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a b s t r a c t

Spectral fingerprints (SFs) are unique power spectra signatures of human brain regions of interest (ROIs,
Keitel & Gross, 2016). SFs allow for accurate ROI identification and can serve as biomarkers of differences
exhibited by non-neurotypical groups. At present, there are no open-source, versatile tools to calculate
spectral fingerprints. We have filled this gap by creating a modular, highly-configurable MATLAB
Toolbox for Frequency-based Fingerprinting (ToFFi). It can transformmagnetoencephalographic and elec-
troencephalographic signals into unique spectral representations using ROIs provided by anatomical
(AAL, Desikan-Killiany), functional (Schaefer), or other custom volumetric brain parcellations. Toolbox
design supports reproducibility and parallel computations.
� 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Brain dynamics and brain oscillations are among the most
important topics in neuroscience. Different methods proved to be
useful for studying robust whole-brain, as well as regionally-
specific patterns of activity, called brain fingerprints. They can
serve as signatures for mental states during task execution or rest
[1–4]. The frequency of oscillations turned out to be one of the key
features in many studies describing particular regions of interest
(ROIs) [5–7] and large-scale brain networks [8–12].

It is important to note that previously the term brain fingerprint-
ing was mainly associated with forensic science and biometry. In
forensic sciences, brain fingerprinting was the name of the proce-
dure of extracting event-related potentials characteristic for the
situation where during an interrogation a suspect was confronted
with concealed information relevant to a crime scene in which
he was potentially involved [13–15]. The name is an analogy to tra-
ditional methods of recovering specific marks left on a surface by
friction ridges of a human finger that aims to identify people
involved in a criminal event. In biometry, several neuroimaging-
based approaches were designed to extract features unique for a
given person [16–24].

Starting from the 2000s, another meaning of brain fingerprint-
ing has been emerging. Researchers started to think about finger-
prints of neuronal interaction dynamics, leaning towards
network neuroscience and spectral methods. They wanted to test
if it is possible to find markers of various cognitive processes
[25,2,1,3], brain diseases [26,27], brain areas or networks [28–
34,7].

In this spirit, some reviews proposed frameworks for capturing
the specificity of cortical dynamics using term spectral fingerprints
[35,5,36]. Shortly after, Keitel and Gross defined this term strictly
by proposing a first formalized pipeline for Spectral Fingerprinting
that is central in our work [7,27].

Spectral fingerprints (Fig. 1) defined by Keitel and Gross [7] play
a role as biomarkers that are sufficiently specific to permit the suc-
cessful identification of brain regions using their spectral charac-
teristics. Moreover, spectral profiles’ peaks that correspond to the
natural frequencies of ROIs [12,37], are consistently modulated
by specific tasks, neurological or mental disorders. They can be
generalized across groups of participants [27,7]. In this paper, we
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Fig. 1. A spectral fingerprint of the inferior parietal lobule. For this particular
region, it consists of two spectral modes. It is formed by clustering power spectra
segments (normalized, i.e. spectral power in comparison to the whole brain) first on
the individual subjects level and then clustered again on the group level. Each mode
corresponds to one of the centroids found by the clustering algorithm. Shaded
regions depict the standard deviation (1r) estimated from the covariance matrix of
the Gaussian Mixture Model component corresponding to the given spectral mode.
The first mode peaks at 12.5 Hz, and the second mode peaks at 20.5 Hz. The
frequency axis resolution can be set to logarithmic to optimize spectral analysis
resolution of lower frequencies. Duration is shown as a percentage of time
segments in which each spectral mode was present on average during recording.
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introduce a novel implementation of the Spectral Fingerprinting
technique, in a highly configurable MATLAB toolbox.
2. Problems and background

There are many open software packages available to analyze
neural data. The Fieldtrip Toolbox1 [38] was designed to perform
analysis both on sensor and source level of EEG/MEG/iEEG/NIRS
data. EEGLAB2 [39] helps with processing continuous and event-
related electrophysiological data implementing many analytic
methods (ICA, time/frequency analysis, artifact rejection, event-
related statistics, microstates analysis) and several useful routines
for visualization. To simulate brain dynamics, perform connectivity
analyses, and solve forward/inverse problems, the supFunSim3

toolbox [40] and the Virtual Brain4 system [41] are among suit-
able choices. However, there is no open software specifically for
constructing and analyzing spectral fingerprints, and our work
attempts to fill this gap. We designed the Toolbox for
Frequency-based Fingerprinting (ToFFi, https://github.com/mic-
holeodon/ToFFi_Toolbox) for analysis of MEG, EEG, and other mul-
tichannel data. Users can configure many parameters for each
stage of processing, including the selection of the brain parcella-
tion, and decide which of them will run in parallel (cluster com-
putations are supported). Results of the calculations are
reproducible thanks to the implemented control using pseudo-
random number generators and visualization scripts. Currently,
none of the already available toolboxes is similar to ToFFi.

ToFFi was not designed as a generic MEG/EEG signal processing
suite or a collection of conventional processing methods. ToFFi’s
sophistication builds upon an interplay between spectral methods,
spatial filtering, and clustering that together serve a specific pur-
1 https://www.fieldtriptoolbox.org/ accessed: 04.05.2023
2 https://eeglab.org/ accessed: 04.05.2023
3 https://github.com/nikadon/supFunSim accessed: 04.05.2023
4 https://www.thevirtualbrain.org/ accessed: 04.05.2023
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pose — the construction of spectral fingerprints for individual brain
regions. Coupled with the great research promise that Spectral
Fingerprinting brings to brain research, we have released ToFFi
for the benefit of a wider neuroscientific community.
3. Software framework

3.1. Software architecture

ToFFi is a modular piece of software that allows multichannel
data preparation, spectral fingerprint construction and analysis,
and visualization of the results (Fig. 2). It consists of five compo-
nents: I. Data Preparation, II. Spectral Fingerprinting, III. Analysis,
IV. Presentation, and V. Maintenance (Fig. 3). The Data Prepara-
tion module (I) is responsible for arranging sensor time series
signals, spatial filters, and brain parcellation data, for processing
by the second step routines. The Spectral Fingerprinting (II)
module transforms MEG/EEG multichannel array of signals,
through a series of five stages, into spatially localized power
spectrum-driven representations called spectral fingerprints
(Fig. 4). Fourier Transform, source reconstruction (beamforming),
and Gaussian Mixture Modeling algorithms are used to compute
spectral fingerprints both at the individual and the group level.
The third component (III) consists of additional routines that
can analyze particular output files from component II. Currently,
we have implemented group-level brain regions identification,
individual-level brain regions identification, and regional cluster-
ing (network analysis) - all based on the concept of modeling
brain activity as spectral fingerprints. The Presentation compo-
nent (IV) is a collection of auxiliary scripts used to visualize par-
ticular results of performed computations for easier
interpretation. Maintenance routines (V) are used to automate
some parts of the workflow, e.g.: manage configuration files,
manage output data files, etc. A more detailed description of
how the data are transformed can be found in Appendix A (6.
METHODS), Fig. 5, Fig. 6, and Fig. 7, which summarize the whole
pipeline.
3.2. Software functionalities

Spectral Fingerprinting can be performed on multichannel time
series data (e.g. MEG, EEG) of arbitrary size, with any sampling-
frequency adjusted to the desired frequency resolution, acquired
from a single or multiple subjects, and divided into segments of
selected, equal duration (e.g. 1000 ms). These segments may con-
tain non-overlapping pieces of a continuous recording (e.g.
resting-state) or trials with brain responses for several repetitions
of the same experimental condition (event-related paradigm). For
individual-level analysis, the toolbox offers a reconstruction of
voxel-wise time series power spectra with beamforming using pre-
computed spatial filters (e.g. LCMV, [42,43]) and multichannel
empirical sensor signals or artificial white Gaussian noise signals.
Power spectra of ROIs can be estimated both at individual and
group level, using different brain parcellations (anatomical: AAL
[44], Desikan-Killiany [45]; functional: Schaefer [46]), and option-
ally normalized. These spectra can be clustered (currently, only the
k-means algorithm is implemented) with arbitrary distance metric
and subsequently modeled as a regularized Gaussian mixture of
regional spectra with a fixed or optimal number of clusters to con-
struct group-level fingerprints. The user can also estimate the
accuracy of identification of brain regions from their spectral fin-
gerprints using cross-validation. Hierarchical clustering of spectral
fingerprints (network analysis) was also implemented. The scope
of selected brain regions of interest (ROIs) and set of subjects of
choice can be limited if desired. For the majority of stages, one

https://github.com/micholeodon/ToFFi_Toolbox
https://github.com/micholeodon/ToFFi_Toolbox
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Fig. 2. Compact schematic of the ToFFi Toolbox.
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can perform computations in parallel on a single computer with
multiple cores, or on a grid of multiple-core machines orchestrated
via workload manager (currently, only SLURM manager is sup-
ported). Interpretation of the outputs of the software components
II and III are supported with visualization routines. For repro-
ducibility, data maintenance routines and pseudo-random genera-
tor control are implemented as well.
4

4. Implementation and empirical results

4.1. Implementation

The toolbox can be operated under Linux, macOS, and Win-
dows systems. Maintenance scripts (V) are coded mostly in Bash,
which is accessible both for Linux (as default) and Windows (us-
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ing Cygwin, cmder, or other shell emulator). All calculations are
carried out entirely in MATLAB with Signal Processing Toolbox,
Statistics and Machine Learning Toolbox, Parallel Computing
Toolbox, and open-source Fieldtrip Toolbox [38]. For compatible
versions of MATLAB and Fieldtrip, see Table 1. Additionally,
vline.m and hline.m functions5 by Brandon Kuczenski are used
for plotting, and HZmvntest.m function6 by Antonio Trujillo-Ortiz
for multivariate normality testing. If the user wishes to enable
cluster computations, the toolbox is prepared to work in coordina-
tion with the SLURM workload manager7. To the best of our
knowledge, there is no other software for Spectral Fingerprinting
available, apart from the illustrative beta-version script referenced
by the authors of [7].

4.2. Empirical results

Keitel and Gross [7] showed that rendering regional brain
activity as a combination of spectra via Spectral Fingerprinting
allows for the identification of ROIs with high accuracy. They
noticed that clustering of the brain areas according to the simi-
larity of spectral profiles shows patterns similar to macroscale
organization of the human brain cortex. Auditory spectral pro-
files turned out to be modulated during auditory processing.
Lubinus and colleagues [27] have discovered that visual depriva-
5 https://www.mathworks.com/matlabcentral/fileexchange/1039-hline-and-vline
accessed: 04.05.2023

6 https://www.mathworks.com/matlabcentral/fileexchange/17931-hzmvntest
accessed: 04.05.2023

7 https://slurm.schedmd.com/ accessed: 04.05.2023

5

tion is reflected in the modulation of spectral fingerprints, indi-
cating possible correspondence with the structural and
functional adaptation of the human brain. Likewise, Mellem with
collaborators [6] demonstrated via a similar method that there is
a mix of lower and higher frequency peaks across the brain and
it does not follow a simple lower order-higher order processing
hierarchy.
5. Illustrative example

Please consult the following parts of Appendix A to run Illustra-
tive Example smoothly: Chapter 2. Conventions – to learn notation
used throughout the documentation; Chapter 3. Installation - to set
up a computational environment properly, Sections 5.3 and 5.4 - to
get the input data.

After installation, one is advised to follow the instructions in
Chapter 4. Illustrative Example in Appendix A to complete the
illustrative example using the Human Connectome Project MEG
dataset (HCP Reference Manual, [47]). We have selected N = 10
subjects with the MEG resting-state cleaned signal acquired via
a 248 channel array in three subsequent runs, approximately
3 min each.

Spectral Fingerprinting routines were configured to optimize
the frequency resolution for the lower frequencies, thus accounting
for the 1=f power trend present in the typical electrophysiological
activity of the human brain. The proper number of clusters to be
constructed was estimated using the Silhouette optimality crite-
rion. Choosing cosine dissimilarity as a distance measure helped
to compose frequency clusters of power spectra similar in shape,

https://www.mathworks.com/matlabcentral/fileexchange/1039-hline-and-vline
https://www.mathworks.com/matlabcentral/fileexchange/17931-hzmvntest
https://slurm.schedmd.com/


III. ANALYSIS
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Fig. 7. Diagram of how the data are processed by the ANALYSIS component (see Fig. 3). Each depicted piece of data is endowed with its name, MATLAB workspace variable
name (middle parentheses), and a file name (bottom parentheses) if it is read or written to the disk during processing.

Table 1
Software metadata (optional)

Nr. (executable) Software metadata description Please fill in this column

S1 Current software version 20211013
S2 Permanent link to executables of this version https://github.com/micholeodon/ToFFi_Toolbox
S3 Legal Software License GNU Lesser General Public License v2.1
S4 Computing platform/Operating System Linux, Microsoft Windows, macOS
S5 Installation requirements & dependencies MATLAB (R2020a, R2020b, R2021a, R2021b, or R2022a) + Signal Processing Toolbox, Statistics

and Machine Learning Toolbox, Parallel Computing Toolbox; Fieldtrip Toolbox version
20210816

S6 If available, link to user manual - if formally published include a
reference to the publication in the reference list

https://github.com/micholeodon/ToFFi_Toolbox/tree/master/ToFFi_Toolbox-20211013/docs/
ToFFi_Manual.pdf

S7 Support email for questions michu.kom@gmail.com
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diminishing the influence of the power spectra amplitude. To
speed up computations, the number of CPU cores was set to two.

Group-level fingerprints in the 1–40Hz frequency interval from
8 distant regions of the human brain (ROIs; Fig. 8) were found
(Fig. 9). The similarity of fingerprints was assessed (Fig. 10),
together with the accuracy of how well one can identify them
(Fig. 11).
6

The proposed method allowed for discrimination between
different modes of operation for a range of brain areas. Dom-
inant and supportive group-level oscillation profiles were rec-
ognized and separated. Functional similarity between
homologue areas was confirmed using hierarchical clustering
analysis. Recognition of the brain areas based on their spectral
fingerprints turned out to be challenging among homologue



Fig. 8. Brain regions chosen from the Desikan-Killiany atlas for the purpose of the illustrative example. Here only the left counterpart is depicted, whereas right hemisphere
homologues were chosen as well.

Fig. 9. Resting-state spectral fingerprints for Desikan-Killiany atlas in the 1–40Hz frequency interval. Each column shows two homologue brain areas. Legends show the
corresponding duration of each spectral mode (i.e., the percentage of trials in which each spectrum was present on average during recording) and whether the mode was
present for at least five subjects (filled dot) or not (empty dot). The frequency axis was configured to be logarithmic in order to optimize the lower frequencies resolution. Y-
axis depicts the power normalized in relation to the average spectrum of the whole brain. Shaded regions depict the standard deviation (1r) of the corresponding spectral
mode. For i-th of total F frequencies of interest, standard deviation was estimated as

ffiffiffiffiffiffiffi
Ri;i

p
, where Ri;i is the i-th diagonal entry of the covariance matrix of the Gaussian

Mixture Model component corresponding to the given spectral mode. Standard deviations have relatively large values due to the small number of subjects used in the
illustrative example. Homologue areas have very similar fingerprints.
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areas due to their functional similarity, yet remaining
informative.
6. Conclusions

Spectral Fingerprinting allows for the discovery of meaningful
oscillatory patterns from electrophysiological time series that can
show task-induced modulations or serve as a signature of the
brain’s regional activity in the particular parcellation. Our novel
Toolbox for Frequency-based Fingerprinting (ToFFi) provides
researchers with a modular, highly configurable tool for computing
regional source-reconstructed power spectra, finding optimal pro-
totypes common for a group of subjects via individual- and group-
level clustering algorithms, together with testing their properties
7

using additional analytical routines. The efficiency is boosted with
parallel computation support, and reproducibility is controlled
with pseudo-random number generator parameters. An in-depth
understanding of the underlying algorithms is facilitated by the
function reference (Appendix B) and the toolbox manual (Appen-
dix A). Presented software is compatible with various modern tools
used by the neuroscientific community and allows easy adaptation
of its modular structure to specific tasks.

There is high applicational potential in using ToFFi. Construct-
ing spectral representations of regional activity, i.e., brain finger-
prints, could help study cortical and subcortical activity
modulation during cognitive processing in healthy and diseased
brains. Compounding such knowledge and correlating fingerprint
features with behavioral measurements could ultimately lead to
the construction of normative databases of cognition, which in turn



Fig. 10. Result of the hierarchical agglomerative clustering of the spectral fingerprints presented in Fig. 9. Homologue areas were automatically matched together according
to the similarity of their fingerprints. The similarity tree has disproportionately long branches that were broken for clarity (waved lines).

Fig. 11. Group-level identification accuracy: a) bar plot showing the average identification accuracy across cross-validation iterations (leave-one-out), b) confusion matrix
showing in each row a distribution of ”votes” for each ROI. Each ROI was tested ten times (model trained on nine subjects versus one validation subject). For ideal
identification, this matrix would have a value of 10 for the diagonal elements and zeros elsewhere. Confusion happens mostly between homologue areas (2�2 red boxes). Left
hemisphere ROIs are recognized as the right hemisphere homologue areas.
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Table 2
Code metadata (mandatory)

Nr. Code metadata description Please fill in this column

C1 Current code version 20211013
C2 Permanent link to code/

repository used of this code
version

https://github.com/micholeodon/
ToFFi_Toolbox

C3 Legal Code License GNU Lesser General Public License
v2.1

C4 Code versioning system used Git
C5 Software code languages, tools,

and services used
MATLAB, Bash

C6 Compilation requirements,
operating environments &
dependencies

None

C7 If available Link to developer
documentation/manual

https://github.com/micholeodon/
ToFFi_Toolbox/tree/master/
ToFFi_Toolbox-20211013/docs/
ToFFi_Manual.pdf

C8 Support email for questions michu.kom@gmail.com
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be of much value to researchers and clinicians. Finally, considering
biometric applications, it would be interesting to test if it is possi-
ble to identify subjects from their brain spectral fingerprints con-
structed with ToFFi.
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Appendix A. ToFFi toolbox manual

Link: https://github.com/micholeodon/ToFFi_Toolbox/
tree/master/ToFFi_Toolbox-20211013/docs/ToFFi_Manual.pdf
Appendix B. Functions reference

Functions reference documents most important M-File Func-
tions of the ToFFi Toolbox.

It can be accessed after downloading/cloning the ToFFi Toolbox
repository (https://github.com/micholeodon/ToFFi_Toolbox).

Functions reference can be found here:
ToFFi_Toolbox-YYYYMMDD/docs/FUNCTIONS_REFERENCE.

html, where YYYYMMDD stands for the toolbox revision number.
Appendix C. Required Metadata

C.1. Current executable software version

Table 1
Appendix D. Current code version

Table 2
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MSc (1977) in theoretical physics, Ph.D. in quantum
chemistry (1980), postdoc at USC, Los Angeles (1980-
82), D.Sc. in applied math (1987); worked at the Max-
Planck-Institute, Munich, Germany, Nanyang Techno-
logical University, Singapore, several places in Japan and
other countries. Past President of the European Neural
Networks Society, International Neural Network Society
Fellow, member of the high-level expert group of

European Institute of Innovation & Technology (EIT). Published over 360 peer-
reviewed papers, co-authored 6 and co-edited 21 books.


	ToFFi – Toolbox for frequency-based fingerprinting of brain signals
	1 Introduction
	2 Problems and background
	3 Software framework
	3.1 Software architecture
	3.2 Software functionalities

	4 Implementation and empirical results
	4.1 Implementation
	4.2 Empirical results

	5 Illustrative example
	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A ToFFi toolbox manual
	Appendix B Functions reference
	Appendix C Required Metadata
	C.1 Current executable software version

	Appendix D Current code version
	References


