

University of Birmingham

Malleable Commitments from Group Actions and
Zero-Knowledge Proofs for Circuits based on
Isogenies
Petit, Christophe; Chen, Mingjie; Laval, Abel; Lai, Yi-Fu; Marco, Laurane

Document Version
Peer reviewed version

Citation for published version (Harvard):
Petit, C, Chen, M, Laval, A, Lai, Y-F & Marco, L 2023, Malleable Commitments from Group Actions and Zero-
Knowledge Proofs for Circuits based on Isogenies. in INDOCRYPT 2023.

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 14. Nov. 2023

https://birmingham.elsevierpure.com/en/publications/189ee9dc-49da-41f1-bbe5-cca3c7b21264

Malleable Commitments from Group Actions
and Zero-Knowledge Proofs for Circuits based

on Isogenies

Mingjie Chen1, Yi-Fu Lai2,3, Abel Laval4, Laurane Marco5, and Christophe
Petit1,4

1 University of Birmingham, UK
2 University of Auckland, New Zealand
3 Ruhr-University Bochum, Germany

4 Université Libre de Bruxelles, Belgium
5 EPFL, Switzerland

Keywords: group action, isogeny-based cryptography, commitments, generic
zero-knowledge proof of knowledge, post-quantum cryptography

Abstract Zero-knowledge proofs for NP statements are an essential tool
for building various cryptographic primitives and have been extensively
studied in recent years. In a seminal result from Goldreich, Micali and
Wigderson [17], zero-knowledge proofs for NP statements can be built
from any one-way function, but this construction leads very inefficient
proofs. To yield practical constructions, one often uses the additional
structure provided by homomorphic commitments.
In this paper, we introduce a relaxed notion of homomorphic commit-
ments, called malleable commitments, which requires less structure to
be instantiated. We provide a malleable commitment construction from
the ElGamal-type isogeny-based group action from Eurocrypt’22 [5]. We
show how malleable commitments with a group structure in the malle-
ability can be used to build zero-knowledge proofs for NP statements,
improving on the naive construction from one-way functions. We consider
three representations: arithmetic circuits, rank-1 constraint systems and
branching programs. This work gives the first attempt at constructing a
post-quantum generic proof system from isogeny assumptions (the group
action DDH problem). Though the resulting proof systems are linear in
the circuit size, they possess interesting features such as non-interactivity,
statistical zero-knowledge, and online-extractability.

1 Introduction

Many cryptographic applications such as multiparty computations, verifiable
computations, cryptocurrencies and more, rely on zero-knowledge proofs as an
underlying primitive. In 1991, Goldreich, Micali and Wigderson [17] introduced
a construction of proof systems for all NP statements from one-way functions.
However, such proofs remain inefficient in general and in practice, one usually

relies on the structure given by homomorphic commitments to build efficient
zero-knowledge proofs [20,10,11].

Current homomorphic commitment constructions rely on classical hardness
assumptions such as the hardness of the discrete logarithm problem [23] and
factorisation or pairing-based assumptions [19]. The security of these prob-
lems no longer holds in a post-quantum setting. Lattice-based cryptography
provides some constructions of post-quantum commitments with some homo-
morphic properties [16,18,9]. However, due to the weaker algebraic structure
offered by isogeny-based cryptography, having homomorphic commitments does
not seem plausible. Hence, this brings us to the main question of this work:

Can we construct a zero-knowledge proof for generic NP statements from
isogenies better than from one-way functions?

Our contributions. In this work, we build a generic zero-knowledge proof
of knowledge from isogeny-based assumptions. More specifically, we work under
the known-order effective group action model [1] which can be instantiated from
isogenies [7,13]. We consider two representations for NP statements: arithmetic
circuits over a small field and matrix-based branching programs over a large
field, where the latter can serve as an efficient representation for a shallow cir-
cuit. We construct proof systems for proving the addition and multiplication
gates for the arithmetic circuits over a small field or Zh for some small h ∈ N.
Then, using these two components we construct a proof system for the rank-1
constraints system over a small field or ring, which is a more efficient represent-
ation for an arithmetic circuit. Furthermore, we construct a proof system for a
matrix branching relation. Using the technique given in [5], each of these con-
structions leads to an online-extractable zero-knowledge proof of knowledge for
NP statements without trusted setup under the random oracle model.

We use the known-order effective group action (KO-EGA) model to develop
our schemes, where we know the group order and have an efficient algorithm for
computing the action of ng for any g within the (additive) group and n ∈ N.
Currently, the only two known post-quantum instantiations of KO-EGA are
from isogeny-based group actions, specifically CSI-FiSh and SCALLOP [7,13],
and the quantum security levels of these two instantiations are somewhat lower
than the NIST-1 requirement [24]. As such, our results remain predominantly
theoretical. However, it is essential to highlight that the KO-EGA model implies
the existence of numerous cryptographic primitives with significant relevance
in real-world applications [6,14,5,21]. The challenge of instantiating a stronger
KO-EGA remains an open problem and an active area of research, which is
orthogonal to the focus of our paper. Our primary focus centers on constructing
schemes within this model and providing performance metrics in terms of the
number of group actions, group elements, and set elements.

Another limitation of our proof systems is that their sizes grow linearly with
the input length. We describe the obstacles and challenges towards obtaining
succinct proofs in Sec. 6.4.

Technical Overview. In this paper, we first introduce malleable commitments,
a generalization of homomorphic commitments. Intuitively, a malleable commit-

2

ment scheme for a given relation must satisfy the following property: given a
commitment com on a message m, there exists an efficient algorithm that can
derive a commitment com′ on m′ such that m and m′ are related. The idea is to
settle for a middle point between the absence of structure given by commitments
from one-way functions, and the constraints of homomorphic commitments.

Our construction of malleable commitment is based on an adaptation of the
public key encryption scheme of [5] (Sec. 4). It is computationally hiding and
perfectly binding, both classically and in a post-quantum setting. We develop
ad hoc proof systems for proving the correctness of a given commitment, taking
advantage of the malleability property for greater efficiency (Sec. 5).

Finally, we use these proof systems as fundamental tools to provide zero-
knowledge proofs for NP statements (Sec. 6). More precisely, we derive proof
systems for arithmetic circuits, rank-1 constraint systems and branching pro-
grams. The constructions for arithmetic circuits and rank-1 constraint systems
impose some size restrictions on the underlying field as well as the message space,
which can be lifted using the branching program approach.

2 Preliminaries

We say that a function f : N → R is negligible, written negl(λ) if its absolute
value is asymptotically dominated by O(x−n) for all n > 0. We write PPT for
probabilistic polynomial time algorithm. For n ∈ N, we let [n] = {1, · · · , n}.

2.1 Commitment Scheme

Definition 1 (Commitment scheme). A commitment scheme is , Given a
security parameter λ, the algorithms Setup,Commit,Verify are defined in the fol-
lowing way:

– Setup(1λ)→ pp: A probabilistic polynomial time algorithm that takes as in-
put the security parameter λ and outputs the public parameters pp. The public
parameters pp are implicitly given as input to the following two algorithms.

– Commit(m, r)→ com: A probabilistic polynomial time algorithm that takes a
message m ∈M and randomness r ∈ R and outputs a commitment com ∈ C.

– Verify(com, (m, r)) → 0/1: A deterministic algorithm that takes as input a
commitment value com and a message-randomness pair (m, r) and returns
1 if Commit(m, r) = com, 0 otherwise.

The security of a commitment scheme is characterized by two properties: it
must be hiding and binding. Hiding guarantees that adversary should not be
able to recover the original committed message from seeing the commitment,
and binding guarantees that an adversary cannot open a commitment to two
distinct values.

Definition 2 (Hiding security). A commitment scheme is hiding if for any
probabilistic polynomial time adversary A playing the Hideb game the advantage
is negligible i.e.

3

AdvHide(A) = |Pr[Hide1(A)→ 1]− Pr[Hide0(A)→ 1]| = negl(λ)

where the Hideb game is defined as follows: given public parameters pp, A outputs
two challenge messages m0,m1 and a state st. The challenger samples some
randomness r, and then computes com = Commit(mb, r). On input st and com,
A returns a bit b′ corresponding to its guess for the value of b.

Definition 3 (Binding security). A commitment scheme is binding if for any
probabilistic polynomial time adversary A playing the Bind game, the advantage
is negligible,i.e.,

AdvBind(A) = Pr[Bind(A)→ 1] = negl(λ)
where the Bind game is defined as follows: Given the public parameters pp, A
must output two different messages m0,m1 and associated randomness r0, r1 and
wins if Commit(m0, r0) = Commit(m1, r1).

2.2 Group Actions

Definition 4 (Group Action). A group G, with group operation +, is said
to act on a set E if there is a map ⋆ : G × E → E that satisfies the following
properties:

1. (Identity.) If 0 is the identity element of G, then for any E ∈ E, we have
0 ⋆ E = E.

2. (Compatibility.) For any g, h ∈ G and any E ∈ E, we have (g + h) ⋆ E =
g ⋆ (h ⋆ E).

Furthermore, this action is called regular if

3. For every x1, x2 ∈ E there exists g ∈ G such that x2 = g ⋆ x1.
4. For g ∈ G, g is the identity element if and only if there exists some x ∈ E

such that x = g ⋆ x.

In order to use group actions to build our primitives, we require some efficient
(PPT) algorithms. We adopt the known-order effective group action (KO-EGA)
framework introduced in [1]. As discussed in Sec. 1, post-quantum instantiations
of KO-EGA are only known from isogenies. Obtaining a stronger parameter set
from isogenies is an active research area [7,13]. In this model, there exists various
constructions, such as logarithmic (linkable) ring signatures [6], threshold sig-
natures [14], logarithmic (and tightly secure) group signatures [5], and compact
blind signatures [21].

Definition 5 (Known-order Effective Group Action). Let (G, E , ⋆) be a
group action. For an E0 ∈ E, we say (G, E , ⋆, E0) forms a known-order effective
group action if the following properties are satisfied:

1. The group G is finite and both the structure of G ∼=
⊕

i Z/miZ and a minimal
generating set ⟨gi⟩ = G are known.

2. The set E is finite and there exist PPTalgorithms for membership testing and
for generating a unique bit-string representation for every element in E.

3. There exists a distinguished element E0 ∈ E for which the bit-string repres-
entation is publicly known.

4

4. There exists a PPTalgorithm to evaluate ngi ⋆ E for any natural number
n ∈ {1, ...,

∏
i mi}, E ∈ E and gi from the generating set.

Since the group order of G is given, one can sample uniformly at random
from G. Similarly, by multiplying by a proper factor, one can obtain a generating
set for any subgroup of G and sample uniformly at random from the subgroup.
Throughout this paper, we consider a regular known-order effective group action
from an abelian group. Hard problems in the context of group actions extend
naturally from their classical counterpart, namely we have an analog of the
discrete logarithm problem called group-action inverse problem (GAIP) as well
as analogous of the decisional Diffie-Hellman problems for group actions.

Definition 6 (Group Action Inverse Problem). Let (G, E , ⋆, E0) be a
group action with a distinguished element E0 ∈ E. Given E sampled uniformly
in E, the Group Action Inverse Problem (GAIP) consists in finding an element
g ∈ G such that g ⋆ E0 = E.

Definition 7 (Decisional Diffie-Hellman Problem). Let (G,E0, E , ⋆) be
a group action. The challenger generates s1, s2, s3 ∈ G and b ∈ {0, 1}, and
gives (s1 ⋆ E0, s2 ⋆ E0, ((1− b)(s1 + s2) + b(s3)) ⋆ E0) to the adversary A. Then,
Decisional Diffie-Hellman (DDH) problem consists in A returning b′ ∈ {0, 1}
to guess b. The adversary A wins if b = b′. We define the advantage of A to
be AdvDDH(A) := |Pr[A wins.] − 1/2| where the probability is taken over the
randomness of s1, s2, s3, b.

2.3 Sigma Protocols

Definition 8 (Sigma Protocol). A sigma protocol ΠΣ is a three-move proof
system for a relation R consisting of oracle-calling PPTalgorithms (P = (P1, P2),
V = (V1, V2)), where V2 is deterministic. We assume P1 and P2 share states and
so do V1 and V2. Let ChSet be the challenge set. ΠΣ proceeds as follows:

– The prover, on input (st,wt) ∈ R, runs com ← PO
1 (st,wt) and sends a

commitment com to the verifier.
– The verifier runs chall← V O

1 (1λ), drawing a random challenge from ChSet,
and sends it to the prover.

– The prover, given chall, runs resp← PO
2 (st,wt, chall) and returns a response

resp to the verifier.
– The verifier runs V O

2 (st, com, chall, resp) and outputs ⊤(accept) or ⊥(reject).

Here, O is modeled as a random oracle. For simplicity, we often drop O from
the superscript when it is clear from context. We assume the statement st is
always given as input to both the prover and the verifier. The protocol transcript
(com, chall, resp) is said to be valid in case V2(com, chall, resp) outputs ⊤.

Definition 9 (Correctness). A sigma protocol ΠΣ is said to be correct if for
all λ ∈ N, (st,wt) ∈ R, given that the prover and the verifier both follow the
protocol specifications, then the verifier always outputs ⊤.

5

Definition 10 (High Min-Entropy). We say a sigma protocol ΠΣ has α(λ)
min-entropy if for any λ ∈ N, (st,wt) ∈ R, and a possibly computationally-
unbounded adversary A, we have

Pr
[
com = com′ ∣∣ com← PO

1 (st,wt), com′ ← AO(st,wt)
]
≤ 2−α,

where the probability is taken over the randomness used by P1 and by the random
oracle. We say ΠΣ has high min-entropy if 2−α is negligible in λ.

Additionally, we require a sigma protocol to be honest verifier zero-knowledge
(HVZK) as well as 2-special sound.

Definition 11 (Honest Verifier Zero-Knowledge (HVZK)). We say ΠΣ

is honest-verifier-zero-knowledge for relation R if there exists a PPTsimulator
SimO with access to a random oracle O such that for any statement-witness
pair (st,wt) ∈ R, chall ∈ ChSet, λ ∈ N and any computationally-unbounded
adversary A that makes at most a polynomial number of queries to O, the ad-
vantage AdvHVZKΠΣ

of A is negligible, where

AdvHVZKΠΣ
(A) :=

∣∣∣Pr[AO(PO(st,wt, chall)) = 1]− Pr[AO(SimO(st, chall)) = 1]
∣∣∣,

where P = (P1, P2) is a prover running on (st,wt) with a challenge fixed to
chall and the probability is taken over the randomness used by (P, V) and by the
random oracle.

Definition 12 (2-Special Soundness). We say a sigma protocol ΠΣ has
2-special soundness if there exists a polynomial-time extraction algorithm such
that, given a statement st and any two valid transcripts (com, chall, resp) and
(com, chall′, resp′) relative to st and such that chall ̸= chall′, outputs a witness wt
satisfying (st,wt) ∈ R.

Remark 1. In some circumstances, we can relax the relation for 2-special sound-
ness to R′ where R ⊆ R′. That is, we allow the extractor to output wt such
that (st,wt) ∈ R′ but (st,wt) /∈ R. As long as given st to find wt such that
(st,wt) ∈ R′, the sigma protocol can still serve as a proof system for some ap-
plications. For instance, [6,5] both relaxes the relation by including the collision
of the hash function. Therefore, the resulting proof system, via the Fiat-Shamir
transform, is sound if the hash function is collision-resistant.

Finally, note that sigma protocols can be used to build non-interactive zero-
knowledge proofs of knowledge.

2.4 Proof Systems

We consider non-interactive zero-knowledge proof of knowledge (NIZKPoK) over
the programmable random oracle model with statistical zero-knowledge and
simulation-extractability.

Formally, a NIZKPoK for a relation R is a tuple of PPT algorithms Π =
(Prove,Verify) with access to the random oracle O such that for any valid public
parameter of the scheme pp and the security parameter λ ∈ N, the scheme
satisfies the following properties:

6

– Completeness: for every (st,wt) ∈ R,
Pr[V O(st, π) = 1 | π ← PO(st,wt)] = 1.

– Statistical zero-knowledge: there exists a simulator Sim such that for any
(st,wt) ∈ R and any possibly unbounded adversary A can distinguish the
distributions: {π|π ← ProveO(st,wt)}, {π|π ← SimO(st)} with only negli-
gible advantage where the probability is taken over the randomness used in
the experiment and the scheme.

– Simulation-extractability: for any adversary A there exists an extractor EA
such that

Pr

[
Verify(st,wt, π) = ⊤

(st,wt) /∈ R ∧ (st,wt, π) /∈ L

∣∣∣∣∣ (st, π)← ASimProve,O(pp)

wt← E(st, π)

]
≤ negl(λ)

where SimProve(st′,wt′) is an oracle that returns a simulated proof us-
ing π′ ← Sim(st′) when (st′,wt′) ∈ R. Otherwise, SimProve returns ⊥.
Also, SimProve maintains the list L, which is initially empty, and records
(st′,wt′, π′) for each valid query of (st′,wt′).

3 Malleable commitments

In this section we introduce the notion of malleable commitments. We will use
this notion to build commitments based on group actions and isogenies from
which we can derive zero-knowledge proofs for general NP statements. We first
give a general definition together with the associated security notion and then
restrict the notion to a specific kind of malleability which we will use later on in
our constructions.

3.1 A generic notion of malleability

Intuitively, we say that a commitment scheme is malleable if given a commitment
for an unknown value m, anyone can create a second commitment for some m′

related to m. We formalise this notion below.

Definition 13 (Malleable Commitment). Given a setM on which we have
a relation R, a commitment scheme (M,R, C,Setup,Commit,Verify) is said to
be R-malleable if there exists a PPT algorithm AR

m : C → C with the following
property: for any com′ = AR

m(com), if there exists some (m, r) ∈ M×R such
that com = Commit(m, r), then there exists (m′, r′) ∈ M×R such that com′ =
Commit(m′, r′) and R(m,m′).

Remark 2. Depending on the application, r and r′ might be equal. Additionally,
the algorithm Am does not have to be able to retrieve any of the values m,m′ or
r. However, in our constructions we only consider schemes for which whenever
one party knows (m, r), they can retrieve the message m′ corresponding to the
commitment com′.

7

Remark 3. One can easily check that homomorphic commitments are a special
case of malleable commitments for whichM,R and C are all groups.

As is, malleable commitments a priori do not impose any structure onM,R
or C and provide a very generic framework. Within this framework, we instanti-
ate a specific type of malleable commitments exploiting the structure provided
by isogeny-based cryptography. Namely, we enforce a group structure on the
message and randomness spaces M and R, while the commitment space C is
only assumed to be a generic set. This is motivated by the fact that messages
and randomness will be encoded as isogenies, which form a group under com-
position, while commitments will be seen as (isomorphism classes of) elliptic
curves, which possesses no built-in group structure. The malleability will then
be obtained by defining a group action ofM×R on C. In particular, since C is
not a group, what we obtain is not an homomorphic commitment.
We formalize this additional structure required through the notion of Admissible
Group-Action-based Malleable Commitment (AGAMC).

Definition 14 (Admissible group-action-based malleable commitment
(AGAMC)). A commitment scheme ΠCommit = (Setup,Commit,Verify) is said
to be an admissible group-action based malleable commitment scheme if the
following requirements are satisfied:

1. The public parameters instantiated by Setup are pp = (M,R, C, X, ⋆) where
M and R are (additive) abelian groups — with respective identities 0M and
0R, and where X ∈ C is a distinguished element defined as X := Commit(0M, 0R).

2. The action ⋆ : (M×R)×C −→ C is regular and can be computed in polynomial-
time. Any commitment is computed as Commit(m, r) := (m, r) ⋆ X.

3. The group action gives rise to the following malleability: for any (m, r), (m′, r′) ∈
M×R, we have (m′, r′) ⋆ Commit(m, r) = Commit(m+m′, r + r′).

4. There are efficient uniform sampling methods for any subgroups ofM, R.
5. There is an efficient algorithm to determine the membership of C.
6. Every element inM,R, C has a unique representation.

Remark 4. We do not require the algorithm Commit specified by pp to be com-
puted efficiently itself. Instead, one uses malleability to produce a commitment
Commit(m, r) = (m, r) ⋆ Commit(0M, 0R). We abuse the notation 0 to repres-
ent 0M, 0R. Also, we simplify the commitment scheme notion to be ΠCommit =
(Setup,Commit,Verify) and pp is implicitly used when the context is clear.

4 Malleable commitments from group actions

We present a construction of an AGAMC scheme from a known-order effective
group action (Def. 5), and prove its security.
Construction. Π = (Setup,Commit,Verify) proceeds as follows.

– Setup(1λ) → pp: on input λ, output pp = (G,G, E×E , (E0, E), ⋆′) i.e.M =
R = G, C = E×E and X := Commit(0M, 0R) = (E0, E), where E = s ⋆ E0

for some s ∈ G and s ̸= 0. The action ⋆′ is then defined as:

8

(m, r) ⋆′ (Y0, Y) := (r ⋆ Y0, (r +m) ⋆ Y),

for (G, E , E0, ⋆) a known-order effective group action where N = |G| is given.
The group size is implicitly parameterized by the security parameter λ.

– Commit(m, r)→ com: on input (m, r) ∈ G2, returns com = (m, r) ⋆′ X.
– Verify(com, (m, r)) → 0/1: on input (com, (m, r)) ∈ C × G2, checks whether

(m, r) ⋆′ X = com. If yes, then outputs 1 and outputs 0 otherwise.

The requirements of an AGAMC follow naturally from the known-order ef-
fective group action. The uniqueness and membership test of C and the feasib-
ility of ⋆ come from Def. 5. The uniform sampling methods of any subgroups of
M,R come from the known order and minimal generating set of G. Since we
know minimal generating sets, we have a unique representation ofM,R.

Theorem 1. The commitment scheme described above is (computationally) hid-
ing assuming DDH problem over (G, E , E0, ⋆) is hard.

Proof. Consider a DDH setup (G, E , E0, ⋆). Given a DDH challenge (E1, E2, E3)
and access to an hiding adversary A, we build an adversary B against DDH as
follows.

1. Set X = (E0, E1) and pp = (G,G, E × E , X, ⋆′). This gives a valid setup for
our commitment construction.

2. Invoke the adversary A on the the public parameter pp.
3. Upon receiving m0,m1 ∈ M from A, reply with (E2,mb ⋆ E3) where b ←
{0, 1}.

4. Output (b = b′) where b′ is returned by A.
We claim that this adversary B has half of the advantage of A. Write E1 = s1⋆E0

and E2 = s2 ⋆ E0 where s1, s2 are sampled uniformly from G by the DDH
challenger. In the case that E3 = (s1 + s2) ⋆ E0, i.e. b = 1, it is clear that B
returns a well-formed commitment of mb with respect to pp.

In the case that E3 ← E by the challenger, the commitment is potentially
malformed. Since the input (E2,mi ⋆ E3) follows a uniform distribution over E2
regardless of mb and b in the view of A, the random bit b equals b′ returned by
A with probability exactly 1/2 in this case. Hence, the reduction B can win with
probability exactly 1/2 in this case. Therefore,

|Pr[B wins]− 1/2| = |1/2Pr[B wins | E3 = (s1 + s2) ⋆ E0]

+ 1/2Pr[B wins | E3 ̸= (s1 + s2) ⋆ E0]− 1/2|
= 1/2|Pr[B wins | E3 = (s1 + s2) ⋆ E0]− 1/2|
= 1/2 AdvHideΠ (A).

Hence, we have AdvDDH(B) = 1
2Adv

Hide
Π (A).

Theorem 2. The commitment scheme described above is (perfectly) binding.

Proof. Given (m0, r0) ⋆
′ X = (m1, r1) ⋆

′ X, we have (r0 ⋆ Y0, (r0 + m0) ⋆ Y) =
(r1 ⋆ Y0, (r1 +m1) ⋆ Y) for some Y0, Y ∈ E . Since the action is regular, we have
r0 = r1 and m0 = m1, and the result follows.

9

4.1 Commitment products

We show that given two AGAMCs we can derive a new one via a direct product.
Concretely, given two AGAMCs Π1 = (Setup1,Commit1,Verify1) and Π2 =
(Setup2,Commit2,Verify2) we can define Π = (Setup,Commit,Verify) in the fol-
lowing way: Given Setup1 → (M1,R1, C1, X1, ⋆1), Setup2 → (M2,R2, C2, X2, ⋆2)
then Setup→ (M,R, C, X, ⋆) withM = (M1,M2), R = (R1,R2), C = (C1, C2),
X = (X1, X2) and ((m1,m2), (r1, r2))⋆X = ((m1, r1)⋆1X1, (m2, r2)⋆2X2). The
definitions of Commit and Verify follow accordingly.

Proposition 1 (Commitment Product). Given two AGAMCs Π1 and Π2,
then their product Π defined above gives an AGAMC. Moreover, Π is per-
fectly (resp. computationally) hiding (resp.binding) when both Π1, Π2 are per-
fectly (resp. computationally) hiding (resp.binding).

Proof. The uniqueness and membership test ofM,R, C, the feasibility of ⋆, and
the uniform sampling immediately follow from the properties of Π1 and Π2.
Regarding the hiding property, by using a standard hybrid argument, for any
hiding adversaryA againstΠ, there exists B1 againstΠ1 and B2 againstΠ2 such
that AdvHideΠ (A) ≤ AdvHideΠ1

(B1) + AdvHideΠ2
(B2). Regarding the binding property,

suppose (m, r) ⋆ X = (m′, r′) ⋆ X where m = (m1,m2),m
′ = (m′

1,m
′
2), r =

(r1, r2), r
′ = (r′1, r

′
2). Then, we have (m1, r1)⋆1X1 = (m′

1, r
′
1)⋆1X1 and (m2, r2)⋆2

X2 = (m′
2, r

′
2) ⋆2 X2. Therefore, Π is binding when both Π1, Π2 are binding.

Remark 5. Prop. 1 implies that the AGAMC is closed under the product. Al-
ternatively, given an AGAMC with message and randomness space M and R,
we can extend both to vector spaces or matrix spaces Mm×n,Rm×n. As we
will show in 6.2, this algebraic structure is sufficient to efficiently encode the
information of circuits.

5 Proof systems for an admissible group-action based
commitment

In this section, we build two proof systems for AGAMC that will serve as essen-
tial tools for constructing a generic proof system from this special commitment
scheme. Both of them are proving the knowledge of the input of a commitment
with a restricted message space. The nuance between the two protocols lies in
the structure of the message space being a subgroup or not.
The first system (Sec. 5.1 and Fig. 1) will be needed to commit on the multiplic-
ative gates of an arithmetic circuit (as M is not a multiplicative group) while
the second (Sec. 5.2 and Fig. 2) will be used for the addition gates (and thus we
can exploit the additive group structure ofM). The additional structure avail-
able in the second makes it more efficient : it is therefore simpler to commit on
additions than on multiplications.

Formally, let pp = (M,R, C, X, ⋆), the parameters of an AGAMC and M ′ a
subset ofM. Consider the following relation Rpp,M ′ ⊆ C ×M×R where

10

Rpp,M ′ = {(st = c,wt = (m, r)) | c = (m, r) ⋆ X ∧m ∈M ′}. (1)

Equivalently, Rpp,M ′ = {(st = c,wt = (m, r)) | c = Commit(m, r) ∧m ∈M ′}
due to the malleability. Therefore, to have a proof system for the relation Rpp,M ′

implies to have a proof system for the commitment without revealing m or r.
We then turn it into non-interactive zero-knowledge proof (NIZK) using par-

allel repetition and the Fiat-Shamir transform ([15]). Looking ahead, in Secs. 6.1
and 6.2 we will use this tool to build NIZK to prove satisfiability of arithmetic
circuits and for rank-1 constraint systems (R1CS).

As mentioned earlier, commitment schemes from one-way functions can in-
deed be used to build generic zero-knowledge proof, but they result in highly
inefficient ones. Homomorphic commitments (e.g. Pedersen commitments) have
additional structure that makes them useful in many pre-quantum succinct zero-
knowledge proofs, such as [10,26,25]. Here, we demonstrate that a malleable
commitment (AGAMC) can also provide a structure suitable for use in post-
quantum generic proof systems for arithmetic circuits when the underlying ring
is small.

5.1 Proof system for small message space

We start with a fundamental proof system of AGAMC for proving the knowledge
of the input of a commitment with an arbitrary small message space.

We first consider the case where M ′ is polynomially small. A concrete con-
struction is given in Fig. 1 using Merkle trees to make the proof size logar-
ithmic in |M ′|. The use of Merkle trees is standard except for one modification:
two leaves are concatenated in alphabetical order, resulting in an index-hiding
Merkle tree [6]. To be more precise, the modification to the alphabetical order
serves as a random (in the ROM) permutation of the input, ensuring that reveal-
ing a path in the tree does not reveal the location of the leaf. The construction
is inspired by [5]. The high-level idea is that the prover uses the malleability
property to create multiple new commitments (−m′, r′) for each m′ ∈ M ′, and
generates a Merkle root. The reason M ′ is required to be small is to make this
possible. The prover is then challenged to either reveal all randomnesses used
in the malleability, including the randomness used to generate the whole tree,
or to reveal (0, r + r′) and the path of the tree that results in the same root.
Intuitively, knowing the whole tree and the secret path allows for the determin-
ation of m along with r. Zero-knowledge follows from the uniform distribution
of r + r′ (remember R has a group structure), and the use of an index-hiding
Merkle tree to protect m.

Theorem 3. The proof system described in Figure 1 is correct, 2-special sound
(assuming collision resistance of the hash function H), and statistical honest-
verifier zero-knowledge (HVZK) (in the random oracle model).

Correctness. For the challenge chall = 0, the correctness holds naturally. For
the challenge chall = 1, for the response resp = (r′′, path, bits), we have r′′ = r′+
r. Therefore, c̃om = (0, r′′)⋆X = (0, r′+r)⋆X. Recall that comI = (−mI , r

′)⋆u.

11

round 1: PO
1 ((pp,M ′, u), (m = mI , r))

1: seed← {0, 1}λ
2: (r′, bits1, · · · , bitst)← H(EXP||seed) ▷ Sample r′ ∈ R and bitsi ∈ {0, 1}λ
3: for i ∈ [t] do
4: comi ← (−mi, r

′) ⋆ u
5: Ci ← H(COM||comi||bitsi) ▷ Create commitments Ci ∈ {0, 1}2λ

6: (root, tree)← MerkleTree(C1, · · · ,CN)
7: P sends comm← root to V .

round 2: V1(comm)

1: c← {0, 1}
2: V sends chall← c to P .

round 3: P2((m = mI , r), chall)

1: c← chall
2: if c = 1 then
3: r′′ ← r′ + r
4: path← getMerklePath(tree, I)
5: resp← (r′′, path, bitsI)
6: else
7: resp← seed

8: P sends resp to V .

Verification: V O
2 (comm, chall, resp)

1: (root, c)← (comm, chall)
2: if c = 1 then
3: (r′′, path, bits)← resp
4: c̃om← (0, r′′) ⋆ X

5: C̃← H(COM||c̃om||bits)
6: r̃oot← ReconstructRoot(C̃, path)
7: else
8: Repeat round 1 with seed← resp.

9: Output accept if the computation results in
root, and reject otherwise.

Figure 1. Our construction for the relation Rpp,M′ (Eq. (1)) using an AGAMC with
pp = (M,R, C, X, ⋆). The set M ′ is of cardinality t and can be publicly enumerated
as M ′ = {m1, · · · ,mt}. The hash function H is modeled as a random oracle with
prefixes EXP (for expand) and COM, for a pseudo-random number generator (PRNG)
and a commitment scheme respectively and is also implicitly used in MerkleTree(·).

Since bitsI = bits, we have c̃om = comI so that C̃ = CI . ReconstructRoot(C̃, path)
will result in the same root and the correctness follows.

2-Special Soundness. Let (comm = root, 0, resp0 = seed), (comm = root, 1, resp1 =
(r′′, path, bits)) be two valid transcripts. We can either extract a collision of the
hash function H or a witness for the statement (pp,M ′, u). Following round 1
of Fig. 1, say seed generates r′, comi = (−mi, r

′) ⋆ u for each i ∈ [t]. Let
c̃om = (0, r′′)⋆X. Since both resp0, resp1 result in the same root root, we assume

c̃om = comĨ for some Ĩ ∈ [t]; otherwise, a collision of the hash function H can
be found in the process of generating the root (tree,ReconstructRoot) due to the
binding property of the Merkle tree [6, Lemma 2.9]. We claim that (mĨ , r

′′− r′)
is the witness. This is because we have (0, r′′) ⋆ X = (−mĨ , r

′) ⋆ u. Therefore,
(mĨ , r

′′ − r′) ⋆ X = u. The result follows.

Statistical HVZK. We show the scheme is statistical HVZK by modeling
the hash function H as a random oracle, which is essential to achieve statistical
zero-knowledge. For the challenge chall = 0, the simulator follows the first round
of Fig. 1 and generates (seed, 0, comm) as the transcript. For the challenge chall =
1, the simulator generates r′′ from R uniformly at random and computes c̃om1 =
(0, r′′)⋆X. Then, the simulator generates uniformly r′ fromR and bits1, · · · , bitst
from {0, 1}λ, computes C̃1(COM||c̃om1||bits1) and Ci = H(COM||(−mi, r

′)⋆u||bitsi)
for i ∈ {2, · · · , t}, and generates (root, path) ← MerkleTree(C̃1,C2, · · · ,CN). Fi-
nally, the simulator outputs the transcript (root, 1, (r′′, path, bits1)). Even though
the simulator simulates for I = 1, the distribution is independent of this partic-

12

round 1: PO
1 ((pp,M ′, u), (m, r))

1: seed← {0, 1}λ
2: (m′, r′)← H(EXP||seed) ▷ Sample (m′, r′) ∈M ′ ×R
3: C← H(COM||(m′, r′) ⋆ u) ▷ Create commitments C ∈ {0, 1}2λ
4: P sends comm← C to V .

round 2: V1(comm)

1: c← {0, 1}
2: V sends chall← c to P .

round 3: P2((m, r), chall)

1: c← chall
2: if c = 1 then
3: (m′′, r′′)← (m′ +m, r′ + r)
4: resp← (m′′, r′′)
5: else
6: resp← seed

7: P sends resp to V .

Verification: V O
2 (comm, chall, resp)

1: (C, c)← (comm, chall)
2: if c = 1 then
3: (m′′, r′′,)← resp

4: C̃← H(COM||(m′′, r′′) ⋆ X)
5: else
6: Repeat round 1 with seed← resp.

7: Output accept if C̃ = C or round 1 with
seed← resp leads to C

Figure 2. Our construction for the relation Rpp,M′ (Eq. (1)) using an AGAMC with
pp = (M,R, C, X, ⋆) where M ′ is a subgroup ofM. The hash function H is modeled
as a random oracle with prefixes EXP and COM as a PRNG and a commitment scheme
respectively.

ular choice due to the hiding property of the Merkle tree [6, Lemma 2.10]. The
only difference is that r′, bits1, · · · , bitst are not generated by H(EXP||·). Since
seed has λ bits of min-entropy and is information-theoretically hidden from the
distinguisher, for any unbounded distinguisher with Q queries to H of the form
H(EXP||·) the statistical difference between the distributions is QH/2λ.

Efficiency. Suppose it requires x bits to represent an element over the mes-
sage space M ′ and y bits for the randomness space R. The scheme in Fig. 1 has

proof size λ+(y+log λ|M ′|+λ)
2 bits on average and requires O(|M ′|) malleability

actions.

5.2 Proof system for message spaces with a subgroup structure

In Sec. 5.1, we require the message space to be small since we do not have any
assumptions on its structure. Here we show that we can remove this restriction
when the message space M ′ is a subgroup ofM, we obtain a more efficient NIZK
based on the proof system shown in Fig. 2.

Theorem 4. The proof system described in Fig. 2 is correct, 2-special sound
(assuming collision resistance of the hash function H) and statistical honest
verifier zero-knowledge.

Proof. See Appendix C.1 in the full version of the paper.

Efficiency. Say it requires x bits to represent an element over the message space
M ′ and y bits for the randomness space R. The scheme in Fig. 2 has proof size
λ+(x+y)

2 bits on average and requires 2 malleability actions.

13

5.3 NIZK via the Fiat-Shamir Transform

By applying the Fiat-Shamir transform [15], we obtain NIZKs for the relation
Rpp,M ′ as shown in Fig. 3. Using Theorems 3 and 4 respectively, and the prop-
erties of the Fiat-Shamir transform we may prove that the NIZKs are complete
and statistical zero-knowledge with standard proofs.

In order to demonstrate simulation-extractability, we can reuse the proof
of Thm. 6.1 in [5] and show that our NIZKs are also (multi-proof) online-
extractable (see Def. 2.10 of [5] for the definition), which implies the simulation
extractability and has online-extractability. From a high level, the scheme is
online-extractable because we use the PRNG to generate the randomness in the
commitment in the sigma protocol. In the security proof, the PRNG is modeled
as a random oracle and the challenge is binary. Alternatively, a simulator can
extract the response for the challenge 0 by checking the random oracle queries
regardless of the challenge c ∈ {0, 1}. In other words, since we use the random
oracle as PRNG to generate the randomness for the commitment and the chal-
lenge is binary, the proof of Theorem 6.1 in [5] is agnostic to the underlying
sigma protocol by replacing Step 2.(b) with the 2-special soundness extractor.
We, therefore, omit the proof for simplicity.

Theorem 5. The NIZKs of Figs. 1 and 2 compiled by Fig. 3 is complete,
simulation-extractable and statistically zero-knowledge in the random oracle model.

ProveO(st,wt)

1: for i ∈ [λ] do
2: comi ← PO

1 (st,wt)

3: com← (com1, · · · , comλ)
4: (c1, · · · , cλ)← O(FS||st||com)
5: chall← (c1, · · · , cλ)
6: for i ∈ [λ] do
7: respi ← PO

2 (st, comi, ci)

8: resp← (resp1, · · · , respλ)
9: return π ← (com, chall, resp)

VerifyO(st, π)

1: (com = (com1, · · · , comλ),
chall = (c1, · · · , cλ), resp =
(resp1, · · · , respλ))← π

2: output = 1
3: for i ∈ [λ] do
4: r ← V2(comi, ci, respi)
5: output← output · r
6: output ← output · (chall ==
O(FS||st||com))

7: return output

Figure 3. NIZK for the relation by applying the Fiat-Shamir transform to Π = (P =
(P1, P2), V = (V1, V2)) from either Fig. 1 or Fig. 2 with λ repetitions.

6 Proof Systems for NP Statements

This section presents proof systems for an arithmetic circuit over a finite field or
ring constructed from an AGAMC. Firstly, we consider two cases: the arithmetic
circuit in general with the addition and multiplication gates in Sec. 6.1, and the
representation using rank-1 constraint system in Sec. 6.2. In both cases, the
underlying finite field or ring must be small or embedded into a small subgroup
of the message space. In Sec. 6.3, we construct a proof system for the branching
program representation without size restrictions.

14

6.1 Arithmetic circuits over a small ring

This subsection gives a NIZK for the satisfiability of an arithmetic circuit over
a small ring. We encode this ring as M ′ ⊆ M of a given AGAMC Π =
(M,R, C, X, ⋆) (e.g. via a dictionary map).

The idea is fairly straightforward. For each gate of the circuit, the prover
uses an AGAMC to make a commitment to the inputs and the output. Then,
the prover uses Fig. 1 to generate a proof based on the commitment product
Prop. 1.Concretely, for the input (m1,m2) and the output m3 for a certain gate.
The prover computes Commit(m1, r1), Commit(m2, r2), and Commit(m3, r3). Say
the ring of the circuit is encoded asM ′ ⊆M. The prover uses Fig. 1 for the triple
commitment Π×Π×Π with the message space M ′′ ⊆M ′3 by collating the valid
input-output tuple corresponding to the gate. For example, consider an addition
gate with inputs m1,m2 and output m3. We need to prove that Commit(m1, r1),
Commit(m2, r2), and Commit(m3, r3) are all in Π and that m1 +m2 = m3. Re-
garding a multiplication gate with inputs m1,m2 and output m3. We need to
prove that Commit(m1, r1), Commit(m2, r2), and Commit(m3, r3) are all in Π
and that m1 ∗m2 = m3.

Efficiency. Say it requires x bits to represent an element over the message space
M ′ and y bits for the randomness space R. Let the number of parallel repeti-
tions of the base schemes Figs. 1 and 2 be λ in Fig. 3. The scheme in Fig. 1 has

proof size λ2+λ(3y+x log λ+3λ)
2 x bits on average and requires O(|M ′|3) malleabil-

ity actions. The equality test can also be done in the same way. Say the prover
commits to Commit(m1, r1), Commit(m1, r2). Then, the prover uses Fig. 1 for
the commitment product Π×Π with the message space M ′′ ⊆M ′2 by collecting
(m,m) ∈M ′2.

Optimization for a group M ′. When the ring of the circuit can be embedded
as a subgroup M ′ ≤ M, the proofs for a variety of gates can be significantly
improved, both with respect to proof size and efficiency.

Concretely, we can improve the proofs of the gates of equalities, additions,
addition-by-a-constant, or multiply-by-a-constant. This is because the tuple of
valid input-output tuples will form a subgroup of M3 by Prop. 2. In this case
we can use Fig. 2 to generate the proofs. In contrast, the proof size is improved
by a factor of log2(M

′2) and the number of actions is reduced by a factor of M ′.
However, the main bottleneck of our technique is rooted in the multiplication

gate where the input-output tuples cannot form a subgroup overM3. Therefore,
it still requires Fig. 1 to generate a proof for a multiplication gate and the proof
size is of O(log(M ′)). This is also the reason that our result cannot be extended
to a larger ring in a computationally feasible manner.

6.2 Proof System for Rank-1 Constraint System Over a Small Ring

Let F be a finite field (or a ring), the rank-1 Constraint System (R1CS) relation
consists of statement-witness pairs ((A,B,C, v), w) where A,B,C ∈ Fm×(n+1)

15

and v, w are matrices such that (Az) ◦ (Bz) = Cz for z := (1, v, w) ∈ Fn+1 and
◦ denotes the entry-wise product (i.e. the Hadamard product). R1CS capture
arithmetic circuit satisfaction : A,B,C encode the circuit’s gates, the circuit’s
public input v, and w is the circuit’s private input and wire values.

Recall from Rem. 5 that we can assume the message space of an AGAMC to
be a vector. Therefore, by using an AGAMC, a prover generates proofs for the
rowcheck and lincheck problems as follows.

1. Commit to z := (1, v, w), Az,Bz, Cz using Commit. Let Cz,CA,CB ,CC be
the resulting commitment vectors.

2. Rowcheck: Generate the proof for Cz,CA,CB ,CC using Fig. 2 for the rela-
tion

(st = (A,B,C,Cz,CA,CB ,CC),

wt = (z, rz, rA, rB , rC))

∣∣∣∣∣∣∣∣∣
Cz = Commit(z; rz),

CA = Commit(Az; rA),

CB = Commit(Bz; rB),

CC = Commit(Cz; rC).

 .

3. Lincheck: Generate the proof for CA,CB ,CC using Fig. 1 for the relation
(st = (CA,CB ,CC),

wt = (yA, yB , yC , rA, rB , rC))

∣∣∣∣∣∣∣∣∣
CA = Commit(yA; rA),

CB = Commit(yB ; rB),

CC = Commit(yC ; rC),

yC = yA ◦ yB .

 .

4. Output Cz,CA,CB ,CC and the proofs.

Note that we are allowed to apply Fig. 2 to the rowcheck because if M ′ is a
subgroup ofM, whereM is of dimensional n+1, then {(m,Am,Bm,Cm)|m ∈
M ′} is also a subgroup ofM4, which can be formalized as Prop. 2. In contrast,
Fig. 2 is not applicable to the lincheck due to the non-subgroup structure of the
restriction yC = yA ◦ yB .

Proposition 2. Let M1,M2 be subgroups of a finite abelian group (M,+). Then,

(i) M1 ×M2 is also a subgroup ofM2 :=M×M.

(ii) the set {(x, x) ⊆M2
1 } is a subgroup ofM2.

(iii) for any integer a, b, c ∈ Z, the set {(x, y, z) ⊆M1 ×M2 × ⟨M1,M2⟩ | ax+ by = cz}
is a subgroup ofM3.

For a given instantiation of an AGAMC scheme, the estimation is given in Tab. 1
with A,B,C ∈ Fm×(n+1) and z ∈ F1+n for an arithmetic circuit over a finite field
F which can be embedded as a subgroup into M. For example, when λ = 128
with an instantiation of AGAMC using CSIDH-2048 (assuming the existence),
we have η ≈ γ2 ≈ 2048.

16

Item Cost

pp η
4
B

Commitment (3m+ n+ 1) η
8
B

Rowcheck Proof λρ
16
(λ+ (3m+ n+ 1) log2(|F|) + γ(3m+ n+ 1) B

Lincheck Proof λρ
16
(λ+ η(m+ λ log2(|F|))) B

Computational Cost O(mnλ|F2|)
Table 1. The proof (both rowcheck and lincheck proofs) size estimation of R1CS over
F where F can be embedded as a subgroup using Figs. 1 and 2. The parameters η, γ
are the numbers of bits to represent the elements of C and max{|M|, |R|}, respectively.
The density ρ ∈ (0, 1) is the Hamming weight of A,B,C divided by 3m(n + 1). The
computational cost is evaluated for both parties in terms of the malleability operations.

6.3 Zero-knowledge proofs for branching programs

Barrington’s theorem is a fundamental result in computational complexity the-
ory that has important implications for circuit design. It states that any circuit
of depth d and fan-in 2 can be represented by a matrix branching program of
length at most 4d and width 5 [3].

In more formal terms, a matrix branching program over a field F of depth
d and width w for ℓ-bit inputs is defined by a sequence BP = (i, Ai,0, Ai,1)i∈[d],
where Ai,b is a square matrix of F of dimension w for i ∈ [d] and b ∈ {0, 1}. The
evaluation function e maps each index i ∈ [d] to a bit position e(i) ∈ [ℓ].

Given an input x ∈ {0, 1}ℓ, the matrix branching program evaluates by
computing the product of matrices Πd

i=1Ai,xe(i)
. The program outputs 1 if and

only if the resulting product equals the identity matrix.
In this section, we show how to prove the satisfiability of a circuit in the form

of a branching program (over a ring) using AGAMCs. We start by introducing
the high-level idea. Let N be a natural number and (i, Aj,0, Aj,1)j∈[d] represent
a matrix branching program defined over ZN , with depth d and width w and let
square matrices M0 = Iw, (Mj)j∈[d] be a transcript of the program where M1 =
A1,0M0 or = A1,1M0, depending on the input x and the evaluation function e,
and Md is the final product.

Our proof system of the matrix branching program will proceed as follows.

1. Commit to Mj via uj = Commit(Mj , Rj).
2. Compute Mj+1 = Aj,bMj depending on the secret b ∈ {0, 1}.
3. Commit to Mj+1 via uj+1 = Commit(Mj+1, Rj+1).
4. Generate a proof that the values committed in uj+1 and uj are related by

either Aj,0 or Aj,1 (i.e. Mj+1 = Aj,0Mj or Aj,1Mj).

It suffices to build a proof system for Item 4, as described in the following.

Base proof system This subsection introduces a fundamental tool using AGAMC
for our proof system of a circuit in the form of a branching program. Concretely,
for a given parameter pp = (M′2,R′2, C′2, X, ⋆), where M′,R′, C′ correspond
to the message space, the randomness space and the commitment space in the
square matrix variant as explained in Rem. 5, we consider the following relation

17

Rpp,A0,A1
=

(st = (u1, u2),

wt = ((M1,M2), (R1, R2)))

∈ C′2 ×M′2 ×R′2

∣∣∣∣∣∣∣∣∣
M1,M2 ∈M′

u1 = (M1, R1) ⋆ X ∧
u2 = (M2, R2) ⋆ X ∧

A0M1 = M2 ∨A1M1 = M2

 .

Note that a standard OR-proof [12] does not seem feasible here. An OR-proof
requires statements for both relations and proves the knowledge of a witness for
one of the two statements. Therefore, using OR-proof for a branching program
will induce a statement and the proof size growing exponentially in the length
because the prover needs to provide all possible statements in advances.

In contrast, we construct a proof system with linear growth as in
Fig. 4. The high-level idea is that the prover generates and commits to
(M ′, A0M

′, R′),(M ′, A1M
′, R′), then reveals either (Mb+M ′, R+R′) or (M ′, R′).

However, this will disclose the information of b when the response is the
(Mb +M ′, R+R′) and the witness is given. To this end, the prover additionally
commits to (M1 +M ′, A1−b(M1 +M ′), R + R′) and shuffles with the previous
commitments in a specific way to hide the information of b.
Notations. When the context is clear, we abuse notation by writing
(M ′

1,M
′
2, R

′
1, R

′
2) ⋆ (x1, x2) to represent ((M ′

1, R
′
1) ⋆ x1, (M

′
2, R

′
2) ⋆ x2).

round 1: PO
1 ((pp, A0, A1, u = (u1, u2)), (M1,M2, R = (R1, R2), b))

1: Parse pp = (M′2,R′2, C′2, X, ⋆)
2: seed, bits0, bits1, bits2 ←$ {0, 1}λ
3: (M ′, R′)← H(EXP||seed) ▷ Sample (M ′, R′) ∈M′ ×R′2 and bitsi ∈ {0, 1}λ
4: Cb ← H(COM||(M ′, A0M

′, R′) ⋆ u||bitsb) ▷ Commitments Ci ∈ {0, 1}2λ
5: Cb+1 ← H(COM||(M ′, A1M

′, R′) ⋆ u||bitsb+1)
6: C2−2b ← H(COM||(M1 +M ′, A1−b(M1 +M ′), R+R′) ⋆ (X,X)||bits2−2b)
7: root← MerkleTree((C0||C1||C2), (C2||C0||C1)) ▷ Index-hiding Merkle Tree
8: Prover sends comm← root to Verifier.

round 2: V1(comm)

1: c←$ {0, 1}
2: Verifier sends chall ← c to

Prover.

round 3: P2((M,R, b), chall)

1: c← chall
2: if c = 1 then
3: (M ′′, R′′) ← (M1 +

M ′, R+R′)
4: resp ←

(M ′′, R′′, bits0, bits2,C1)
5: else
6: resp ←

(seed, bitsb, bitsb+1,C2−2b)

7: Prover sends resp to Veri-
fier

Verification: V O
2 (comm, chall, resp)

1: (root, c)← (comm, chall)
2: if c = 1 then
3: (M ′′, R′′, bits0, bits2,C1)← resp

4: C̃ ← H(COM||(M ′′, A0M
′′, R′′) ⋆

(X,X)||bits0)
5: C̃′ ← H(COM||(M ′′, A1M

′′, R′′) ⋆
(X,X)||bits2)

6: r̃oot← MerkleTree((C̃||C1||C̃′), (C̃′||C̃||C1))
7: else
8: (seed, bitsb, bitsb+1,C2−2b)← resp
9: (M ′, R′)← H(EXP||seed)
10: C̃ ← H(COM||(M ′, A0M

′, R′) ⋆ u||bitsb)
11: C̃′ ← H(COM||(M ′, A1M

′, R′) ⋆
u||bitsb+1)

12: r̃oot← MerkleTree((C̃||C̃′||C2−2b), (C2−2b||C̃||C̃′))

13: Output accept if r̃oot = root, and reject oth-
erwise.

Figure 4. A three-move interactive protocol (PO = (PO
1 , P2), V = (V1, V

O
2)) to prove

the possession of a witness (M1,M2, R1, R2, b) for a statement u = (u1, u2) such that
u = (M1,M2, R1, R2) ⋆ (X,X) and M2 = AbM1.

18

Theorem 6. In the random oracle model, by assuming MerkleTree to be
collision-resistant and H(COM||·) is binding, the construction (PO = (PO

1 , P2),
V = (V1, V

O
2)) in Fig. 4 has correctness, 2-special soundness, and HVZK for the

relation Rpp,A0,A1 with QH queries to H.

Proof. The correctness holds clearly when the challenge bit is 0. When the chal-
lenge is 1 the verifier have resp = (M ′′, R′′, bits0, bits2,C1) where M

′′ = M1+M ′

and R′′ = R + R′. Then, we have either {C̃, C̃′} = {C0,C2} where C̃ =

H(COM||(M ′′, A0M
′′, R′′) ⋆ (X,X)||bits0) and C̃′ ← H(COM||(M ′′, A1M

′′, R′′) ⋆

(X,X)||bits2). Therefore, the Merkle tree on input (C̃||C1||C̃′), (C̃′||C̃||C1) and
(C0||C1||C2), (C2||C0||C1) will result in the same root since the entries of the in-
put will be ordered alphabetically. We leave the proof for 2-special soundness
and honest-verifier zero-knowledge to Appendix C.2 in the full version of this
paper.

Remark 6. The Merkle tree only has two leaves in round 1 so the prover does
not need to store additional information for the tree to generate the response.
Proof Size and Computational Cost. We turn Fig. 4 into a NIZK via
Fig. 3, giving an essential tool for our proof system for a branching program.

Let N be a natural number and (i, Aj,0, Aj,1)j∈[d] represent a matrix branch-
ing program defined over ZN , with depth d and width w. For a given instantiation
of an AGAMC scheme, the estimation is given in Tab. 2 using as described in
Rem. 5 to produce the commitment scheme in the matrix form. For example,
regarding the proof size, when λ = 128 with an instantiation of AGAMC using
CSIDH-2048 (assuming the existence), we have η ≈ γ2 ≈ 2048.

Regarding the computational complexity, as shown in Tab. 2, we measure the
cost in terms of the malleability operation, which is the group action operation
that gives malleability. Within each layer j ∈ [d], both the prover and verifier
need to perform O(λ) malleability operation. Therefore, the proof takes both
parties O(dλw2) CSIDH group actions regardless of the size of the underlying
ring. This cost estimate applies to each layer of the proof and takes into account
the size of the matrices used in the computation.

Item Cost (Bytes)

pp 2η B
Commitment dw2 η

8
B

Proof λd
16

((N + 2γ)w2 + 9λ) B
Computational Cost O(λdw2)

Table 2. An evaluation of the commitment size and the proof size Fig. 4 for a matrix
branching problem over ZN and of length d and width w, where N is also the number
of bits to represent M. The parameters η, γ are the numbers of bits to represent the
elements of C and R, respectively. Note that (C′,M′,R′) = (Cw×w,Mw×w,Rw×w).
The computational cost is evaluated for both parties given in terms of the malleability
operations.

6.4 Discussion and further work

Compared to the classical setting, there are three major challenges in our current
context that require further attention.

19

The first bottleneck, concerning our proof systems for generic arithmetic
circuits over a ring (Secs. 6.1 and 6.2) is that to prove the multiplication relation
of the committed messages, we employ an OR-proof-type proof system. Although
the proof remains logarithmic in the ring size (of the arithmetic circuit), both
the prover and the verifier must compute the actions of all possible combinations
of (M1,M2,M1M2). This limits the ring size as well as the message space, as
they cannot both be large. Developing a more efficient proof system for the
multiplication relation of the committed messages would improve the capability
of the proof systems in Secs. 6.1 and 6.2. Note however, that this restriction
does not affect the proof system for branching program, which relies on an affine
relation, as discussed in Sec. 6.3.

Another restriction is the lack of an efficient commitment scheme that allows
a prover to commit to a vector of messages using only one element. In classical
cryptography, the generalized Pedersen commitment provides such a function-
ality. In our setting, a naive approach is to use randomly generated elements
y, g1, · · · , gn, and Y0, Y from the group, and commit to (yr ⋆ Y0, (r

∏n
i g

mi
i) ⋆ Y)

for the messages m1, · · · ,mn (using multiplicative notation for the group oper-
ation). However, this commitment is not quantumly binding since the relations
between the gi’s can be recovered using a quantum period-finding algorithm.
This is a challenge that is worth investigating in future research.

Finally, the folding technique, which enables proof compression [10,11] does
not extend from homomorphic to malleable commitment or the Naor-Reingold-
type VRF [22], resulting in an argument with square root communication com-
plexity. A variant of that technique making use of the malleability rather than
the homomorphic property is an interesting question to explore.

However, our construction does offer several advantages. First, we do not re-
quire any form of trusted set-up. Second, we achieve statistical, rather than com-
putational, zero-knowledge, as well as simulation extractability, meaning that an
adversary cannot simulate a new proof unless they know a witness, regardless
of the number of simulated proofs they have seen. This is a stronger notion
than soundness or even knowledge soundness, and highly desirable in situations
where the non-malleability of the proofs is required. Finally, we obtain linear
efficiency in the size of circuit. Despite being less efficient than state of the
art post-quantum zero-knowledge proofs, such as [2,4,8] whose proofs sizes are
sublinear or even polylogarithmic in the size of the witness, our approach still
improves on the naive construction from one-way functions and provides a first
general purpose zero-knowledge proof from isogenies.

7 Conclusion

In this paper, we introduce and formalize the notion of malleable commitment,
which extends the notion of homomorphic commitments but enforces less struc-
ture on the underlying commitment scheme. We show how to instantiate such
malleable commitments from an isogeny-based group action. Subsequently, we
build different flavors of generic proofs for NP statements. Our first two ap-

20

proaches, based on arithmetic circuits and rank-1 constraint systems impose
restrictions on the size of the underlying ring and message space. However, this
restriction is lifted by our third approach based on branching programs. Re-
gardless, these three approaches offer the first feasibility results towards post-
quantum zero-knowledge proofs based on isogeny assumptions, improving on the
naive construction from one-way functions.

Acknowledgements

Mingjie Chen and Christophe Petit are partly supported by EPSRC through
grant number EP/V011324/1. Yi-Fu Lai thanks the New Zealand Ministry for
Business and Employment for financial support.

References

1. N. Alamati, L. De Feo, H. Montgomery, and S. Patranabis. Cryptographic group
actions and applications. ASIACRYPT 2020, Part II, pp. 411–439.

2. S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero: Lightweight
sublinear arguments without a trusted setup. ACM CCS 2017, pp. 2087–2104.

3. D. A. Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in nc. In Proceedings of the eighteenth annual ACM sym-
posium on Theory of computing, pp. 1–5.

4. E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward.
Aurora: Transparent succinct arguments for R1CS. EUROCRYPT 2019, Part I,
pp. 103–128.

5. W. Beullens, S. Dobson, S. Katsumata, Y.-F. Lai, and F. Pintore. Group signa-
tures and more from isogenies and lattices: Generic, simple, and efficient. EURO-
CRYPT 2022, Part II, pp. 95–126.

6. W. Beullens, S. Katsumata, and F. Pintore. Calamari and Falafl: Logarithmic
(linkable) ring signatures from isogenies and lattices. ASIACRYPT 2020, Part II,
pp. 464–492.

7. W. Beullens, T. Kleinjung, and F. Vercauteren. CSI-FiSh: Efficient isogeny based
signatures through class group computations. ASIACRYPT 2019, Part I, pp. 227–
247.

8. W. Beullens and G. Seiler. Labrador: Compact proofs for r1cs from module-sis.
Cryptology ePrint Archive, Paper 2022/1341.

9. D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikun-
tanathan, and D. Vinayagamurthy. Fully key-homomorphic encryption, arithmetic
circuit abe and compact garbled circuits. Advances in Cryptology – EUROCRYPT
2014, pp. 533–556, Berlin, Heidelberg, 2014.

10. J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. EUROCRYPT 2016,
Part II, pp. 327–357.

11. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy, pp. 315–334.

12. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. CRYPTO’94, pp. 174–187.

21

13. L. De Feo, T. B. Fouotsa, P. Kutas, A. Leroux, S.-P. Merz, L. Panny, and B. Weso-
lowski. SCALLOP: Scaling the CSI-FiSh. In PKC 2023, Part I, pp. 345–375.

14. L. De Feo and M. Meyer. Threshold schemes from isogeny assumptions. PKC 2020,
Part II, pp. 187–212.

15. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. CRYPTO’86, pp. 186–194.

16. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. Advances in
Cryptology – CRYPTO 2013, pp. 75–92, Berlin, Heidelberg, 2013.

17. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity or all languages in np have zero-knowledge proof systems. J. ACM, 38:691–
729.

18. S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled fully homomorphic sig-
natures from standard lattices. In Proceedings of the Forty-Seventh Annual ACM
Symposium on Theory of Computing, page 469–477, New York, NY, USA, 2015.

19. J. Groth. Homomorphic trapdoor commitments to group elements. Cryptology
ePrint Archive, Paper 2009/007.

20. J. Groth. Linear algebra with sub-linear zero-knowledge arguments. Advances in
Cryptology - CRYPTO 2009, pp. 192–208, Berlin, Heidelberg, 2009.

21. S. Katsumata, Y. Lai, J. T. LeGrow, and L. Qin. CSI -otter: Isogeny-based (par-
tially) blind signatures from the class group action with a twist. CRYPTO 2023,
pp. 729–761.

22. Y.-F. Lai. CAPYBARA and TSUBAKI: Verifiable random functions from group
actions and isogenies. Cryptology ePrint Archive, Report 2023/182.

23. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. Advances in Cryptology — CRYPTO ’91, pp. 129–140, Berlin, Heidelberg,
1992.

24. C. Peikert. He gives C-sieves on the CSIDH. EUROCRYPT 2020, Part II, pp.
463–492.

25. R. S. Wahby, I. Tzialla, a. shelat, J. Thaler, and M. Walfish. Doubly-efficient
zkSNARKs without trusted setup. In 2018 IEEE Symposium on Security and
Privacy, pp. 926–943.

26. Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. vSQL:
Verifying arbitrary SQL queries over dynamic outsourced databases. In 2017 IEEE
Symposium on Security and Privacy, pp. 863–880.

22

Appendix

A Security of commitment schemes

We start by recalling the formal notion of hiding and binding security for com-
mitments.

Definition 15 (Hiding security). A commitment scheme is hiding if for any
probabilistic polynomial time adversary A playing the Hideb game the advantage
is negligible i.e.

AdvHide(A) = |Pr[Hide1(A)→ 1]− Pr[Hide0(A)→ 1]| = negl(λ)

where the Hideb game is defined as follows : Given public parameters pp, A
outputs two challenge messages m0,m1 and a state st. The challenger samples
some randomness r, and then computes com = Commit(mb, r). On input the
state st and commitment com, A returns a bit b′ corresponding to its guess for
the value of b.

Definition 16 (Binding security). A commitment scheme is binding if for
any probabilistic polynomial time adversary A playing the Bind game, the ad-
vantage is negligible,i.e.,

AdvBind(A) = Pr[Bind(A)→ 1] = negl(λ)

where the Bind game is defined as follows : Given the public parameters pp, A
must output two different messages m0,m1 and associated randomness r0, r1 and
wins if Commit(m0, r0) = Commit(m1, r1).

A.1 Security of sigma-protocols

We also give formal definitions for the notions of honest-verifier zero-knowledge
as well as 2-special soundness.

Definition 17 (Honest Verifier Zero-Knowledge (HVZK)). We say
ΠΣ is honest-verifier-zero-knowledge for a relation Rpp if there exists a

PPTsimulator SimO with access to a random oracle O such that for any
statement-witness pair (st,wt) ∈ Rpp, chall ∈ ChSet, λ ∈ N and any
computationally-unbounded adversary A that makes at most a polynomial num-
ber of queries to O, the advantage AdvHVZKΠΣ

of A is negligible, where

AdvHVZKΠΣ
(A) :=

∣∣∣Pr[AO(PO(st,wt, chall)) = 1]− Pr[AO(SimO(st, chall)) = 1]
∣∣∣,

where PO = (P1, P2) is a prover running on (st,wt) with a challenge fixed to
chall and the probability is taken over the randomness used by (P, V) and by the
random oracle.

Definition 18 (2-Special Soundness). We say a sigma protocol ΠΣ has
2-special soundness if there exists a polynomial-time extraction algorithm such
that, given a statement st and any two valid transcripts (com, chall, resp) and
(com, chall′, resp′) relative to st and such that chall ̸= chall′, outputs a witness wt
satisfying (st,wt) ∈ Rpp.

23

A.2 Hard problems for group actions

We introduce three hard problems in the context of group actions.

Definition 19 (Group Action Inverse Problem). Let (G, E , ⋆, E0) be a
group action with a distinguished element E0 ∈ E. Given E sampled uniformly
in E, the Group Action Inverse Problem (GAIP) consists in finding an element
g ∈ G such that g ⋆ E0 = E.

Definition 20 (Computational Diffie-Hellman Problem). Let (G, E ,
⋆, E0) be a group action with a distinguished element E0 ∈ E. The computa-
tional Diffie-Hellman (CDH) problem consists in, given a tuple (g1 ⋆E0, g2 ⋆E0)
where g1, g2 are sampled uniformly from G, computing (g1 + g2) ⋆ E0.

Definition 21 (Decisional Diffie-Hellman Problem). Let (G,E0, E , ⋆) be
a group action. The challenger generates s1, s2, s3 ∈ G and b ∈ {0, 1}, and
gives (s1 ⋆ E0, s2 ⋆ E0, ((1− b)(s1 + s2) + b(s3)) ⋆ E0) to the adversary A. Then,
Decisional Diffie-Hellman (DDH) problem consists in A returning b′ ∈ {0, 1}
to guess b. The adversary A wins if b = b′. We define the advantage of A to
be AdvDDH(A) := |Pr[A wins.] − 1/2| where the probability is taken over the
randomness of s1, s2, s3, b.

A.3 Proof Systems

We consider non-interactive zero-knowledge proof of knowledge (NIZKPoK) over
the programmable random oracle model with statistical zero-knowledge and
simulation-extractability.

Formally, a NIZKPoK for a relation Rpp is a tuple of PPT algorithms Π =
(Prove,Verify) with access to the random oracle O such that for any valid public
parameter of the scheme pp and the security parameter λ ∈ N, the scheme
satisfies the following properties:

– Completeness: for every (st,wt) ∈ Rpp,

Pr[V O(st, π) = 1 | π ← PO(st,wt)] = 1.

– Statistical zero-knowledge: there exists a simulator Sim such that for any
(st,wt) ∈ Rpp and any possibly unbounded adversary A can distinguish the

distributions: {π|π ← ProveO(st,wt)}, {π|π ← SimO(st)} with only negli-
gible advantage where the probability is taken over the randomness used in
the experiment and the scheme.

– Simulation-extractability: for any adversary A there exists an extractor EA
such that

Pr

[
Verify(st,wt, π) = ⊤

(st,wt) /∈ Rpp ∧ (st,wt, π) /∈ L

∣∣∣∣∣ (st, π)← ASimProve,O(pp)

wt← E(st, π)

]
≤ negl(λ)

where SimProve(st′,wt′) is an oracle that returns a simulated proof us-
ing π′ ← Sim(st′) when (st′,wt′) ∈ R. Otherwise, SimProve returns ⊥.
Also, SimProve maintains the list L, which is initially empty, and records
(st′,wt′, π′) for each valid query of (st′,wt′).

24

B Multi-Proof Online Extractability

The notion multi-proof online extractability [5] is defined as follows.

Definition 22 (Multi-Proof Online Extractability (mpOE)). A NIZK
proof system ΠNIZK is (multi-proof) online extractable if there exists a PPT
extractor OnlineExtract such that for any (possibly computationally-unbounded)
adversary A making at most polynomially-many queries has at most a negligible
advantage in the following game played against a challenger (with access to a
random oracle O).

(i) The challenger prepares empty lists LO and LProve, and sets flag to 0.

(ii) A can make random-oracle, prove, and extract queries an arbitrary polyno-
mial number of times:

• (hash, x): The challenger updates LO ← LO ∪ {(x,O(x))} and returns
O(x). We assume below that A runs the verification algorithm after re-
ceiving a proof from the prover oracle and before submitting a proof to
the extract oracle.6

• (prove, lbl, st,wt): The challenger returns ⊥ if lbl ̸∈ L or (st,wt) ̸∈ Rpp.

Otherwise, it returns π ← ProveO(lbl, st,wt) and updates LProve ←
LProve ∪ {lbl, st, π}.

• (extract, lbl, st, π): The challenger checks if VerifyO(lbl, st, π) = ⊤ and
(lbl, st, π) ̸∈ LProve, and returns ⊥ if not. Otherwise, it runs
wt ← OnlineExtractO(lbl, st, π, LO) and checks if (st,wt) ̸∈ Rpp, and re-
turns ⊥ if yes and sets flag = 1. Otherwise, if all checks pass, it returns
wt.

(iii) At some point A outputs 1 to indicate that it is finished with the game. We

say A wins if flag = 1. The advantage of A is defined as AdvmpOE
ΠNIZK

(A) =
Pr[A wins] where the probability is also taken over the randomness used by
the random oracle.

Multi-proof online extractability provides a strong guarantee that an ad-
versary cannot break the simulation extractability of the proof while the extrac-
tion is executed online.

C Proofs

C.1 Proof of Theorem 4

We give brief proofs for correctness, special soundness, statistical honest-verifier
zero knowledge for the proof system in Fig. 2.

6 This is w.l.o.g., and guarantees that the list LO is updated with the input/output
required to verify the proof A receives or sends.

25

Proof. Correctness. For the challenge chall = 0, the correctness holds naturally.
For chall = 1, for the response resp = (r′′, r′′), we have r′′ = r′ + r. Therefore,

(m′′, r′′) ⋆X = (m′ +m, r′ + r) ⋆X. We have C̃ = C and the correctness follows.
Special Soundness. Let (comm = C, 0, resp0 = seed), (comm = C, 1, resp1 =

(m′′, r′′)) be two valid transcripts. We show that can either extract a collision
of the hash function H or a witness for the statement (pp,M ′, u).

Following round 1 of Fig. 1, say seed generates m′, r′. Due to the validity of
both transcripts, we have C = H(COM||(m′′, r′′) ⋆ X) = H(COM||(m′, r′) ⋆ u). We
assume (m′′, r′′) ⋆X = (m′, r′) ⋆ u; otherwise, a collision of the hash function H
can be found. It is clear that (m′′−m, r′′− r) is the witness since (m′′−m, r′′−
r) ⋆ X = u. We therefore have the extractor.

Statistical HVZK. For the challenge chall = 0, the simulator follows the
first round of Fig. 2 and generates (seed, 0, comm) as the transcript. For the
challenge chall = 1, the simulator generates m′′, r′′ from M′,R′ uniformly at
random and computes C̃ = H(COM||(m′′, r′′) ⋆ X). The distributions {(m′, r′) ⋆
u|(m′, r′)←M′×R′} and {(m′′, r′′) ⋆X|(m′′, r′′)←M′×R′} are identical for
all u, hence the scheme is statistical HVZK. Concretely, since seed has λ bits
of min-entropy and is information-theoretically hidden from the distinguisher,
for any unbounded distinguisher with Q queries to H of the form H(EXP||·) the
statistical difference between the distributions is QH/2λ.

C.2 Proof of Theorem 6

We give here the proof of soundness and honest-verifier zero-knowledge of The-
orem 6.

Proof. 2-Special Soundness. Let u be the statement and
(root, 1, (M ′′, R′′, bits0, bits2,C1)), (root, 0, (seed, bitsb+1, bitsb+2,C2)) be the
two valid transcripts. We claim that we are able to extract a relation witness of
the statement u for Rpp,A0,A0

or Rpp,A1,A1
, a collision witness for MerkleTree(·)

or a binding witness for H(COM||·).
Due to the validness of the proof, we have

root = MerkleTree((C̃||C1||C̃′), (C̃′||C̃||C1)) = MerkleTree((Ĉ||Ĉ′||C2), (C2||Ĉ||Ĉ′)),

where
C̃ ← H(COM||(M ′′, A0M

′′, R′′) ⋆ (X,X)||bits0),

C̃′ ← H(COM||(M ′′, A1M
′′, R′′) ⋆ (X,X)||bits2),

(M ′, R′)← H(EXP||seed),

Ĉ ← H(COM||(M ′, A0M
′, R′) ⋆ u||b̂its),

Ĉ′ ← H(COM||(M ′, A1M
′, R′) ⋆ u||b̂its

′
).

If the alphabetically ordered set {(C̃||C1||C̃′), (C̃′||C̃||C1)} is not equal to

{(Ĉ||Ĉ′||C2), (C2||Ĉ||Ĉ′)}, then these two ordered set constitute a witness of col-
lision of MerkleTree(·). Therefore, we may assume

{(C̃||C1||C̃′), (C̃′||C̃||C1)} = {(Ĉ||Ĉ′||C2), (C2||Ĉ||Ĉ′)}.

26

We consider two cases: (C̃||C1||C̃′) = (Ĉ||Ĉ′||C2) or (C̃||C1||C̃′) = (C2||Ĉ||Ĉ′).
For each case, we will extract a witness for either the relations or the binding

commitment H(COM||·).

– Case (C̃||C1||C̃′) = (Ĉ||Ĉ′||C2): Due to C̃ = Ĉ, if the equality

((M ′′, A0M
′′, R′′) ⋆ (X,X)||bits0) = ((M ′, A0M

′, R′) ⋆u||b̂its) does not hold,
then the pairs serve as a binding witness for H(COM||·). If the equality holds
then we have (u, ((M,A0M), R)) ∈ Rpp,A0,A0

where M = M ′′ − M ′ and
R = R′′ −R′.

– Case (C̃||C1||C̃′) = (C2||Ĉ||Ĉ′): Due to C̃′ = Ĉ′, if the equality

((M ′′, A1M
′′, R′′)⋆(X,X)||bits2) = ((M ′, A1M

′, R′)⋆u||b̂its
′
) does not hold,

then the pairs serve as a binding witness for H(COM||·). If the equality holds
then we have (u, ((M,A1M), R)) ∈ Rpp,A1,A1

where M = M ′′ − M ′ and
R = R′′ −R′.

Therefore, the special soundness follows.
HVZK. Given a parameter pp and a statement u, a simulator S on input

(pp, u, chall) proceeds as Fig. 5.
We claim that for the transcripts generated by the simulator S are statistic-

ally indistinguishable from those generated by a real prover.
Let ((M1,M2), R) be the witness for u. When chall = 1, two transcript dis-

tributions are identical except for two differences. First, there exist no seed ∈
{0, 1}λ has been queried to H(EXP||·) such that (M ′′, R′′) = (M1 +M ′, R+R′)
where M ′, R′ are generated by the oracle. Also, there exists no bits1 ∈ {0, 1}λ
has been queried to H(COM||·) such that C1 = H(COM||u′||bits1) for some set ele-
ment u′ ∈ C′2. Since we model H as a random oracle, the statistical difference
in this case is at most ∣∣∣∣2QH

2λ
+

QH

|R′2|

∣∣∣∣.
Similarly, when chall = 0, two transcript distributions are identical except

that there exist no bits2 ∈ {0, 1}λ has been queried to H(COM||·) such that
C2 = H(COM||u′||bits2) for some set element u′ ∈ C′2. Since we model H as a
random oracle, the statistical difference in this case is at most∣∣∣∣QH

2λ

∣∣∣∣.
It follows that the statistical difference of the transcripts generated by S and

a real prover is at most ∣∣∣∣2QH

22λ
+

QH

|R′2|

∣∣∣∣.

27

SO(pp, st = u, chall)

1: if chall = 1 then
2: (M ′′, R′′, bits0, bits2,C1) ← M′ × R′2 × {0, 1}λ × {0, 1}λ ×
{0, 1}2λ

3: C0 ← H(COM||(M ′′, A0M
′′, R′′) ⋆ (X,X)||bits0)

4: C2 ← H(COM||(M ′′, A1M
′′, R′′) ⋆ (X,X)||bits2)

5: r̃oot← MerkleTree((C0||C1||C2), (C2||C0||C1)) ▷ Index-hiding
Merkle Tree

6: else
7: (seed, bits0, bits2,C1)← {0, 1}λ × {0, 1}λ × {0, 1}λ × {0, 1}2λ
8: (M ′, R′)← H(EXP||seed)
9: C0 ← H(COM||(M ′, A0M

′, R′) ⋆ u||bits0)
10: C1 ← H(COM||(M ′, A1M

′, R′) ⋆ u||bits1)
11: r̃oot← MerkleTree((C0||C1||C2), (C2||C0||C1))

12: resp← (root, chall, resp)
13: return π ← (com, chall, resp)

Figure 5. The simulator the protocol described in Fig. 4.

28

	Malleable Commitments from Group Actions and Zero-Knowledge Proofs for Circuits based on Isogenies

