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Thick embeddings of graphs into symmetric spaces

via coarse geometry

Benjamin Barrett and David Hume

December 13, 2021

Abstract

We prove estimates for the optimal volume of thick embeddings of
finite graphs into symmetric spaces, generalising results of Kolmagorov-
Barzdin and Gromov-Guth for embeddings into Euclidean spaces. We
distinguish two very different behaviours depending on the rank of the
non-compact factor. For rank at least 2, we construct thick wirings of
N -vertex graphs with volume CN ln(N) and prove that this is optimal.
For rank at most 1 we prove lower bounds of the form cNa for some
(explicit) a > 1 which depends on the dimension of the Euclidean fac-
tor and the conformal dimension of the boundary of the non-compact
factor. The key ingredient is a coarse geometric analogue of a thick
embedding called a coarse wiring, with the key property that the mini-
mal volume of a thick embedding is comparable to the minimal volume
of a coarse wiring for symmetric spaces of dimension at least 3.

1 Introduction

The focus of this paper is on thick embeddings of graphs as considered
by Kolmogorov-Barzdin and Gromov-Guth [KB93,GG12]. By a graph, we
mean a pair (V Γ, EΓ) where V Γ is a set whose elements are called vertices,
and EΓ is a set of unordered pairs of distinct elements of V Γ. Elements of
EΓ are called edges. The topological realisation of a graph is the (metric)
topological space obtained from a disjoint union of unit intervals indexed by
e ∈ EΓ, whose end points we label using the two elements contained in e.
We then identify the end points of two intervals whenever they are labelled
by the same element of V Γ.

The idea behind thick embeddings of graphs is that they are the ap-
propriate embeddings to consider in situations where the graph models a
physical object (i.e. vertices and edges are “thick” and therefore need to
remain a prescribed distance apart). Two key examples are: a brain, where
neurons are represented by vertices and axons by edges; and an electronic
network, where components are vertices and wires are edges. We briefly
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summarise the relevant results from [KB93,GG12] in the following two the-
orems.

Theorem 1.1. Let Γ be a finite graph with maximal degree d. For each k ≥
3, there is a topological embedding fk : Γ → R

k and a constant C = C(d, k)
with the following properties:

(i) dRk(fk(X), fk(Y )) ≥ 1 whenever X,Y are: two distinct vertices; an
edge and a vertex not contained in that edge; or two disjoint edges.

(ii) diam(f3) := diam(im(f3)) ≤ C|Γ|1/2.

(iii) diam(fk) ≤ C|Γ|1/(k−1) log(1 + |Γ|)4.

We say a topological embedding g : Γ → Z is ε-thick if it satisfies the
inequality dZ(g(X), g(Y )) ≥ ε whenever X,Y are as in condition (i).

Theorem 1.2. For every δ, ε > 0 and d ∈ N there is a constant c > 0 such
that given any finite graph Γ with maximal degree d and Cheeger constant
(cf. Definition 5.2) ≥ δ and any ε-thick topological embedding g : Γ → R

k,
we have diam(g) ≥ c−1|Γ|1/(k−1) − c and the 1-neighbourhood of the image
of g has volume ≥ c−1|Γ|k/(k−1).

We define the volume vol(g) of an ε-thick topological embedding g to
be the measure of the ε-neighbourhood of its image. From Theorem 1.1
we get obvious upper bounds on the volume of 1-thick embeddings into R

k.
Namely, vol(f3) ≤ C ′|Γ|3/2 and vol(fk) ≤ C ′|Γ|k/(k−1) log(1 + |Γ|)4k.

Our goal is to develop the theory of thick embeddings into spaces other
than R

k. In this paper, we prove versions of Theorems 1.1 and 1.2 for thick
embeddings into symmetric spaces.

1.1 Thick embeddings into symmetric spaces

Our main results are analogues of Theorems 1.1 and 1.2 for more general
symmetric spaces. We recall that each symmetric space X decomposes as a
direct product of symmetric spaces K ×R

d×N where K is compact and N
has no non-trivial compact or Euclidean factor. N is called the non-compact
factor. We begin with the case where the rank of N is at most 1. When the
non-compact factor is a real hyperbolic space, we have the following upper
bounds:

Theorem 1.3. Let X = K × R
r × H

q
R
where K is compact and q + r ≥ 3.

Let d ∈ N. There is a constant C = C(X, d) such that for any finite graph
Γ with maximal degree at most d there is an 1-thick topological embedding
of Γ into X with volume

≤
{
C|Γ|1+1/(q+r−2) if q + r = 3, 4,

C|Γ|1+1/(q+r−2) ln(1 + |Γ|)4(q+r−1) if q + r ≥ 5.
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For q+r ≥ 4 this follows from Theorem 1.1 by composing the topological
embedding with a suitable coarse embedding R

r × R
q−1 → K × R

r × H
q
R

where R
q−1 embeds as a horosphere in H

q
R
. The case q + r = 3 is new and

is treated separately (cf. Theorem 1.7).

Our next result gives lower bounds on the volume of wirings into all
symmetric spaces whose non-compact factor has rank at most one. In par-
ticular, it states that the embeddings constructed in Theorem 1.3 are within
a poly-logarithmic error of being optimal.

Theorem 1.4. Let X = K×R
r×H

q
F
, where K is compact and q dimR(F)+

r ≥ 3. Let d ∈ N. Set Q = (q + 1) dimR(F)− 2, the conformal dimension of
the boundary of Hq

F
. For any d, ε, δ > 0 there is a constant c = c(d, ε, δ) > 0

with the following property. For any N -vertex graph Γ with maximal degree
d and Cheeger constant h(Γ) ≥ δ every ε-thick topological embedding g : Γ →
X has volume

≥
{
cN1+1/r log(1 +N)−1/r if Q = 1,

cN1+1/(Q+r−1) if Q ≥ 2.

In particular, our results in Theorem 1.3 are sharp for H3
R
, H3

R
× R and

H
4
R
. If the k = 1 case of the conjecture in [GG12] is verified (giving optimal

bounds for Euclidean spaces), then the lower bound in Theorem 1.4 would
also be optimal for all products Rr ×H

q
R
where q ≥ 3.

When the rank of N is at least 2, we provide matching upper and lower
bounds.

Theorem 1.5. Let X be a symmetric space whose non-compact factor has
rank ≥ 2 and let d ∈ N. There are constants ε, C > 0 which depend on X
and d such that for any finite graph Γ with maximal degree at most d, there
is an ε-thick topological embedding of Γ into X with diameter ≤ C ln(1+ |Γ|)
and volume ≤ C|Γ| ln(1 + |Γ|).

Theorem 1.6. Let X be a symmetric space whose non-compact factor has
rank ≥ 2 and let d ∈ N. For any d, ε, δ > 0 there is a constant c = c(d, ε, δ) >
0 with the following property. For any finite graph Γ with maximal degree d
and Cheeger constant h(Γ) ≥ δ every ε-thick1 topological embedding g : Γ →
X satisfies vol(g) ≥ c|Γ| ln(1 + |Γ|).

This “gap” between the rank at most 1 and the higher rank case is similar
in flavour to the gap in the separation profiles of symmetric spaces found
in [HMT20b]. This is no coincidence. The lower bounds on the volumes of
topological embeddings found in Theorems 1.6 and 1.4 are inverse functions

1Unlike topological embeddings into Euclidean space, there does not seem to be an ob-
vious way to relate the volumes of optimal topological embeddings with different thickness
parameters.
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of the separation profiles of the symmetric spaces2, and our approach to
prove both of these theorems utilises separation profiles in a crucial way. In
order to use separation profiles, we will reformulate the above theorems in
terms of carefully chosen continuous maps (called coarse wirings) between
bounded degree graphs.

We present one further result in this section, which is an upper bound
for thick embeddings into real hyperbolic 3-space which is asymptotically
optimal (with the corresponding lower bound provided by 1.4) but which
does not depend on the degree of the graph.

Theorem 1.7. There is a 1-thick topological embedding of KN (the complete
graph on N vertices) into H

3 with diameter ≤ 2 ln(N) + 9 and volume ≤
2039N2.

1.2 Coarse k-wirings

Definition 1.8. Let Γ,Γ′ be graphs. A wiring of Γ into Γ′ is a continuous
map f : Γ → Γ′ which maps vertices to vertices and edges to unions of edges.

A wiring f is a coarse k-wiring if

1. the restriction of f to V Γ is ≤ k-to-1, i.e. | {v ∈ V Γ | f(v) = w} | ≤ k
for all w ∈ V Γ′; and

2. each edge e ∈ EΓ′ is contained in at most k of the paths in P.

We consider the image of a wiring im(f) to be the subgraph of Γ′ consisting
of all vertices and edges in the image of f . The diameter of a wiring diam(f)
is the diameter of its image (measured in Γ′), the volume of a wiring vol(f)
is the number of vertices in its image.

Under mild hypotheses on the target space, we can convert a thick topo-
logical embedding into a coarse k-wiring.

Proposition 1.9. Let M be a Riemannian manifold and let Y be a graph
quasi-isometric to M , let d ∈ N and let T > 0. There exist constants C and
k such for every finite graph Γ with maximal degree d the following holds:

If there is a T -thick topological embedding Γ →M with diameter D and
volume V then there is a coarse k-wiring of Γ into Y with diameter at most
CD and volume at most CV .

With stronger hypotheses we are able to convert coarse k-wirings into
thick topological embeddings.

2By the separation profile of a symmetric space we mean either the 1-Poincaré profile
of the symmetric space as defined in [HMT20a] or equivalently, the separation profile as
defined in [BST12] of any graph quasi-isometric to the symmetric space.

4



Theorem 1.10. Let M be a compact Riemannian manifold of dimension
n ≥ 3, let Y be a graph quasi-isometric to the universal cover M̃ of M and
let k, d ∈ N. There exist constants C and ε > 0 such that the following
holds:

If there is a coarse k-wiring of a finite graph Γ with maximal degree d
into Y with diameter D and volume V then there is a ε-thick embedding of
Γ into M̃ with diameter at most CD and volume at most CV .

Using Proposition 1.9 and Theorem 1.10 we can prove Theorems 1.5, 1.6,
1.3 and 1.4 purely in terms of coarse wirings. We introduce wiring profiles
in order to discuss coarse wirings between infinite graphs.

Definition 1.11. Let Γ be a finite graph and let Y be a graph. We denote
by wirk(Γ → Y ) the minimal volume of a coarse k-wiring of Γ into Y . If no
such coarse k-wiring exists, we say wirk(Γ → Y ) = +∞.

Let X and Y be graphs. The k-wiring profile of X into Y is the
function

wirkX→Y (n) = max
{
wirk(Γ → Y ) | Γ ≤ X, |Γ| ≤ n

}
.

A simple example of a situation where wirk(Γ → Y ) = +∞ is when Γ
has a vertex whose degree is greater than k times the maximal degree of Y .

The reason for working with wiring profiles is that they have three very
useful properties. Firstly, wirings between graphs can be composed and
there is a natural inequality which controls the volume of the composition.

Proposition 1.12. Let X,Y,Z be graphs. Suppose wirkX→Y and wirlY→Z

take finite values. Then

wirklX→Z(n) ≤ wirlY→Z

(
wirkX→Y (n)

)
.

Secondly, for bounded degree graphs, the wiring profile of X into Y
grows linearly whenever there is a regular map from X to Y .

Definition 1.13. Let X,Y be metric spaces and let κ > 0. A map r : X →
Y is κ-regular if

1. dY (r(x), r(x
′)) ≤ κ(1 + dX(x, x

′)), and

2. the preimage of every ball of radius 1 in Y is contained in a union of
at most κ balls of radius 1 in X.

Quasi-isometric and coarse embeddings between bounded degree graphs
are examples of regular maps.

Proposition 1.14. Let X and Y be graphs with maximal degree ∆ > 0 and
let r : X → Y be a κ-regular map. Then there exists k = k(κ,∆) such that

wirkX→Y (n) ≤
(
κ+

1

2

)
∆n.
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These two propositions naturally combine to show that wiring profiles
are well-behaved with respect to regular maps.

Corollary 1.15. Let X, X ′, Y and Y ′ be graphs with maximal degree ∆
and let rX : X ′ → X and rY : Y → Y ′ be κ-regular maps. Then for every k
such that wirkX→Y takes finite values there is some l such that

wirlX→Y ′(n) ≤
(
κ+

1

2

)
∆ẇir

k
X→Y (n). (1)

wirlX′→Y ′(n) ≤
(
κ+

1

2

)
∆ẇir

k
X→Y

((
κ+

1

2

)
∆n

)
. (2)

The third benefit of coarse wirings is that we can find lower bounds on
the wiring profile of two bounded degree graphs in terms of their separation
profiles: a measure of the combinatorial connectivity of their finite subgraphs
introduced in [BST12].

Theorem 1.16. Let X and Y be graphs of bounded degree where sepX &

nr log(n)s and sepY ≃ np log(n)q. Then, for any k,

wirkX→Y (n) &

{
nr/p log(n)(s−q)/p if p > 0,

exp(nr/(q+1) log(n)s/(q+1)) if p = 0.

The separation profiles of (graphs quasi-isometric to) symmetric spaces
have all been calculated [BST12,HMT20a,HMT20b] and are all of the form
np log(n)q. Combining these calculations with Theorem 1.16 and Theorem
1.10 is sufficient to prove Theorems 1.6 and 1.4.

The coarse geometric approach also has great benefits when computing
upper bounds. For instance, we can deduce the upper bound on volumes of
thick embeddings in Theorem 1.5 from the following theorem.

Theorem 1.17. There is a Cayley graph Y of the lamplighter group Z2 ≀ Z
with the following property. For any N -vertex graph Γ with maximal degree
d, we have

wir2d(Γ → Y ) ≤ 6dN ln(1 +N).

The deduction works as follows. The graph Y is quasi-isometric to the
Diestel-Leader graph DL(2, 2) [Woe05]. Next, DL(2, 2) quasi-isometrically
embeds into any symmetric space M whose non-compact factor has rank
≥ 2 [HMT20b, Proposition 2.8 and Theorem 3.1]. Choose a graph X which
is quasi-isometric to M . By Corollary 1.15, there are constants l, C ′ which
depend on Y and d but not N such that wirl(Γ → X) ≤ C ′N ln(1 + N).
Theorem 1.5 then follows from Theorem 1.10.

It is important to stress that the analogy between thick embeddings and
coarse wirings only holds when there is a bound on the degree of the graphs
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and the dimension of the symmetric space is at least 3. This is evidenced
by Theorem 1.7 which holds independent of the degree of the graph, where
no such result for coarse wirings is possible. On the other hand, we can
consider coarse wirings into spaces where not all graphs admit topological
embeddings, such as R2 and H

2.

Theorem 1.18. Let d ≥ 3 and let X(d) be the disjoint union of all finite
graphs with maximal degree ≤ d. Let Y and Z be graphs which are quasi-
isometric to R

2 and H
2 respectively. For all sufficiently large k, we have

wirkX(d)→Y (n) ≃ n2 and exp(n1/2) . wirkX(d)→Z(n) . exp(n).

The lower bounds both follow from Theorem 1.16, since sepX(d)(n) ≃ n
as it contains a family of expanders of at most exponentially growing size
[Hum17]. For the upper bound we will make direct constructions. We believe
that it is possible to improve the bound in the p = 0 case of Theorem 1.16 to
exp(nr/q log(n)s/q). This would have the consequence that wirkX(d)→Z(n) ≃
exp(n) in Theorem 1.18.

Acknowledgements
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the initial spark for this work; and Romain Tessera for suggestions which
improved the exposition.

2 Thick topological embeddings into hyperbolic 3-

space

Our goal in this section is to prove Theorems 1.3 and 1.7, which we do by
directly constructing thick topological embeddings. We start with the proof
of Theorem 1.3 in the case q + r ≥ 4.

Proof. Define h0 = (2(cosh(1)− 1)−1/2. Consider the map

φq,r : R
r × R

q−1 → R
r ×H

q
R

given by φq,r(x, y) = (x, (y;h0)).

Claim: d(φq,r(x, y), φq,r(x
′, y′)) ≥ 1 whenever ‖x−x′‖2 ≥ 1 or ‖y−y′‖2 ≥ 1.

Proof of Claim. If ‖x− x′‖2 ≥ 1 then this is obvious. If ‖y − y′‖2 ≥ 1, then

d(φq,r(x, y), φq,r(x
′, y′)) ≥ dHq

R

((y;h0), (y
′;h0))

= cosh−1

(
1 +

‖y − y′‖22
2h20

)

≥ cosh−1

(
1 +

1

2h20

)

= cosh−1(1 + (cosh(1)− 1)) = 1.
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Let Γ be a finite graph with maximal degree d and let ψ =
√
2.fq+r−1

where fq+r−1 is the 1-thick topological embedding of Γ into R
q+r−1 defined

in Theorem 1.1. Let us first show that ψ ◦ φ is a 1-thick embedding of Γ
into R

r ×H
q
R
.

The topological embedding ψ is
√
2-thick. If ‖(x, y) − (x′, y′)‖2 ≥

√
2,

then either ‖x− x′‖2 ≥ 1 or ‖y − y′‖2 ≥ 1. Applying the claim, we see that
ψ ◦ φ is 1-thick.

Finally we bound vol(ψ ◦ φ). Firstly note that if ‖(x, y)− (x′, y′)‖2 ≤ 1,
then

d(φq,r(x, y), φq,r(x
′, y′)) =

(
‖x− x′‖2 + dHq

R

((y;h0), (y
′;h0))

)1/2

≤
(
1 + cosh−1

(
1 +

‖y − y′‖22
2h20

))1/2

≤
(
1 + cosh−1

(
1 +

1

2h20

))1/2

=
√
2.

Now let Y be a 1
2 -separated 1-net in im(ψ). It follows from the above

equation that φ(Y ) is a
√
2-net in im(ψ ◦ φ). Denote by α, β the volumes of

the balls of radius 1
4 and

√
2 + 1 in R

q+r−1 and R
r × H

q
R
respectively. We

have
vol(ψ ◦ φ) ≤ β|Y | and α|Y | ≤ vol(ψ).

Hence, using the volume bounds from Theorem 1.1, there is a constant C
which depends on q, r, d but not Γ such that

vol(ψ ◦ φ) ≤ β|Y |
≤ βα−1vol(ψ)

≤
{
βα−1C ′|Γ|3/2 if q + r = 4,

βα−1C ′|Γ|1+1/(q+r−2) log(1 + Γ)4(q+r−1) if q + r ≥ 5.

It remains to tackle the case q + r = 3.

Theorem 2.1. There is a 1-thick topological embedding g : KN → H
3 with

diam(g) ≤ 2 ln(N) + 9 and vol(g) ≤ 2039N2.

We split the proof into two parts. Firstly, we build a 1-thick topological
embedding of the complete graph on N vertices into [0, N − 1]2 × [0, 1].
Then we use an embedding of R

2 as a horosphere in H
3 to construct a

1-thick topological embedding into H
3.
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Lemma 2.2. Let KN denote the complete graph on N vertices. There is a
1-thick topological embedding f : KN → [0, N − 1]2 × [0, 1] ⊂ (R3, ‖ · ‖∞).

Proof. Enumerate the vertices of KN as v0, . . . , vN−1. Now we map vk to
(k, k, 0). We connect (k, k, 0) to (l, l, 0) using the following piecewise linear
path Pkl:

(k, k, 0) → (l, k, 0) → (l, k, 1) → (l, l, 1) → (l, l, 0). (3)

Let us verify that this embedding is 1-thick. Any two distinct vertices vk
and vl are mapped at distance |k − l| ≥ 1. Next, consider a path Pkl and
the image (i, i, 0) of a vertex vi with i 6= k, l. Since one of the first two
coordinates of the path Pkl is always either k or l, we have

d∞(Pkl, (i, i, 0)) ≥ min{|i − k|, |i− l|} ≥ 1.

Finally, consider paths Pij , Pkl. Let (w, x, a) ∈ Pij and (y, z, b) ∈ Pkl and
suppose d((w, x, a), (y, z, b)) < 1.

If a = 1, then b > 0, so w = j and y = k. Since d∞((w, x, a), (y, z, b)) ≥
|w− y|, we have |j− k| < 1. Thus j = k and the two paths come from edges
which share a vertex.

If a ∈ (0, 1) then w = x ∈ {i, j}. Since d∞((w, x, a), (y, z, b)) ≥ max{|w−
y|, |x− z|} and at least one of y, z is equal to either k or l, one of i, j must
be equal to one of k, l. Thus the two paths come from edges which share a
vertex.

If a = 0 then either x = i or w = x = j. Also b < 1 so either z = k or
y = z = l. If x = i and z = k then the argument from the a = 1 case holds.
Next, suppose w = x = j. Since z ∈ {k, l} and d∞((w, x, a), (y, z, b)) ≥
|x− z|, we have j = k or j = l. If x = i and y = z = l, then i = l following
the same reasoning.

Next, we embed [0, N − 1]2 × [0, 1] into H
3. We work in the upper-half

space model of H3 = {(x, y; z) | z > 0}.
Consider the map φ : R2 × [0, 1] → H

3 defined by

(x, y, a) 7→ (x, y;h0e
−a).

Lemma 2.3. Let f : KN → [0, N − 1]2 × [0, 1] be the 1-thick topological
embedding from Lemma 2.2. The map g = φ ◦ f is a 1-thick embedding of
KN into H

3 with diameter ≤ 2 lnN + 9 and volume ≤ 2039N2.

Proof. Firstly, recall that dH3((x1, y1; z1), (x2, y2; z2)) is given by the formula

cosh−1

(
1 +

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2

2z1z2

)

9



We first prove that g is 1-thick. Since f is 1-thick with respect to the L∞

metric, it suffices to prove that dH3(φ(a1, b1, c1), φ(a2, b2; c2)) ≥ 1 whenever
(a1, b1, c1), (a2, b2, c2) ∈ [0, n − 1]2 × [0, 1] are at L∞ distance ≥ 1.

Suppose max{|a2−a1|, |b2−b1|, |c2−c1|} ≥ 1. If max{|a2−a1|, |b2−b1|} ≥
1, then

dH3(φ(a1, b1, c1), φ(a2, b2, c2)) ≥ cosh−1

(
1 +

1

2h20

)
= 1.

If |c2 − c1| ≥ 1, then

dH3(φ(a1, b1, c1), φ(a2, b2, c2)) ≥ cosh−1

(
1 +

h20(1− e−1)2

2h20e
−1

)

= cosh−1(cosh(1)) = 1.

Next we bound the diameter and the volume. For every point (x, y; z) in
the image of g, we have |x|, |y| ≤ N − 1 and h1 = h0e

−1 ≤ z ≤ h0. Thus

dH3((0, 0;h0), (x, y; z)) ≤ cosh−1

(
1 +

2(N − 1)2 + h20(1− e−1)2

2h20e
−2

)

≤ cosh−1

(
1 +

2e2N2 + e2h20
2h20

)

≤ cosh−1

(
1 +

e2

2
+ 2e2(cosh(1) − 1)N2

)

≤ cosh−1
(
2e2 cosh(1)N2

)

≤ ln
(
4e2 cosh(1)N2

)

= 2 ln(N) + ln(4e2 cosh(1)) ≤ 2 ln(N) + 9.

Next, we bound the volume. For each point (x, y; z) in the image of g there
is a point (a, b;h0) with a, b ∈ {0, . . . , N−1} such that |x−a| ≤ 1

2 , |y−b| ≤ 1
2

and z ∈ [h0e
−1, h0]. We have

dH3((a, b;h0), (x, y; z)) ≤ cosh−1

(
1 +

1
2
2
+ 1

2
2
+ h20(1− e−1)2

2h20e
−2

)

≤ cosh−1

(
1 +

1

4h20e
−2

+
1

2e−2

)

= cosh−1

(
1 +

e2 cosh(1)

2

)
=: λ.

Thus, the volume of the 1-neighbourhood of the image of g is at most CN2

where C is the volume of the ball of radius λ+ 1 in H
3. We have

C = π(sinh(2(λ+ 1)) − 2(λ+ 1)) ≤ 2039

as required.
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Using the same strategy, we can also prove the following.

Theorem 2.4. There is a constant C such that for every N ∈ N, there is
a 1-thick topological embedding g : KN → R×H

2
R
with vol(g) ≤ CN2.

Proof. Repeat the proof of Theorem 2.1 but replace the map φ by

φ : R2 × [0, 1] → R×H
2
R given by φ(x, y, z) = (x; y, h0e

−z).

3 Coarse wiring

In this section, we present some elementary properties of coarse wirings
and construct coarse wirings of finite graphs into a Cayley graph of the
lamplighter group Z2 ≀ Z.

Recall that a map r : X → Y between metric spaces is κ-regular if
dY (r(x), r(y)) ≤ κ(1 + dX(x, y)) for all x, y ∈ X and the preimage of every
ball of radius 1 in Y is contained in a union of at most κ balls of radius 1
in X.

Lemma 3.1. Let X and Y be graphs with maximal degree ∆ and let r :
V X → V Y be a κ-regular map. Then for all sufficiently large k we have

wirkX→Y (n) ≤
(
κ+

1

2

)
∆n.

Proof. Let Γ ⊂ X be a subgraph with |V Γ| ≤ n. For xx′ ∈ EΓ let Pxx′

be any minimal length path from r(x) to r(x′) and let Γ′ =
⋃
EΓ Pxx′ . We

construct a wiring f : Γ → Γ′ as follows. For each vertex v ∈ V Γ we define
f(v) = r(v). We then map each edge xx′ continuously to the path Pxx′ .

Since each path Pxx′ contains at most 2κ+ 1 vertices and |EΓ| ≤ 1
2∆n,

we have |V Γ′| ≤ n∆(κ+ 1
2).

If Pxx′ contains an edge e then the distance from r(x) to the initial vertex
of e is at most 2κ, so there are at most 1 + ∆2κ+1 possibilities for r(x); r
is at most κ(1 + ∆)-to-one so there are at most k := κ(1 + ∆)(1 + ∆2κ+1)
possibilities for x. Therefore there are at most k edges xx′ ∈ EΓ such that
f(xx′) = Pxx′ contains a given edge e of EΓ′. It follows that wirkY (Γ) ≤
(κ+ 1

2)∆n.

Lemma 3.2. Suppose wirkX→Y (N) <∞. Then

wirklX→Z(N) ≤ wirlY→Z

(
wirkX→Y (N)

)
.

Proof. If wirlY→Z

(
wirkX→Y (N)

)
= +∞ then there is nothing to prove, so

assume it is finite. Let Γ ⊂ X with |V Γ| ≤ N . Then there exists a coarse

11



k-wiring ψ of Γ into Y with vol(W ) ≤ wirkX→Y (N) and a coarse l-wiring ψ′

of im(W ) into Z with vol(W ′) ≤ wirlY→Z

(
wirkX→Y (N)

)
.

We now construct a coarse kl-wiring ψ′′ of Γ into Z. For each v ∈ V Γ,
define ψ′′(v) = ψ′(ψ(v)). For each e ∈ EΓ, let e1, . . . , em be the edge path
Pe. We define P ′′

e to be the concatenation of paths P ′
e1P

′
e2 . . . P

′
em . We

extend ψ′′ continuously so that the image of e is P ′′
e . It is clear that ψ′′|V Γ

is ≤ kl-to-1 and im(ψ′′) ⊆ im(ψ′), so vol(ψ′′) ≤ vol(ψ′). Since each edge in
im(ψ′′) is contained in at most l of the paths P ′

e′ and each P ′
e′ is used in at

most k of the paths Pe, we have that each edge in im(ψ′′) is contained in
the image of at most kl of the edges in EΓ, as required.

Proof of Corollary 1.15. This follows immediately from Lemmas 3.1 and 3.2.

Finally in this section we construct coarse wirings into a Cayley graph
of the lamplighter group. This construction is crucial for Theorem 1.10. We
identify Z2 ≀ Z with the semidirect product

⊕
Z
Z2 ⋊ Z and define Y to be

the Cayley graph of Z2 ≀ Z using the generating set {(δ0, 0), (0, 1), (0,−1)}
where δ0(i) = 1 if i = 0 and 0 otherwise.

Proposition 3.3. Let Γ be an n-vertex graph with maximal degree d. There
is a coarse 2d-wiring of Γ into Y with diameter at most 6⌈log2(n)⌉ and
volume at most dn

(
3⌈log2(n)⌉+ 1

2

)
.

Proof. Set k = ⌈log2(n)⌉. For each 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ k − 1 fix
ij ∈ {0, 1} such that

∑k−1
j=0 2

jij = i.
Enumerate the vertices of Γ as v0, . . . , vn−1. All the points in the image of

the wiring will have their lamplighter position and lamp functions supported
on the set {0, . . . , 2k − 1}, so we represent elements of Z2 ≀ Z by a binary
string of length exactly 2k (for the element of

⊕
Z
Z2) with one entry marked

by a hat (̂ ) to indicate the position of the lamplighter (for the element of
Z). Note that this set has diameter at most 6k = 6⌈log2(n)⌉.

Now we map each vi to î0i1 . . . ik−1i0i1 . . . ik−1 and for each edge vivj
we assign the path Pij which travels from left to right correcting the binary
string as it goes, then returns to the leftmost position:

î0i1 . . . ik−1i0i1 . . . ik−1 → ĵ0i1 . . . ik−1i0i1 . . . ik−1 (4)

→ j0 î1 . . . ik−1i0i1 . . . ik−1 (5)

. . . → j0j1 . . . ĵk−1i0i1 . . . ik−1 (6)

. . . → j0j1 . . . jk−1j0j1 . . . ĵk−1 (7)

→ j0j1 . . . jk−1j0j1 . . . ĵk−2jk−1 (8)

. . . → ĵ0j1 . . . jk−1j0j1 . . . jk−1. (9)

Now suppose an edge e lies on one of the paths Pij . Choose one of the end
vertices and denote the binary string associated to this vertex by a0 . . . a2k−1.

12



We claim that at least one of the following holds:

i =

k−1∑

l=0

2lak+l (†) j =

k−1∑

l=0

2lal (‡)

In particular, as the graph Γ has maximal degree at most d, this means that
there are at most 2d paths containing the edge e.

If e appears on Pij during stages (4), (5) or (6), then ak+l = il for
0 ≤ l ≤ k − 1. Thus (†) holds. Otherwise, e appears on Pij during stages
(7), (8) or (9), then al = jl for 0 ≤ l ≤ k − 1. Thus (‡) holds.

For the volume estimate, each path Pij meets at most 6k + 1 vertices
and there are |EΓ| ≤ 1

2nd paths.

Proof of Theorem 1.17. This follows immediately from Proposition 3.3 and
Corollary 1.15, since Z2 ≀ Z is quasi-isometric to DL(2, 2) [Woe05].

4 From fine wirings to coarse wirings and back

In this section we prove Proposition 1.9 and Theorem 1.10, which describe
circumstances in which one can translate between thick embeddings of a
graph into a metric space and coarse wirings of that graph into a graph
quasi-isometric to the metric space.

4.1 Fine to coarse

Proposition 4.1. Let M be a Riemannian manifold and let Y be a graph
quasi-isometric to M . For any d ∈ N and T > 0, there exists a constant
k depending only on d, M , T and Y such that if Γ is a finite graph with
maximal degree d and there is a T -thick embedding φ : Γ →M with diameter
D and volume V then there is a coarse k-wiring of Γ into Y with diameter
at most kD and volume at most kV .

Proof. Let f : M → Y be a (possibly discontinuous) quasi-isometry. Let
λ ≥ 1 be such that

1. 1
λdY (f(x1), f(x2)) − λ ≤ dM (x1, x2) ≤ λdY (f(x1), f(x2)) + λ for x1
and x2 in M , and

2. for any y ∈ Y , there exists x ∈M with dY (y, f(x)) ≤ λ.

We show that fφ can be perturbed to obtain a coarse wiring ψ.
For v ∈ V Γ, let ψ(v) be any vertex of Y within distance 1

2 of fφ(v). If
w is another vertex of Γ with ψ(w) = ψ(v) then dM (φ(v), φ(w)) ≤ 3λ. But,
for any distinct pair of vertices v,w, dM (φ(v), φ(w)) ≥ T , so it follows that
at most C3λ+T/2/cT/2 vertices of Γ map under ψ to ψ(v).

13



We now describe a collection of paths Pvv′ in Y as v and v′ range over
pairs of adjacent vertices in Γ. The restriction of φ to the edge vv′ is a
continuous path in M ; choose a sequence φ(v) = w′

0, . . . , w
′
n = φ(v′) of

points on this path with n minimal such that d(w′
i, w

′
i+1) ≤ 2T for each i.

Denote this minimal n by nvv′ . Choose w0 = ψ(v), wn = ψ(v′) and for each
1 ≤ i ≤ n− 1 let wi is a vertex of Y within distance 1

2 of f(w′
i). For each i

we have

dY (wi, wi+1) ≤ 1 + dY (f(w
′
i), f(w

′
i+1))

≤ 1 + λdM (w′
i, w

′
i+1) + λ2

≤ 1 + 2λT + λ2 := L,

so can be joined by an edge path comprising at most L edges. We define
the path Pvv′ to be the concatenation of these nvv′ paths of length at most
L.

We extend ψ to a continuous map which sends each edge vv′ to the path
Pvv′ . We claim that ψ is a coarse wiring with the appropriate bounds on
diameter and volume.

Firstly, we bound the diameter. Note that every point in im(ψ) is within
distance (L+ 1)/2 of some f(w′) with w′ ∈ im(φ). Let x, y ∈ im(ψ) and let
v,w ∈ Γ satisfy dY (x, fφ(v)), dY (y, fφ(w)) ≤ (L+ 1)/2. We have

dY (x, y) ≤ dY (x, fφ(v)) + λ (dM (φ(v), φ(w)) + λ) + dY (fφ(w), y)

≤ L+ 1 + λ.diam(ψ) + λ2

≤ C(T, λ).diam(ψ).

The final inequality fails if Γ is a single vertex, but the proposition obviously
holds in this situation. Otherwise diam(φ) ≥ T and the inequality holds for
a suitable C.

Next we bound the volume of the wiring. The bound follows from the
two inequalities

vol(φ) ≥
cT/2

2d+ 1

(
|V Γ|+

∑

vv′∈EΓ

nvv′

)
and vol(ψ) ≤ |V Γ|+L

∑

vv′∈EΓ

nvv′ .

For the second bound, each vertex in V Γ contributes at most 1 vertex to
vol(ψ) and each path Pvv′ contributes at most Lnvv′ vertices to vol(ψ). For
the first bound, notice that the (open) balls of radius T/2 around the image
of each vertex are necessarily disjoint. Similarly, the balls of radius T/2
centred at any two points in one of the sequences φ(v) = w′

0, . . . , w
′
n = φ(v′)

defined above are necessarily disjoint: if this were not the case for w′
j and

w′
j′ , we must have |j − j′| ≥ 2 since d(w′

i, w
′
i+1) ≥ T for all i, but then we

can remove w′
j+1, . . . , w

′
j′−1 from the above sequence, contradicting the min-

imality assumption. Moreover, if two balls of radius T/2 centred at points
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on sequences corresponding to different edges have non-trivial intersection,
then these edges must have a common vertex since φ is a T -thick embed-
ding. Thus, the T -neighbourhood of the image of φ contains a family of(
|V Γ|+

∑
vv′∈EΓ nvv′

)
balls of radius T/2, such that no point is contained

in more than 2d+ 1 of these balls (d for each end vertex, and an extra 1 if
the point is within distance T/2 of the image of a vertex). As a result

vol(φ) ≥
cT/2

2d+ 1

(
|V Γ|+

∑

vv′∈EΓ

nvv′

)
.

It remains to prove that we have defined a coarse k-wiring. It is sufficient
to show that there is a constant k depending only on λ and the growth rates
c and C of volumes in M such that any edge of Y is contained in Pvv′ for
at most k edges vv′ ∈ EΓ.

Let uu′ be an edge of Y contained in at least one path in the collection
P . Let A be the subset of EΓ comprising edges e such that Pe contains
uu′. As noted during the proof of the diameter bound every point in Pe
is contained in the (L + 1)/2-neighbourhood of f(φ(e)) so there is a point
xe ∈ φ(e) such that dY (u, f(xe)) ≤ (L + 1)/2, and so for any other edge
e′ ∈ A,

dM (xe, xe′) ≤ λ (dY (f(xe), u) + dY (u, f(xe′))) + λ ≤ λ(L+ 2).

For any edge e′ ∈ A, xe′ is within distance T of at most 2d of the points
xe′′ for e

′′ ∈ A. It follows that the size of A is at most 2dc−1
T/2Cλ(L+2)+T/2.

4.2 Coarse to fine

The return direction is more sensitive and we are not able to obtain 1-thick
embeddings in all cases. When the target space is Euclidean this is easily
resolved by rescaling, but in other spaces changing thickness potentially has
a more drastic effect on the volume.

Theorem 4.2. Let M be a compact Riemannian manifold of dimension
n ≥ 3, let Y be a graph quasi-isometric to the universal cover M̃ of M and
let k, d ∈ N. There exist constants C and ε > 0 such that the following
holds:

If wirkY (Γ) = V < ∞ then there is a ε-wiring of Γ into M̃ with volume
at most CV .

Using Lemma 3.1 and the fact that quasi-isometries of bounded degree
graphs are regular, it suffices to prove Proposition 4.2 for a specific bounded-
degree graph quasi-isometric to M̃ .

We require a standard S̆varc-Milnor lemma.
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Lemma 4.3. Let x ∈ M . Then, for sufficiently large L, the graph GLx with
vertex set equal to the preimage of x in M , with vertices connected by an
edge if and only if they are separated by a distance of at most L in M̃ , is
quasi-isometric to M̃ .

Now we assume that Y = GLx for a suitably chosen L. The next step is
to “thicken” Y to a graph Y ′ to obtain injective wirings.

Definition 4.4. A wiring f of a finite graph Γ into a graph Y ′ is called an
injective wiring if f : V Γ → V Y ′ is injective, each f(v) lies in only those
f(e) with e ∈ EΓ when v is an end vertex of e, and each w ∈ V Y ′ \ V Γ is
contained in the interior of at most one f(e).

Definition 4.5. Given a graph Y and T ∈ N we define the T -thickening
of T to be the graph KT (Y ) with vertex set V Y × {1, . . . , T} and edges
{(v, i), (w, j)} whenever either v = w and 1 ≤ i < j ≤ T , or {v,w} ∈ EY
and 1 ≤ i ≤ j ≤ T .

Lemma 4.6. For all d, k ∈ N there exists some T with the following prop-
erty. If there is a coarse k-wiring ψ of a finite graph Γ with maximal degree
d into Y then there is an injective wiring ψ′ of Γ into KT (Y ). Moreover,
diam(ψ′) = diam(ψ) + 2 and vol(ψ′) ≤ Tvol(ψ).

Proof. For each vi ∈ V Γ′ enumerate ψ−1(vi) =
{
vi1, . . . , v

i
li

}
for some li ≤ k.

Define ψ′(vij) = (ψ(vij), j). We now define new paths P ′
xx′ .

If ψ(x) = ψ(x′) then we define ψ′(xx′) to be the edge ψ′(x)ψ′(x′). We
then define each ψ′(xx′) where ψ(x) 6= ψ(x′) in turn.

Note that ψ(xx′) is a path ψ(x) = x0, . . . , xm = ψ(x′) in Γ. We have
ψ′(x) = (x0, j0) for some j0. For the second vertex in the path we choose
the minimal j1 such that (x1, j1) is not in ψ′(V Γ) and has not previously
appeared in any ψ(vv′). Repeat this process to construct the remaining
vertices in the path (x2, j2), . . . , (x

m, jm) = ψ′(xm), and extend ψ′ so that
ψ′(xx′) is this path. Since ψ is a coarse k-wiring, each vertex lies in the
interior of at most 1

2kd of the ψ(e), so we can always complete this process,
provided T ≥ k + 1

2kd. It is immediate from the construction that ψ′ is an
injective wiring.

Note that if (x, j), (y, j′) are contained in im(ψ′) then (x, 1), (y, 1) ∈
im(ψ′) and there is a path of length at most diam(ψ) connecting (x, 1) to
(y, 1) in KT (Y ). Hence diam(ψ′) ≤ diam(ψ) + 2. If (x, j) ∈ im(ψ′) for some
j then x ∈ im(ψ). Therefore vol(ψ′) ≤ Tvol(ψ).

Lemma 4.7. Suppose that M is a compact manifold of dimension n ≥ 3
with fundamental group G and let M̃ be the universal cover of M . Let x ∈M
and denote by Gx the orbit of x in M under G. Then for any L, T there is
an embedding of Y ′ = KT (GLX(Gx)) into M̃ that is equivariant with respect
to the obvious action of G on Y ′.
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This embedding is ε-thick for some ε > 0, and there is a uniform upper
bound on the length of the paths obtained as the images of edges of Y ′ under
the embedding.

Proof. Let B be a ball inM centred at x which is homeomorphic to R
n. Fix

a topological embedding f of the complete graph on T vertices into B. For
each pair y, z ∈ V KT , and each homotopy class [ℓ] in π1(X,x) which has
a representative of length at most L, choose an arc γy,z,[ℓ] connecting f(y)
to f(z) such that the loop obtained from concatenating f(yz) and γy,z,[ℓ]
is in [ℓ] and such that γy,z,[ℓ] intersects the union of f(KT ) and all arcs
previously added only at the points f(y) and f(z). This is always possible
using a general position argument.

Lifting this embedding to M , we obtain a G-equivariant embedding of
KT (GLX(Gx)) into M̃ . As only finitely many arcs were added during the
above procedure, the embedding is ε-thick, where ε = min {dM (X,Y )} as
X,Y range over the following:

• X = {f(v)}, Y = {f(w)} for distinct vertices v,w ∈ V KT ; or

• X = {f(v)} and Y is either f(yz) or γy,z,[ℓ] with v, y, z all distinct; or

• X is either f(vw) or γv,w,[ℓ] and Y is either f(yz) or γy,z,[ℓ′] with
v,w, y, z all distinct.

Similarly, since there are only finitely many G-orbits of edges, there is a
uniform upper bound on the lengths of images

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. Let M be a compact manifold of dimension n ≥ 3,
let M̃ be the universal cover of M and let Y be any graph quasi-isometric
to M̃ . Fix d, k ∈ N and assume that there is a coarse k-wiring of Γ into Y
with diameter D and volume V . We may assume D ≥ 1 as the D = 0 case
is obvious.

By Lemma 4.3 there is some L such that GLx is quasi-isometric to M̃ ,
so by Corollary 1.15(1), there exists some l = l(k, d) so that there is a
coarse l-wiring of Γ into GLx with diameter ≤ lD + l ≤ 2lD and volume
≤ lV + l ≤ 2lV .

Now we apply Lemma 4.6: for some T = T (l, d) there is an injective
wiring ψ of Γ into TT (GLx ) with diameter ≤ 2lD + 2 ≤ 4lD and volume
≤ 2T lV . Composing this injective wiring with the ε-thick topological em-
bedding φ of TT (GLx ) into M̃ gives an ε-thick embedding f : Γ → M̃ . The
diameter of the image of f is bounded from above by a constant multiple of
diam(ψ). For the volume, note that the sum of the lengths of all paths in
the wiring is at most a constant times vol(ψ), and the volume of the thick
embedding is at most this sum of lengths multiplied by the maximal volume
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of a ball of radius ε in M . Hence the volume of this thick embedding is at
most a constant multiple of V .

5 Lower bounds on coarse wiring

5.1 Background on the separation profile

Recall that f . g if there is a constant C such that

f(x) ≤ Cg(Cx) + C for all x ∈ X.

We write f ≃ g if f . g and g . f .

Definition 5.1. [BST12] Let Γ be a finite graph. We denote by cut(Γ)
the minimal cardinality of a set S ⊂ V Γ such that no component of Γ− S
contains more than 1

2 |V Γ| vertices. A set S satisfying this property is called
a cut set of Γ.

Let X be a (possibly infinite) graph. We define the separation profile

of X to be the function sepX : [0,∞) → [0,∞) given by

sepX(n) = max{cut(Γ) | Γ ≤ X, |V Γ| ≤ n}.

For convenience, we will define sepX(r) = 0 whenever r < 1.

Definition 5.2. The Cheeger constant of a finite graph Γ is

h(Γ) = min{|∂A||A| | A ⊆ V Γ, |A| ≤ 1

2
|V Γ|}

where ∂A = {v ∈ V Γ | dΓ(v,A) = 1}.

The main result of [Hum17] states that for any bounded degree graph X

sepX(n) ≃ max {|Γ|h(Γ) | Γ ≤ X, |Γ| ≤ n} .

The only part of this result we need here is the following.

Proposition 5.3. [Hum17, Proposition 2.1] Let Γ be a finite graph. There

is a subgraph Γ′ ≤ Γ such that |V Γ′| ≥ 1
2 |V Γ| and h(Γ′) ≥ cut1/2(Γ)

4|Γ| .

5.2 Lower bounds on wiring profiles

Proposition 5.4. Let X,Y be graphs of bounded degree where wirkX→Y (n) <
∞. Then, for all n ≥ 3,

∑

s≥0

sepY (2
−swirkX→Y (n)) ≥

sepX(n)

40k2
.
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Proof. Let n ≥ 3 and choose Γ ≤ X which satisfies |Γ| ≤ n and cut(Γ) =
sepX(n) = l ≤ 2 |Γ| /3. Let Γ′′ ≤ Γ satisfy |Γ′′| ≥ 1

2 |Γ| and h(Γ′′) ≥ l
2|Γ′| ≥

l
4|Γ| (using [Hum17]). Let ψ be a coarse k-wiring of Γ′′ into Y such that

vol(ψ) = m = wirkY (Γ
′′). Set Γ′ = im(ψ).

Let C1 be a cut set of Γ′ of minimal size. Our goal is to find an upper
bound on |C1| in terms of l = sepX(n). If |C1| ≥ l/40k2, then

sepY (wir
k
X→Y (n)) ≥ |C1| ≥

sepX(n)

40k2
.

Now suppose |C1| < l/40k2. It follows that C1 ∩ ψ(V Γ′′) contains less
than 1/10th of the elements of ψ(V Γ′′).

Claim: There is a connected component of Γ′ \C1 containing more than
4
5ths of the elements of ψ(V Γ′′).

Proof of Claim. Suppose not and denote the connected components of Γ′\C1

by A1, . . . , Am where Ai ∩ ψ(V Γ′′) ≥ Aj ∩ ψ(V Γ′′) whenever i ≤ j. Choose
t minimal so that

∣∣∣∣∣ψ(V Γ′′) ∩
(

t⋃

i=1

Ai

)∣∣∣∣∣ ≥
1

10

∣∣ψ(V Γ′′)
∣∣ ,

set A =
⋃t
i=1Ai and B =

⋃m
i=t+1Ai. Then the subsets A,B of ψ(V Γ′′) are

unions of connected components of ψ(V Γ′′) \C1 and contain at least 1/10th
of the vertices in ψ(V Γ′′). Using the bound on Cheeger constant we see that
ψ−1A (which has at least |V Γ′′|/10k elements) has at least l/40k neighbours
in Γ′′, none of which are mapped to A by ψ. Therefore, at least l/40k of the
paths Pab must intersect C1. It follows that |C1| ≥ l/40k2.

Now we repeat the argument. Let D1 be the connected component of
Γ′ \C1 which contains more than 4

5ths of the elements of ψ(V Γ′′). Note that
|D1| ≤ 1

2 |V Γ′|.
Let C2 be a cut set for D1 and run the same analysis. Either |C1 ∪ C2| ≥

l/40k2 or there is a component D2 of Γ′′ \ (C1 ∪C2) which contains at least
4
5ths of elements of ψ(V Γ′′). It is impossible for Ds to contain at least 4

5ths
of the elements of ψ(V Γ′′) as soon as

2−sm ≤ 4

5k

∣∣Γ′′
∣∣

and we have removed at most
∑s−1

i=0 |Ci| ≤
∑s−1

i=0 sepY (2
−s |Γ′|) vertices.

Hence
s−1∑

i=0

sepY (2
−s
∣∣Γ′
∣∣) ≥ l/40k2 =

sepX(n)

40k2
(10)

holds for s = 1 + ⌈log2(km/ |Γ′′|)⌉.
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In practice, the separation profiles of graphs we are interested in here are
of the form nr log(n)s with r ≥ 0 and s ∈ R. Restricted to these functions,
Proposition 5.4 says the following.

Corollary 5.5. Suppose sepX & nr log(n)s and sepY ≃ np log(n)q. then

wirkX→Y (n) &

{
nr/p log(n)(s−q)/p if p > 0,

exp(nr/(q+1) log(n)s/(q+1)) if p = 0.

Proof. Applying our hypotheses to Proposition 5.4, we have

nr log(n)s .
∑

i≥0

(
2−iwirkX→Y (n)

)p
log
(
2−iwirkX→Y (n)

)q
.

If p > 0, then the sequence
(
2−iwirkX→Y (n)

)p
decays exponentially as a

function of i, so

nr log(n)s . log
(
wirkX→Y (n)

)q∑

i≥0

(
2−iwirkX→Y (n)

)p

. wirkX→Y (n)
p log

(
wirkX→Y (n)

)q
.

Hence, there is some constant C > 0 such that

w := wirkX→Y (n)
p log

(
wirkX→Y (n)

)q
≥ C−1(C−1n)r log(C−1n)s − C. (11)

Now suppose wirkX→Y (n) ≤ dnr/p log(n)(s−q)/p. Then

w ≤ dpnr log(n)s−q
(
log(d) +

r

p
log(n) +

s− q

p
log log(n)

)q

≤ (2r)sdp

ps
nr log(n)s−q log(n)q =

(2r)sdp

ps
nr log(n)s

for sufficiently large n. This contradicts (11) if d is small enough and n is
large enough. Hence,

wirkX→Y (n) & nr/p log(n)(s−q)/p.

If p = 0, then there is some C > 0 such that

log2

(
wirkX→Y (n)

)q+1
≥

log2(wirkX→Y (n))∑

i=0

log2

(
2−iwirkX→Y (n)

)q

≥ C−1−rnr log2(C
−1n)s − C.

Hence wirkX→Y (n) & exp(nr/(q+1) log2(n)
s/(q+1)).
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6 Completing Theorems 1.4, 1.5 and 1.6

In this section we give complete proofs of the main results of the paper.

Proof of Theorem 1.4. Let Γ be an N -vertex graph with maximal degree d
and Cheeger constant ≥ δ > 0. Let g be an ε-thick embedding of Γ into H

3

with volume V . Let Y be a graph which is quasi-isometric to H
q × R

r. By
Proposition 1.9 there is a coarse k-wiring from Γ to Y with volume at most
kV .

We have sepY (n) ≃ n1−1/(r+1) log(n)1/(r+1) if q = 2 and sepY (n) ≃
n1−1/(q+r−1) if q ≥ 3 [HMT20b, Theorem 1.7(ii)]. By [Hum17, Proposition
2.1], sepΓ(N) ≥ δ

2N . Using Corollary 5.5 we see that for q ≥ 3

kV ≥ wirkΓ→Y (N) ≥ c−1N1/(1−1/(q+r−1)) − c = c−1N1+1/(q+r−2) − c

while for q = 2

kV ≥ wirkΓ→Y (N) ≥ c−1N1/(1−1/(r+1)) log(N)−(1/(r+1))/(1−1/(r+1)) − c

= c−1N1+1/r log(N)−1/r − c.

Proof of Theorem 1.5. This proof follows exactly the strategy of the result
above. Let Γ be an N -vertex graph with maximal degree d. By Proposition
3.3 there is a 2d-coarse wiring of Γ into a Cayley graph of Z2 ≀ Z with
volume ≤ 4dN⌈log2(N)⌉. This Cayley graph is quasi-isometric to DL(2, 2)
[Woe05], and DL(2, 2) quasi-isometrically embeds into any graph X quasi-
isometric to a symmetric space whose non-compact factor has rank ≥ 2
[HMT20b, Proposition 2.8 and Theorem 3.1]. Thus, for some l we have

wirlΓ→X ≤ C ′N ln(1 +N).

Proof of Theorem 1.6. Let Γ be an N -vertex graph with maximal degree d
and Cheeger constant ≥ δ > 0. Let g be an ε-thick embedding of Γ into a
symmetric spaceM whose non-compact factor has rank ≥ 2 with volume V .
Let Y be a graph which is quasi-isometric to M . By Proposition 1.9 there
is a coarse k-wiring with volume at most kV .

We have sepY (n) ≃ n/ log(n) [HMT20b, Theorem 1.5, Proposition 2.8
and Theorem 3.1]. Using Corollary 5.5 we see that

kV ≥ wirkΓ→Y (N) ≥ c−1N/ log(N)− c.
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6.1 More examples of coarse wirings

Proposition 6.1. Every N -vertex graph with maximal degree d admits a
coarse 2d-wiring into the standard 2-dimensional integer lattice Z

2 with vol-
ume at most N2.

Let X be the disjoint union of all finite graphs with maximal degree 3.
For any k there is some C such that wirkX→Z2(n) ≥ C−1n2 − C.

Proof. The second claim follows immediately from Corollary 5.5 and the
fact that sepX(n) ≃ n [Hum17] and sepZ2(n) ≃ n1/2 [BST12].

Let Γ be an n-vertex graph with maximal degree d. Enumerate the
vertices of Γ by v0, . . . , vn−1. We construct a d-wiring of Γ into {0, . . . , n−1}2
as follows:

Map the vertex vk to the point (k, k). For each edge vivj (with i < j) we
define a path Pij which travels horizontally from (i, i) to (j, i), then vertically
from (j, i) to (j, j).

To see that this is a 1-wiring, note that if a horizontal edge (a, b)(a+1, b)
is in Pij then b = i. Similarly, if a vertical edge (a, b)(a, b + 1) appears in
Pij , then a = j. Hence, any two paths containing a common edge have a
common end vertex. Since, by assumption, there are at most d edges with a
given end vertex, we have defined a coarse 2d-wiring. The volume estimate
is obvious.

Proposition 6.2. Let Y be a graph which is quasi-isometric to H
2 and let

d ∈ N. There are constants k = k(X, d) and C = C(X, d) such that any
N -vertex graph Γ with maximal degree d admits a coarse k-wiring into X
with volume ≤ CN2 exp(N).

Let X be the disjoint union of all finite graphs with maximal degree 3.
For any k there is some C such that wirkX→Y (n) ≥ C−1 exp(C−1n1/2))−C.

Proof. The second claim follows immediately from Corollary 5.5 and the
fact that sepX(n) ≃ n [Hum17] and sepZ2(n) ≃ log(n) [BST12].

We will construct 1-thick embeddings KN → H
2 × [0, 1] with volume

≤ C ′N2 exp(N). Since X is quasi-isometric to H
2 × [0, 1], the result will

then follow from Proposition 1.9.
Firstly, recall the definition of the metric in the upper halfspace model

of H2:

dH2((x1, y1), (x2, y2)) = cosh−1

(
1 +

(x2 − x1)
2 + (y2 − y1)

2

2y1y2

)
.

We equip H
2 × [0, 1] with the metric

d((w, x; a), (y, z; b)) = max{dH2((w, x), (y, z)), |a − b|}.

Claim: If d((w, x; a), (y, z; b)) < 1 and x, z ≤ h0 := (2(cosh(1)− 1)−1/2,
then |a− b| < 1, |w − y| < 1 and | ln(x/h0)− ln(z/h0)| < 1.
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Proof of Claim. It is immediate from the definition that |a − b| < 1. Since
x, z ≤ h0,

1 > d((w, x; a), (y, z; b))

≥ dH2((w, x), (y, z))

≥ cosh−1

(
1 +

(w − y)2

2h20

)

≥ cosh−1(1 + (cosh(1)− 1)(w − y)2).

Hence (w − y)2 < 1, so |w − y| < 1. Finally, write x = h0e
p and z = h0e

q

with p, q ∈ R. We have

1 > d((w, x; a), (y, z; b))

≥ dH2((w, x), (y, z))

≥ cosh−1

(
1 +

h20(e
p − eq)2

2h20e
p+q

)

= cosh−1

(
1

2
(ep−q + eq−p)

)
= |p− q|.

Hence | ln(x/h0)− ln(z/h0)| = |p− q| < 1.

Enumerate the vertices of KN by v0, . . . , vN−1. We map vi to (i, h0e
−i; 0)

where h0 = (2(cosh(1) − 1)−1/2. For i < j, we connect (i, h0e
−i; 0) to

(j, h0e
−j ; 0) using the path Pij defined as follows:

(i, h0e
−i; 0) → (j, h0e

−i; 0) (12)

→ (j, h0e
−i; 1) (13)

→ (j, h0e
−j; 1) (14)

→ (j, h0e
−j; 0) (15)

where the first segment lies in the horocircle y = h0e
i and the others are

geodesics.
We first prove that this embedding is 1-thick. Let (w, x; a) ∈ Pij and

(y, z; b) ∈ Pkl with d((w, x; a), (y, z; b)) < 1. Set p = ln(x/h0) and q =
ln(z/h0). From the claim we have max{|w − y|, |p − q|, |a− b|} < 1.

If a = 1, then b > 0, so w = j and y = l. Since w, y are both integers
they must be equal. Thus j = l and the two paths come from edges which
share a vertex.

If a ∈ (0, 1) then w = j and p ∈ {−i,−j}. Note that one of the four
equalities y = k, y = l, q = −k, q = −l holds at every point on Pkl. If it one
of the first two, then min{|j − k|, |j − l|} < 1 and j ∈ {k, l}, or if it is one of
the last two, then one of −i,−j is equal to one of −k,−l. In any case the
two paths share an end vertex.
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If a = 0 then either p = −i or w = j and p = −j. Also b < 1 so either
q = −k or y = l and q = −l. If p = −i, then either q = −k in which case
| − i− (−k| < 1 by the claim, thus i = k; or q = −l in which case i = l by
the same reasoning. Next, suppose w = j and p = −j. Since q ∈ {−k,−l}
we have j = k or j = l. If p = −i, y = l and q = −l, then i = l following
the same reasoning.

Every point in the image of the embedding is of the form (x, h0e
−y; z)

where |x|, |y| ≤ n− 1 and z ∈ [0, 1]. Set p =
(
n−1
2 , h0,

1
2

)
. We have

d
(
(x, h0e

−y; z), p
)

≤ cosh−1

(
1 +

n−1
2

2
+ h20(1− en−1)2

2h20e
−(n−1)

)
+

1

2

≤ cosh−1

(
1 +

n2

4 + h20)

2h20e
−(n−1)

)
+

1

2

≤ cosh−1

(
1 + (

n2

8
+ 1)en−1

)
+

1

2

≤ cosh−1

(
17n2

8 en−1

2

)
+

1

2

≤ cosh−1 (cosh(n − 1 + 2 ln(n) + ln(17)− ln(8))) +
1

2

= n− 1 + 2 ln(n) + ln(17) − ln(8) +
1

2
≤ n+ 2 ln(n)

Thus, the volume of the wiring is at most 4π sinh2((n+2 ln(n) + 1)/2): the
volume of the ball of radius n+ 2 ln(n) + 1 in H

2. We have

4π sinh2((n+ 2 ln(n) + 1)/2) ≤ 4π

(
exp((n + 2 ln(n) + 1)/2)

2

)2

≤ π exp(n+ 2 ln(n) + 1)

= eπn2en ≃ en

as required.

7 Questions

We first recall a conjecture from [GG12].

Conjecture 7.1. For each k ≥ 3, d ∈ N there is some constant C = C(k, d)
such that every N -vertex graph Γ with maximal degree d admits a 1-thick
topological embedding into R

k with diameter ≤ CN1/(k−1) and volume ≤
CN1+1/(k−1).

These bounds on diameter and volume are optimal. A positive reso-
lution to this question would also give optimal volume bounds for 1-thick
embeddings into all spaces Hk × R

l where k ≥ 3 and k + l ≥ 4.
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Conjecture 7.2. For each k ≥ 3, l ≥ 4 − k, d ∈ N there is some con-
stant C = C(k, l, d) such that every N -vertex graph Γ with maximal de-
gree d admits a 1-thick topological embedding into H

k × R
l with volume

≤ CN1+1/(k+l−2).

To improve our bounds on thick embeddings of graphs into other sym-
metric spaces whose non-compact factor has rank one requires constructions
of thick embeddings into nilpotent Lie groups.

Question 7.3. Let P be a connected nilpotent Lie group with polynomial
growth of degree p ≥ 3 and let d ∈ N. Do there exist constants C, ε > 0
which depend on p, d such that for any N -vertex graph Γ with maximal
degree d there is a ε-thick embedding of Γ into P with diameter ≤ CN1/(p−1).

Another important example worthy of consideration is a semidirect prod-
uct of the Heisenberg group with R, H ⋊ψ R where the action is given by




1 x z
0 1 y
0 0 1


 · ψ(t) =




1 etx z
0 1 e−ty
0 0 1


 .

Conjecture 7.4. For every d there exist constants C = C(d) and ε = ε(d)
such that every N -vertex graph Γ with maximal degree d admits a ε-thick
embedding into H ⋊ψ R with volume ≤ CN ln(N).

An immediate consequence of this conjecture is that the dichotomy at
the heart of [HMT20b] is also detected by wiring profiles. Specifically, let
G be a connected unimodular Lie group, let Y be a graph quasi-isometric
to G and let X be the disjoint union of all finite graphs with degree ≤ 3.
Either G is quasi-isometric to a product of a hyperbolic group and a nilpo-
tent Lie group, in which case there is some p > 1 such that for all k suffi-
ciently large wirkX→Y (N) & Np; or G contains a quasi-isometrically embed-
ded copy of either DL(2, 2) or H ⋊ψ R, in which case for all k sufficiently
large wirkX→Y (N) ≃ N ln(N).

The lower bound from separation profiles is incredibly useful, and our
best results are all in situations where we can prove that the lower bound in
Theorem 1.16 is optimal. As a result it is natural to record the following:

Question 7.5. For which bounded degree graphs Y does the following hold:
Let X be the disjoint union of all finite graphs with maximal degree ≤ 3.

For all k sufficiently large

sepY (wir
k
X→Y (N)) ≃ N.

A starting point would be to determine when the following strengthening
of Proposition 5.4 holds:
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Question 7.6. Let X,Y be graphs of bounded degree where wirkX→Y (n) <
∞. Does there exist a constant C > 0 such that for all n

sepY (wir
k
X→Y (n)) ≥

sepX(n)

C
− C?

We certainly should not expect Theorem 1.16 give the correct lower
bound in all cases. A natural example to consider would be a coarse wiring of
an infinite binary tree B into Z

2. The depth k binary tree Bk (with vertices
considered as binary strings v = (v1, v2, . . . vm) of length ≤ k) admits a
1-wiring into Z

2 with volume . |Bk| log |Bk| as follows

ψ(v1, v2, . . . vl) =


 ∑

i∈{l|vl=0}

2k−i,
∑

j∈{l|vl=1}

2k−i




where the path connecting ψ(v1, v2, . . . vl) to ψ(v1, v2, . . . vl, 0) (respectively
ψ(v1, v2, . . . vl, 1)) is a horizontal (resp. vertical) line.

Question 7.7. Is it true that for all sufficiently large k, wirkB→Z2(N) ≃
N ln(N)? Does the lower bound hold for all coarse wirings X → Y where
X has exponential growth and Y has (at most) polynomial growth?

It is also natural to ask whether other invariants which behave monoton-
ically with respect to coarse embedding (and regular maps) provide lower
bounds on wiring profiles.

We finish with another, arguably more fundamental question. How does
wirk depend on k? In the cases we compute, we show that wiring profiles
stabilise, meaning there exists some k such that wirkX→Y (n) ≃ wirkX→Y (n)
whenever l ≥ k.

Question 7.8. Do there exist two bounded degree graphs X and Y such
that for every k there is some l ≥ k with

wirkX→Y (N) 6. wirlX→Y (N)?

Since every coarse k-wiring is a coarse l-wiring when l ≥ k, we always
have wirkX→Y (N) ≥ wirlX→Y (N).
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[BST12] I. Benjamini, O. Schramm, and Á. Timár. On the separation profile of infinite
graphs. Groups Geom. Dyn., 6(4):639–658, 2012.

[GG12] M. Gromov and L. Guth. Generalizations of the Kolmogorov-Barzdin embed-
ding estimates. Duke Math. J., 161(13):2549–2603, 2012.

[Hum17] D. Hume. A continuum of expanders. Fund. Math., 238:143–152, 2017.

26



[HMT20a] D. Hume, J. M. Mackay, and R. Tessera. Poincaré profiles of groups and
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a coarse geometric dichotomy. Available from arXiv:2011.02963.

[KB93] A. N. Kolmogorov and Y. M. Barzdin. On the realization of networks in
three-dimensional space. In Selected Works of Kolmogorov, Kluwer, Dordrecht,
3:194–202, 1993.

[Woe05] W. Woess. Lamplighters, Diestel-Leader graphs, random walks, and harmonic
functions. Combin. Probab. Comput., 14(3):415–433, 2005.

27

http://arxiv.org/abs/2011.02963

	1 Introduction
	1.1 Thick embeddings into symmetric spaces
	1.2 Coarse k-wirings

	2 Thick topological embeddings into hyperbolic 3-space
	3 Coarse wiring
	4 From fine wirings to coarse wirings and back
	4.1 Fine to coarse
	4.2 Coarse to fine

	5 Lower bounds on coarse wiring
	5.1 Background on the separation profile
	5.2 Lower bounds on wiring profiles

	6 Completing Theorems 1.4, 1.5 and 1.6
	6.1 More examples of coarse wirings

	7 Questions

