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A B S T R A C T   

The interest in wastewater monitoring is always growing, with applications mainly aimed at detection of pol-
lutants and at the environmental epidemiological surveillance. However, it often happens that the strategies 
proposed to manage these problems are inapplicable due to the lack of information on the hydraulics of the 
systems. To overcome this problem, the present paper develops and proposes a topological backtracking strategy 
for the optimal monitoring of sewer networks, which acts by subrogating the hydraulic information with the 
geometric ones, e.g., diameter and slope, thus not requiring any hydraulic simulation. The topological back-
tracking approach aims at evaluating an impact coefficient for each node of the network used to face with the 
problems of sensor location and network coverage for purposes related to the spread of contaminants and 
pathogens. Finally, the positioning of the sensors for each monitoring scheme is addressed by a priority rank, 
based on the efficiency of each sensor in terms of network coverage with respect to a specific weight (e.g., length, 
flow). The main goal is to design a monitoring scheme that provide the required coverage of the network by 
minimizing the number of sensors with respect to specific measurement threshold value. 

The results show the effectiveness of the strategy in supporting the optimal design with the topological-based 
backtracking approach without the necessity of performing hydraulic simulations, with great advantage in terms 
of required data and computational time.   

1. Introduction 

Sewer networks (SNs) are critical infrastructures, inevitably inter-
connected with the needs of human society, often subject to dangerous 
and extreme events (e.g., accidental and intentional contamination, 
illegal spills, spread of pathogens, drunk and flooding due to climate 
change, etc.) that can have serious consequences both for human health 
(Hafeez et al., 2023; Iorember et al., 2022), for the economy and for the 
environment and practical issues related to water quality deterioration 
and its relative further use, such as desalinization (Panagopoulos and 
Giannika, 2022, 2023). 

In order to control these events and mitigate their effects, various 
strategies have been proposed aimed at monitoring daily operations 
both in terms of hydraulic and quality attributes, at detecting the pres-
ence (Banik et al., 2015; Banik et al., 2017a; 2017b; De Vito et al., 2018; 
Simone et al., 2023) and the source (Pisa et al., 2019; Sambito et al., 
2020, 2022; Shao et al., 2021) of contaminants and pathogènes (Nour-
inejad et al., 2021; Wang et al., 2023a,b), at the system maintenance 
(Draude et al., 2021) and management (Szeląg et al., 2021; Zhang et al., 

2018), at the robustness (Hajiamoosha and Urich, 2020; Simone, 2023) 
and at anomaly detection (Garmaroodi et al., 2021) with implications, 
sometimes, also in terms of energy recovery (Shah et al., 2023). 

While the control of contaminant in SNs is important for environ-
mental aspects, the attention towards issues related to the spread of 
pathogens is also considerably increased. Many studies have been 
recently supported by projects on environmental epidemiological sur-
veillance for the detection of the Sars-Covid2 virus in wastewater, both 
at international and national level (McMahan et al., 2021; La Rosa et al., 
2021) and on the post-epidemic economic and social implications 
(Abbas, 2021; Abbas et al., 2023; Aqeel et al., 2022). The procedures 
adopted for the monitoring and detection of SARS-Covid2 in wastewater 
mainly refer to the Wastewater Based Epidemiology (WBE) approach 
(Daughton, 2001), aimed at the search for specific human excretion 
products in wastewater to individuate the presence of illicit drugs, 
alcohol, antibiotics etc. This approach generally involves collecting this 
information at the treatment plant, located downstream of the system. 

To investigate flow path-dependent quality processes internal to the 
system, on the other hand, some studies proposed approaches based on 
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the backtracking algorithm (Zierolf et al., 1998), a technique initially 
applied to water distribution systems to assess the presence and diffu-
sion of contaminants, i.e., to evaluate the effects of decay and dilution in 
specific paths between input source and downstream nodes and their 
impact in terms of water quality. The first works on the subject have 
been proposed to evaluate the chlorine concentration in water distri-
bution networks (Zierolf et al., 1998). In 2002, Shang et al. (2002) 
adopted the backtracking algorithm for sensors locations, including 
storage tanks, multiple water sources and quality inputs in the analysis. 
Later, Laird et al. (2005) proposed a tracking algorithm to identify both 
the time and location of potential contamination sources in water dis-
tribution systems. The authors presented an optimization design for this 
problem, estimating time-dependent contamination injections for every 
node to establish the sensors covering. De Sanctis et al. (2010) proposed 
a particle backtracking algorithm to identify the source of the contam-
ination in a water distribution network, and the results showed that the 
method efficiently identified the area where contamination have been 
originated. Later on, Chachula et al. (2021) proposed the application of 
backtracking to SNs with a data fusion system, which transforms the 
time-series of sensor measurements into an array of localization of 
contamination events. The system (i) maps contaminant detection ac-
cording to a priori knowledge, (ii) infers the propagation of the dis-
charged contaminant downstream, (iii) groups the pollutant detections 
and (iv) inferred sensor observations to form tracks that are processed 
and propagated upstream to form the final list of probable events. The 
results of their localization strategy provided good results in terms of 
information on contaminant with a limited number of sensors. More 
recently, Guadagno et al. (2023) proposed a new sensor location 
methodology based on the backtracking approach to detect target sub-
stances in SNs. They computed an impact coefficient for all the nodes of 
the system, in steady-state conditions, for supporting the identification 
of the position for sensors. In particular, by varying specific threshold 
values, representing the sensitivity of the sensors used, they identify the 
corresponding monitoring systems that guarantee the network coverage. 
Furthermore, the promising comparison of the results obtained per-
forming the analysis in unsteady and steady-state conditions, justified 
the adoption of the methodology for real practical applications. 

The classic approaches designed for monitoring SNs generally 
require the knowledge of the hydraulic behaviour of the system, in terms 
of flow rates, decay times and concentrations of contaminants, through 
the implementation of numerical solutions (Ellis and Hvitved-Jacobsen, 
1996; McGrane, 2016; Rauch et al., 2002; Sämann et al., 2019; Vaze and 
Chiew, 2004). These approaches become unusable when the hydraulic 
model is not available or not known, and in these cases, the need to 
resort to valid alternatives that do not require hydraulic data is 
increasingly urgent. From this point of view, topology-based approaches 
are gaining momentum. In recent years several researches proposed the 
use of Complex Network Theory (CNT) tools to evaluate the emergent 
behaviour of infrastructure systems, such as sewer networks, based only 
on their topology to address different specific tasks (Ganesan et al., 
2020; Hesarkazzazi et al., 2022a,b; Hesarkazzazi et al., 2022; Meijer 
et al., 2018, 2022; Simone et al., 2020; Simone et al., 2022b). In order to 
design an optimal allocation and operation of sewer monitoring for 
wastewater-based disease surveillance, Kim et al. (2022) compared the 
performance of a genetic algorithm and a topological based spatial 
bisection method, showing that the latter is efficient despite its lower 
computational cost. Rodríguez-Alarcón and Lozano (2022) proposed an 
approach based on CNT tools to model and analyse structure and com-
ponents of a whole river basin. They evaluated several CNT metrics in 
order to furnish indications about the system behaviour, both from a 
local and a global point of view and proposed an environmental impact 
centrality index based on a backtracking algorithm to evaluate potential 
spill or contaminant release on each node. Simone et al. (2022a,b) 
proposed a strategy based on the CNT concepts and backtracking algo-
rithm to analyse and model the diffusion of pollutants along the SNs. 
They surrogated all information related to the flow rates of the sewer 

pipes with information obtained from the Horton’s hierarchy of the 
system and evaluated a Contamination Index for each node, to inform 
about the effect that a contaminant spill originated in given nodes would 
have on the whole system. 

Considering the potentiality of backtracking algorithms in studying 
contamination processes and the problem related to the lack of hy-
draulic information in planning and management activities in SNs, the 
present paper proposes a topological backtracking strategy for the 
optimal monitoring in wastewater. In particular, the strategy refers to 
the backtracking algorithm introduced in Guadagno et al. (2023), 
computed performing a steady state simulation, and aimed at the eval-
uation of the impact coefficient (IC) for planning a monitoring system. 

The novelty of this work is the possibility of surrounding the hy-
draulic parameters (e.g., flow) of the model with the geometric ones (e. 
g., pipe diameter, slope) during the analysis, without performing any 
hydraulic simulation. This allows the strategy application to systems 
with the only knowledge of topology and geometry without the esti-
mation of the input demands. It is crucial in studying complex system or 
in an early stage of the analysis. Moreover, the use of the only system 
geometry significantly reduces the computational cost of the strategy. 
The main goal is to indicate where to place sensors or collect samples in 
order to detect a target substance which can enter in each node of the 
system. The strategy consists of three main phases.  

(i) The topological impact coefficient (ICT) for the nodes of the 
network is evaluated using a new topological-based backtracking 
strategy, in which the hydraulic information are surrogated with 
the geometrical ones. The comparison between the impact coef-
ficient values obtained through both the hydraulic simulation in 
steady-state conditions and the topological approach is used to 
validate the proposed methodology.  

(ii) Once the ICT has been computed for all nodes of the system, the 
strategy acts for defining the monitoring scheme according to 
sensor measurement threshold, i.e., to the sensitivity of the 
installed sensors. This is performed by reiterating the back-
tracking several times, choosing each time only the locations 
candidate to host sensors that not influence each other, i.e., that 
belong to separate branches, located further downstream in the 
system. By repeating the backtracking with respect to the new 
sensors installed, new candidate locations are indicated, for 
which the procedure is repeated. In this way the number of sen-
sors to be installed is minimized. For a fixed measurement 
threshold, the obtained monitoring schemes represent the solu-
tion that minimize the number of sensors thus optimizing the 
network coverage.  

(iii) The monitoring scheme previously designed also encloses an 
installation priority order for the sensors. The priority is 
expressed through the range P (P1, …, PM), with M number of 
sensors to install with the ordering which indicates the efficiency 
of each sensor in terms of network coverage, which can be 
evaluated considering different weights, e.g., number of covered 
nodes [%], topological flow (FlowT) [l/s], length (L) [Km], etc.). 

The paper is organized in the following way. The next section recalls 
the concept of backtracking algorithm. The third section presents all the 
phases of the proposed sensor location methodology using a small 
benchmark SN. The fourth section describe the results obtained applying 
the strategy to a literature case study. The first part of the section reports 
the calculation of the Topological Impact coefficients (ICT) and the 
comparison with the ones obtained using the hydraulic approach in 
steady-state conditions, while the second part of the section shows the 
actions required to define the optimal monitoring schemes, also 
providing the priority range for the installation of the sensors. 
Concluding remarks are drawn in the last section. 
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2. Backtracking algorithm 

The spreading of contaminant in SNs is described with mass balance 
equations within pipes and nodes. The backtracking algorithm represent 
an approach that allows describing the variation of the contaminant 
concentration in the nodes of a system by measuring the value of the 
concentration at an output point. The approach uses the depth-first 
search method, i.e., a search algorithm on trees and graphs by the 
Complex Network Theory (CNT), which is developed to find the solution 
to a specific problem by building it step by step through recursive call-
ing. Starting from an output node, the method allows to track the value 
of the contaminant concentration at a possible input nodes placed up-
stream, which in turn become output for the pipe placed immediately 
upstream. The process continues until the input node coincides with the 
source of the contamination for that specific path. This procedure, 
generally based on a search tree, where each branch represents a vari-
able and each level a solution, applies very well to open networks such 
as sewer systems. 

To understand the steps behind the backtracking process for SNs, 
Fig. 1-a shows the direct graph of an example scheme of portion of a 
sewer system composed of 16 nodes and 15 links, whose characteristics 
are given in the supplementary material (Tables A1 and A2). The di-
rection of flow, imposed by the slope of the system, is indicated by ar-
rows. The set of links S and the set of nodes N of the graph represent the 
sewer pipes and the manholes of the system, respectively. Node 9 rep-
resents the outfall. 

Let us assume that a contaminant concentration is entered into node 
12, as indicated in Fig. 1-b. The contamination path from node 12 to-
wards the output (node 9) crosses nodes 10, 5, 6, 7 and 8, and in each 

node the concentration of contaminants varies according to the process 
of diffusion/dilution towards the pipes/nodes downstream of the source. 
In fact, once contaminated, the first target node of the path (node 10) is 
modelled as a new source of contamination and the process continues 
until the outfall is reached. Based on the concentration of contaminant 
arriving at the outfall (node 9), it is possible to go back at the concen-
tration of contaminant in the upstream node (node 8), which becomes in 
turn the output of the pipe located further upstream, from which it is 
possible to go back at the concentration of its predecessor (node 7) 
(Fig. 1-c). 

Proceeding recursively upstream, for all nodes of the contaminated 
path, it is possible to evaluate the variation in the concentration of 
contaminant. This recursive procedure is called backtracking (Zierolf 
et al., 1998). Repeating this procedure for all the nodes of the network 
allows to identify the contamination paths, and therefore, the variation 
in the concentration of contaminant for all nodes in the network. 

To evaluate the dilution factor at the confluences and the decay 
factor of the contaminant along the pipes, the procedure requires the 
knowledge of the hydraulic (e.g., flow rate, speed, etc.) and topology (e. 
g., diameter, slope, length, etc.) of the system. The dilution process is 
expressed by the continuity equation at the generic node n, according to 
the relationship: 

Cn(t)=
∑

l∈Sql (t)Cl,d(t)
∑

l∈Sql(t)
(1)  

where S is the set of pipes that converge in node n, ql (t) is the flow rate of 
the single pipe l that converges into node n, Cl,d(t) is the concentration of 
contaminant in the section downstream pipe l entering in node n, 

Fig. 1. Network layout (a). Contaminant input in node 12 defines a contamination path, highlighted in yellow (b). Example of backtracking from node 9 to node 8 (c) 
following back the path towards the node 12. 
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∑
l∈Sql(t) is the sum of the flows entering in the same node. 
The contaminant decay process occurring along the pipe l is calcu-

lated with a first order kinetics, according to the relationship: 

Cl,d(t)=Cl,u(t)exp (KlTl) (2)  

where Cl,u is the concentration of contaminant in the upstream section of 
pipe l, Kl is the decay coefficient of the contaminant in the pipe l and Tl is 
the travel time of the pipe l, expressed by the relationship: 

Tl =
Ll

vl
(3)  

where Ll is the length and vl the mean velocity of the pipe l. 
By measuring the concentration at the output node, it is possible to 

follow the spread of contaminant along each path considering the up-
stream node as a potential input source. As reported in Guadagno et al. 
(2023), the ratio between the value of the concentration measured at the 
output node n and those at the input node j defines the Impact Coeffi-
cient IC of node j, expressed by the dimensionless relationship: 

ICj,n(t) =
∏

lϵp

ql(t)exp (KlTl)
∑

l∈S
ql(t)

(4)  

where p is the path between nodes j and n. The backtracking proceeds 
until it reaches all the nodes of the path, evaluating for each of them the 
IC value. 

3. Material and methods 

3.1. The topological backtracking algorithm 

The potentialities of the backtracking algorithms above described are 
often limited by the lack/inaccuracy of information on the systems to be 
analysed. In the specific case of SNs, the lack of information mainly 
refers to the hydraulic parameters/models, especially for large urban 
systems, thus limiting their analysis. 

To overcome this drawback, a topological backtracking algorithm is 
here proposed as first phase of the monitoring design strategy. Obvi-
ously, using only topologic and geometric information, instead of hy-
draulic ones, requires the adoption of simplifying hypotheses. In 
particular, the only use of topologic and geometric information implies a 
steady-state analysis, without considering the time variability of the 
input demands. 

3.1.1. Geometric parameters at the basis of the analysis 
Hydraulic information is surrogated with geometric and topological 

ones. For each pipe the following topological flow and mean velocity, 
function of only geometric parameters, are defined as: 
⎧
⎪⎨

⎪⎩

ql = AKsR
2
3
h i1

2

vl = KsR
2
3
h i

1
2

(5)  

where ql and vl represent flow and mean velocity along the specific pipe 
l, respectively. Furthermore, A is the cross section, Ks is the roughness 
coefficient, Rh is the hydraulic radius and i is the slope. In the hypothesis 
of full pipe flow, the formulations (5) can be rewrite as function of the 
diameter and simplified, obtaining: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ql = πD
4

2

Ks

(
D
4

)2
3

i
1
2

vl = Ks

(
D
4

)2
3

i1
2

=

⎧
⎨

⎩

ql = bKsD
8
3 i1

2

vl = cKsD
2
3 i1

2

(6)  

where the terms b and c represent constants equal to: 

b=
π

42
3 • 4

= 0.31; c =
1
42

3
= 0.40; (7) 

The strategy allows to assign different value of Ks to the pipes, thus 
making the analysis much closer to the reality. It worth of noting that the 
use of Eq. (6) implies the assumption of pipe filled, which does not 
generally happen in a SN with a correct functioning. However, this 
assumption, necessary for the use of the topological backtracking, is 
accepted because at security advantage for the present application. 
Hence, Eqs. (1) and (2) can be reformulated considering topological 
parameters as: 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Cn =

∑

l∈S
ql Cl,d

∑

l∈S
ql

=

∑

l∈S

(
bKsD

8
3 i1

2

)
• Cl,d

∑(
bKsD

8
3 i1

2

)

Cl,d = Cl,uexp(KlTl) = Cl,u exp
(

Kl⋅
(

Ll

cKsD
2
3 i1

2

))

(8) 

Then, the topological Impact Coefficient ICT is expressed by the 
relationship: 

Fig. 2. Network layout with graphical representation of the topological impact coefficient ICT (a). Topological impact coefficient ICT values for all nodes of the 
network (b). 
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ICT
j,n =

∏

lϵp

qlexp (KlTl)
∑

l∈S
ql

=
∏

lϵp

(
bKsD

8
3 i1

2

)

l
∑(

bKsD
8
3 i1

2

)

l

exp
(

Kl⋅
(

Ll

cKsD
2
3 i1

2

))

(9) 

The ICT assumes values in the range [0; 1]. 

3.1.2. Lateral inflow 
In the proposed methodology lateral inflows are also assumed not 

known and estimated through topological parameters. For the external/ 
head nodes, the topological lateral inflow is assumed equal to the to-
pological flow belonging the pipe immediately downstream of it (e.g., 
considering Fig. 1-a, the lateral inflow entering in node 1 is equal to the 
flow along the pipe 1–2). For the internal nodes, such as nodes 2 and 10, 
the lateral inflow is differently evaluated depending on. 

(i) if the node is not a confluence and the upstream and the down-
stream pipes have the same diameter, the topological lateral 
inflow is assumed equal to zero. This approximation is acceptable 
considering that the lateral inflow, when present, should already 
be contained in the downstream pipe which works at full filling; 

(ii) if the node is not a confluence and the upstream and the down-
stream pipes have different diameters, the topological lateral 
inflow is equal to the difference between the two topological 
flows;  

(iii) if the node is a confluence, the topological lateral inflow is 
evaluated as the difference between the topological flow of the 
pipe downstream the node and of the sum of topological flows of 
the pipes upstream of the node. 

3.1.3. Topological impact coefficient ICT 

To compute the ICT, it is assumed that the introduction of contami-
nant may occur though all nodes characterized by a lateral inflow with a 
unitary input concentration (c0 = 1 mg/l). In this case, the ICT of the 
node coincides with the concentration measured at the sensor due to the 
input in this node. Then, an ICT equal or larger than the sensitivity of the 
sensor means that the input of the substance in the node is detected 
(Guadagno et al., 2023). 

In this prelaminar test, the lateral inflows are only assumed at the 
head-nodes for simplicity, as reported in Fig. 1-a. The decay coefficient 
has been set equal to 0.146 h− 1, which refers to Sars-COVID2 as target 
substance (Hart and Halden, 2020). 

The obtained ICT values are graphically shown in Fig. 2-a and re-
ported in the table of Fig. 2-b. It is possible noting that the values of the 
ICT, consistently with the diffusion/decay processes, increase from the 
upstream to the downstream nodes, i.e., from the smallest to the largest 

rhombuses in terms of size. Particularly, nodes with high value of ICT 

(from green to yellow) represent the points in which any contaminant 
input is easily detected at the outfall, while nodes with a very low ICT 

(blue) represent the points in which any contaminant input is difficult to 
detect at the outfall, because of the dilution and decay phenomena that 
occur along the paths. 

3.2. Optimal sampling design of monitoring system 

The last step of the proposed strategy involves the identification of 
the monitoring schemes as function of a measurement threshold value 
(TV) of the sensor, which represents the minimum concentration 
detectable. A higher threshold value indicates low quality and requires a 
greater number of sensors. For each monitoring scheme (number of 
sensors and their different locations), the strategy acts for providing the 
minimum number of sensors to guarantee the fixed coverage of the 
network by reiterating the backtracking several times. 

Considering the first sensor placed at the outfall and its threshold, the 
coverage of the network is evaluated on the base of the ICT values pre-
viously computed within the backtracking phase. ICT equal or larger 
than TV means that the introduction of unitary input concentration 
produces a concentration detectable by the sensor, i.e., the node is 
covered, while with ICT smaller than TV, the node is not covered. Then, 
the procedure acts for installing sensors in the nodes located at the ex-
tremities of the area covered by the existing sensor with the new devices 
that do not interfere each other, i.e., they belong on distinct branches. By 
repeating the backtracking with respect to the new sensors, new points 
are suggested where to install sensors, and the procedure is successively 
repeated until the fixed coverage is reached. In this way, the monitoring 
scheme, i.e., number and positions of the sensors, is defined. 

Each monitoring scheme is enriched with an installation priority 
order for the sensors. The priority is expressed through the range P (P1, 
…, PM), with M number of sensors, where the ordering indicates the 
efficiency of each sensor in terms of network coverage, here expressed as 
length L [Km]. The priority order is increasing, i.e., P1 represents the 
most efficient sensor and PM the least efficient one. The order of priority 
is provided only for the planned sensors, considering those located at the 
outfall as a prior. 

For example, Fig. 3-a shows the coverage of the network based on the 
ICT of Fig. 2-a, by setting a threshold value of 0.3 mg/l. The analysis 
starts only considering the sensor placed at the outfall (node 9), which 
guarantees a coverage of the network of 43,8% (1.957 Km), represented 
by the green part. The results of the analysis suggest of positioning other 
two sensors, in nodes 5 and 14, to cover the remaining part of the sys-
tem. It is possible noting that the candidate locations do not interfere 

Fig. 3. Network coverage (monitored green part) guaranteed by the sensor placed at the outfall (node 9) by setting a threshold value of 0.3 mg/l (a). Two subsystems 
for which the backtracking is again performed considering sensors installed in nodes 5 and 14 (b). Network full covered with three sensors (c). 
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with each other, belonging to two distinct branches, and therefore both 
sensors have to be installed and considered in the next step. 

By setting nodes 5 and 14 as new output nodes, the backtracking is 
performed only for the two subsystems represented in Fig. 3-b, for which 
the contaminant concentrations were not detected at node 9. Finally, 
Fig. 3-c reports the system with the three sensors and the network full 
covered. The order of priority in the installation of the sensors is indi-
cated in Fig. 3-c, evaluated considering the length L [in Km] that each 
sensor covers. Installing only one additional sensor, P1 in node 5 is 
selected, i.e., the first in the order of priority, that guaranteeing a 
network coverage of 87,5% (3.397 Km), which passes to 100% (4.263 
Km) by also installing the sensor P2 in node 14. 

The situation that arises by setting a threshold value of 0.2 mg/l is 
different. The sole sensor placed at the outfall (node 9) guarantees a 
greater coverage of the network than in the previous case (Fig. 4-a), i.e., 
equal to 50% of the network in terms of nodes (2550 Km), due to the 
greater sensitivity of the instrument used. Also in this case, the analysis 
suggests of positioning other two sensors, in nodes 5 and 10, to cover the 
remaining part of the system (Fig. 4-b). It is possible noting that the two 
candidate locations belong to the same path toward the outfall, i.e., they 
are influenced by each other because node 5 is in the path from node 10 
toward the outfall. In this case the strategy proceeds by performing the 
backtracking only with respect to the node located further downstream, 
i.e., node 5. Fig. 4-c shows that a sensor installed in node 5 covers the 
remaining part of the network, i.e., the total coverage is guaranteed with 
only 2 sensors. 

4. Results and discussion 

4.1. Topological impact coefficient ICT 

The proposed strategy is here applied to a benchmark sewer system 
(Simone et al., 2023) whose layout is reported in Fig. 5. The system 
model is composed of 77 nodes, 79 edges and 1 outfall (node 78), whose 
topological characteristics are given in of the supplementary material 
(Tables A3 and A4). Fig. 5 reports the network with the modelled to-
pological lateral inflow (red arrows). It is possible noting that the lateral 
inflow is present in the head nodes and at the confluences, since for the 
serial nodes the diameter generally does not change between upstream 
and downstream pipes, and therefore the topological inflow is null. 

The ICT is then computed for each node of the system only consid-
ering the sensor positioned at the outfall (node 78). As in the previous 
test case, it is assumed a unitary input concentration and a decay coef-
ficient equal to 0.146 h− 1 (Hart and Halden, 2020). 

Fig. 6-a shows the ICT values, classified in four ranges, differentiated 

both in size and colour. Small blue nodes indicate low values of the 
coefficient, while large nodes (from green to yellow) indicate high 
values. The nodes with low values of the coefficient are those strongly 
conditioned by the dilution process, or in any case located far from the 
outfall. Conversely, high values of the coefficient occur mainly for nodes 
located close to the outfall, for which any contaminant input should be 
easily detectable. 

The lower range of values [0–0.009] affects mainly the head nodes, 
subject to important dilution processes during the contamination paths. 
The most part of the nodes of the network assume values belonging to 
the second and third range, and the remaining part of the nodes, instead, 
have coefficient values belonging to the last two ranges, i.e., the highest 
one. This situation is clearly visible in the figure, where the most 
important nodes define paths from points inside the network up to the 
outfall. 

In order to validate the effectiveness of the topological backtracking, 
Fig. 6 shows the comparison between the ICT and the impact coefficients 
IC calculated using the hydraulic approach considering steady-state 
conditions, as in Guadagno et al. (2023). The comparison shows the 
same system behaviour in the contaminant diffusion process in both 
cases. 

The topological impact coefficients are, globally, slightly lower than 
the hydraulic ones, probably attributable to the different lateral inflow 
configuration between the two systems, which inevitably affects the 
dilution process. This means that, for the specific system, the topological 
approach guarantees a lower network coverage, thus going to the safety 
advantage. However, Fig. 7 shows the correlation between the co-
efficients for the two approaches. The high correlation, equal to 99%, 
confirms the effectiveness of the topological approaches in identifying 
the emergent behaviour of SNs, also in terms of diffusion of contami-
nant, i.e., the topological approach reflects very well the trend of the 
hydraulic one considering steady-state conditions. 

4.2. Monitoring schemes 

Once the ICT is computed for all nodes of the system, it is possible to 
evaluate the coverage of the network fixing the sensor threshold value 
and, therefore, to define number and position of further sensors to add. 
All monitoring schemes are designed to provide optimal solutions, ob-
tained by minimizing the number of sensors to cover the network. As 
said, the procedure is reiterated several times, choosing at each step the 
candidate locations at the last monitored nodes that not influence each 
other. With respect to these new sensors the backtracking procedure is 
repeated to indicate new candidate locations to host sensors. The first 
step of the procedure with respect to the network of Fig. 5-b starts only 

Fig. 4. Network coverage (green part) guaranteed by the sensor placed at the outfall (node 9) by setting a threshold value of 0.2 mg/l (a). Two subsystems for which 
the backtracking should be again performed (b). Network full covered with only two sensors (c). 
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considering the sensor located at the outfall, i.e., at node 78. The anal-
ysis is performed assuming a threshold value of 0.05 mg/l and the 
resulting covered nodes (in green) are shown in Fig. 8-a. The nodes 
detected by the sensor correspond mainly both with those closest to the 
outfall and the most hydraulically relevant, because their important 
flows reduce the influence of dilution processes due to the flows coming 
from other pipes. Conversely, most of the nodes not covered by the 
sensor (in red) are those distant from the outfall, for which the impact 
coefficient values are very low, due to the dilution at the confluences 
along the path to reach the sensor. It is evident that the installation of 
other sensors is necessary to increase the coverage of the network. 

In particular, the results of this first step suggest of placing additional 
sensors in correspondence of the last monitored nodes. The candidate 
positions for sensors are nine, corresponding to nodes 23, 27, 31, 45, 50, 
51, 56, 59 and 72, highlighted in Fig. 8-a. 

Since the strategy plans to consider only the nodes not belonging to 

the same paths forward the outfall and positioned further downstream in 
the network, only nodes 50, 59 and 72, highlighted in Fig. 8-a with filled 
blue circles, are selected to place sensors. In fact, the selected nodes are 
crossed by the other candidate nodes along their path toward the outfall, 
i.e., these latter, most likely, are automatically covered guaranteed by 
the three selected sensors. 

A second backtracking step is executed considering the three new 
sensors (cyan filled circles) as output nodes for monitoring the 
remaining part of the system, and the results are shown in Fig. 8-b. The 
sensor installed in node 72 covers all the upstream nodes, and therefore 
does not require the installation of further sensors in the underlying 
portion of the network. The sensor installed in node 50 covers most of 
the nodes located upstream, including nodes 23, 31 and 51, indicated as 
candidate locations in the first step, thus avoiding the installation of 
sensors in those nodes. At the same time, with respect to node 50, the 
second backtracking step indicates of integrating the sensor scheme with 

Fig. 5. Sewer network layout with topological lateral inflow.  
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two other devices in the last monitored nodes, suggesting nodes 15 and 
75 as candidate sensors (empty blue circles). These two nodes influence 
each other, being node 15 located along the path from node 75 toward 
the outfall. It follows that only node 15 is selected to host sensor (filled 
blue circle), being, of the two, the one positioned further downstream in 
the network. 

The sensor installed in the node 59, on the other hand, covers the 
node 56 (previously indicated as candidate locations) and requires 

integrating the monitoring scheme with sensors in nodes 45 and 27, 
which are, however, connected to each other. Once again, the one 
located further downstream is selected between the two, i.e., node 45. 

The third step repeats the backtracking procedure with respect to the 
new two sensors, installed in nodes 45 and 15 (Fig. 9-a). The sensor 
installed in node 15 manages to cover the entire portion of the network 
that underlies and indicates the uselessness of the sensor in node 75, as 
expected in the previous step. Conversely, the sensor installed in node 45 

Fig. 6. Impact Coefficient values computed considering the topological (a) and the hydraulic (b) approaches.  

Fig. 7. Topological Impact Coefficient vs. Hydraulic Impact Coefficient. Correlation index.  
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covers a large part of the upstream nodes, especially those coming from 
small branches external to the main body of the system, from right and 
left sides, because they are characterized by small flow rates and less 
influenced by dilution processes. At the same time, however, it fails to 

cover the portion of the network coming from the central part, with 
respect to which the algorithm indicates five other candidate positions 
to host sensors. Among the candidate positions, as stated above, only 
one is selected, i.e., node 27. Finally, the backtracking procedure with 

Fig. 8. First (a) and second (b) steps of backtracking with highlighted candidate nodes, selected nodes, and installed sensors.  

Fig. 9. Third (a) and fourth (b) steps of backtracking with highlighted candidate nodes, selected nodes, and installed sensors.  
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respect to the sensor installed in node 27 indicates two further candi-
dates to host sensors (Fig. 9-b), even if the installation of the sensor only 
in node 12, the one selected since further downstream, manages to 
guarantee coverage of the remaining part of the system. The total 
number of sensors installed is equal to eight, one placed at the outfall 
and more additional seven. 

4.3. Installation priority order 

The number of sensors defined by the previous procedure is here 
characterized by an order of priority in the installation. In fact, it may 
happen that the sewer utilities do not have sufficient funds to support a 
total monitoring campaign and, therefore, additional information 
regarding the priority, in terms of efficiency of each sensor to be 
installed, could be useful. The priority is here expressed through the 
range P (P1, …, PM), with M number of sensors. The order of priority is 
provided only for the planned sensors, considering the one at the outfall 
as a prior. 

Table 1 reports the information about the priority order for the 
sensors of the previously defined monitoring schemes. The topological 
flows, FlowT, covered by each sensor has been considered as a measure 
of efficiency, even if information about number of covered nodes [%] 
and covered length, L [Km], are also provided. In particular, Table 1 
shows the IDs of the nodes where to install the sensors, the percentage of 
nodes, the flow and the length covered by each sensor. The first sensor, 
installed in node 59, covers the most significant FlowT. From the second 
to the fourth sensor in order of priority, it is possible noting that the 
flows covered increases more than the lasts tree, because they are up-
stream nodes. 

Fig. 10 plots the number of sensors versus the cumulative topological 

flow FlowT
cum, clearly showing the added value of each sensor in terms 

of network coverage. It is possible noting the presence of an inflection 
point in the curve, which represents an optimum of the solution. Ana-
lysing the solution in terms of Costs (Sensor) and Benefits (Covered 
Flow), the Benefits/Cost ratio tends to decrease after this point, and 
therefore the insertion of any other sensor becomes no longer cost- 
effective. Overall, the diagram represents a useful tool to support 
sewer monitoring planning and management because it provides useful 
information for both scheduled planning and sporadic monitoring 
campaigns. Furthermore, with respect to the spread of epidemics and the 
tracking of contaminants in sewer networks, this procedure also envis-
ages the possibility of passing from a network to a district scale, by 
activating through the backtracking procedure, additional sensors, also 
in step-test mode, which make it possible to identify the points of 
spillage/diffusion with ever greater accuracy. 

Finally, Fig. 11 reports the network with the seven sensors placed by 
applying the strategy and the corresponding order of priority P (P1, …, 
P7) in the installation. 

5. Conclusions 

The strategy here proposed aims at developing a promising approach 
for SNs monitoring, with optimal solutions in terms of sensor location 
and network coverage. The first part of the strategy concerns in the used 
of the backtracking method based on the evaluation of the impact co-
efficient through a topological approach, which envisages to substitute 
the hydraulic information with the geometric ones. 

The second part of the strategy involves determining optimal 
monitoring schemes with respect to specific threshold values, which 
indicate the sensitivity of the sensors to be installed. Monitoring 
schemes are designed to provide optimal solutions, which minimize the 
number of sensors to ensure the network coverage, by repeating the 
backtracking procedure several times, from downstream to upstream, 
choosing at each step the candidate locations that do not influence each 
other. An order of priority in the installation of the sensors, as indicator 
of their efficiency, is given according to the portion of network covered 
by each device with respect to the monitored flow. 

The results indicate that the topological impact coefficient, ICT 

values are comparable with those obtained using the hydraulic approach 
in steady-state conditions, with a correlation of 99%. The obtained 
sensor location demonstrates that, although the strategy is only based on 
the network topology, without implementing the hydraulic analysis, it 
manages to identify the process of diffusion of contaminants. Further-
more, the presented application shows its effectiveness in supporting the 
optimal design of the sewer network monitoring with the advantages of 

Table 1 
Priority in terms of percentage of nodes, flow and length covered by each sensor 
sorted with respect to the covered flow, along with cumulative values of flow 
and the length covered by the installed sensors.  

Priority ID 
sensor 

Nodes 
covered [% ] 

FlowT 

[l/s] 
FlowT

cum 

[l/s] 
Lc 
[Km] 

Lcum 

[Km] 

Prior n78 11,54 724,42 724,42 2,55 2,55 
1 n59 14,10 369,86 1094,28 2,54 5,09 
2 n45 15,38 248,93 1343,20 2,41 7,50 
3 n27 14,10 228,37 1571,57 2,79 13,91 
4 n50 16,67 197,99 1769,56 3,62 11,12 
5 n15 11,54 102,46 1872,02 2,73 16,64 
6 n12 6,41 62,86 1934,87 1,47 20,10 
7 n72 10,26 50,96 1985,84 1,99 18,63  

Fig. 10. Installation priority order for sensors. Cumulative topological flow vs number of sensors.  
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a topology-based backtracking approach, which doesn’t require the 
knowledge of the hydraulics of the system. It brings as an added value, 
compared to the hydraulic approach, a low computational burden, thus 
simplifying the analysis. 

Furthermore, the information relative to the installation priority 
order permits an analysis in terms of Benefits/Cost ratio about the 
number of sensors to instal. 

Overall, the strategy represents a useful tool to support sewer 
monitoring for both scheduled planning and periodic monitoring 

campaigns from the preliminary phase of the analysis regardless of the 
system’s hydraulic information. However, it is possible embedding any 
information about the hydraulic behaviour of the system acquired over 
time for refining the model and validate the previous results. 

In perspective, future works will be devoted to the use of the meth-
odology to applications in river basin motoring for detection of pollutant 
substances. It could also be adapted to face with source detection 
problems. 

Fig. 11. Monitoring scheme with the priority order for sensors.  
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