuclear factor kappa beta (NF-
κB), angiotensin-converting enzyme (ACE), angiotensin II receptor type 1 (AT1 receptor) and 
anti-caspase 3 was determined as earlier reported by Oyagbemi et al. [68] in the kidney and 
testes, respectively. Kidney and testes samples were fixed with 4% formaldehyde, embedded 
in paraffin and sectioned at a thickness of 5 μm. Antigen retrieval was carried out in 10-mM 
citrate buffer (pH 6.0) for 25 min, followed by subsequent peroxidase quenching in 30% 
H2O2/methanol. The sections were blocked in 2% milk for 1 h to enhance specific binding of 
antigen-antibody and probed with the following antibodies overnight at room temperature, NF-
κB (1:500, Sigma, South Africa), MCR (1:500, Sigma, USA), AT1 receptor (1:500, Sigma, 
South Africa), ACE (1:500, Sigma, South Africa) and anti-caspase 3 (1:500, Sigma, South 
Africa), for the kidney and testes, respectively, using polyclonal antibodies for 16 h at 4 °C. 
After washing, the sections were incubated for 2 h at room temperature in the appropriate 
biotinylated secondary antibodies. The immune-positive reactions were enhanced with 3,3′-
diaminobenzidine (DAB, AMRESCO LLC., OH, USA). Sections were observed with a light 
microscope (Leica LAS-EZ®) using Leica software application suite version 3.4 equipped with 
a digital camera. Immunoreactivity was quantified using ImageJ which measures immune-
positive regions relative to total tissue areas. 

Statistical Analysis 

Our data were analysed with one-way ANOVA followed by Tukey’s test to compare each 
group mean with one another. All values are expressed as mean ± SD. The test of significance 
between two groups was estimated by Student’s t test. The level of significance of p<0.05 was 
taken as statistically significant. 
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Results 

Body Weight and Relative Organ Weight 

There were noticeable variations in the final body weight of rats across the experimental 
groups, although, not significant. It was observed that the body weight of sodium fluoride–
untreated rats was higher than the control and those treated with clofibrate or lisinopril (Table 
1). The epididymal weight and the relative epididymal weight of sodium fluoride alone group 
increased (p<0.05) significantly when compared to the control. However, there was no 
significant increase in both the kidney weight and relative kidney weight of toxicant group 
compared to the control rats (Table 1). Surprisingly, there were significant (p<0.05) decreases 
in the relative epididymal and relative testicular weights of NaF-treated rats with lisinopril 
(Table 1).  

Table 1 Effect of clofibrate on body weight, organs weight and relative body weight of hypertensive rats 

 

 

Group A (control), group B (NaF), group C (NaF + clofibrate) and group D (NaF + lisinopril). Superscript (a) 
indicates significant difference when compared to the control, while superscript (b) indicates significant difference 
when compared to clofibrate alone at p<0.05 (n= 10). Superscripts denote statistical difference across all groups 
in each row. NaF (300 ppm), clofibrate (250 mg/kg), lisinopril (10 mg/kg). Values are presented as mean ± SD 
(n=10) 

Renal Markers of Oxidative Stress and Reactive Oxygen Species Generation 

The results in Table 2 showed significant (p<0.05) increases in H2O2 generation, MDA and 
PCO contents of NaF-treated rats in comparison to rats co-treated with clofibrate or lisinopril. 
Further, there were concomitant significant (p<0.05) reductions in the values of H2O2 
generation, MDA and PCO of rats administered clofibrate or lisinopril, which was indicative 
of free radical scavenging activity of clofibrate (Table 2). Again, the values of protein thiol 
(PSH) of rats treated with lisinopril reduced (p<0.05) significantly relative to the control and 
NaF group (Table 2). On the other hand, the values obtained for NPSH of NaF group decreased 
(p<0.05) significantly when compared to the control rats. However, there was no statistically 
significant (p>0.05) difference in the values of renal NPSH of NaF group treated with clofibrate 
or lisinopril (Table 2).  
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Table 2. Effect of clofibrate on renal markers of oxidative stress in sodium fluoride–induced hypertension 

 

Group A (control), group B (NaF), group C (NaF + clofibrate) and group D (NaF + lisinopril). Superscript (a) 
indicates significant difference when compared to the control, while (b) indicates significant difference when 
compared to clofibrate alone at p<0.05 (n= 10). Superscripts denote statistical difference across all groups in each 
row. Values are presented as mean ± SD (n=10). Abbreviations: H2O2 hydrogen peroxide generation (μmol/mg 
protein), MDA malondialdehyde (μmol of MDA formed/mg protein), PCO protein carbonyl (μmol/mg protein), 
PSH protein thiol (μmol/mg protein), NPSH non-protein thiol (μmol/mg protein) 

Renal Antioxidant Defence System 

The activity of SOD in rats treated with either clofibrate or lisinopril increased (p<0.05) 
significantly when compared with the control and NaF group (Table 3). Parallel to the observed 
activity of SOD, the renal activity of GPx and GST did not differ significantly in NaF group 
and treated rats in comparison to the control rats (Table 3). However, we observed a slight 
increase in the activity of GPx, though not statistically significant across all the experimental 
groups (Table 3). Contrary to the results of antioxidant enzyme activities, the contents of GSH 
decreased (p<0.05) significantly in NaF group, while significant improvement in renal GSH 
contents was obtained in rats treated with either clofibrate or lisinopril (Table 3). Furthermore, 
the renal vitamin C content of NaF group and rats treated with clofibrate increased (p<0.05) 
significantly in comparison to control (Table 3).  

Table 3 Effect of clofibrate on levels of renal antioxidant enzymes in sodium fluoride–induced hypertension 
 

 

Group A (control), group B (NaF), group C (NaF + clofibrate) and group D (NaF + lisinopril). Superscript (a) 
indicates significant difference when compared to the control, while (b) indicates significant difference when 
compared to clofibrate alone at p<0.05 (n= 10). Superscripts denote statistical difference across all groups in each 
row. NaF (300 ppm), clofibrate (250 mg/kg), lisinopril (10 mg/kg). Values are presented as mean ± SD (n=10). 
Abbreviations: SOD superoxide dismutase (units/mg protein), GPx glutathione peroxidase (units/mg protein), 
GST glutathione-S-transferase (mmole 1-chloro-2,4-dinitrobenzene-GSH complex formed/min/mg protein), GSH 
reduced glutathione (μmol/mg protein), vitamin C (μmol/mg protein) 

Testicular Antioxidant Defence System 

In another experiment, the testicular SOD, GPx and GST activities were found to reduce 
(p<0.05) significantly in NaF-induced hypertensive rats (Table 4). However, there was 
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remarkable improvement in the testicular activities of GPx and GST of rats treated with 
clofibrate or lisinopril (Table 4). Also, there was noticeable reduction in the content of 
testicular GSH of sodium fluoride groups, although the reduction was not statistically different 
from the control or NaF-treated rats. Similarly, the testicular vitamin C contents decreased 
(p<0.05) significantly in NaF and rats administered clofibrate or lisinopril when compared with 
control rats (Table 4).  

Table 4. Effect of clofibrate on testicular antioxidant enzymes in sodium fluoride–induced hypertension 
 

 
 
Group A (control), group B (NaF), group C (NaF + clofibrate) and group D (NaF + lisinopril). Superscript (a) 
indicates significant difference when compared to the control, while (b) indicates significant difference when 
compared to clofibrate alone at p<0.05 (n= 10). Superscripts denote statistical difference across all groups in each 
row. NaF (300 ppm), clofibrate (250 mg/kg), lisinopril (10 mg/kg). Values are presented as mean ± SD (n=10). 
Abbreviations: SOD superoxide dismutase (units/mg protein), GPx glutathione peroxidase (units/mg protein), 
GST glutathione S-transferase (mmole 1-chloro-2,4-dinitrobenzene-GSH complex formed/min/mg protein), GSH 
reduced glutathione (μmol/mg protein), vitamin C (μmol/mg protein) 

Testicular Markers of Oxidative Stress 

The testicular H2O2 generation and PCO content increased (p<0.05) significantly in NaF-
intoxicated rats with concomitant reduction in the H2O2 generation and PCO content of rats 
that were treated with clofibrate or lisinopril (Table 5). The values of MDA content as index 
of lipid peroxidation product also reduced (p<0.05) significantly in rats treated with clofibrate. 
However, the observed increase in the MDA content of NaF-intoxicated rats was not 
statistically significant (Table 5). However, we observed that decrease in the values of testicular 
NPSH and PSH of NaF alone and NaF-treated rats did not show significant difference (Table 
5).  

Table 5. Effect of clofibrate on testicular markers of oxidative stress in sodium fluoride–induced hypertension 

 

Group A (control), group B (NaF), group C (NaF + clofibrate) and group D (NaF + lisinopril). Superscript (a) 
indicates significant difference when compared to the control, while (b) indicates significant difference when 
compared to clofibrate alone at p<0.05 (n= 10). Superscripts denote statistical difference across all groups in each 
row. NaF (300 ppm), clofibrate (250 mg/kg), lisinopril (10 mg/kg). Values are presented as mean ± SD (n=10). 
Abbreviations: H2O2 hydrogen peroxide generation (μmol/mg protein), MDA malondialdehyde (μmol of MDA 
formed/mg protein), PCO protein carbonyl (μmol/mg protein), PSH protein thiol (μmol/mg protein), NPSH non-
protein thiol (μmol/mg protein) 
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Haemodynamic Parameters 

Results shown in Fig. 1 indicate significant (p<0.05) increase in systolic, diastolic and mean 
arterial pressure of rats administered with NaF compared to the control rats. Contrary to this, 
the significant (p<0.05) increase in systolic, diastolic and mean arterial pressure precipitated 
by NaF toxicity and treatment with clofibrate or lisinopril statistically reduced the 
aforementioned high blood pressure parameters. The blood pressure values obtained for 
clofibrate were comparable to those of the standard antihypertensive drug lisinopril (Fig. 1). 
This is suggestive of the possible antihypertensive effect of clofibrate.  

 
 
Fig. 1. Effect of clofibrate on systolic, diastolic and arterial pressure in sodium fluoride (NaF)–induced 
hypertension. Group A (control), group B (NaF), group C (NaF + clofibrate) and group D (NaF + lisinopril). 
Superscript (a) indicates significant difference when compared to the control, while (b) indicates significant 
difference when compared to NaF alone at p<0.05 (n= 10). Superscripts denote statistical difference across all 
groups. NaF (300 ppm), clofibrate (250 mg/kg), lisinopril (10 mg/kg). Values are presented as mean ± SD 

Serum Nitric Oxide Bioavailability and Kidney Function Tests 

The serum nitric oxide (NO) production values were found to reduce (p<0.05) significantly in 
NaF-induced intoxicated rats (Fig. 2). However, the administration of clofibrate or lisinopril 
caused significant improvement in the production of serum NO compared to NaF alone or the 
control rats (Fig. 2). As observed in this study, NaF intoxication precipitated a significant 
(p<0.05) increase in blood urea nitrogen (BUN) and creatinine of NaF alone (Fig. 2). The 
observed increase in values of renal function tests (BUN and creatinine) was reduced to near 
control values in rats treated with clofibrate (Fig. 2).  
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Fig. 2. Effect of clofibrate on serum renal function tests and nitric oxide in sodium fluoride (NaF)–induced 
hypertension. Group A (control), group B (NaF), group C (NaF + clofibrate) and group D (NaF + lisinopril). 
Superscript (a) indicates significant difference when compared to the control, while (b) indicates significant 
difference when compared to NaF alone at p<0.05 (n= 10). Superscripts denote statistical difference across all 
groups. NaF (300 ppm), clofibrate (250 mg/kg), lisinopril (10 mg/kg). Values are presented as mean ± SD 
 
 

 
 
Fig. 3. Effect of clofibrate on semen characteristics and serum testosterone levels in sodium fluoride (NaF)–
induced hypertension. Group A (control), group B (NaF), group C (NaF + clofibrate) and group D (NaF + 
lisinopril). Superscript (a) indicates significant difference when compared to the control, while (b) indicates 
significant difference when compared to NaF alone at p<0.05 (n= 10). Superscripts denote statistical difference 
across all groups. NaF (300 ppm), clofibrate (250 mg/kg), lisinopril (10 mg/kg). Values are presented as mean ± 
SD 
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Spermiogram and Serum Testosterone Levels 

The results from the spermiogram revealed significant (p<0.05) reduction in percentage (%) 
sperm counts and (%) sperm motility in NaF-intoxicated rats and rats treated with clofibrate or 
lisinopril (Fig. 3). The values of (%) sperm livability were also found to reduce in rats treated 
with lisinopril in comparison to the control and rats administered with NaF (Fig. 3). Combining 
all, neither clofibrate nor lisinopril was able to restore the sperm cell characteristics to near 
normal values as presented in Fig. 3. In another experiment, the values for the serum 
testosterone indicated significant (p<0.05) improvement in rats treated with clofibrate (Fig. 3). 
From the present result, slight increase in serum testosterone levels (not significant) was 
observed.  

 
 
Fig. 4. Histology of the kidney showing the effect of sodium fluoride–induced hypertension in Wistar rats. a 
(Control) shows no observable lesion. b (NaF; 300 ppm) there is moderate thickening of the glomerular wall and 
mesangium (black arrows), attenuation of tubular epithelial lining and luminal ectasia (black arrows). c (NaF + 
clofibrate 100 mg/kg) there was moderate congestion of glomerular capillaries (black arrows), attenuation and 
degeneration of tubular epithelial lining and luminal ectasia (black arrows). d (NaF + lisinopril 10 mg/kg) there 
was regeneration of tubular epithelial cells (arrows) and a few ectatic tubular lumen. Stained with haematoxylin 
and eosin (H&E) mag. ×400 
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Histopathology 

The histopathology of renal tissues showed moderate thickening of the glomerular wall and 
mesangium together with attenuation of epithelial lining and luminal ectasia in hypertensive 
rats, while moderate tubular congestion and regeneration of tubular epithelial cells were found 
in hypertensive rats treated with clofibrate or lisinopril, respectively (Fig. 4).  

Immunohistochemistry 

The immunolocalization of angiotensin II receptor type 1 (AT1 receptor) showed higher renal 
expression of the AT1 receptor in NaF-intoxicated rats compared to control rats (Fig. 5). 
However, lower expressions of the AT1 receptor were obtained in rats treated with clofibrate 
or lisinopril relative to the NaF alone group (Fig. 5). In Fig. 6, the NF-κB expressions increased 
(p<0.05) significantly across all groups, with NaF alone rats showing higher expressions of 
NF-κB relative to the control and rats treated with either clofibrate or lisinopril (Fig. 6). In Fig. 
7, renal ACE was markedly expressed in hypertensive rats compared to control rats. However, 
the antihypertensive effect of clofibrate was demonstrated with significant (p<0.05) reduction 
in the expressions of ACE in rats treated with clofibrate when compared to untreated rats (Fig. 
7). However, significant reduction in expression of ACE was obtained in rats treated with 
lisinopril as indicated in Fig. 8. Another receptor of note in this study is mineralocorticoid 
receptor (MCR). In the present research, higher expression of MCR was recorded in NaF alone 
group (Fig. 8). However, there was a reduction in the expression of MCR in treated rats, 
although not statistically significant when compared to the control rats. This indicates that 
clofibrate might not be using the MCR pathway to reduce high blood pressure. Lastly, testicular 
caspase 3 was assessed in this study to explore possible reproductive toxicity that might occur 
in NaF toxicity. In Fig. 9, higher expressions of testicular caspase 3 were observed in NaF-
intoxicated rats and rats administered with 250 mg/kg of clofibrate when compared to the 
control. Interestingly, concurrent administration of lisinopril caused significant (p<0.05) 
reduction in the expression of caspase 3 compared to NaF alone and the control (Fig. 9).  

 
 
Fig. 5. The immunohistochemistry of angiotensin II receptor type 1(AT1 receptor) in sodium fluoride (NaF)–
induced hypertension. Group A (control), group B (NaF), group C (NaF + clofibrate) and group D (NaF + 
lisinopril). Superscript (a) indicates significant difference when compared to the control, while (b) indicates 
significant difference when compared to NaF alone at p<0.05 (n= 10). NaF (300 ppm), clofibrate (250 mg/kg), 
lisinopril (10 mg/kg). Values are presented as mean ± SD. Stained with high-definition haematoxylin (mag. ×400) 
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Fig. 6. The immunohistochemistry of nuclear factor kappa beta receptor in sodium fluoride (NaF)–induced 
hypertension. Group A (control), group B (NaF), group C (NaF + clofibrate) and group D (NaF + lisinopril). 
Superscript (a) indicates significant difference when compared to the control, while (b) indicates significant 
difference when compared to NaF alone at p<0.05 (n= 10). Superscripts denote statistical difference across all 
groups. NaF (300 ppm), clofibrate (250 mg/kg), lisinopril (10 mg/kg). Values are presented as mean ± SD. Stained 
with high-definition haematoxylin (mag. ×400) 
 

 
 
Fig. 7. The immunohistochemistry of angiotensin-converting enzyme on NaF-induced renal damage in Wistar 
rats. Group A (control), group B (NaF), group C (NaF + clofibrate) and group D (NaF + lisinopril). Superscript 
(a) indicates significant difference when compared to the control, while (b) indicates significant difference when 
compared to NaF alone at p<0.05 (n= 10). Superscripts denote statistical difference across all groups. NaF (300 
ppm), clofibrate (250 mg/kg), lisinopril (10 mg/kg). Values are presented as mean ± SD. Stained with high-
definition haematoxylin (mag. ×400) 
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Fig. 8. The immunohistochemistry of mineralocorticoid receptor in sodium fluoride (NaF)–induced hypertension. 
Group A (control), group B (NaF), group C (NaF + clofibrate) and group D (NaF + lisinopril). NaF (300 ppm), 
clofibrate (250 mg/kg), lisinopril (10 mg/kg). Superscript (a) indicates significant difference when compared to 
the control at p<0.05 (n= 10). Values are presented as mean ± SD. Stained with high-definition haematoxylin 
(mag. ×400) 
 

 
 
Fig. 9. The immunohistochemistry of caspase 3 in sodium fluoride–induced testicular damage. Group A (control), 
group B (NaF), group C (NaF + clofibrate) and group D (NaF + lisinopril). Superscript (a) indicates significant 
difference when compared to the control, while (b) indicates significant difference when compared to NaF alone 
at p<0.05 (n= 10). Superscripts denote statistical difference across all groups. NaF (300 ppm), clofibrate (250 
mg/kg), lisinopril (10 mg/kg). Values are presented as mean ± SD. Stained with high-definition haematoxylin 
(mag. ×400) 

Discussion 

This study explored the use of clofibrate, a PPAR alpha agonist, in the treatment and 
management of NaF-induced hypertension and its complications. Clofibrate has been shown 
to have some pharmacological and biological activities such as anti-inflammatory, 
hepatoprotective, renoprotective, antioxidant and anti-atherogenic [33, 53, 91, 93, 101]. 
However, research reports on the antihypertensive effect of clofibrate are very scarce. Hence, 
the current research hypothesized that clofibrate has antihypertensive and protective effect 
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against reproductive toxicity associated with NaF-induced toxicity. Furthermore, we explored 
the potential mechanism of action of clofibrate vis-a-vis its antihypertensive activity through 
the renin-angiotensin-aldosterone system (RAAS) and inhibition of angiotensin-converting 
enzyme. 

Previous studies from our laboratory established the use of NaF for the induction of 
hypertension in experimental rat models [64,65,66,67]. From the present study, NaF 
intoxication precipitated hypertension as indicated with significant increases in systolic, 
diastolic and mean arterial blood pressure. However, concurrent administration of clofibrate to 
rats that received only NaF normalized the systolic, diastolic and mean arterial blood pressures 
compared to that of control rats. Interestingly, the result obtained from hypertensive rats treated 
with clofibrate was comparable to that of ACE inhibitor lisinopril. This remarkable reduction 
in high blood pressure was outstanding in this study. Therefore, we can speculate that clofibrate 
could be repurposed from a cholesterol-lowering drug to an antihypertensive agent. 

Nitric oxide (NO) is another signaling molecule of which its bioavailability has been negatively 
correlated with hypertension, indicating that lower NO production might contribute to the 
development of hypertension later in life [16, 32, 52]. From our results, NaF toxicity led to a 
significant depletion of serum NO production, suggesting impairment of NO functions and 
signalling in NaF intoxication. More so, that impairment of NO could enhance endothelial 
dysfunction, arterial stiffness, arteriosclerosis, platelet aggregation and thrombi formation and 
increase peripheral resistance, culminating in the development of hypertension [15, 29, 92]. 

Oxidative stress, which is the imbalance between generation of reactive oxygen species (ROS) 
and the antioxidant defence system in favour of ROS production, has been linked to the 
pathophysiology of cardiovascular diseases, with hypertension being one of the risk factors 
[18, 19, 83]. Apart from the established involvement of ROS in cardiovascular diseases, ROS 
has been shown to damage DNA, lipids and protein in biological systems [36, 45]. The 
exaggerated production of lipid peroxidation products such as malondialdehyde (MDA), 
protein carbonyl and hydrogen peroxide (H2O2) could be inferred from the participation of NaF 
ions in free radical generation and depletion of in vivo antioxidant system. The increase in 
content of MDA in rats that received NaF was indicative of peroxidation of polyunsaturated 
fatty acids of the biological membranes, as MDA is a product of lipid peroxidation [87]. Protein 
carbonylation is one of the most deleterious irreversible oxidative protein modifications in 
biological systems [24]. It has been considered as a major hallmark of oxidative stress–related 
disorders such as Alzheimer’s disease (AD), rheumatoid arthritis, diabetes, sepsis, chronic 
renal failure, respiratory distress syndrome and hypertension [10, 24, 68]. Our study therefore 
demonstrated that NaF toxicity enhanced renal and testicular lipid peroxidation and protein 
carbonylation coupled oxidative stress. The observed oxidative stress was also coupled with 
remarkable depletion of GSH, a non-enzymic intracellular antioxidant defence system. It is 
worth to note that significant reduction in vitamin C content was observed in testicular tissue, 
while renal vitamin C content improved significantly in NaF-treated rats. This is indicative of 
ability of renal tissues to cope with oxidative stress precipitated by NaF or probably de novo 
synthesis of renal GSH. However, rats treated with clofibrate had a reduction in the values of 
oxidative stress markers similar to the control rats and comparable to rats administered 
lisinopril. 

As NaF administration induced oxidative stress, the activities of the systemic antioxidant 
defence system were also severely inhibited. This was demonstrated as a reduction in the SOD, 
GPx and GST activities in NaF-intoxicated rats. It is significant to note that the activities of 
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these antioxidant enzymes became improved in rats co-administered either clofibrate or 
lisinopril, indicating the antioxidant activity of clofibrate. In the antioxidant enzyme hierarchy, 
SOD is first in the line of defence, where it participates in the dismutation of the superoxide 
anion radical to H2O2 [96]. The H2O2 generated and other toxic hydroperoxides can be further 
detoxified by GPx and phase 2 enzyme, GST to water and molecular oxygen [41]. When these 
enzymes are inhibited, accumulation of free radicals and reactive electrophiles become 
inevitable. The implication of this is that, apart from the observed high blood pressure 
precipitated by NaF, complications such as renal damage and reproductive failure might ensue 
as observed in the present study. We can infer from the above that inhibition of SOD activity 
could impair NO production as superoxide anion radicals accumulate; it binds to NO with 
concomitant generation of peroxynitrite (ONOO−), a cytotoxic signalling molecule [42]. The 
generated ONOO− could also uncouple endothelial nitric oxide synthase (eNOS), leading to 
production of free radicals instead of NO [79]. The uncoupling of eNOS has been found to 
enhance endothelial dysfunction and promote oxidative and nitrosative stress [7, 26, 85]. From 
this study, we observed renal damage and reproductive failure as complications from NaF-
induced toxicity. The values of kidney function tests (BUN and creatinine) increased 
significantly in intoxicated rats compared to control rats. The BUN and creatinine have been 
used as biomarkers of kidney damage for more than 4 decades; however, the sensitivity and 
specificity are considered to be low as they are influenced by many renal and nonrenal factors 
independent of kidney function [31, 49]. In renal injury, when glomerular filtration and renal 
clearance is compromised following renal damage, more of BUN and creatinine escape into 
the blood, and as such, they are used as renal function tests [84]. However, serum creatinine 
and urinary creatinine clearance have been shown to be more specific as markers of renal 
damage than BUN, as glomerular filtration rate is the best overall measure of kidney function 
[70]. More so, other highly sensitive biomarkers of acute kidney damage with incredible 
precision and sensitivity have been developed, namely kidney injury molecule 1 (Kim-1), 
neutrophil gelatinase–associated lipocalin (NGAL), cystatin C, epidermal growth factor (EGF) 
and osteopontin (OPN) [11, 81]. The enhancement in free radical generation and depletion of 
antioxidant systems as indicated by exaggerated renal oxidative stress by NaF intoxication 
might have contributed significantly to observed renal damage which was positively correlated 
with significant increases in the serum BUN and creatinine [2, 46]. Hence, NaF toxicity could 
therefore precipitate reduced glomerular filtration rate and renal creatinine clearance, 
glomerulonephritis and glomerulopathy. Parallel to this, rats treated with clofibrate had lower 
serum BUN and creatinine, indicating the nephroprotective effect of clofibrate, and clofibrate 
could help improve renal function and glomerular filtration rate. 

The renin-angiotensin-aldosterone system (RAAS) and mineralocorticoid receptor inactivation 
has become a molecular therapeutic target in treating hypertension associated with 
cardiovascular and renal diseases [5, 61, 77, 94]. In our study, the immunohistochemistry 
showed higher expression of the renal AT1R in NaF group, while lower expression of AT1R 
was observed in rats treated with clofibrate. Downregulation of the AT1R in rats treated with 
clofibrate might be suggestive of modulation of AT1R signalling by clofibrate. Zhu et al. [100] 
reported that renal renin-angiotensin-aldosterone system activation in salt-sensitive 
hypertensive rats enhanced aldosterone production and increased ACE activity, renin 
production and AT1R activity. Clofibrate has been reported to decrease angiotensin II, AT1 
receptor and ACE expressions, improve endothelial nitric oxide synthase participation and 
enhance antioxidant defence system [40]. Yousefipour and Newaz [97] also document 
improvement in nitric oxide production as a mechanism of antihypertensive action of 
clofibrate. 
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Therefore, hypertension induced by NaF toxicity could be said to support an increase in AT1R 
activity, renin and aldosterone production and hence hypertension. Quantitatively, rats treated 
with clofibrate showed increased renal AT1R expressions; however, it was not statistically 
significant when compared with the control and untreated rats. Therefore, blockage of AT1R 
might be the mechanism of antihypertensive effect of clofibrate. Similarly, the expressions of 
ACE increased significantly in NaF-induced toxicity rats. 

The NF-κB is known for regulation of numerous genes that are involved in survival, 
inflammation and immune responses [74]. The NF-κB has been documented to participate in 
many cellular processes including cell growth and proliferation, metabolism, apoptosis, 
immune responses, and differentiation [13]. The previous study from our laboratory confirmed 
the involvement of NF-κB in NaF-induced hypertension [64]. Activation of NF-κB signalling 
in hypertensive rats has been reported to enhance the exaggeration of oxidative stress and 
inflammation [23, 63]. Considering the levels of observed oxidative stress in the NaF-
intoxicated rats, it is not unlikely that NaF intoxication might not have switched on in NF-κB 
signalling. Again, higher expressions of NF-κB were observed in NaF-untreated rats. 
Unfortunately, treatment of rats with clofibrate could not restore the NF-κB level to that of the 
control. The thickening of the glomerular wall observed at the histology level also attests to the 
activation of NF-κB in NaF-induced toxicity. We speculate that the observed inflammatory 
response in the treated rats would have been normalized if the duration of experiment was more 
than 7 days. Hence, there is a need to explore the involvement of NF-κB signalling following 
chronic exposure to NaF toxicity in our future study. 

The ACE is the enzyme that converts angiotensin I to a potent vasoconstrictor, angiotensin II 
(Ang II) [89]. Therefore, pharmacological inhibitors of ACE such as lisinopril have been 
reported to have both antihypertensive and renoprotective properties [61]. In this study, 
significant inhibition of renal ACE was observed as indicated by lower expressions of renal 
ACE in rats treated with clofibrate, which was comparable to lower expressions of ACE 
recorded for lisinopril. Pharmacologically, mineralocorticoid receptor over-activation has been 
linked to the development of hypertension and chronic kidney disease [4, 35, 56]. It was evident 
from our study that NaF intoxication enhanced over-activation of the mineralocorticoid 
receptor as observed from the hypertensive rats with higher expressions of mineralocorticoid 
receptor. The mineralocorticoid receptor expressions, however, in rats treated with clofibrate 
were similar to those of control and rats treated with lisinopril. Our study is therefore in support 
of previous studies linking over stimulation of the mineralocorticoid receptor and hypertension 
[4, 35]. Combining the activation of AT1R activity and the ACE and mineralocorticoid 
receptors by NaF could enhance production of aldosterone, facilitate sodium retention and 
potassium loss and ultimately induce hypertension. 

The present study shows that rats with NaF intoxication have appreciable reduction in 
percentage (%) sperm counts and motility in comparison to the control. Surprisingly, however, 
treatment of rats with either clofibrate or lisinopril could not restore NaF toxicity to normal 
sperm characteristics. Previous research findings reported an association between NaF 
intoxication, testicular oxidative stress, apoptosis and autophagy [3, 25, 38, 98, 99]. Also, some 
findings have associated high blood pressure and testicular damage and infertility in 
spontaneously hypertensive rats [56]. Our findings are therefore in agreement with the 
aforementioned reports on NaF and testicular toxicity as indicated with significantly higher 
expressions of testicular caspase 3 in NaF-intoxicated rats relative to the control and treated 
rats. The anti-apoptotic property was demonstrated as treatment of rats with clofibrate 
significantly reduced testicular caspase 3 than in the untreated rats. This, therefore, confirms 
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the earlier reports of induction of apoptosis following NaF intoxication [3, 38]. Interestingly, 
serum testosterone levels were not affected in NaF-intoxicated rats. In fact, rats treated with 
either clofibrate or lisinopril had significantly higher levels of testosterone than the control rats. 
We therefore speculate that short-term exposure to clofibrate might have androgenic effects 
due to the observed increase in serum testosterone levels in NaF-intoxicated rats. 

Conclusion 

In conclusion, NaF intoxication caused increased high blood pressure parameters (systolic, 
diastolic and mean arterial pressure), oxidative stress, depletion of antioxidant defence system, 
reduced nitric oxide production, activation of angiotensin-converting enzyme activity, 
activation of angiotensin II type 1 receptor, mineralocorticoid receptor over-activation and 
activation of NF-κB. Further, renal and testicular damage was also observed in NaF-intoxicated 
rats. However, treatment of intoxicated rats with clofibrate led to reduction in renal and 
testicular oxidative stress, improved antioxidant status and lowered high blood pressure 
through the inhibition of angiotensin-converting enzyme activity, angiotensin II type 1 receptor 
and mineralocorticoid receptor over-activation. Overall, from the present study, the mechanism 
of action of antihypertensive effect of clofibrate was mediated through inhibition of 
angiotensin-converting enzyme, angiotensin II type 1 receptor and mineralocorticoid receptor 
and improvement in nitric oxide bioavailability with concomitant reduction of high blood 
pressure. Hence, clofibrate could be repurposed as an antihypertensive agent for the 
management of hypertension. 
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