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ARTICLE

Modular, automated synthesis of spirocyclic
tetrahydronaphthyridines from primary alkylamines
Qiao Cao1, Joshua D. Tibbetts1, Gail L. Wrigley2, Adam P. Smalley 3 & Alexander J. Cresswell 1✉

Spirocyclic tetrahydronaphthyridines (THNs) are valuable scaffolds for drug discovery

campaigns, but access to this 3D chemical space is hampered by a lack of modular and

scalable synthetic methods. We hereby report an automated, continuous flow synthesis

of α-alkylated and spirocyclic 1,2,3,4-tetrahydro-1,8-naphthyridines (“1,8-THNs”), in addition

to their regioisomeric 1,6-THN analogues, from abundant primary amine feedstocks.

An annulative disconnection approach based on photoredox-catalysed hydroaminoalkylation

(HAA) of halogenated vinylpyridines is sequenced in combination with intramolecular SNAr

N-arylation. To access the remaining 1,7- and 1,5-THN isomers, a photoredox-catalysed HAA

step is telescoped with a palladium-catalysed C–N bond formation. Altogether, this provides

a highly modular access to four isomeric THN cores from a common set of unprotected

primary amine starting materials, using the same bond disconnections. The simplifying power

of the methodology is illustrated by a concise synthesis of the spirocyclic THN core of Pfizer’s

MC4R antagonist PF-07258669.
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B icyclic compounds featuring saturated N-heterocycles fused
to (hetero)aromatic units are highly prized in medicinal
chemistry1–4, offering a combination of polar functionality,

high Fsp3-content, and rigidly disposed groups on the aromatic
core that can engage in key interactions with a protein target
(e.g., H-bonds)5,6. Tetrahydronaphthyridines (THNs) are semi-
saturated bicycles that ring-fuse a piperidine with a pyridine—
these in turn being the two most popular N-heterocycles deployed
in small-molecule pharmaceuticals7,8. Positioning of the two
THN nitrogen atoms generates eight different structural isomers:
four of which (1a–d) can be considered as CH→N bioisosteres
of tetrahydroquinolines (THQs), and the remaining four (struc-
tures 2) as CH→N bioisosteres of tetrahydroisoquinolines
(THIQs) (Fig. 1a). The substitution of CH units for N atoms
in (hetero)aromatic systems can impart orders of magnitude
improvements in key physicochemical (e.g., solubility) and
pharmacological parameters9, and synthetic strategies that could
provide facile access to any THN isomer (e.g., 1a–d) would be
highly enabling. Without a trivial naming convention for THNs,
we shall hereafter refer to structures 1 as “THNs” and their iso-
meric counterparts 2 as “THINs”10–16, by analogy to THQs and
THIQs. Amongst other applications17,18, THNs have found use
as guanidine mimetics of the arginine binding motif in RGD-
binding integrin inhibitors (e.g., 3)19,20. Scaffold morphing of
quinolines to THNs can also be an effective tactic to improve
aqueous solubility, as exemplified during the development of the
FGFR4 selective inhibitor Roblitinib (FGF401) 4 (Fig. 1b)21.

Spirocyclisation of fused, semi-saturated N-heterocycles is also
emerging as a powerful design strategy for medicinal chemistry.
When compared to their flat, all-aromatic counterparts, partial
saturation and installation of a spirocycle simultaneously
increases Fsp3, reduces structural flexibility, and introduces
alternative exit vectors for access to novel 3D chemical space22. In
favourable cases, this can lead to greatly enhanced potency,
selectivity, solubility, and metabolic stability23,24. For instance,
Pfizer have exploited a spirocyclic THN as the core of their MC4R
antagonist PF-07258669 5, which is currently in phase I clinical
trials for the treatment of appetite loss (Fig. 1c)25. The spirocycle
in 5 was rationally designed to enforce a cis-relationship between
the N–H bond and the adjacent N(sp2) lone pair, which is the
optimal geometry for target binding but opposite to the (trans)
conformer favoured in solution for the non-constrained analogue.

Despite the many opportunities for structural and physico-
chemical tuning that THNs can offer, their widespread adoption in
early-stage drug discovery has likely been hampered by their poor
commercial availability, and the scarcity of THN synthesis
approaches that are readily amenable to library generation.
Other than the semi-hydrogenation of naphthyridines26–28, which
can present regio- and chemoselectivity challenges, several routes
to THNs have been devised based on the annulation of
2-aminopyridines. These processes tend to be relatively labour-
intensive29,30, and whilst catalytic annulations do exist31,32, their
functional group tolerance is low. Inverse electron demand, intra-
molecular, hetero-Diels-Alder reactions of tethered imidazolyl33 or
alkynyl34–36 triazines sequenced with N2 extrusion are also on
record for THN synthesis, but the substrate syntheses require
multiple steps. Moreover, none of the above approaches are
amenable to spirocyclic THN synthesis. Another distinct strategy is
to form THNs via the N-arylative cyclisation of γ-pyridyl amines,
either by intramolecular Pd-catalysed C–N coupling25,37,38, SNAr
reactions37–39, or Chichibabin reactions40,41. γ-Pyridyl amines 6
can themselves be constructed via Sonogashira-hydrogenation
sequences25,41, B-alkyl Suzuki-Miyaura coupling40, or the SN2
ring-opening of cyclic sulfamidates 9 with ortho-lithiated
halopyridines39 (Fig. 2a). Whilst these approaches can enable access
to spirocyclic THNs, the chemistry is not well suited to library
synthesis, given the meagre commercial availability of α-(di)sub-
stituted propargylic amines (7), allylic amines (8), or γ-hydroxy
amines as starting materials. Yu and co-workers have developed a
Pd-catalysed γ-C(sp3)–H arylation of primary alkylamines that can
access γ-pyridyl amines, and applied this to a single example of
THN synthesis, but the amines amenable to this procedure are
largely unfunctionalized and have limited commercial availability42.
Recently, visible-light photoredox-catalysed approaches have been
reported by ourselves and Gaunt et al., respectively, for the modular
synthesis of γ-aryl primary amines by the C–C bond-forming
coupling of readily available primary alkylamines 1037 or ketone-
derived imines 1138 with styrenes. Between these two disclosures,
four examples of spirocyclic 1,2,3,4-tetrahydro-1,8-naphthyridine
synthesis were showcased, proceeding via the SNAr cyclisation of
(isolated) γ-pyridyl amines from the photoredox step.

In this work, we show that photoredox-catalysed
hydroaminoalkylation43–45 (HAA) of halogenated vinyl pyridines,
followed by intramolecular N-arylation via SNAr, can be sequenced
in continuous flow46–56 to enable an automated synthesis of α-
alkylated and spirocyclic 1,2,3,4-tetrahydro-1,8-naphthyridines
(“1,8-THNs”) 13, in addition to their regioisomeric 1,6-THN ana-
logues 14 (Fig. 2b). To access the corresponding 1,7- and 1,5-THN
isomers—15 and 16, respectively—a photoredox-catalysed HAA
step can be telescoped with a palladium-catalysed C–N bond for-
mation. Altogether, this provides a highly modular approach to four
THN isomers 13–16 from a common set of unprotected primary
amine starting materials 10, using the same bond disconnections.

Fig. 1 Tetrahydronaphthyridines and their importance.
a Tetrahydronaphthyridine (THN) isomers. b THNs 1 in drug development.
c Spirocyclic THNs 1 in drug development.
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Results and discussion
Reaction optimisation. Photoredox-catalysed hydroaminoalk-
ylation (HAA) of 2-fluoro-3-vinylpyridine 17 with cyclohex-
ylamine 10a gives γ-pyridyl amine 18a in 97% yield, and
subjection of this purified material to DIPEA (1.5 equiv) in DMF
at 120 °C for 20 h delivers the corresponding THN 13a in 92%
yield via intramolecular SNAr cyclisation37. In order to sequence
these reactions together in continuous flow, we transferred the
chemistry to a Vapourtec R-series flow system equipped with a
Uniqsis PhotoSyn LED photoreactor (420 nm LEDs, ~260W
radiant output power, 5-ml reactor coil) and a high-temperature
tube reactor (up to 250 °C). As per the batch procedure, the
photoredox-catalysed HAA was initially carried out with 2,4,6-
tris(diphenylamino)-3,5-difluorobenzonitrile (3DPA2FBN) as the
photocatalyst, and tetrabutylammonium azide (Bu4N+N3

–) as the
hydrogen atom transfer (HAT) catalyst57,58. However, we found
that Bu4N+N3

– could be replaced with cheaper and far less
hygroscopic sodium azide (NaN3), which is soluble in DMF at
0.06M. For the SNAr step, a temperature of 180 °C with tR= 20
min proved sufficient for complete conversion (see Supplemen-
tary Table 1). By running both steps in sequence in continuous
flow, an overall yield of 98% of spirocyclic THN 13a could be
obtained from 2-fluoro-3-vinylpyridine 17 and cyclohexylamine
10a as feedstocks (in a 1:1 ratio). This corresponds to a pro-
ductivity of 2.20 mmol h–1 (445 mg h–1).

Automated continuous flow synthesis of THNs from primary
alkylamines. With an optimised continuous flow protocol in
hand, we next sought to execute an automated library synthesis
of ‘lead-like’5,59 THN products 13, using an autosampler to
sequentially load different amine substrates into the Vapourtec

flow system. The same autosampler also serves as a fraction
collector, into which the steady-state solutions of each product
13 are dispensed (Fig. 3a and see Supplementary Data 1 for NMR
spectra of all compounds). Each run using 1.50 mmol of the
vinylpyridine substrate takes ~90 min, which corresponds to 16
compounds in a 24 h period, or 40 compounds total over 60 h if
all rack positions are utilised. Cyclic primary amines 10a–d of
varying ring sizes were well tolerated, and amine 10e bearing
benzylic C–H bonds also participated smoothly. Various func-
tionalities including free hydroxyl groups (13f, o), ethers (13g,
k), thioethers (13h), carbamates (13i, j, p), and imidazoles (13q)
proved compatible with the process. For amines bearing elec-
tronegative atoms attached to the β- or γ-carbon (10g–k, o, p), a
slightly elevated temperature of 200 °C proved necessary in most
cases to drive the SNAr step to completion within the 20 min
residence time. Strained four-membered ring substrates 3-
amino-N-Boc-azetidine 10j and 3-aminooxetane 10k proved
especially challenging for the photoredox step, on account of
their α-C–H bonds being strengthened by ring strain and
inductive effects57; amine 10j for example gave only 49% yield of
13j, along with 46% of unreacted 10j. By increasing the stoi-
chiometry of amines 10j and 10k to 3 equivalents, however, the
valuable spirocyclic THNs 13j and 13k could be obtained in 80%
and 61% yields, respectively. Non-spirocyclic THNs are also
readily accessible via this methodology; isopropylamine 10l was
used, for example, to generate α,α-dimethyl-substituted THN 13l
in 75% yield. For α-monoalkylated amines (10m–q), it proved
necessary to use 3.0 equivalents of the amine substrate, to miti-
gate against the formation of undesired dialkylated products
during the photoredox α-C–H alkylation step37. As ethylamine
10m is a gas at ambient pressure, it was dispensed as a 2.0 M
solution in THF, affording the simple α-methylated THN 13m in
36% yield. Ethanolamine 10o and N-Boc ethylenediamine 10p
also proved to be effective substrates, generating α-hydro-
xymethyl- and α-aminomethyl-substituted THNs 13o and 13p,
respectively.

We next sought to extend our automated synthesis protocol to
the formation of isomeric 1,2,3,4-tetrahydro-1,6-naphthyridines
(“1,6-THNs”) 14, using 4-chloro-3-vinylpyridine 18 as a
radical acceptor (Fig. 3b). Whilst the chlorinated compound 18
is far easier to access than its 4-fluoropyridine-derived60

counterpart, the decreased SNAr reactivity of the C–Cl
bond necessitated that the temperature of the flow SNAr step
be raised still further to 220 °C. Under these conditions, a small
library of spirocyclic 1,6-THNs 14a–e could be prepared in
46–64% yield.

Gram-scale reaction and resolution of THN enantiomers. To
demonstrate the scalability of our THN synthesis in flow, we
executed the reaction of 4-aminopiperidine substrate 10i on gram
scale on a 5-ml reactor coil, delivering 1.85 g of spirocyclic THN
13i in 87% yield (equating to a productivity of 600 mg h–1)
(Fig. 4a). Whilst these reactions inevitably produce racemic
materials, resolution of the THNs via chiral preparative HPLC
provides convenient access to both enantiomers, as exemplified
for THN 13n on a 520 mg scale (Fig. 4b and see Supplementary
Figs. 4–8 for HLPC traces).

Access to THN derivatives with functional handles on the
pyridine ring. Another important objective was to demonstrate
further elaboration of the THN products on the pyridine ring.
One strategy, which is especially useful for C(6) functionalisation,
is to carry out electrophilic halogenation or catalytic C–H
borylation61 reactions (i.e., 19–21) (Fig. 5a). In order to access
THNs 23 and 25 halogenated ortho or para to the pyridine

Fig. 2 Prior art for THN synthesis and this work. a Selected synthetic
routes to (spirocyclic) 1,8-THNs. b This work.
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nitrogen, we utilised vinyl pyridines 22 and 24, respectively, with
the necessary chloro handles preinstalled. Using this strategy, the
C(7)-chloro THN 23 was isolated in 68% yield, and the C(5)-
chloro THN 25 in 31% yield (Fig. 5b). The latter isomer was
anticipated to be the most challenging, requiring the amine
nucleophile to distinguish between a para-chloro and an ortho-

fluoro site of attack during the SNAr step39. Taken together, these
strategies enable vector growth from any ring position on the
fused pyridine moiety of 1,8-THNs, which is likely to be of sig-
nificant value for fragment-based drug discovery1–4.

Stepwise synthesis of other THN isomers. Varying the position
of the pyridine nitrogen atom in these spirocyclic THN scaf-
folds is another highly desirable objective from a medicinal
chemistry standpoint9. Having already demonstrated an auto-
mated flow synthesis of 1,8- and 1,6-THNs 13 and 14 from
primary alkylamine feedstocks, we were motivated to develop a
practical catalytic solution to access 1,7- and 1,5-THN isomers,
based on the same photoredox-catalysed HAA disconnection
approach. With intramolecular N-arylation via SNAr no longer
being feasible, we instead opted to carry out this key step using
palladium catalysis. Following a flow photoredox HAA of amine
10i with 3-chloro-4-vinylpyridine 26, γ-pyridyl amine 27 was
isolated in 25% yield. The low yield in this case was traced to
extensive polymerisation side reactions, for which vinylpyridine
26 seems to be particularly prone. Subsequent cyclisation via
a Buchwald-Hartwig C–N coupling then gave 1,7-THN 28 in
79% yield (Fig. 6a). An analogous sequence using 3-chloro-2-
vinylpyridine 29 gave 1,5-THN in an overall 47% yield over the
two steps (Fig. 6b).

Fig. 3 Automated continuous flow synthesis of THNs from primary alkylamines. aWith 3.0 equiv of amine. bSecond step carried out at 200 °C. cSecond
step carried out at 220 °C. All reactions were carried out on 1.50mmol of vinylpyridine 17 or 18. a Synthesis of 1,2,3,4-tetrahydro-1,8-naphthyridines 13.
b Synthesis of 1,2,3,4-tetrahydro-1,6-naphthyridines 14.

Fig. 4 Gram-scale reaction and resolution of THN enantiomers. a Gram-
scale reaction in flow. b Resolution of chiral racemic THNs by prep HPLC.
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Application to the synthesis of Pfizer’s MC4R antagonist PF-
07258669 5. Finally, we sought to apply our methodology to a
concise synthesis of the spirocyclic THN core (35) of Pfizer’s
MC4R antagonist PF-07258669 5, which was previously synthe-
sised in 15 total steps (11 steps LLS) (Fig. 7a)25. In our case,
starting from commercially available 3-amino N-Boc pyrrolidine
32, a photocatalytic HAA reaction with vinylpyridine 33 in
continuous flow gave γ-pyridyl amine 34 (427 mg) in 79% yield.
Attempted thermal SNAr cyclisation of 34 at 220 °C in a high-
temperature tubular reactor (tR= 20min) gave only 22% yield of
THN 35, indicating that the methyl substituent α- to the pyridine
nitrogen deactivates this pathway. Fortunately, an intramolecular,
palladium-catalysed Buchwald-Hartwig N-arylation process (as
used in the Pfizer route) proved more efficacious, delivering the

spirocyclic THN core 35 in 84% yield (Fig. 7b). Taking into
account a 3-step synthesis of vinyl pyridine 33, the longest linear
sequence is five steps. The industrial route, whilst 11 steps in the
longest linear sequence, is enantioselective, compared to a race-
mic synthesis in our case. Nevertheless, this illustrates how dra-
matically the synthesis of complex spirocyclic amines can be
streamlined when using a photoredox annulation strategy from
unprotected amines57.

Conclusion
In summary, we have developed an automated, continuous flow
synthesis of α-alkylated and spirocyclic 1,2,3,4-tetrahydro-1,8-
naphthyridines (“1,8-THNs”), in addition to their regioisomeric
1,6-THN analogues, from abundant primary amine feedstocks.
An annulative disconnection approach based on photoredox-
catalysed hydroaminoalkylation (HAA) of halogenated vinyl-
pyridines is sequenced in combination with intramolecular
SNAr N-arylation. To access the remaining 1,7- and 1,5-THN
isomers, a photoredox-catalysed HAA step is telescoped with a
palladium-catalysed C–N bond formation. Altogether, this
provides a highly modular access to four isomeric THN cores
from a common set of unprotected primary amine starting
materials, using the same bond disconnections. The simplifying
power of the methodology is illustrated by a concise synthesis of
the spirocyclic THN core (35) of Pfizer’s MC4R antagonist PF-
07258669 (5).

Methods
A general procedure for the flow chemistry protocol described in
Fig. 3 can be found in Supplementary Methods (pages S4–5), plus
photographs and schematics of the setup in Supplementary
Figs. 1–3.

Representative procedure for the automated continuous flow
synthesis of 1,2,3,4-tetrahydro-1,8-naphthyridine (13a): fol-
lowing the General Procedure (pages S4–5), 5 ml of reagent feed
A [2-fluoro-3-vinylpyridine 17 (185 mg, 1.50 mmol, 1.0 equiv)
and 3DPA2FBN (9.6 mg, 15.0 μmol, 1 mol%) in anhydrous
DMF], 5 ml of reagent feed B [cyclohexylamine 10a (149 mg,
1.50 mmol, 1.0 equiv) and NaN3 (19.5 mg, 300 μmol, 20 mol%)
in anhydrous DMF], and 10 ml of reagent feed C [DIPEA
(291 mg, 2.25 mmol, 1.5 equiv) in anhydrous DMF] were
reacted in flow, setting the high-temperature tube reactor to
180 °C. The steady-state mixture (10 ml) was collected and
concentrated in vacuo on an Asynt spiral evaporator. Purifica-
tion via automated flash column chromatography on SiO2 gel
(12 g) in 40–60 °C petroleum ether (5 CV) then 100:0→ 0:100
40–60 °C petroleum ether–EtOAc (over 20 CV) then EtOAc (5

Fig. 5 Access to THN derivatives with functional handles on the pyridine
ring. a C–H functionalisation of the pyridine ring at C(6). b Access to other
halogenated THN isomers.

Fig. 6 Stepwise synthesis of other THN isomers. a Synthesis of 1,2,3,4-tetrahydro-1,7-naphthyridines. b Synthesis of 1,2,3,4-tetrahydro-1,5-naphthyridines.
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CV) gave 13a as a colourless, crystalline solid (149 mg, 98%,
productivity= 2.20 mmol h–1).

Data availability
Detailed experimental procedures and characterisation of compounds can be found
in Supplementary Methods in the Supplementary Information. NMR spectra are
available as a separate Supplementary Data 1. All original data are available from the
authors upon request.

Received: 13 July 2023; Accepted: 22 September 2023;
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