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itats are drying more frequently and for longer under the
ures of climate change and overabstraction. Unsurprisingly,
ecies decline or become locally extinct as their benthic habi-
g stream droughts, but less is known about the potential
se terrestrial species that may exploit emerging niches in
s. In particular, we do not know how these transient
spond as droughts become more extreme in the future. To
d a large-scale, long-term mesocosm experiment spanning
t of drought intensity, from permanent flows to full
atering, and analysed terrestrial invertebrate community
ne year. Droughts that caused stream fragmentation gave
t diverse terrestrial invertebrate assemblages, including 10
K conservation designations, and high species turnover
ental channels. Droughts that caused streambed dewater-

ower terrestrial invertebrate richness, suggesting that the
nstream pools may benefit these taxa as well as aquatic
rly intense droughts may therefore yield relatively few
g either aquatic or terrestrial species, indicating that the
e biodiversity from future drought intensification could be
than widely acknowledged.

nd overabstraction of water are leading to increased occur-
ts in rivers and streams [1]. As wetted habitat shrinks,
te species are lost [2], and the reciprocal expansion of dry
o an increase in terrestrial invertebrate biodiversity [3]. How-
terrestrial species gains may be reversed as a drought further
erbeds become inhospitable and relict aquatic resources are
r currently limited understanding of these dynamics relies
ata from seasonally dry streams, so we know little of how ter-
te communities might develop during the extreme, prolonged
ecome increasingly common [4].
rticularly intense drying should expose species to harsher
nditions and more severe food resource shortages, thus erod-
iodiversity, consistent with the intermediate disturbance
onversely, an increase in alpha diversity would be predicted
Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsbl.2023.0381&domain=pdf&date_stamp=
mailto:twhaspin@gmail.com
http://orcid.org/
http://orcid.org/0000-0003-1599-1532


by the species–area relationship as more terrestrial habitat
becomes available [6], and would additionally be expected
as plant succession creates greater niche space for invert-
ebrates. It is also unclear how the trajectory of terrestrial
community development may vary in space during pro-
longed drying, hampering our ability to predict the impacts
of droughts on biodiversity patterns among reaches (i.e.
beta diversity). Beta diversity may increase as different
reaches follow different successional trajectories, or decline
as complex wetland community types are replaced by a
more uniform, dry channel. As future drought intensification
gives rise to novel river- and reach-specific drying regimes,
evidence of how terrestrial alpha and beta diversity respond
will increasingly be required to inform adaptive river
management and conservation.

Experiments are needed to expose ecological commu-
nities to these possible future conditions [7] in isolation
from the confounding environmental gradients that beset
field survey data [8]. We therefore simulated year-long (i.e.
supraseasonal) droughts of varying intensity using artificial
stream channels (mesocosms), and characterized the terres-
trial invertebrate assemblages that developed. Drought
treatments ranged from flowing streams retaining connec-
tivity among riffles and pools, through to the disconnection
of these habitats and, ultimately, to complete streambed
drying. We analysed differences in invertebrate alpha and

Phalaris arundinacea) in fragmented channels. The riffle habitats
of fragmented channels had largely terrestrialised and so these
channels also supported many of the non-aquatic herbs that
dominated dry streams, such as willowherbs (Epilobium spp.),
mayweed (Tripleurospermum inodorum) and nettle (Urtica urens).
As plant growth is a key driver of terrestrial invertebrate diver-
sity in riverine environments [11], we estimated the total
volume of terrestrial vegetation in each channel. The percentage
cover of plants was estimated across the top three riffles and
three pools per channel at the end of the experiment. The
volume (m3) of each plant taxon was calculated from its areal
coverage (m2) multiplied by plant stand height (m). We then
sampled terrestrial invertebrates through exhaustive (i.e. until
no further individuals could be found) sweep netting and
hand searching [see 12] of one randomly selected riffle-pool
pair (1.5 m2) to yield a single invertebrate sample for each chan-
nel. Invertebrates were collected from dry gravels, emergent and
terrestrial plants and, in connected channels, from emergent
fronds of water crowfoot. Invertebrate specimens were identified
to species wherever possible, with aphids (Aphidae), chalcid
wasps (Chalcidoidea), springtails (Collembola), vinegar flies
(Drosophilidae) and non-biting midges (Chironomidae)
identified to family level.

(b) Statistical analyses
All analyses were conducted in R (v. 4.2.2) [13,14]. We quantified
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beta diversity between these treatments, thus exploring the
potential impacts of drought intensification on terrestrial
community assembly at local and network scales.

2. Methods
(a) Drought experiment and data collection
We used outdoor mesocosms to replicate conditions in perennial
headwater streams, in Hampshire, UK [further details given in

8]. Of the 21 channels in the experiment, we used 18 for this

bers of replicates per group. Following rejection of the null
study, with the remainder unable to be assigned to a particular
treatment as their riffle habitat was partially but not fully sub-
merged. All channels had gravel beds with riffle-pool sequences
(four per channel), analogous to their natural counterparts. The
channels were fed by borehole water and seeded with a
‘common garden’ of water crowfoot (Ranunculus penicillatus
subsp. pseudofluitans), algae and aquatic invertebrates from the
adjacent chalk stream. Following six months of aquatic commu-
nity establishment under ambient flow, we left three channels as
controls and adjusted flows across the remainder to create a gradi-
ent of drought intensity. This gradient spanned three characteristic
habitat states [2]: (i) flowing channels, with no dry substratum
(connected; n = six channels); (ii) fragmented channels, with
approximately 50% dry substratum and isolation of pool habitats
(fragmented [FRAG]; nine channels); and (iii) dewatered stream-
beds, with 95–99% dry substratum (dry [DRY]; three channels).
These treatments were designed to capture a broad spectrum of
hydrological states, from stable flows through to the harsh,
patchy conditions, including prolonged ponding and drying,
associated with supraseasonal drought [9,10].

After one year of drought, channels from each treatment had
developed plant communities representative of the major hydro-
logical classification groups of ephemeral chalk stream
macrophytes [10], driven by wind dispersal of seeds (see elec-
tronic supplementary material, figure S1). There was a shift
from fully aquatic taxa such as water crowfoot and water parsnip
(Berula erecta) in connected streams to emergent (e.g. watercress;
Nasturtium officinale) and wetland species (e.g. reed canary grass;
rsbl20230381—25/10/23—14:04–Copy Edited by: Not Mentioned
differences in invertebrate community composition between
treatments using non-metric multidimensional scaling (NMDS)
and then tested for significant differences in alpha diversity. To
account for the underlying influence of relative abundance on
species detection success (and thus diversity estimation), we
equalized samples by adjusting for sample coverage, which
allows for fairer comparisons of diversity estimates drawn from
communities with greater or lesser proportions of rare species
[15]. We compared samples at 90% coverage (i.e. the level of
sample completeness giving a 10% probability that the next
recorded individual will belong to a previously undetected
species), dropping a single sample from all further analyses as
it exhibited a particularly low coverage value (60%), and was
therefore not deemed to be representative of the community in
the (connected) channel from which it was collected. We then cal-
culated alpha diversity as Hill-Shannon diversity to afford
similar sensitivity to rare and common species and retain intui-
tive scaling behaviour (i.e. proportional to changes in richness
[15]). We compared Hill-Shannon diversities using a Kruskal-
Wallis one-way analysis of variance to account for different num-
hypothesis (no significant difference between treatments), we
conducted Conover-Imam tests to determine which treatments
differed significantly in alpha diversity, controlling for the false
discovery rate using the Benjamini-Hochberg procedure [16].

Beta diversity, interpreted here as the dissimilarity in species
composition among the communities of two (i.e. pairwise dis-
similarity) or more (i.e. multiple site dissimilarity) channels
[17], was calculated and decomposed into turnover (species
replacement) and nestedness-resultant (species gain/loss; here-
after NRD) components using the partitioning methods of
Baselga [18]. Under this framework, total beta diversity is calcu-
lated as Sorensen dissimilarity (βsor), turnover as Simpson
dissimilarity (βsim) and NRD as the difference between these
(βsor− βsim= βnes). High turnover would imply the presence of
many species unique to certain channels; whereas high NRD
would signify (i) a nesting of species-poor assemblages within
richer ones, and thus (ii) greater overlap in species’ identities
among channels [18].

We calculated (1) pairwise measures of beta diversity (βsor,
βsim and βnes), to analyse turnover and NRD between the
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pooled communities of each of the three treatments; and (2) mul-
tiple site dissimilarity (βSOR, βSIM and βNES) to compare the
communities of all channels within each treatment [18]. As
each treatment contained a different number of channels, with
a minimum of three (dry), we accounted for a sampling effort
effect by conducting analyses on random subsets of three chan-
nels. We calculated beta diversity for 100 combinations of
paired treatment subsample pools (pairwise measures) and for
100 combinations of treatment-specific subsamples (multiple
site measures). The final results were obtained by taking the
mean and 95% confidence intervals of these 100 repeats.

3. Results
We recorded 166 terrestrial invertebrate taxa, 158 of which were
found in fragmented and dry streams, and 131 of which were
unique to these channels (full taxa list electronic supplemen-
tary material, table S1). Taxa from connected channels were
predominantly dipterans with an aquatic larval phase (but col-
lected in their adult form so considered here as terrestrial
invertebrates; e.g. non-biting midges, shore flies (Ephydridae)
and dagger flies (Empididae)), while dry channels were associ-
ated with numerous species of arachnid and hymenopteran
(figure 1). Assemblages in fragmented channels were not
simply intermediate combinations of those found in the other
treatments but were instead diverse and distinct, comprising
beetles, true bugs, dipterans and arachnids (figure 1), reflecting
high terrestrial plant coverage (see electronic supplementary
material, figure S2). These channels harboured nine nationally
scare species (i.e. those with species quality scores (SQS) of 4
in Pantheon (https://pantheon.brc.ac.uk/lexicon/sqs)) while
a further species of conservation note, the UK Biodiversity
Action Plan (BAP) moth Scotopteryx chenopodiata, was recorded
in both fragmented and dry channels. Hill-Shannon diversity
differed between treatments (Kruskal-Wallis x22 ¼ 13:2, p =
0.001), being significantly greater in fragmented channels
(mean = 21 ± 4) than in both connected (5 ± 3; Conover-Imam

channel from each treatment (clockwise from bottom left: connected, fragm
rsbl20230381—25/10/23—14:04–Copy Edited by: Not Mentioned
t12 = 7.91, p< 0.001) and dry streams (11 ± 2; t10 = 3.97,
p= 0.001). The latter also contained significantly richer
communities than connected channels (t6 = 2.42, p = 0.015).

Communities of connected channels differed substantially
from those of both fragmented (βsor = 0.73) and dry (βsor =
0.66) streams. This was driven primarily by NRD (βnes =
0.41) and turnover (βsim= 0.49) respectively (figure 2a). Frag-
mented and dry channel communities were relatively similar
to each other (βsor = 0.53), with turnover the dominant com-
ponent (βsim= 0.32). There were also large differences
among channels within each treatment (connected βSOR=
0.63; fragmented βSOR= 0.64; dry βSOR= 0.65; figure 1b). Con-
nected channel communities differed from one another due
to both turnover (βSIM= 0.30) and NRD (βNES= 0.33), whereas
differences among fragmented and to a slightly lesser extent
dry channel communities were largely attributable to
turnover (βSIM= 0.60 and 0.54, respectively).

4. Discussion
This study has shown that streams exposed to supraseasonal
drying can support diverse and distinct terrestrial invert-
ebrate communities and provide refuges for rare species.
However, dry streambeds did not support the most diverse
or notable species assemblages, demonstrating that the per-
sistence of instream pools through droughts, which are
crucial for aquatic biota [19], could also be invaluable for
terrestrial fauna. We therefore present rare experimental evi-
dence that future drought intensification could threaten
terrestrial as well as aquatic biodiversity across impacted
riverscapes.

Some differences in invertebrate community composition
were apparent between our channels and that typical of
riparian habitats and seasonally dry streams. Notable early
riparian colonists of dry streambeds, such as ground beetles
(Carabidae) [11], were absent from our samples, but the

nd dry). Labelled species are those designated nationally scarce in the UK.

https://pantheon.brc.ac.uk/lexicon/sqs
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markedly from those further away, reflecting differences in
subsurface moisture and humidity [11], so those of fragmen-
ted streams would also seem to vary analogously between
the centre of an exposed riffle and its margins. Pool and
riffle interfaces were colonised by wetland plants (e.g. V. ana-
gallis-aquatica), contrasting with the more terrestrial species
(e.g. T. inodorum and U. urens) found in drier gravels. In frag-
mented streams, as in riparian zones, this patchiness would
appear to produce high invertebrate richness due to the
niche space afforded to monophagous taxa (see electronic
supplementary material, figure S3).

Patchiness and host specificity could be strong drivers of
the high species turnover we observed between different frag-
mented and dry channels, which arose despite their close
spatial proximity (see electronic supplementary material,
figure S4). This contrasted with the high nestedness observed
between connected channels, which itself could reflect
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