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Abstract: The monoclinic structures of vanadium dioxide are widely studied as appealing systems
due to a plethora of functional properties in several technological fields. In particular, the possibility
to obtain the VO2 material in the form of thin film with a high control of structure and morphology
represents a key issue for their use in THz devices and sensors. Herein, a fine control of the crystal
habit has been addressed through an in-depth study of the metal organic chemical vapor deposi-
tion (MOCVD) synthetic approach. The focus is devoted to the key operative parameters such as
deposition temperature inside the reactor in order to stabilize the P21/c or the C2/m monoclinic VO2

structures. Furthermore, the compositional purity, the morphology and the thickness of the VO2 films
have been assessed through energy dispersive X-ray (EDX) analyses and field-emission scanning
electron microscopy (FE-SEM), respectively. THz time domain spectroscopy is used to validate at
very high frequency the functional properties of the as-prepared VO2 films.

Keywords: monoclinic structure; X-ray powder pattern; THz properties

1. Introduction

Vanadium oxides have attracted growing interest in the last decades due to their
unique electrical, optoelectronic and magnetic properties [1,2]. The peculiar multi-oxidation
states of vanadium, ranging from +2 to +5, are reflected in various crystalline structures
and thus highly tunable functional properties [3,4]. Particularly, four vanadium oxides
are characterized by single oxidation states (+2 for VO, +3 for V2O3, +4 for VO2 and +5
for V2O5), and others have mixed oxidation states, resulting in a plethora of different V-O
ratios. The polymorphism of vanadium oxide, characterized by crystalline structures with
different oxygen coordination, results in the formation of octahedral, pentagonal bipyramid,
square pyramid and tetrahedral sharing corners, edges or faces [1,5]. Consequently, the
multi-oxidation state of the vanadium cations and the various crystalline structures dra-
matically affect the physical and chemical properties of the final materials [5]. Particularly,
the vanadium oxides exhibit excellent intercalation properties [6,7], catalytic activities [8,9],
outstanding phase transitions (metal−insulator transition) [10,11] and high electrical con-
ductivity [12]. The above-mentioned features have opened the way for recent research to
explore the potential of vanadium oxide materials in ion batteries, water splitting, smart
windows, supercapacitors, sensors and in reconfigurable metasurfaces [13–18].
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Among the different V-O structures, several VO2 crystal phases are known, including
tetragonal VO2(R) (P42/mnm), monoclinic VO2(M) (P21/c), tetragonal VO2(A) (P42/nmc),
monoclinic VO2(B) (C2/m) and triclinic VO2(T) (P*(2)) [19]. Recently, monoclinic structures
of vanadium dioxide have attracted growing interest due to their unique optical and electri-
cal properties useful in several technological applications, such as supercapacitors, sensors
and metasurfaces at very high frequency. In particular, VO2(M) and VO2(B) structures have
attracted great attention due to their unique sensing activities [20]. Recently, we tested
the interesting sensing properties of vanadium dioxide VO2(M) P21/c phase through the
fabrication of an open cavity operating in the THz regime. Particularly, the cavity has been
realized by employing as mirrors two VO2 thin films grown on silicon parallel supports.
The effect of a variable length of the cavity and the transition between insulating and
conducting states have been evaluated [21].

However, the massive application of V-O phases as key materials in the field of sensors
and active metasurfaces for the manipulation of the electromagnetic (EM) fields requires
the development of synthetic strategies which allow a high degree of uniformity in both
thickness and composition over large areas for the fabrication of thin films. Among the
different synthetic strategies tested in literature, pulsed laser deposition [22], molecular
beam epitaxy [23], magnetron sputtering [24], atomic layer deposition (ALD) [25] and
electrodeposition [26,27] have been reported. Metal-organic chemical vapor deposition
(MOCVD) represents, up to now, one of the most appealing approaches for the deposition
of V-O films, due to its advantages, ranging from reliable and reproducible methods, fast
and industrially scalable production and high control of thin film growth in terms of
composition and morphology over large areas [28,29].

In the present work, we have focused our attention on the VO2 phase structures, due to
their unique optical and electrical properties, which can be exploited to realize metadevices
at very high frequency. A few examples of possible applications include sensing [1,20],
beam steering [30,31], polarization control [32] and vortex beam generation with different
topological charges [33].

We report an optimized MOCVD process for the selective fabrication of monoclinic
VO2(M) P21/c and/or VO2(B) C2/m phase structures in the form of thin films on silicon
substrate starting from the [VO(acac)2] (bis(penta-2,4-dionato)oxovanadium) precursor.
Among the various operative parameters involved in the growth, the effect of the deposition
temperature has been the focus of the synthetic strategy in order to finely tune not only
the crystalline structure of the VO2 films, but also the morphology of the film surfaces and
the thickness of the materials. Furthermore, using THz time domain spectroscopy, we will
show that the structural and morphological features of deposited films are strictly related
to the conducting properties of the metallic-like phase, triggered by heating the vanadium
oxide film to temperatures above its critical value Tc = 78 ◦C [34,35].

2. Materials and Methods
2.1. Synthesis of VO2 Thin Films

The vanadyl-acetylacetonate [VO(acac)2], used as vanadium precursor, was pur-
chased from STREM Chemicals and used without any further purifications. V-O films
were deposited on Si (001) substrates in a horizontal, hot-wall MOCVD reactor in the
300–450 ◦C deposition temperature range, whereas the V source temperature was con-
trolled independently and kept at 170 ◦C. Each section was monitored using K-type thermo-
couples with ±1 ◦C accuracy. The deposition processes were carried out under O2 flow at
150 sccm used as reacting gas, and Ar flow at 150 sccm as carrier gas. Both the gas flows
were controlled using MKS 1160 flow controller units. The time of the process was kept at
1 h and the pressure inside the reactor at the value of 4 Torr through a scroll pump unit
monitored using MKS Baratron 122AAX.
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2.2. Characterization

An in-depth study on the structural characterization was performed through X-ray
diffraction (XRD) analysis using a Smartlab Rigaku diffractometer in grazing incident
mode (0.5◦) operating at 45 kV and 200 mA, equipped with a rotating anode of Cu Kα

radiation. The morphological characterization was conducted using a Field Emission
Scanning Electron Microscope FE-SEM ZEISS SUPRA 55 VP. The EDX spectra were recorded
using an INCA-Oxford windowless detector, having a resolution of 127 eV as the full width
at half-maximum (FWHM) of the Mn Kα radiation. THz spectroscopy was operated in time
domain by employing a commercial setup (TERAK-15 by Menlo Systems®, Martinsried,
Germany). THz waves were coherently generated and detected through photo-conducting
antennas enabling to investigate the EM response in the range 0.1–4.0 THz with a resolution
of a few GHz. Experiments were performed in a purging box filled with N2 gas to prevent
absorption of humidity. V-O films were investigated in transmission configuration by
the use of a customized sample holder enabling to control the sample temperature from
room temperature (RT) up to about 400 ◦C. Herewith, the analysis was performed by
using only two temperatures: 22 ◦C, representing the room temperature RT, and 90 ◦C
when films were completely within the metallic-like phase. The THz system enables to
record the time dependent electric field signals propagating through both the free space
Er(t) and the sample Es(t), represented by the V-O film deposited on Si substrate. Both
signals were then processed through fast Fourier transform to obtain the transmission

function
∼
T(ω) =

∼
Es(ω)/

∼
Er(ω) that depends on the complex refractive index of both

substrate
∼
ns(ω) = ns(ω) + iks(ω) and thin film sample

∼
n f (ω) = n f (ω) + ik f (ω). In order

to improve the accuracy in the estimation of refractive index [36], the VO2 films were
deposited only over half the area of substrates 2cm× 1cm in size. By applying an in-house
MATLAB® code based on a total variation technique [37],

∼
n f was retrieved and used to

calculate the complex dielectric function
∼
ε f = ε′f + iε′′f , where ε′f = n2

f − k2
f and ε

′′
f = 2n f k f .

Finally, the film conductivity was evaluated by using σ = 2ε0ωε
′′
f where ε0 is the vacuum

permittivity (8.854189 × 10−12 F m−1).

3. Results and Discussion

The metalorganic compound [VO(acac)2] has been successfully applied as a volatile
and stable precursor for the fabrication of VO2 thin film through a MOCVD approach. The
deposition temperature has been set up in the range of 300–450 ◦C (see Figure 1). Under
the present conditions, it is possible to finely tailor the stabilization of the monoclinic
P21/c and/or the C2/m phases [38,39]. Even though the deposition temperature is the
key parameter that has the main effect on the structure of VO2 films, the stabilization of
the monoclinic structure as P21/c and/or the C2/m has been observed to affect both the
morphology and the thickness of the synthesized films. The other parameters, such as
deposition time, oxygen and Ar flows and precursor source temperature, have been instead
fixed at 60 min, 150 sccm and 170 ◦C, respectively. The results reported are well framed
within the data previously reported in ref. [28]. As widely studied in the past decades,
the vanadium oxide phases present different V-O ratios, which results in the formation
of VO2, V2O5, V4O9 and V6O13 structures with different V oxidation states. In particular,
the present study has focused on the stabilization of the pure monoclinic phase in the
form of P21/c space group due to the interesting properties they show in the THz region.
In addition, the effect of changing in morphology and thickness has been analyzed and
studied in relation to the functional properties of the films.

3.1. Structural Characterization

A structural investigation on the VO2 thin films obtained as a function of the dif-
ferent deposition temperatures has been conducted through XRD analysis. In order to
assess the direct effect of this key parameter on the phase stabilization, the other process
parameters have been kept constant. The pattern of the VO2 thin film obtained at 300 ◦C
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is reported in Figure 2a. The analysis points to the formation of a crystalline film in the
form of pure monoclinic C2/m, as confirmed by comparison with PDF card n. 31-1438 and
43-1050. Particularly, the peaks at 14.46◦, 29.08◦ and 44.20◦ associated with 001, 002 and 003
reflections, respectively, point to the growth of a nanostructured system with a preferential
orientation along the 00`. Similarly, the pattern associated with the film deposited at 350 ◦C
(Figure 2b) shows the formation of the pure monoclinic C2/m, with the same preferential
orientation along the 00`. At the higher deposition temperature, i.e., 400 ◦C (Figure 2c),
it is evident the formation of a crystalline film which has peaks associated with both the
C2/m and P21/c phases, as confirmed by matching with the PDF cards n. 31-1438 and
43-1050 for the first structure, and PDF cards n. 43-1051 and 44-0252 for the second one.
Finally, the system synthesized at 450 ◦C shows the stabilization of the pure and crystalline
monoclinic P21/c phase (PDF file numbers 43-1051, 44-0252), as confirmed by the presence
of the peaks at 27.87◦, 37.08◦, 39.64◦, 42.18◦, 55.44◦ and 57.52◦ (Figure 2d). Interestingly,
thanks to the here-reported structural XRD characterization, it has been possible to identify
three temperature windows, in which each monoclinic structure, i.e., C2/m and P21/c, is
stable as a pure phase or as a mixture, under specific operative conditions. Specifically, the
deposition temperature of 400 ◦C represents the turning point of crystalline arrangement
change. It is worth noting the orientation along the 00` of the films fabricated at 300 ◦C
and 350 ◦C, which represents an added value of the present MOCVD synthesis considering
the low temperatures required for this thermal-induced growth process.
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3.2. Morphological and Compositional Characterization

Morphological features of the VO2 films have been deeply studied by field emis-
sion scanning electron microscopy (FE-SEM). In Figure 3a, the film obtained at 300 ◦C
deposition temperature displays the growth of compact and homogenous nanostructured
film with plate-like grains characterized by regular dimensions having width in the order
of 500–700 nm, mainly placed perpendicular to the substrate. The film synthesized at
350 ◦C, shown in Figure 3b, presents a uniform coverage of the surface with a very peculiar
morphology. In fact, the film displays thinner and even more regular plate-like grains of
700–1000 nm in width, which are intertwined to form a very regular texture. For both these
films, the morphology finds counterpart in the XRD patterns indicating highly oriented
samples. Different from the first two morphologies, in Figure 3c, the sample obtained at
400 ◦C shows the formation of a homogeneous film composed of parallelepiped grains.
Conversely from the other films, in this case, the system is characterized by an enhanced
porosity, even though, also in this case, the homogeneity of the deposit is guaranteed
over large substrate areas (up to 2 × 2 cm2). Finally, the VO2 film synthesized at 450 ◦C
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(Figure 3d) displays the formation of flake-like grains of the order of 1 µm overlapped
on top of each other forming a very compact deposit with equiaxial grains. Notably, the
deposition temperature affects in a significant way the morphological features of the films,
which pass from a well-organized plate-like structure placed in a perpendicular way with
respect to the substrates, to parallelepiped grains and to equiaxial grains. The differences
can be likely attributed to two main aspects of the synthesis: (i) the balance between nu-
cleation and growth process, which in general affects the dimensions of the grains; and
(ii) the stabilization of the monoclinic structures, which pass from the C2/m structure at
300 ◦C and 350 ◦C (Figure 3a,b), to a mixture of C2/m and P21/c at 400 ◦C (Figure 3d),
and to a pure P21/c at 450 ◦C (Figure 3d). The more porous structure of films deposited at
400 ◦C may be likely associated with the faster growth rate, yielding larger grains not well
coalesced, and the presence of the two phases.
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Finally, the thickness evaluation of the VO2 samples has been conducted through
FE-SEM analysis in cross-sectional mode. In Figure 4, an overview of all the four systems
discussed above has been reported regarding the related thickness of the films. Notably, the
thickness of the systems passes from around 850 nm and 900 nm for the samples deposited
at 300 ◦C and 350 ◦C (see Figure 4a,b), to a thickness of 2.1 µm for the film at 400 ◦C
(Figure 4c), and a value of 1.2 µm for the film at 450 ◦C (Figure 4d). In this case, the trend
observed can be associated not only with the mere effect of the deposition temperature, but
also with the different C2/m and P21/c phase structure growth. Specifically, the growth
rate varies from 14, 15, 35 and 20 nm/min for 300, 350, 400 and 450 ◦C, respectively. Finally,
it is worth noting that the cross-sectional image of the film obtained at 400 ◦C also confirms
the formation of a more porous sample, as suggested from the plan view in Figure 3c.
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Figure 4. FE-SEM cross-view images of VO2 thin films grown on Si (001) substrate at different
deposition temperatures: (a) 300 ◦C, (b) 350 ◦C, (c) 400 ◦C and (d) 450 ◦C.

In addition, the compositional purity of the VO2 films has been assessed through
energy dispersive X-ray (EDX) analyses. The EDX spectra reported in Figure 5 are quite
similar and confirm the formation of pure vanadium oxide phases for all the films deposited
in the range 300–450 ◦C. In particular, the signals found at 4.9 and 5.4 keV are associated
with the Kα and Kβ peaks of V, and the one found at 0.51 keV is related to the O Kα peak.
In addition, the peak found at 1.73 keV is due to the Si Kα peaks of the Si (001) substrate.
The different intensities of this last signal in the three samples are related to the difference
in thickness of the analyzed films. Notably, the absence of signals around 0.27 keV, due to
the C Kα peak, points to the absence of carbon contamination within the detection limit
of the technique (around 1% atomic), even at the lower deposition temperature of 300 ◦C.
This aspect points to the excellent thermal properties of the [VO(acac)2] as a V precursor
and to the good optimization of the MOCVD process.

3.3. THz Spectroscopic Analysis

Preliminarily, the quality of the conducting phase of several VO2 films has been
tested just by monitoring in time domain the change in the transmitted THz signal at the
two reference temperatures: 22 ◦C (T < Tc) and 90 ◦C (T > Tc). Along with the sample
showing the pure phases C2/m (VO2 sample on Si(100) at 350 ◦C, Figure 2b) and P21/c
(VO2 sample on Si(100) at 450 ◦C, Figure 2d), we have tested films showing mixed phases
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in which the C2/m and P21/c components co-exist (a prototype of these films is the VO2
sample on Si(100) at 400 ◦C, Figure 2c). In Figure 6, a representative histogram of the
phase change performances is reported. Black and red columns are the peak-to-peak (PtP)
amplitudes for T < Tc and T > Tc, respectively. PtP values have been normalized with
respect to the highest PtP measured for the phase P21/c at T < Tc. MIX(1) represents a
sample with a mixed phase in which the C2/m prevails, whereas in MIX(2) the P21/c phase
is dominant. According to the results summarized in Figure 6, the higher the component
P21/c with respect to C2/m, the stronger the phase change. The pure phase P21/c manifests
the highest insulating/conducting transition passing through VO2 films below and above
Tc. Phase change performances of MIX(1) and MIX(2), representing different C2/m + P21/c
mixed phases, reflect the nature of the two samples. In MIX(1) the C2/m phase dominates,
whereas in MIX(2) the P21/c one prevails.
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Figure 6. Histograms showing the phase change performances of different VO2 crystalline phases. In
black and red, the normalized peak-to-peak amplitudes of the time-dependent THz signals getting
through VO2 films at temperatures 22 ◦C (T < Tc) and 90 ◦C (T > Tc), respectively. The normalization
has been operated employing the peak-to-peak of the P21/c phase for T < Tc. MIX(1) and MIX(2)
represent different mixed phases C2/m + P21/c. In MIX(1), the C2/m phase dominates; in MIX(2),
the P21/c one prevails instead.
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The transmitted THz signal for a film 1.2 µm thick in the pure P21/c phase is re-
ported in Figure 7b. The signal at T = 22 ◦C (black curve) practically overlaps the signal
passing through the bare Si substrate, indicating a high transparency of the sample and
making difficult a reliable extraction of

∼
ε . Conductivity σ values lie around zero, as shown

previously [21].
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Figure 7. (a) Time-dependent THz signals and (b) transmissions recorded for a VO2 sample having
the pure crystalline phase P21/c below and above Tc (black and red curve, respectively).

At T = 90 ◦C, the PtP amplitude of the THz signal passing through the vanadium
oxide film undergoes an 80% reduction with respect to the RT case. Moreover, the time
dependence shown in the Fabry–Perot (FP) features the signature of a highly conducting
state, recognizable by the upside-down behavior of the even oscillations [21].

The complex refractive index and the dielectric function of the VO2 film having the
pure P21/c phase is reported in Figure 8. The imaginary part of

∼
ε f presents a decaying

Drude-like behavior, but ε′ f values are still positive, signaling that the general behavior of
VO2 films is not fully metallic, as also recognized elsewhere [40]. The presence of a strong
backscattering process [41] is also observable in the positive derivative of conductivity, as
reported in the inset of Figure 8b.
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4. Conclusions

In the present study, an optimized MOCVD process has been reported for the selective
and reproducible synthesis of monoclinic VO2(M) P21/c and/or VO2(B) C2/m phase



Sensors 2023, 23, 7270 9 of 11

in the form of thin films. The focus has been devoted to the effect of the deposition
temperature in order to finely tune both the crystalline structure of the VO2 films and
the morphology of the film surfaces. Particularly, at lower deposition temperatures, i.e.,
300 ◦C and 350 ◦C, the pure C2/m phase is stabilized, and at higher temperature, i.e.,
450 ◦C, the pure P21/c has been found. The mixture of the two phases is, instead, stabilized
at the deposition temperature of 400 ◦C. The related morphologies vary as a function of
deposition temperature, from films with compact and homogenous plate-like grains to
parallelepiped grains and equiaxial grains deriving from flake-like features.

Finally, the electrodynamic properties have been assessed using THz time domain
spectroscopy, which allows the functional properties of the VO2 thin films to be shown at
very high frequency. The functional validation, executed by heating the samples above the
critical temperature value, i.e., Tc = 78 ◦C, displays the conducting properties of the metallic-
like phase, and their relationship with the structural features of the deposited films.
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