
A&A 676, A40 (2023)
https://doi.org/10.1051/0004-6361/202346283
c© The Authors 2023

Astronomy
&

Astrophysics

Searching for strong galaxy-scale lenses in galaxy clusters

with deep networks

I. Methodology and network performance

G. Angora1,2, P. Rosati1,3,10, M. Meneghetti3 , M. Brescia2,4 , A. Mercurio2,11 , C. Grillo5,6 , P. Bergamini5,3 ,
A. Acebron5,6 , G. Caminha7,8 , M. Nonino9 , L. Tortorelli12, L. Bazzanini1,3 , and E. Vanzella3

1 Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, 44122 Ferrara, Italy
e-mail: gius.angora@gmail.com

2 INAF – Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Napoli, Italy
3 INAF – OAS, Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Gobetti 93/3, 40129 Bologna, Italy
4 Dipartimento di Fisica “E. Pancini”, Università di Napoli “Federico II”, Via Cinthia 21, 80126 Napoli, Italy
5 Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133 Milano, Italy
6 INAF – IASF Milano, Via A. Corti 12, 20133 Milano, Italy
7 Technische Universität München, Physik-Department, James-Franck Str. 1, 85741 Garching, Germany
8 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany
9 INAF – Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, 34131 Trieste, Italy

10 INFN, Sezione di Ferrara, Via Saragat 1, 44122 Ferrara, Italy
11 Dipartimento di Fisica, Università di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
12 University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München, Scheinerstr. 1, 81679 Munich, Germany

Received 1 March 2023 / Accepted 5 June 2023

ABSTRACT

Strong galaxy-scale lenses in galaxy clusters provide a unique tool with which to investigate the inner mass distribution of these
clusters and the subhalo density profiles in the low-mass regime, which can be compared with predictions from ΛCDM cosmological
simulations. We search for galaxy–galaxy strong-lensing systems in the Hubble Space Telescope (HST) multi-band imaging of galaxy
cluster cores by exploring the classification capabilities of deep learning techniques. Convolutional neural networks (CNNs) are
trained utilising highly realistic simulations of galaxy-scale strong lenses injected into the HST cluster fields around cluster members
(CLMs). To this aim, we take advantage of extensive spectroscopic information available in 16 clusters and accurate knowledge of the
deflection fields in half of these from high-precision strong-lensing models. Using observationally based distributions, we sample the
magnitudes (down to F814W = 29 AB), redshifts, and sizes of the background galaxy population. By placing these sources within
the secondary caustics associated with the cluster galaxies, we build a sample of approximately 3000 strong galaxy–galaxy lenses,
which preserve the full complexity of real multi-colour data and produce a wide diversity of strong-lensing configurations. We study
two deep learning networks, processing a large sample of image cutouts, in three bands, acquired by HST Advanced Camera for
Survey (ACS), and we quantify their classification performance using several standard metrics. We find that both networks achieve a
very good trade-off between purity and completeness (85%–95%), as well as a good stability, with fluctuations within 2%–4%. We
characterise the limited number of false negatives (FNs) and false positives (FPs) in terms of the physical properties of the background
sources (magnitudes, colours, redshifts, and effective radii) and CLMs (Einstein radii and morphology). We also demonstrate the high
degree of generalisation of the neural networks by applying our method to HST observations of 12 clusters with previously known
galaxy-scale lensing systems.

Key words. gravitational lensing: strong – galaxies: clusters: general – galaxies: distances and redshifts –
techniques: image processing

1. Introduction

Strong gravitational lensing is a powerful tool for studying the
mass distribution of galaxies and galaxy clusters and for test-
ing cosmological models. Over recent decades, strong lensing
has been exploited, for example, to analyse galaxy struc-
tures and study their evolution (e.g. Treu & Koopmans 2002;
Auger et al. 2010; Sonnenfeld et al. 2013); to measure the value
of the Hubble constant using time-delay measurements (e.g.
Suyu et al. 2017, 2020; Grillo et al. 2018; Millon et al. 2020;
Moresco et al. 2022); to constrain the dark energy equation of
state (e.g. Jullo et al. 2010; Cao et al. 2012; Collett & Auger

2014; Caminha et al. 2022); and to estimate the dark mat-
ter fraction in massive early-type galaxies (e.g. Grillo 2010;
Tortora et al. 2010; Sonnenfeld et al. 2015). On cluster-scales,
strong-lensing models allow the study of the inner total mass
distribution of clusters by exploiting an increasing number of
multiple images of background sources (e.g. Caminha et al.
2017, 2019; Acebron et al. 2018; Bergamini et al. 2019, 2021a;
Lagattuta et al. 2019, 2022). In addition, the strong lensing mag-
nification enables clusters to be used as cosmic telescopes,
allowing us to explore the intrinsic properties of otherwise unde-
tectable faint (lensed) high-redshift sources (e.g. Swinbank et al.
2009; Richard et al. 2011; Vanzella et al. 2020, 2021).
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Recently, by utilising cluster mass maps from high-precision
strong-lensing models, Meneghetti et al. (2020, 2022) reported
an excess of galaxy–galaxy strong lensing (GGSL) events in
galaxy clusters compared with expectations based on theΛCDM
structure formation model. This has sparked debate over whether
such an excess could be due to limitations in cosmological simu-
lations (e.g. in the mass resolution or in the treatment of baryonic
physics) or to more fundamental aspects related to the properties
of dark matter (Meneghetti et al. 2022 and references therein).

This study is focused on a search for GGSL systems embed-
ded in galaxy cluster halos. In this environment, the proba-
bility of GGSLs is generally higher than in the field for a
given lens mass owing to the contribution of the cluster-scale
lensing effect. Traditionally, GGSLs are identified through the
visual inspection of candidates selected with spectroscopic or
photometric criteria (e.g. Le Fèvre & Hammer 1988; Jackson
2008; Sygnet et al. 2010; Pawase et al. 2014). However, this
will not be a viable method with upcoming data-intensive sur-
veys based on next-generation facilities, such as the Euro-
pean Space Agency (ESA) Euclid satellite (Laureijs et al. 2011)
and the Vera Rubin Observatory (Ivezić et al. 2019), which are
expected to find tens of thousands of galaxy clusters and approx-
imately 105 GGSLs (LSST Dark Energy Science Collaboration
2012; Euclid Collaboration 2019).

Several techniques have recently been developed to han-
dle this unprecedented amount of survey imaging data. These
range from semi-automatic algorithms searching for arc and
ring-shaped features (e.g. More et al. 2012; Gavazzi et al.
2014; Sonnenfeld et al. 2018), to crowd sourcing science (e.g.
Marshall et al. 2016; Sonnenfeld et al. 2020). In this context,
machine learning and deep-learning methods appear to be a reli-
able and efficient means to identify GGSLs (see e.g. the discus-
sion in Metcalf et al. 2019), although they need to be trained on
appropriate simulated datasets. Moreover, the restricted number
of confirmed strong-lensing examples in galaxy clusters prevents
us from training machine learning methods with real data. More-
over, the large redshift range over which GGSLs are searched
for, and their different morphologies, colours, and magnitudes,
require realistic simulations to make deep-learning-based meth-
ods effective in detecting real strong lenses.

To this aim, significant efforts have been made over recent
years to simulate GGSL populations such as those observed by
current and upcoming surveys. Mock images of strong lensing
events are obtained by co-adding simulated lensed sources to
foreground galaxies with different methods. For example, dark
matter halos and galaxies can be extracted from semi-analytical
catalogues (e.g. with the Millennium Observatory project, as
done by Metcalf et al. 2019, or by Leuzzi et al., in prep.)
using mass density profiles (e.g. Collett 2015; He et al. 2020;
Lanusse et al. 2018) or deep learning algorithms (Lanusse et al.
2021). Other studies opted for a hybrid approach, which consists
in modelling the mass density profile of photometrically selected
galaxies (e.g. Petrillo et al. 2017, 2019; Li et al. 2020, 2021;
Gentile et al. 2022; Cañameras et al. 2021; Akhazhanov et al.
2022). Similarly, lensed sources can be simulated by modelling
their surface brightness distributions (e.g. Petrillo et al. 2017,
2019; Li et al. 2020, 2021; Gentile et al. 2022) or sampled from
observations (e.g. Meneghetti et al. 2008, 2010; Metcalf et al.
2019) and then co-added to real or synthetic images through
ray-tracing techniques (e.g. GLAMER Metcalf & Petkova 2014;
Petkova et al. 2014, GRAVLENS Keeton 2001).

In this work, we present a novel approach, which exploits
accurate cluster-deflection fields to generate thousands of
strong galaxy–galaxy lenses in galaxy clusters. The deflec-

tion angle maps are provided by high-precision cluster lens
models constructed by Bergamini et al. (2019, 2021a) and
Caminha et al. (2019) with the LensTool software (Kneib et al.
1996; Jullo et al. 2007; Jullo & Kneib 2009), which uses large
numbers of spectroscopic multiple images. These models accu-
rately describe both the cluster-scale mass component and the
subhalo mass distribution associated to the cluster member
galaxies (CLMs) –which together affect the morphology, bright-
ness, and frequency of galaxy-scale lensing events– for a given
distribution of background sources. Thus, GGSLs can be simu-
lated with a realistic description of the CLMs acting as lenses in
combination with the cluster-scale deflection field.

We test this methodology by injecting background source
galaxies in multi-band images obtained with the Hubble Space
Telescope (HST) Advanced Camera for Survey (ACS) as part
of dedicated campaigns over the last decade, such as the Clus-
ter Lensing And Supernova survey with Hubble (CLASH,
Postman et al. 2012), Hubble Frontier Fields (HFF, Lotz et al.
2017), and the Reionization Lensing Cluster Survey (RELICS,
Coe et al. 2019). This high-quality imaging dataset is completed
with intensive spectroscopic programs, such as the CLASH-VLT
(Rosati et al. 2014) with VIMOS (Visible MultiObject Spectro-
graph, Le Fèvre et al. 2003) and MUSE observations (Multi Unit
Spectroscopic Explorer, Bacon et al. 2012, 2014, 2015) from
the Very Large Telescope (VLT), and GLASS (Grism Lens-
Amplified Survey from Space, Treu et al. 2015; Schmidt et al.
2014), which offer a three-dimensional view of approximately
50 clusters, providing spectra for several thousand galaxies. We
exploit the combination of imaging and spectroscopic datasets
to construct our convolutional neural network (CNN) knowledge
base (KB).

This paper is structured as follows. In Sect. 2, we describe
the two implemented convolutional neural networks. In Sect. 3,
we illustrate the simulation methodology and dataset configura-
tion. We detail the network performances in Sect. 4, including
a complete analysis of the network misclassifications as a func-
tion of the physical parameters. In Sect. 5, we test the generali-
sation capabilities acquired by the networks by processing a set
of known GGSLs. Finally, we draw our conclusions in Sect. 6.

Throughout the paper, we adopt a flat ΛCDM cosmological
model with ΩM = 0.3, ΩΛ = 0.7, and H0 = 70 km s−1 Mpc−1.
All astronomical images are oriented north to the top and east
to the left. Unless otherwise specified, magnitudes are in the AB
system.

2. Convolutional neural network

Among the deep learning methods, CNNs (LeCun et al.
1989, 1998) have become a popular tool with which to
search for GGSLs in imaging surveys, owing to their abil-
ity to automatically extract information from raw data (e.g.
Petrillo et al. 2017, 2019; Spiniello et al. 2018; Jacobs et al.
2019a,b; Cañameras et al. 2020; Huang et al. 2020; Li et al.
2020, 2021; Gentile et al. 2022). Here, we present the results
achieved by two CNN architectures1, both of which are inspired
by the Visual Group Geometry network (Simonyan & Zisserman
2014). The first network (similarly to the one described in
Angora et al. 2020), hereafter named VGG, consists of a chain

1 We tested different network architectures, e.g. Residual Net X
(He et al. 2015; Xie et al. 2016) and Inception Net (Szegedy et al.
2014). Due to their lower performances and higher computational cost,
we limit the description of our results to deep models that achieved the
best performances.
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of convolution and pooling layers, whose ensemble of extracted
feature maps is connected to the output through two dense layers.
The second network consists of parallel VGGs, each of which
processes a single HST band; we therefore name this architec-
ture single-channel VGG (SC-VGG). As we use the F435W,
F606W, and F814W bands in this work, the SC-VGG is com-
posed of three parallel VGGs. Therefore, while the VGG per-
forms a (linear) combination of filters in the first convolutional
layer, the SC-VGG separates the informative contribution car-
ried by the three bands. To obtain a single probability value,
we average the probabilities for a GGSL event derived from
each parallel VGG, and use this to measure the loss function
and to update the training parameters. For both networks, we set
the binary cross-entropy as the loss function (Goodfellow et al.
2016), the Leaky version of the Rectified Linear Unit (LeReLU,
Maas et al. 2013) as the activation function for each layer, and
Adadelta (Zeiler 2012) as the optimiser.

Furthermore, we include (i) an early stopping regularisa-
tion criterion (Prechelt 1997; Raskutti et al. 2011), which pre-
vents overfitting; and (ii) a gradual reduction of the learning rate
on the plateau of the loss function (as a function of iterations;
Bengio 2012). These techniques evaluate the network perfor-
mance during the training phase using a validation set previously
extracted from the whole KB. At the same time, we opt for a
stratified k-fold approach (Kohavi 1995; Hastie et al. 2009) to
handle the training–testing split, where a fraction of the training
image cutouts are augmented through flipping and rotations, as
described in Angora et al. (2020).

Finally, to avoid memory loss, the networks were trained
with input data batches, which include 32 and 16 patterns,
respectively, for the VGG and the SC-VGG models. All net-
works were implemented through keras (Chollet et al. 2015),
with tensorflow (Abadi et al. 2016) as back-end system.

3. Methodology

3.1. The simulation process

To simulate the GGSL events, we exploit the deflection angle
maps of eight galaxy clusters obtained from cluster lens models2

provided by Bergamini et al. (2019, 2021a) and Caminha et al.
(2019). The cluster sample is described in Table 1, while three
of the clusters are shown in Fig. 1. The cluster total mass distri-
bution of each cluster is modelled with a parametric description
of the overall lensing potential, which includes a cluster-scale
term composed of a dark matter halo and the smooth intra-
cluster hot-gas mass from Chandra X-ray data when available
(Bonamigo et al. 2017, 2018), and a clumpy component asso-
ciated to the CLMs. For the latter, the mass density profile of
each subhalo –these contain both dark matter and baryons– is
modeled with a circular, singular dual-pseudo isothermal profile
(Limousin et al. 2005; Elíasdóttir et al. 2007) and further cali-
brated with the measured stellar velocity dispersions of a large
sample of CLMs (Bergamini et al. 2021b). Such lens models
are able to reproduce the observed positions of many multiple
images (ranging from ∼20 to ∼200; see Table 1) with a typical
accuracy of .0.5′′.
LensTool reconstructs the cluster potential by minimising

the difference between the observed and model-predicted posi-
tions of the multiple images given a set of model parameter val-
ues. The deflection angle maps, α, describe the relation between
the source real position (β) and its observed position (θ) via the

2 The cluster lens models are publicly available at https://www.fe.
infn.it/astro/lensing/

lens equation: β = θ − α. The simulation process is carried out
with PyLensLib (Meneghetti 2021) and can be summarised as
follows:

– From the deflection angle maps, we derive the conver-
gence and the shear maps, that is, the elements of the Jacobian
matrix describing the image deformation, whose inverse matrix
is the so-called magnification tensor. Then, the critical curves
are found where the magnification goes to infinity. Examples of
tangential critical curves –corresponding to sources at four dif-
ferent redshifts– are shown in Fig. 1, overlaid onto the HST field
of view (FoV).

– To avoid the primary critical lines associated to the cluster
potential and very small-scale galaxies, we select the secondary
critical lines whose equivalent (circularised) Einstein radius is
0.2′′ < θE < 3.5′′, which is consistent with the expected distribu-
tion of the equivalent Einstein radii associated to secondary crit-
ical lines in galaxy clusters (see e.g. Fig. 7 in Meneghetti et al.
2022). Moreover, we assign a selection probability proportional
to θE (i.e. larger critical lines are more likely to be extracted).
In this way, a mass-limited sample of lens galaxies is selected
from the secondary critical lines, circumventing any photomet-
ric selection (see the left panel in Fig. 2).

– The selected secondary critical line is mapped into the cor-
responding caustic on the source plane (see the central panel in
Fig. 2) using the lens equation.

– The source is simulated by injecting a Sérsic surface
brightness profile (Sérsic 1963, 1968), I(β), within the caus-
tic, including a buffer whose width is set equal to half of the
source effective radius. Therefore, as the lens mapping conserves
the surface brightness, that is, I(θ) = I(β), the observed sur-
face brightness is computed as I(θ = β + α). The resulting
GGSL is finally generated by convolving the simulated multiple-
image system with the HST point spread function (PSF) for
each band and is then co-added to the HST ACS image in a
given filter (right panel in Fig. 2). The used PSFs are esti-
mated with morphofit (Tortorelli & Mercurio 2023, see also
Tortorelli et al. 2018, 2023).

In this work, we adopt a source spectral energy distribu-
tion (SED) of a star-forming galaxy template from Kinney et al.
(1996). The list of Sérsic parameters and their adopted value
ranges are shown in Table 2. The Sérsic index is extracted from a
uniform distribution between n = 1.0 and 2.0 typical of late-type
galaxy star-burst profiles. The axis ratio and the position angle
values are randomly extracted from uniform distributions in (0.2,
1.0) and (0, π), respectively. To closely reproduce the HST obser-
vations, we do not use a uniform sampling for the other param-
eters. Specifically, for the source magnitudes and redshifts, we
estimate the number counts in the i-band (i.e. the number of
galaxies per square degree per magnitude bin) from the COS-
MOS 2015 catalogue (Scoville et al. 2007; Laigle et al. 2016),
complemented with HST Deep Field North and South obser-
vations (Williams et al. 1996; Metcalfe et al. 2001) in F814W
(taken from Capak et al. 2007), which extends the galaxy counts
to the faint end, down to F814W = 29 mag (see the left panel
of Fig. 3). In each of the six magnitude bins (with i lim-
its= {22, 24, 25, 26, 27, 28, 29}mag), we use the COSMOS pho-
tometric redshift catalogue to estimate a redshift probability den-
sity function (PDF), that is, p(z |∆i), by fitting it with a simple
function of the form p(z |∆i) = Az2e−z/z0 for i ∈ [22, 24) and
p(z |∆i) = Az2e−(z/z0)1/2

for the other magnitude bins (see e.g.
Lombardi & Bertin 1999; Lombardi et al. 2005). The redshift
limit of the COSMOS catalogue is z ∼ 7, which is appropri-
ate for our studies in which the reddest band is F814W. The
six modelled PDFs are shown in the right panels of Fig. 3.
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Table 1. Description of the cluster sample included in the GGSL simulation.

Cluster zcluster Survey M200c
(a) [1014 M⊙] Nimg NCLM (Nphot

CLM) ∆rms [′′] Ref.

RX J2129+0005 R2129 0.234 CLASH 7.8±2.4 22 70 (34) 0.20 (1)
RX J2248–4431 (b) R2248 0.346 HFF 19.8±6.0 55 222 (115) 0.55 (2)
MACS J1931–2635 M1931 0.352 CLASH 11.6±8.8 19 120 (59) 0.38 (1)
MACS J0416–2403 M0416 0.397 HFF 11.4±2.7 182 193 (49) 0.40 (3)
MACS J1206–0847 M1206 0.439 CLASH 15.1±3.2 82 258 (147) 0.46 (2)
MACS J0329–0211 M0329 0.450 CLASH 12.7±2.2 23 106 (49) 0.24 (1)
RX J1347–1145 R1347 0.451 CLASH 35.4±5.1 20 114 (70) 0.36 (1)
MACS J2129–0741 M2129 0.587 CLASH 1.84±0.01 (c) 38 138 (45) 0.56 (1)

Notes. The first three columns list the: cluster names, short names, and redshifts. The fourth column specifies the program from which the images
are extracted. Nimg (Col. 5) is the number of multiple images used to constrain the model, NCLM (Col. 6) is the number of CLMs used to describe the
subhalo mass component (the number of CLMs photometrically selected is given in parentheses), ∆rms (Col. 7) is the root-mean-square separation
between the observed and model-predicted multiple image positions. The reference lens model for each cluster is quoted in the last column.
(a)The cluster virial mass values were measured through weak lensing by Umetsu et al. (2018). (b)The cluster RX J2248.7−4431 is also known as
Abell S1063. (c)The weak lensing measurement is not available for M2129; we report here the mass within 200 kpc from Caminha et al. (2019).
References. (1) Caminha et al. (2019); (2) Bergamini et al. (2019); (3) Bergamini et al. (2021a).
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Fig. 1. HST colour-composite images (combining the F435W, F606W, F814W filters) of three of the clusters in the sample (see Table 1). The
tangential critical lines corresponding to four different redshifts, z = [1.5, 3.0, 4.5, 6.0], are shown in cyan, green, orange, and red, respectively.

Fig. 2. Example of a GGSL simulation. Left panel: HST image of the cluster M1206 at z = 0.439 (∼2′ across), with the critical lines (in white)
at z = 2.5 from the lens model (Bergamini et al. 2019). A specific secondary critical line is marked in red, with a zoomed-in image shown in
the upper left ∼10′′ inset. The green spot indicates the position of the corresponding caustic on the source plane. Central panel: source plane at
z = 2.5 showing the caustic (in red) corresponding to the selected critical line, including the buffer (black dotted line) delimiting the injecting
region; the injected source has a Sérsic profile (index n = 1.5, Reff = 0.14′′), magF814W = 26.3, and the SED of a star-forming galaxy. Right panel:
colour-composite image of the resulting simulated GGSL system, together with the critical line (red dotted line, with a circularised θE = 1.7′′); the
cutout is ∼10′′ across.
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Table 2. Sérsic parameters and their adopted value ranges for the injected sources.

Parameter Symbol Extraction description

Coordinate (source plane) ys Extracted within a buffer around the caustic (width 0.5 re)
Source magnitude mF814W Sampled from PDF, p(i), COSMOS+HST fields
Source redshift zs Sampled from PDF, p(z|∆i), COSMOS

Effective radius Re
Re = 2.54 kpc, z ≤ 1

Re(z) = B(1 + z)β, z > 1 (Shibuya et al. 2015)
Sérsic index n Extracted within (1.0, 2.0)
Axis ratio q Extracted within (0.2, 1.0)
Position angle ϕ Extracted within (0, π)

p(z) COSMOS per mag bin
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Fig. 3. Background source population. Left panel: galaxy number counts estimated from the COSMOS i-band catalogue (grey bars), compared
with the results of Capak et al. (2007 black line), together with the 5σHFF and CLASH F814W depth limit (cyan and green vertical lines). Galaxy
counts added in the faint end to match the HST deep counts are coloured in magenta. Right panels: redshift distributions for six magnitude bins,
p(z|∆m), coloured according to the magnitude bin from which they are extracted (left plot).

For a given total number of galaxies injected into the cluster
field, which is chosen in such a way as to be appropriate for
the depth of the HST observations, we then use these PDFs
to assign a source magnitude and redshift to each background
galaxy. We also impose a minimum value for the source redshift
of zsrc = zcls+0.4, as suggested by Meneghetti et al. (2022), who
measured the lensing cross-section for the galaxy clusters con-
sidered in this work, finding that it becomes significantly larger
than zero for zsrc & zcls + 0.4.

Finally, to assign an effective radius value to the back-
ground galaxies, we exploit an empirical relation proposed by
Shibuya et al. (2015) that describes the redshift evolution of the
physical sizes of galaxies, which these authors approximated
with a function of the form: Re = B(1 + z)β (fitted by combining
galaxy radii estimated in the UV and optical bands). However,
as a comparison of these values with the effective radii measured
by Tortorelli et al. (2018) for low-z galaxies reveals a significant
overestimate, we limit the application of this relation to z > 1,
adopting a constant value at z ≤ 1 (see the fourth row in Table 2
and the left panel in Fig. 4). As suggested by the Shibuya et al.
(2015) analysis, we assume a scatter of σ = 0.25 kpc over the
entire redshift range, and randomly extract a value of Re at a

given redshift z within the [−1.5σ,+1σ] range (see the left panel
in Fig. 4). The chosen asymmetrical range allows us to sample
Re values down to Re . 0.5 kpc at z & 4 (as shown in the left
panel of Fig. 4).

In an effort to verify that our simulated galaxy-scale
lenses statistically reproduce the observations, we compare
the θE−mF160W relation obtained for our mock GGSL sample
with the CLM velocity dispersion scaling relation measured by
Bergamini et al. (2019, 2021a) and used to build the lens mod-
els, that is, σCLM

i
= σref(Li/L

ref)α (see also Brainerd et al. 1996;
Jullo et al. 2007). To this aim, we compute the expected Ein-
stein radius as a function of the magnitude of the lens galaxy
F160W by assuming a singular isothermal sphere for the lens
galaxy mass density profile (Schneider 2006):

θE,i = 4π

(

σref
v

c

)2(
DLS

DS

)

10
0.8α

(

mref
F160W

−mCLM
i

)

,

where mref
F160W

is the F160W reference magnitude, which cor-
responds to the brightest cluster galaxy (BCG); σref

v is a free
parameter of the lens model (the normalization of the σ−m scal-
ing relation); DS is the angular diameter distance to the source,
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Fig. 4. Simulation details. Left panel: adopted relation for the redshift evolution of Re, constant for z ≤ 1, and taken from Shibuya et al. (2015) for
z > 1, together with the upper and lower limits within which Re is extracted (light red area). The black dashed line shows the 0.070′′ threshold
– under which the source size is indistinguishable from the PSF – after the convolution. Right panel: resulting scaling relation, i.e. θE vs. F160W,
compared to those from Bergamini et al. (2019, 2021a) and Caminha et al. (2019), in red.

Table 3. Description of the cluster sample used in the non-GGSL
selection.

Cluster zcluster N

Abell 383 A383 0.188 70
Abell 209 A209 0.209 75
RX J2129+0005 R2129 0.234 51
Abell 2744 A2744 0.308 126
MS 2137–2353 MS2137 0.316 52
RX J2248–4431 (a) R2248 0.346 178
MACS J1931–2635 M1931 0.352 28
MACS 1115+0129 M1115 0.352 96
Abell 370 A370 0.375 172
MACS J0416–2403 M0416 0.397 120
MACS J1206–0847 M1206 0.439 147
MACS J0329–0211 M0329 0.450 66
RX J1347–1145 R1347 0.451 44
MACS J1311–0310 M1311 0.494 53
MACS J1149+2223 M1149 0.542 130
MACS J2129–0741 M2129 0.587 45

Notes. The cluster name, short name, and redshift are listed in the first
three columns. The fourth column shows the number of non-GGSLs
identified through visual inspection. (a)The cluster RX J2248−4431 is
also known as Abell S1063.

and DLS is that between the lens and the source. The value of the
slope of the scaling relation, α, is the one used in the lens mod-
els (directly inferred from the stellar velocity dispersion mea-
surements Bergamini et al. 2019, 2021a). In Fig. 4, we show the
latter relation as a red line and remark that it closely follows the
distribution of effective Einstein radius values inferred from the
secondary critical lines.

3.2. Building the knowledge base

The described methodology can simulate an arbitrary number
of realistic GGSLs embedded in the complex environment of

galaxy clusters as observed with the HST. To build a KB contain-
ing a large variety of GGSLs, we generate twice as many mock
GGSLs as non-GGSLs (NGGSLs, i.e. the negative class for the
classification problem). To this aim, we exploit the spectroscopic
information obtained by combining the CLASH-VLT VIMOS
programme with the MUSE archival observations and extract
10′′ cutouts centred on the CLM positions belonging to 16 clus-
ters, with a rest-frame velocity separation of |v| ≤ 5000 km s−1,
(see Table 3). As some of these cutouts may contain strong-
lensing features, a visual inspection process was carried out by
lensing experts in our group in order to build a fiducial sample of
non-GGSLs. To help this classification process, each RGB image
cutout was inspected together with the F435W, F606W, F814W
bands, with knowledge of any nearby spectroscopic source with
zs ≥ zcluster+0.1. A score of +1, +0.5, or −1 was assigned to each
CLM in case of a reliable GGSL, a less likely GGSL, or a non-
GGSL, respectively. The cutouts containing bright stars, nearby
bright galaxies, and/or those with an incomplete multi-band cov-
erage near the edge of the FoV were also excluded. In this way,
using the average scores, a visual inspection of 16 galaxy clus-
ters led to the classification of a pure sample 1453 non-GGSLs.
At the same time, 320 were classified as candidate GGSLs, and
282 cutouts were excluded.

Therefore, the resulting KB comprises 1453 observed non-
GGSLs and 3000 simulated GGSLs. This initial mismatch, moti-
vated by the need for a sufficient diversity of mock GGSLs, is
later compensated during the extraction of the validation subset
and the augmentation process, which leads to a training set of
approximately 3800 images for each class. The KB dataset is
then built by extracting 128× 128 pixel cutouts (3.84′′ by side)3.
By studying the distribution of the distances of the multiple

3 We also studied the network behaviour using 256× 256 pixel cutouts
(7.68′′ by side) and find that the performances are poorer (8%−15%
in terms of accuracy) whilst entraining a four times higher training
computing time. These tests suggest that the ∼4′′ cutouts offer the best
strategy.

A40, page 6 of 17



Angora, G., et al.: A&A 676, A40 (2023)

1.6, 0.5, 24.8

GGSL

0.8, 0.5, 22.3 3.6, 0.6, 24.4 1.0, 0.8, 22.5 1.2, 0.8, 23.5

θE

1.9, 1.2, 24.6 1.3, 1.4, 22.9 3.4, 1.6, 24.4 1.9, 1.8, 24.6 2.8, 2.0, 24.0

1.5, 1.0, 24.9 4.7, 1.1, 24.8 1.7, 1.5, 25.4 1.7, 1.5, 24.9 3.7, 1.6, 25.5 2.1, 1.6, 25.3 2.4, 1.7, 25.1 2.9, 2.2, 25.1 4.2, 2.3, 25.3 1.7, 2.9, 25.5

5.0, 0.8, 25.7

F
8
1
4
W

3.9, 0.9, 26.2 4.6, 0.9, 25.9 1.5, 0.9, 26.4 4.5, 1.0, 26.1 4.2, 1.2, 25.7 2.1, 1.3, 26.4 2.4, 1.5, 26.3 4.5, 1.7, 25.6 5.6, 1.8, 26.3

4.2, 0.2, 27.0 1.0, 0.4, 27.2 1.1, 0.4, 27.1 0.8, 0.5, 26.8 6.2, 0.7, 26.7 5.2, 0.8, 26.5 3.8, 1.0, 26.9 2.8, 1.2, 27.1 2.9, 1.4, 27.0 3.5, 1.6, 26.8

4.5, 0.5, 28.0 1.3, 0.5, 28.0 3.8, 0.6, 27.9 2.1, 1.0, 27.3 6.3, 1.3, 27.2 2.1, 1.6, 27.4 2.1, 1.7, 27.3 4.0, 1.8, 27.8 5.8, 2.0, 27.7 1.4, 2.3, 27.6

5.5, 0.4, 28.0 0.9, 0.7, 28.9 1.0, 0.9, 28.3 0.9, 1.0, 28.4 1.4, 1.1, 28.4 4.8, 1.2, 28.6 2.6, 1.8, 28.6 6.4, 1.8, 28.5 6.0, 2.1, 28.5 4.6, 2.7, 28.4

non-GGSL

Fig. 5. Examples of RGB cutouts of GGSLs and non-GGSL obtained by combining the F435W, F606W, and F814W bands. GGSL cutouts are
sorted in order of increasing θE (along columns) and F814W magnitude (along rows) values. The images have been stretched to emphasise faint
features by clipping values within ±3σ and normalising them. Cutouts are ∼9′′ across; red squares indicate the 4 × 4′′ areas processed by the
networks. The labels at the bottom of each image indicate the values of zs, θE, and F814W magnitude.

images with respect to lens centres, we find that all the cutouts
contain at least one lensed image.

A sample of simulated GGSLs and cutouts classified as non-
GGSLs is shown in Fig. 5, where the input images are indi-
cated as red squares. GGSLs are sorted in order of increasing θE
(across columns) and source intrinsic F814W magnitude (across
rows). Besides the typical arc-like and ring-like features, several
GGSL mock images do not reveal any apparent strong-lensing

feature. This may occur (i) when the injected source is too faint,
meaning that the lens galaxy outshines the GGSL signal (30%
of sources have F814W > 28 mag); (ii) for small-scale lenses
(small θE), where the lens galaxy halo hides multiple images
(32% of lenses have θE < 0.5′′); (iii) or when both of these
latter two cases apply (10% of GGSLs have both F814W >
28 mag and θE < 0.5′′). Although these cutouts represent the
most challenging cases for the classifier, they act as adversarial
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examples (Szegedy et al. 2013), preventing network overfitting
and allowing the network to gain a high degree of generalisation
(Goodfellow et al. 2014; Zhao et al. 2020; Kong et al. 2020). We
also performed some experiments to verify this by removing
faint sources and small-scale lenses from the training phase.
Even though the network achieves nearly perfect results, it
appears unable to identify real strong lensing events, lacking
enough generalisation capabilities. Finally, we note that the same
CLM cutout can be used in the training set as a mock GGSL or a
non-GGLS (i.e. no background source is injected); however, we
expect this to have a negligible impact on the CNN performance.

4. Network performances

4.1. Statistical metrics

In order to assess the network classification performance, we
use a set of metrics that are computed from the binary confu-
sion matrix (Stehman 1997; see middle panel of Fig. 6), namely
the average efficiency (AE), purity (pur), completeness (compl),
and the F1-score, which is the harmonic mean between purity
and completeness. The accuracy represents a global average
score, which includes both classes, while the other three esti-
mators are measured for each class. In this work, we refer to the
GGSLs as the ‘positive’ class. Therefore, the four elements of
a binary confusion matrix assume the following meaning: true
positives (TPs) are GGSLs correctly classified, false positives
(FPs) are non-GGSLs incorrectly flagged as GGSLs, false nega-
tives (FNs) are GGSLs incorrectly predicted to be non-GGSLs,
and true negatives (TNs) are correctly classified non-GGSLs.
These estimators, as well as the confusion matrix, are computed
by assuming a given threshold on the probability assigned by the
CNN to each object. Unless otherwise specified, such a prob-
ability threshold is set to 0.50. The performance assessment is
completed by including the so-called receiver operating charac-
teristic curve (ROC; Hanley & McNeil 1982), which represents
the trade-off between the TP rate (TPR; i.e. the completeness
rate) and the FP rate (FPR; i.e. the contamination rate) as a
function of the probability threshold (see the middle panel in
Fig. 6). The area under this curve (AUC) can be used as an
additional estimator of the network classification capabilities.
Finally, as the training-test split has been implemented with a k-
fold approach, we can also analyse the metric fluctuations over
the ten folds (see Angora et al. 2020) and represent them graph-
ically, as in the bottom panel of Fig. 6. For each metric, the box
delimits the 25th and 75th percentiles, that is, the first and third
quartiles (Q1 and Q3); their difference, the so-called interquartile
range, IQR = Q3−Q1; the error bars (ranging from Q1−1.5·IQR
to Q3 + 1.5 · IQR) correspond to 90.3% of the data (i.e. within
±2.698σ values); and the horizontal line indicates the median
value.

4.2. Performances

A summary of the performances is shown in Table A.1 and in the
top panel of Fig. 6 in terms of the statistical estimators (purity,
completeness, F1-score, and average efficiency) for both classes.
Globally, CNNs correctly classified at least 87% of the sources.
Concerning the GGSL identification, both CNNs appear more
pure than complete, with pur–compl differences ranging from
1.4% to 4.8%. As for the non-GGSLs, the networks reveal an
opposite behaviour and a wider trade-off (pur–compl of between
−8.7% and −2.7%). Such a dichotomy results from an unclear
distinction between the two classes for a fraction of sources,
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Fig. 6. Comparison between the performance of the two networks under
study (in all panels, the VGG and SC-VGG results are shown in green
and in cyan, respectively). Top panel: statistical performance estimators
for the GGSL and non-GGSL classes. Middle panel: ROC curves for
the GGSL classification, i.e. TPR vs FPR (the lines and the coloured
areas represent the mean and the 1σ level, respectively); here, the AUC
values are quoted in the legend and the normalised confusion matrices
are also shown. Bottom panel: box plots for the GGSL metrics and AE
for both classes (see Sect. 4.1 for details).

which in our example is the case for faint sources and small-
scale lenses (i.e. the adversarial examples). As mentioned above,
these images prevent model overfitting when included in the
training set; however, we measure the statistical estimators with
and without these adversarial images in the test sets to quan-
tify their effect on estimating the model performances. These
re-estimated metrics (i.e. without the adversarial cutouts) are
marked with an asterisk in Table A.1. Clearly, the non-GGSL
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completeness is not affected by this modification, while the non-
GGSL purity increases by 15.6% and 11.9%, reaching 92.3%
and 93.3%, respectively, for the VGG and SC-VGG models. Cor-
respondingly, the F1-score increases to ∼88%, with an improve-
ment of 7.6% for the VGG and 5.7% for the SC-VGG. Regarding
the GGSL set, we find a more balanced trade-off between purity
and completeness: the drop in purity (∼6%) is balanced by a
gain in completeness (∼3%); while the F1-score drop remains at
.2%.

A further analysis of the CNN performances is illustrated
in Fig. 6. In the middle panel, the ROC curves and the corre-
sponding AUC values are similar (within 1%), whereas the bot-
tom panel shows the network classification capabilities in greater
detail, quantifying the performance fluctuations (values listed in
Table A.2). Both networks have similar GGSL purity (median,
∼ 93%, first and third quartile, Q1 ∼ 92% and Q3 ∼ 94%, and
inter-quartile range IQR = 2.1%). More significant variations
occur for the other GGSL metrics: the SC-VGG performances
show an overall significant improvement in terms of complete-
ness (median: 2.8%, Q1 and Q3: 4.5%, 2.1%), which in turn is
reflected in an F1-score gain (from 0.8% to 3.8%). Concern-
ing the non-GGSL metrics (only listed in Table A.2), SC-VGG
achieves larger purity values (4.7%), while VGG shows better
completeness (1.0%). SC-VGG achieves the best non-GGSL F1
score, with an average improvement of 1.6%. Based on this anal-
ysis, SC-VGG shows the best purity-completeness trade-off for
both GGSL and non-GGSL (92.4%–82.8% vs. 91.0%–81.1%);
it appears more robust when dealing with adversarial examples
and is less subject to metric fluctuations (〈IQR〉SC-VGG = 2.1%
vs 〈IQR〉VGG = 3.4%), particularly for the GGSL completeness.

Furthermore, we also perform an experiment using single-
band cutouts (the F435W, F606W and F814W independently),
that is, removing the multi-band information. The results are out-
lined in Table A.3, to be compared with the performances of the
VGG and SC-VGG models. Although single-band performances
reproduce the VGG and SC-VGG purity-completeness trends,
the use of single-band data implies a loss of performance based
on all metrics: an average reduction of 1.8%, 1.3%, and 3.5% for
the AE, GGSL, and non-GGSL F1-scores, respectively. How-
ever, this moderate performance loss suggests that GGSLs can
also be classified using single bands when multi-band imagin-
ing is not available (see also Petrillo et al. 2017, 2019; Li et al.
2021, who use the Kilo-Degree Survey data by de Jong et al.
2015). When using single band information, our tests show a
better performance with the blue filter, owing to the larger con-
trast between the lens galaxy (red) and the strong-lensing fea-
tures (generally blue).

We also tested the network performance using a KB built
with cutouts of twice the size (256 pixels ≃7.7′′ side). These
experiments show a 10% drop in the performance metrics. Con-
sidering the significant extra burden of computing resources, we
did not pursue this strategy further.

Finally, we compare the predictions made by our neural net-
works with the outcome of the visual inspection by gravita-
tional lensing experts. As pointed out, as we aim to produce
a highly pure non-GGSL sample, the resulting set of GGSL
candidates is strongly contaminated, as it includes objects with
uncertain visual classification (conservatively excluded from the
non-GGSL set). Therefore, a human–machine comparison is
more appropriate for identifying non-GGSLs than it is for iden-
tifying GGSLs. Indeed, considering the approximately 1800
visually inspected sources, we measure a high fraction of non-
GGSLs also predicted by our neural network (∼95%), whereas
this percentage for GGSLs is just ∼35%. However, by increasing

the CNN probability threshold from 0.50 to 0.75, we find that all
the 105 candidates are classified as GGSLs by both neural net-
works and astronomers, underscoring the high effectiveness of
the CNN developed in this work.

4.3. False positives and false negatives

In this section, we specifically analyse the properties of the FPs
and FNs produced by the CNN, which are characterised based
on the galaxy magnitude and colour of FPs, and the GGSL sys-
tem properties of FNs (source redshift and intrinsic magnitude,
together with the lens Einstein radius).

Concerning the non-GGSLs mistakenly classified as strong
lenses, a selection of FPs common to both VGG and SC-VGG
models is displayed in Fig. 7. In Fig. 8, we show the TN,
FP, and the FPR (FPR = FP

TN+FP ) as a function of the CLM
photometry: F814W magnitude (left panel) and the normalised
colour (right panel), whose values are summarised in Table A.4.
We use the galaxy red-sequence dependence on the redshift
to compensate for the K-correction of CLMs, thus obtaining
a normalised colour. We use the Girardi et al. (2015) relation,
(F814W−F606W)norm = (F814W−F606W)obs−CM(F814W),
which is the difference between the observed galaxy colour and
the one determined from the colour–magnitude (CM) relation at
a given F814W magnitude. We fit the CM sequence for the spec-
troscopically confirmed CLMs using a robust linear regression
(Cappellari et al. 2013) that considers a possible intrinsic data
scatter and clips out outliers, adopting the least trimmed squares
technique (Rousseeuw & Driessen 2006). With this correction,
red galaxies are centred around zero, while blue galaxies have
colours of .−0.2 mag regardless of their redshift.

The number of FPs correlates both with the non-GGSL
magnitudes and colours for F814W > 19 and (F606W −

F814W)norm > −0.5 (see the approximately constant FPR in
the bottom panels of Fig. 8). There are two FP excesses in the
brighter and bluer part of the parameter space. The FPs increase
in number for progressively bluer objects (7% for objects bluer
than −0.5 mag, up to 90% and 50%, respectively for VGG and
SC-VGG, in the bin around −0.7 mag). These are disc galaxies
with a red bulge surrounded by blue spiral-like structures (see the
first row in Fig. 7) or generally blue galaxies, which are under-
represented in the KB because our sample is extracted from clus-
ter cores mainly populated by red CLMs.

The two models also have similar trends as a function of the
F814W magnitude, with a constant FPR of ∼0.16 for F814W >
19.5 and an FP excess in the brightest bins. This could be due to
embedded lensed features in the training cutouts, which are out-
shone by the galaxy halo, meaning that when bright lens galax-
ies are present, the networks are trained to predict the existence
of a GGSL with hidden lensed features (see the second row in
Fig. 7). Indeed, these non-GGSL images are similar in appear-
ance to mock GGSLs with hidden lensed features included in the
training set. A bidimensional representation of the distribution of
FPRs in the CM space is also shown in the top panels of Fig. A.1
for the VGG and SC-VGG models, which illustrates the trends
discussed above.

Regarding the strong lenses misclassified as non-GGSLs (i.e.
the FNs), Fig. 9 shows the distributions of FN, TP, and the FN
ratio (FNR = FN

TP+FN ) as a function of the source redshift (top left
panel), galaxy-lens θE (top right panel), and the source intrin-
sic F814W magnitude (middle right panel). The main depen-
dencies are also summarised in Table A.5. The number of FN
decreases with θE, with an FNR of .0.06 for θE & 2′′. On the
other hand, FNs are mainly associated with small-scale galaxy
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Fig. 7. Selection of FPs common to both the VGG and SC-VGG models. The probability of belonging to the GGSL class is shown in each
thumbnail (referred to the SC-VGG model). Cutouts are ∼4′′ across.
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Fig. 8. FP dependences. TN and FP analysis related to the VGG and SC-VGG performances as a function of the galaxy lens photometry: F814W
magnitude (left panel), (F606W − F814W)norm normalised colour (right panel). In both panels, the TNs are plotted with purple and magenta lines,
while the FPs are shown with red and orange lines (respectively for the SC-VGG and VGG): in both cases, solid for SC-VGG, dashed for VGG.
The FPR is plotted at the bottom of each panel (as a purple line for VGG, red for SC-VGG). In both panels, only sources with available and reliable
magnitudes are plotted.

lenses (FNR& 0.10 for θE < 0.5′′). Likewise, misclassifications
increase with the source magnitude, with an FN fraction of ∼0.10
for F814W ≥ 27. The VGG and SC-VGG FN ratios are similar
(∼0.05) down to F814W = 27, whereas the VGG FNR continues
to increase up to 0.20 at fainter magnitudes. A 2D distribution of
the FNR as a function of θE and F814W is shown in the mid-
dle panels of Fig. A.1 for both CNNs. These plots clearly show
that the SC-VGG model outperforms the VGG network for faint
sources and small-scale lenses (FNRVGG ≃ 2 × FNRSC-VGG).

Similarly, the dependence of the FNR on the source redshift
is comparable for the VGG and SC-VGG models (∼0.10) up to
z ∼ 3, which represents 70% of the whole FN set. However, the
VGG FNR significantly deteriorates (up to ∼0.21) at larger red-
shifts, whereas SC-VGG FNR remains approximately constant.
The better performance of the SC-VGG model over the VGG
at z & 3 is likely connected to the drop-out effect for lensed
galaxies due to the Lyman-break shift out of the bluest filter.
In the VGG model, images in the three filters are combined in
the first convolution layer, which mixes the multi-band infor-
mation. Instead, with the single-channel approach, only filters
that carry information (useful to disentangle GGSLs from non-
GGSLs) contribute to the classification. In contrast, the drop-out
images (no signal) are down-weighted by the network model.

We also verify that there is no significant dependence of the
FNR on the source effective radius (re), as illustrated in the bot-
tom panel of Fig. A.1, where FNR values & 0.3 are mainly con-
fined to the high-redshift bin for the VGG model only, as dis-
cussed above.

A selection of FNs is shown in Fig. 10. The first row includes
the adversarial examples containing faint sources (F814W >
27.5) and small-scale lenses (0.10′′ < θE < 0.25′′). These cases
should be compared with the FPs discussed above (see the second
row in Fig. 7). The second row includes bonafide GGSLs, with
visible arc-like features. All the adversarial FNs have probabili-
ties (to be a GGSL) equal to zero, whereas bonafide GGSLs have
probabilities not far below the adopted threshold of 0.50. This sug-
gests that these FNs could be recovered by lowering the GGSL
probability threshold. For example, one could adopt a threshold
corresponding to the value where the purity and the completeness
functions intersect. Figure 11 shows that this value is Pr = 0.25
for the SC-VGG model. By adopting this threshold, all FNs in the
second row of Fig. 10 are recovered; while analysing the entire
sample, we find that the completeness increases by 3.5% at the
expense of a 1.8% drop in purity. The optimal strategy on the Pr
value will depend on the number of GGSL candidates in a given
imaging dataset and specific science objectives.
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Fig. 9. FN dependences. TPs (green lines) and FNs (blue lines) distribu-
tions as a function of source redshift (zsrc, top panel), Einstein radius (θE,
middle panel), and source intrinsic F814W magnitude (bottom panel)
for the VGG (dashed lines) and SC-VGG (solid lines) models. The cor-
responding FN ratio is plotted at the bottom of each panel. In all panels,
only sources with available and reliable magnitudes are plotted.

The analysis carried out in this section can be compared with
other studies in blank field (i.e. not in clusters) based on differ-
ent imaging datasets, adopting a similar methodology. For exam-
ple, Petrillo et al. (2019) and Gentile et al. (2022) use the KiDS
(de Jong et al. 2015) and VOICE (Vaccari et al. 2016) imaging
surveys to search for GGSLs with similar CNNs. They trained
their networks with simulated lensed galaxies, adopting simple
Singular Isothermal Sphere models for early-type lens galaxies.
A comparison of our FN distributions as a function of θE (mid-
dle panel in Fig. 9) with those from these studies shows similar

FNR ranges, especially in the case of Petrillo et al. (2019), who
found FNR values in the 4%–15% range (see their Fig. 3), while
Gentile et al. (2022) obtained larger FNR values (10%–35%, see
their Fig. 6).

5. Searching for strong lenses in galaxy clusters

The experiments described in the previous sections are mostly
focused on the classification efficiency of the image-based CNN
with simulated lenses by evaluating its dependence on several
observational parameters, such as magnitude, colour, and Ein-
stein radius. In this section, we are mainly interested in evaluat-
ing the degree of generalisation achieved by the trained CNNs
in classifying real sources as GGSLs. This process step is com-
monly referred to as a ‘run’ in a machine learning context. To
maximise the parameter space sampling, we do not use the k-
fold approach utilised for performance testing but rather exploit
the whole KB by excluding the validation set used for the regu-
larisation processes.

To test the network generalisation capability, we perform a
run on 24 candidate GGSLs previously known in the HST sam-
ple of galaxy clusters. These systems are listed in Table A.6 and
shown in Fig. 12. We assume as ‘secure’ those objects whose
GGSL nature is based on the presence of clear strong-lensing
features, in some cases with spectroscopic confirmation; those
with uncertain classification are flagged as ‘uncertain’, that is,
those to be confirmed with further observations. We note that
some of these secure GGSLs (panels E2, E4, E5, E6, G2) are part
of multiple image systems produced by the cluster-deflection
field in addition to the lens galaxy. We consider 20 of these
candidates as secure. We organise the CNN predictions accord-
ing to three probability intervals: Pr > 0.5, 0.2 ≤ Pr < 0.5,
and Pr ≤ 0.2, defined as TP, quasi-true positive (qTP), and FN,
respectively. Out of the 24 processed GGSLs, both CNN mod-
els yield the same classification for 15 objects (17 by includ-
ing qTPs), 13 of which are correctly classified (15 by including
qTPs). By adopting a probability threshold Pr > 0.2, out of 20
secure GGSLs, the TPs are 18 and 16 for the VGG and SC-VGG,
respectively (16 and 14 by excluding the qTPs).

All typical lenses, with arc-like or ring-like features, have
been correctly classified (see e.g. the Einstein rings shown in
panels A2, C1, I1, and L2, or the arc-like structures in panels D2,
E3, E4, F1, K1, and L1). The system in panel B1 in Fig. 12, visu-
ally identified as a GGSL by Desprez et al. (2018) in Abell 383,
is predicted to be a non-GGSL by both CNNs. However, further
inspection, including also the HST/WFC3 bands, shows that the
faint sources, in a seemingly Einsten cross configuration, have
different colours, suggesting a correct CNN classification (for
this reason, we set this classification as TN in Table A.6).

Concerning the FNs, the system in panel E1 is a spectro-
scopic multiply imaged system in M0416 (named ID.14) studied
by Caminha et al. (2016) and Vanzella et al. (2017). This some-
what surprising misclassification may be due to a peculiar lens
configuration with two CLMs, which is a situation not well rep-
resented in the training set (less than 0.01% of the input lenses).
Other FNs (E2, G2) seem to be associated with cluster-scale
lensing features, a category which somewhat bridges GGSLs and
giant arcs. Interestingly, the remaining systems (G4, H1 and J2)
with uncertain classification (see Table A.6) are characterised by
almost complementary probabilities by the two CNN models.
This behaviour underscores the hard challenge of the (human or
machine-based) GGSL classification process when faced with
peculiar or complex morphologies.
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Fig. 10. Selection of FNs common to both the VGG and SC-VGG models. The probability of being a GGSL is shown in each thumbnail (estimated
by the SC-VGG model). Cutouts are ∼4′′ across.
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Fig. 11. Purity (red) and completeness (orange) as a function of the
GGSL probability threshold. Vertical lines correspond to the purity-
completeness intersection at Pr = 0.25 (as a solid line) and to the clas-
sical threshold at Pr = 0.50 (as a dotted line). Purity and completeness
values at Pr = 0.25 and Pr = 0.5 are indicated.

6. Conclusions

In this work, we build a methodology to search for galaxy-scale
strong lensing systems in the HST multi-band imaging of galaxy
clusters using deep learning techniques. We present a novel
approach to simulating GGSLs in galaxy clusters, which takes
advantage of extensive spectroscopic information on CLMs in
eight clusters whose inner total mass distribution is determined
with high accuracy through strong lensing modelling. Accurate
knowledge of the deflection field in each cluster allows us to
inject background sources near the secondary caustics associated
with the CLMs and to simulate highly realistic GGSL systems in
the HST cluster field. To this aim, we sampled the magnitude
and photometric redshift distributions of background galaxies
using Sérsic light profiles with a physical size estimated from

an empirical redshift evolution of the effective radius of distant
galaxies and a given star-forming SED.

In this way, we generate thousands of mock GGSLs, which
reproduce the observations with high fidelity, preserving the
full complexity of the real data. We use the image cutouts of
these simulated GGSL systems in three ACS filters as a knowl-
edge base with which to train two main CNNs. Their efficiency
in identifying and classifying GGSLs in HST images down to
F814W = 29 is quantified using several standard metrics. The
main results of our study can be summarised as follows.

– We investigated two CNN architectures: one combines the
F435W, F606W, and F814W ACS bands (VGG model),
while the other processes the three channels independently
(SC-VGG model). We find that both models achieve a
very good trade-off between purity and completeness (85%–
95%). This reflects the comprehensive sampling of the
parameter space describing the source and lens properties
and a highly pure classification of non-GGSL events based
on the visual inspection of lensing experts. We also find that
performance fluctuations –estimated by iteratively varying
the portion of the dataset used as an independent test set (the
so-called k-fold approach)– are within 2%–4%, underlying
the robustness of the network efficiency.

– The analysis of FP and FN rates shows that FPs are typically
spiral or disc galaxies whose structure is sometimes mistaken
for lensing features. Interesting categories of FPs and FNs are
bright galaxies and small cross-section lenses (small Einstein
radii), respectively, for which the lens galaxy outshines pos-
sible multiple images. Although this category encompasses
a significant fraction of misclassification, its inclusion in the
KB is important in order to avoid network overfitting.

– Overall, the SC-VGG model performs slightly better than the
VGG model based on all the adopted metrics. This is partic-
ularly evident for faint and relatively red lensed sources, for
which the single-channel approach seems to better take into
account the K-correction effects.

– When testing our CNN models on GGSLs previously known
from the literature in 12 CLASH and HFF clusters, both net-
works are able to identify almost all systems deemed secure
GGSLs, which demonstrates the high degree of generalisa-
tion of these networks. These TP cases include a wide range
of galaxy-scale strong-lensing configurations, while the FNs
seem to be generally associated with GGSLs whose config-
uration suggests a significant contribution from cluster-scale
lensing.
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Fig. 12. Known GGSLs processed by both VGG and SC-VGG networks (see Table A.6). The GGSL probability is reported in each thumbnail
(referred to the VGG and SC-VGG, respectively). Cutouts are 7.7′′ across. The inner red squares enclose the area processed by the networks (∼4′′).
According to the classification probability, cutouts are surrounded by a box coloured in green (at least one probability is >0.5), orange (at least
one probability is ∈(0.2, 0.5]), or grey (otherwise).

In a forthcoming paper, we plan to perform a systematic search
for GGSLs around CLMs in approximately 50 galaxy clusters
included as targets in several HST programs (CLASH, HFF, and
RELICS). In future works, we also intend to extend this method-
ology to the forthcoming ground- and space-based datasets, such
as the Euclid (Laureijs et al. 2011) and Vera Rubin Observa-
tory (Ivezić et al. 2019) wide-area surveys, and the James Webb
Space Telescope (Gardner et al. 2006) NIRCAM imaging data,
whose extraordinary potential in the study of strongly lensed
sources has been shown in the first observations of galaxy
cluster cores (e.g. Treu et al. 2022; Adams et al. 2023). More-
over, we will explore other deep learning networks, such as
deep auto-encoders (Goodfellow 2010) and generative adversar-
ial networks (Mirza & Osindero 2014), in an effort to automate
the search and classification of strong-lensing events in these
next-generation datasets. In this context, other deep architec-
tures (e.g. region-based CNN, Ren et al. 2015, or masked-region
CNN, He et al. 2017) can be tested by exploiting the trained con-
volutional layers developed in this paper.
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Appendix A: Complementary tables and figures

In this Appendix, we include additional tables and figures related
to the CNN performance evaluation. Table A.1 shows a compar-
ison between the VGG and the SC-VGG in terms of statistical
estimators by also excluding the adversarial examples from the
metric computation (quoted with an asterisk). The analysis of
performance fluctuations (for both VGG and SC-VGG) evalu-
ated over the ten folds is summarised in Table A.2. Table A.3
shows a comparison of the results achieved by the networks
trained with the three ACS bands (the adopted method) with
performances obtained using a single band. A summary of the
FP and FN distributions is outlined in Table A.4 and Table A.5,
respectively. Figure A.1 shows the FPRs and FNRs as 2D his-
tograms. Table A.6 illustrates the run performed by both VGG
and SC-VGG by processing a set of known GGSLs in a sample
of galaxy clusters observed with HST.

Table A.1. Performance comparison between the two CNN
architectures.

[%] VGG VGG* SC-VGG SC-VGG*

AE 87.7 89.6 89.4 89.5

pur 93.4 87.5 93.1 86.7
GGSL compl 88.6 93.4 91.7 94.5

F1 91.0 90.4 92.4 90.4

pur 76.7 92.3 81.4 93.3
NGGSL compl 85.4 85.4 84.1 84.1

F1 81.1 88.7 82.8 88.5

Notes. Network performances are re-evaluated by removing faint
sources and small-scale lenses (F814W > 28 mag and θE < 0.5′′) are
marked by an asterisk.

Table A.2. Fluctuations of the performances for the VGG and SC-VGG
models.

median Q1 Q3

[%] VGG SC-VGG VGG SC-VGG VGG SC-VGG

AE 88.3 89.3 86.2 88.6 88.6 90.3

pur 93.3 93.3 92.5 92.3 94.8 94.2
GGSL compl 89.1 91.9 86.7 91.2 90.4 92.5

F1 91.5 92.3 89.8 91.8 91.5 93.0

pur 77.6 81.9 74.0 79.7 79.0 82.9

NGGSL compl 85.6 84.2 82.3 81.7 88.1 87.2
F1 91.5 92.3 89.8 91.8 91.5 93.0

IQR Q1 − 1.5 · IQR Q3 + 1.5 · IQR

[%] VGG SC-VGG VGG SC-VGG VGG SC-VGG
AE 2.4 1.7 85.3 87.8 89.7 91.4

pur 2.3 1.9 90.7 90.1 95.6 95.7

GGSL compl 3.7 1.4 84.1 90.4 92.5 94.1

F1 1.8 1.2 88.8 91.0 92.6 93.9

pur 5.0 3.2 70.5 76.1 81.8 85.6

NGGSL compl 5.8 5.4 79.7 77.6 90.7 90.7

F1 1.8 1.2 88.8 91.0 92.6 93.9

Notes. Q1 and Q3 are the 25th and 75th percentiles. The inter-quartile
range IQR = Q3−Q1; the range (Q1−1.5 · IQR, Q3+1.5 · IQR) encloses
the metric fluctuation within ±2.698σ. The best results are highlighted
in bold. Average efficiency and GGSL estimators are graphically shown
in the bottom panels of Fig. 6.

Table A.3. Network performances trained with three HST/ACS bands
(VGG, SC-VGG) compared with single-band training.

[%] VGG SC-VGG F435W F606W F814W

AE 87.7 89.4 87.2 86.1 86.8

pur 93.4 93.1 91.8 91.1 91.5
GGSL compl 88.6 91.7 89.8 88.8 89.3

F1 91.0 92.4 90.8 89.9 90.4
pur 76.7 81.4 77.5 75.4 76.6

NGGSL compl 85.4 84.1 81.3 79.9 80.9
F1 81.1 82.8 79.3 77.6 78.7

Table A.4. Summary of FP distributions for the VGG and SC-VGG
networks.

VGG SC-VGG
NGGSL FP FP/TN FP FP/TN

Total Number 1037 154 0.174 170 0.196
F814W < 19.5 9.6% 16.8% 0.263 15.3% 0.356
F814W ≥ 19.5 90.4% 83.2% 0.158 84.7% 0.181
colour< −0.5 3.9% 6.5% 0.333 7.6% 0.481
colour≥ −0.5 96.1% 93.5% 0.169 92.3% 0.187

Notes. Fractions of NGGSL (Col. 2), FP (Col. 3 and Col. 5) and FN
to TN ratio (Col. 4 and Col. 6) as a function of source magnitude
(second and third row) and galaxy normalised colour (i.e. (F606W −
F814W)norm, fourth and fifth row). The total number of spectroscopic
NGGLSs and FPs are quoted in the first row.

Table A.5. Summary of the FN distributions, split between VGG and
SC-VGG network.

VGG SC-VGG
GGSL FN FN/TP FN FN/TP

Total Number 2704 307 0.128 224 0.090
F814W ≥ 28.0 31.1% 52.1% 0.235 38.8% 0.115
F814W ≥ 27.0 61.0% 83.1% 0.183 73.2% 0.110
F814W < 27.0 39.0% 17.9% 0.052 26.8% 0.060
θE < 0.5′′ 32.2% 41.4% 0.171 46.9% 0.137
θE ≥ 0.5′′ 67.8% 58.6% 0.109 53.1% 0.069
zsrc ≥ 5 5.9% 11.4% 0.282 4.9% 0.074
zsrc ≥ 4 12.9% 20.8% 0.225 10.7% 0.074
zsrc ≥ 3 25.5% 31.9% 0.166 20.1% 0.070
zsrc < 3 74.5% 68.1% 0.116 70.9% 0.098

Notes. Fractions of GGSL (Col. 2), FN (Col. 3 and Col. 5) and FN to
TP ratio (Col. 4 and Col. 6) as a function of source magnitude (second
to fourth row), lens galaxy θE (fifth and sixth row) and source redshift
(seventh to eighth row). The total number of GGLSs and FNs are quoted
in the first row.
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Fig. A.1. FPR and FNR represented by 2D histograms. Top panels: FPRs on a galaxy colour–magnitude diagram (i.e. (F606W − F814W)norm vs
F814W). Middle panels: FNRs on a lens θE vs source F814W magnitude diagram. Bottom panels: FNRs on a source re vs source redshift diagram.
The VGG and the SC-VGG results are shown in the left and right panels, respectively. The regions of the parameter space with zero TN or zero
TP values are left white.
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Table A.6. Catalogue of known GGSLs processed by both the VGG and SC-VGG networks.

Cluster RA DEC Image VGG SC-VGG ref

A209 22.95776 -13.60326 A1 TP TP (1) secure
A209 22.96488 -13.63631 A2 TP TP (1) secure
A383 42.01136 -3.54803 B1 TN TN (1) no

M0329 52.42013 -2.22163 C1 TP TP (1) secure, z = 1.112
M1149 177.40389 22.42663 D1 TP FN (2) secure, z = 1.806
M1149 177.39314 22.41134 D2 TP qTP (2) secure
M0416 64.03408 -24.06675 E1 FN FN (3) secure, z = 3.222
M0416 64.02847 -24.08567 E2 qTP FN (1,5) secure, z = 2.218
M0416 64.01709 -24.08955 E3 TP TP (4) secure
M0416 64.03262 -24.06838 E4 TP TP (5) secure, z = 2.095
M0416 64.03250 -24.07849 E5 TP FN (5) secure, z = 2.542
M0416 64.02442 -24.08106 E6 TP TP (5) secure, z = 1.964
M1115 168.95626 1.49741 F1 TP TP (1) secure
R2248 342.15574 -44.54591 G1 qTP TP (1) secure, z = 0.9406
R2248 342.16336 -44.52972 G2 FN qTP (1) secure
R2248 342.18205 -44.54035 G3 TP TP (6) secure, z = 1.837
R2248 342.17554 -44.53558 G4 FN TP (6) uncertain
R1347 206.89603 -11.75360 H1 FN TP (1) uncertain
R2129 22.42878 0.10807 I1 TP TP (1) secure
M0429 67.40208 -2.87139 J1 TP TP (1) secure
M0429 67.38925 -2.87412 J2 TP FN (1) uncertain
M0744 116.21217 39.45987 K1 TP TP (1) secure
M1206 181.56667 -08.80478 L1 TP TP (7) secure, z = 3.752
M1206 181.55309 -08.79486 L2 TP TP (7) secure, z = 1.425

NTP 17 14
TOTAL NqTP 2 2

NFN 4 5

Notes. Based on GGSL probability computed by the two CNN models, systems are classified as: true positive (TP, Pr > 0.5), quasi-true Positive
(qTP, 0.2 ≤ Pr < 0.5), FN (FN, Pr < 0.2). The last column refers to the classification as GGSL: ‘secure’ for bonafide galaxy-scale systems (with
the source redshift when available), ‘uncertain’ for those that require verification and ‘no’ for non-GGSL systems. See Sect. 5 for details. The total
numbers of TPs, qTPs, and FNs shown at the bottom of the table are computed by considering only the secure systems.
References. (1) Desprez et al. (2018); (2) Smith et al. (2005); (3) Vanzella et al. (2017); (4) Diego et al. (2015); (5) Bergamini et al. (2021a); (6)
Caminha et al. (2016); (7) Bergamini et al. (2019).
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