
Reliability Evaluation of ML systems,
the oracle problem

Antonio Guerriero
DIETI - Università degli Studi di Napoli Federico II

Napoli, Italy

antonio.guerriero@unina.it

Abstract—The growing adoption of machine learning (ML) in
safety-critical contexts makes reliability evaluation of ML systems
a crucial task. Although testing represents one of the most used
practices to evaluate the reliability of “traditional” systems, just
few techniques can be used to evaluate ML-systems’ reliability
due to the oracle problem. In this paper, I present a test oracle
surrogate able to automatically classify tests’ outcome to obtain
feedback about tests whose expected output is unknown. For this
purpose, various sources of knowledge are considered to evaluate
the outcome of each test. The aim is to exploit this test oracle
surrogate to apply classical testing strategies to perform reliability
assessment of ML systems. Some preliminary experiments have
been performed considering a Convolutional Neural Network
(CNN) and exploiting the well known MNIST dataset. These
results promise that the presented technique can be effectively
used to evaluate the reliability of ML systems.

Index Terms—Testing, Machine Learning, Test Oracle problem

I. INTRODUCTION

The increasing trend in adopting Machine Learning (ML)

solutions in safety-critical context makes the reliability evalu-

ation of these systems a great concern. In software reliability

engineering [1], testing represents one of the most used

solutions, but it is challenging to apply it. Murphy et al. define

ML systems as “non-testable”, because there is no reliable
“test oracle” to indicate what the correct output should be
for arbitrary input [2].

System reliability is commonly defined as the probability of

failure-free operation under specified conditions for a specified

time [3]. As ML systems offer a response on demand, their

reliability can be computed using a pragmatic metric, namely

as a percentage of correct predictions. In the classification

domain, a misclassification is a failure: given a sample, the

ML system labels it with a class different from the expected

one. The training phase is an important step of the paradigm

adopted to define ML systems. In particular, at the end of

this phase, the generalization error is computed to forecast the

accuracy of the system under test in operation. This estimate

could be not very accurate, in particular, if operational data

are very different from the ones considered during the training

phase. For a tester, it is difficult to estimate the reliability of

an ML system considering only operational data, because the

expected output is unknown for an arbitrary input.

For traditional software systems, testers exploit various

system-specific characteristics to implement test oracles. For

instance, an unhandled exception generated by a test represents

an undesired system behavior and may thus be considered a

failure. Likewise, in distributed systems, when a request is

sent, the lack of a response may indicate a failure. Similarly,

for ML systems, each time the behavior of the system differs

from the one encoded in the training set, it can be considered

a failure.

In this paper, I present TOS, a test oracle surrogate able

to automatically detect failed tests based on a set of rules

representing the expected behavior of the system under test

so that each time a rule is violated a failure is said to have

occurred.

The definition of the test oracle surrogate for ML-systems

consists of three main steps:

• Listing of both execution domain and testing environment

information as rules.

• Encoding of the expected behavior of the system under

test (represented by the training set) as rules.

• Exploiting specific ML algorithm’s features to evaluate

the output.

Preliminary experimentation is reported, considering the

MNIST dataset and a Convolutional Neural Network (CNN).

The reliability values estimated by TOS are compared

to a Cross-Referencing Oracle (CRO), as considered by

Srisakaokul et al. [4] for multiple implementation testing.

The preliminary results point out that both approaches

influence the reliability estimate in different ways: TOS is

more prone to underestimate the reliability; CRO is more prone

to overestimate it.

II. RELATED WORK

Reliability assessment of ML systems represents a growing

trend in current research. Li et al. propose a technique for

operational testing of Deep Neural Networks (DNNs) to

estimate the reliability considering unlabeled data [5]. The

solution proposed by the authors consists of selecting a set of

representative samples to estimate the reliability of the DNN

under test. These samples have to be manually labeled, due to

the absence of a test oracle for arbitrary input.

In the current literature, there are various solutions to

address the oracle problem in ML system testing. In particular,

Zhang et al., in their survey on ML testing [6], highlight

three main solutions: mutation testing, metamorphic testing,

and cross-referencing.

127

2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)

978-1-7281-7735-9/20/$31.00 ©2020 IEEE
DOI 10.1109/ISSREW51248.2020.00050

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on July 27,2022 at 07:51:42 UTC from IEEE Xplore. Restrictions apply.

Mutation testing [7] refers to generate new tests start-

ing from already labeled ones, performing mutation without

changing the semantic of the test case. Metamorphic testing

[8], [9] consists of generating tests considering semantic-

conservative mutations, due to the challenges in metamorphic

relations definition [10], [11]. The impossibility to perform

tests with unlabeled data makes these testing strategies not

considerable to perform reliability assessment of ML systems

as they are.

Cross-referencing [4], [12] refers to a test oracle detecting

failed tests by observing whether similar applications yield

different outputs regarding identical inputs. Srisakaokul et
al. propose multiple-implementation testing to test supervised

learning software [4]. They exploit cross-referencing to imple-

ment a majority oracle, which selects the most voted output

running the test input of multiple implementations of the

same algorithm (based on a predefined percentage threshold).

Although the cross-reference oracle strategy is characterized

by a high cost (multiple implementations of the same system

are needed), and bugs in the training set are very difficult

to detect (all the implementations might be affected in the

same way), it represents a valid approach to evaluate the

reliability of the system under test. In fact, operational data,

with unknown expected output, can be evaluated.

Other techniques can be considered to address the oracle

problem in reliability testing. In particular, Ma et al. [13]

propose to exploit neural networks invariants in order to unveil

adversarial examples. In particular, they show that for different

inputs, different sets of neurons are activated; invariants may

be mined looking for neurons activation patterns. I argue that

if for a given ML system similar invariants can be mined,

which are related to failures, they can be used as an additional

inductive approach to automatically detect failed tests.

III. PROPOSAL

A. ML-based systems

As stated in [14], AI-based software and applications use
machine learning models and techniques through large-scale
data training to implement diverse artificial intelligent features
and capabilities. I regard an ML-based system (Figure 1) as

taking a feature vector (fi) as input; an internal component

uses an ML algorithm to compute a response (r), while other

components (ci), not based on ML, produce additional outputs

(ai) which, combined with r, yield the ultimate output o.

For instance, an autonomous driving system exploits an ML

algorithm to process the cameras’ images, while other compo-

nents process on-board sensors’ data, ultimately determining

a final output (speed or steering angle). The behavior of an

ML system is strongly dependent on both the ML algorithms

and the training data.

B. Detection of failing tests

The architecture defined for a TOS is depicted in Figure 2.

It is meant to exploit various ways to discover failed tests,

using different sources of knowledge (domain knowledge,

testing assumptions, training set, system’s internal parameter

Fig. 1. ML system

values) to look for conditions, e.g. invariants [13], which hold

when the system output can be judged incorrect, despite the

correct output is unknown or uncertain. Consider, for instance,

the mentioned autonomous driving system. Its output o, e.g.

steering angle and speed, depends on the response r of the

ML algorithm that processes the acquired images, and on the

outputs (ai) of on-board sensors. The architecture I envisage

foresees three methods by means of which TOS can detect

failed tests:

• Deductive method: it is based on rules defining both

domain-related conditions that should never be violated

(e.g., driving rules), and testing assumptions (proper of

the chosen testing strategy). They can be derived from an

expert, from an ontology, or via deductive processing of

other rules. Each output violating such rules is judged as

a failure.

This level is characterized by a deterministic evaluation

of the output, detecting a subset of failed tests with 100%

accuracy, but incomplete (i.e., only a subset of failures is

identified, depending on the set of rules being defined) –

hence with false negatives with respect to the set of all

possible failures, but with no false positives.

An implementation of this method is called Deductive
TOS. A deductive rule to detect failures for the example

is “if (the proximity alarm is ON ∧ speed > 0.1 Km/h)
⇒ fail”. Moreover, assuming to apply partition testing,

let me consider two partitions, the first one contains all

samples with speed lower than 10 Km/h, and the second

Fig. 2. Architecture of a TOS

128

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on July 27,2022 at 07:51:42 UTC from IEEE Xplore. Restrictions apply.

one contains all samples with speed greater than 10 Km/h,

an example of a rule is: “if (the sample belongs to the
first partition) ∧ speed > 10 Km/h ⇒ fail”.

• Inductive method applied to training data: a set of rules is

inferred from the prior knowledge in the training set. The

rules should be verifiable by the tester and able to identify

a subset of failures preserving high accuracy (depending

on the goodness of the training data). Adding these

rules, the completeness can be significantly increased,

depending on the representativeness of the training data.

An implementation of this method is called Induc-
tive TOS. An inductive rule for the example is “if
(pixel12,35 > 200∧ pixel14,65 < 56∧ speed > 75 Km/h)
⇒ fail”.

• Inductive method applied to the ML algorithm: the aim is

to mine patterns about how the ML algorithm produces an

incorrect response. The assumption is that failures have

similar patterns that are not available in the training set,

and that are specific to the adopted algorithm. Hence I

look for likely invariants in the ML algorithm behavior.

This solution relies on the possibility to generate a dataset

able to show failures of the system under test, to derive

the invariants. Adding these invariants, the expectation

is to improve the completeness of TOS detecting further

different kinds of failures, potentially decreasing its ac-

curacy (the number of false positives could increase).

An implementation of this method is called Automatic
TOS. An inductive rule for the example, assuming that

the ML algorithm chosen is a Neural Network, is “if (a
certain subset of neurons has been activated ∧ speed >
40 Km/h) ⇒ fail”.

IV. EXPERIMENTATION

A. Experimental subject

The ML system considered for this experimentation is

LeNet-5 [15], trained on 30, 500 samples (28, 000 for the

training set, and 2, 500 for the test set) of MNIST dataset

of handwritten digits [16]. I considered a set of 39, 500
samples, assumed to be unlabeled, as test cases representing

the operational environment. The labels removed are used to

build a Perfect Oracle (PO).

The ML system under test is tested using a partition testing
strategy. In particular, the test cases are split into two sets:

digits lower than 5, and digits greater or equal to 5.

The selection of test cases is performed considering a testing
budget (number of the executed test) of 20, 000 samples.

B. TOS implementation

The three methods of TOS are implemented for the exper-

imentation as follows.

The deductive method is implemented considering a manual

definition of two rules derived from the testing strategy:

• if (input belongs to first partition) ∧ label > 5⇒ fail;
• if (input belongs to second partition) ∧ label ≤ 5⇒ fail.

The inductive method uses the C4.5 algorithm [17] to

extract the rules from the training set. Then, all the rules with

a confidence lower than 0.99 are filtered out.

The inductive method applied to the ML algorithm is

implemented exploiting Random Forest applied to a custom

training set. In particular, the training set of Random Forest is

built considering the probability vectors provided in output by

the ML system corresponding to each of the 2, 500 instances

of the test set. Each sample of the set is labeled as fail or pass,

according to the expected label.

C. Research Questions (RQs)

The following research questions are here considered:

• RQ1: How accurate are the estimates obtained with TOS?

• RQ2: How does TOS perform compared to a CRO?

CRO is implemented as a majority oracle considering two

additional CNNs. In particular, for an arbitrary input, the most

voted output of the three CNNs is considered as the correct

one; when the three CNNs diverge, assuming that the CNN

under test is the most accurate, its output is considered as

correct. Each experiment is repeated 5 times.

D. Evaluation metrics

The estimates of reliability (R) are computed exploiting the

Nelson estimator [18]:

R = 1− F

T
, (1)

where F is the number of failed tests, and T is the testing

budget. The metric considered to answer RQ1 is the offset%,

defined as the difference in percentage between the reliability

value obtained considering PO and the one obtained with the

evaluated oracle. The same metric is used to compare TOS to

CRO in answering RQ2.

offset% =
RPO −R

100
. (2)

V. RESULTS

A. RQ1: Accuracy

Table I reports in columns 2 and 3 the values reliability

RTOS estimated with TOS, and the one RPO obtained with

the Perfect Oracle, for the 5 repetitions. The offset% (reported

in the last column) between RPO and RTOS is 3.78% on

average. The values of reliability obtained with TOS as test

oracle are close to the ones obtained with PO, and they

represent always an underestimate of the reliability, over the

repetitions. This underestimate depends on the presence of

false positives in the evaluation of tests outcome.

B. RQ2: Comparison to cross-referencing

Table II reports the reliability estimated exploiting the

Cross-Referencing Oracle and the corresponding one with PO.

The offset% between the two values is −2.58% on average.

The higher estimate of reliability RCRO depends on the

presence of false negatives in the evaluation of test outcome.

Comparing Tables I and II, we observe that the reliability

values obtained with CRO are closer to the estimates obtained

129

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on July 27,2022 at 07:51:42 UTC from IEEE Xplore. Restrictions apply.

TABLE I
RELIABILITY ESTIMATES OBTAINED EVALUATING TESTS WITH TOS AND

WITH A PERFECT ORACLE

Repetition RTOS RPO offset%
1 0.922 0.960 3.8
2 0.924 0.960 3.6
3 0.920 0.960 4.0
4 0.926 0.962 3.6
5 0.922 0.961 3.9

TABLE II
RELIABILITY ESTIMATES OBTAINED EVALUATING TESTS WITH CRO AND

WITH A PERFECT ORACLE

Repetition RCRO RPO offset%
1 0.985 0.959 -2.6
2 0.986 0.959 -2.7
3 0.986 0.960 -2.6
4 0.986 0.960 -2.6
5 0.985 0.961 -2.4

with PO than the ones obtained by TOS. It is typically

preferrable to have an underestimate of reliability than an over-

estimate, given a certain confidence. From this perspective, the

values obtained with TOS are better than the ones with CRO.

VI. CONCLUSIONS

The oracle problem represents an important challenge when

testing ML systems for reliability evaluation. In this paper,

a test oracle surrogate is presented to obtain an automatic

evaluation of tests to assess the reliability of the system under

test. For this purpose, a three levels architecture is defined.

Each level is characterized by a source of knowledge and a

strategy to define rules. Although a coarse-grain tuning was

performed to select the rules, the reliability estimates obtained

with TOS are close to CRO ones (the difference is 0.011
on average). Moreover, the estimates obtained considering the

proposed approach are always an underestimate of reliability,

that represents a desired property in reliability evaluation. A

fine-grain tuning of all parameters can provide better results.

The long-term objective of my research is to provide a

technique to support testers assessing the reliability of ML

systems. Currently, a tester has to front a strong effort to

evaluate the performance of an ML system under test, due

to the manual labeling of operational data. The purpose is

to reduce this effort minimizing human intervention in test

evaluation.

This my research work started during a visiting period at

the the Chinese University of Hong Kong (CUHK), under the

supervision of Prof. Michael R. Lyu, at the end of 2019. In

my PhD thesis (whose defense is scheduled in the first months

of 2022), I plan to define a more general and robust formu-

lation of my Test Oracle Surrogate, supported by a deeper

experimentation considering more datasets related to various

domains (image classification, natural language processing,

machine translation), and including comparison with other

techniques to deal with the oracle problem in ML systems.

ACKNOWLEDGMENT

I thank my advisors, professor Stefano Russo and professor

Roberto Pietranutono. Moreover, I thank professor Michael R.

Lyu for his valuable hints on this research topic. This work

has been supported by the department project COSMIC.

REFERENCES

[1] M. R. Lyu, Ed., Handbook of software reliability engineering. Hight-
stown, NJ, USA: McGraw-Hill, Inc., 1996.

[2] C. Murphy, G. E. Kaiser, and M. Arias, “An approach to software testing
of machine learning applications,” in 19th Int. Conference on Software
Engineering and Knowledge Engineering (SEKE), 2007, pp. 167–172.

[3] IEEE, “IEEE recommended practice on software reliability,” IEEE Std
1633-2016 (Revision of IEEE Std 1633-2008), pp. 1–261, 2017.

[4] S. Srisakaokul, Z. Wu, A. Astorga, O. Alebiosu, and T. Xie, “Multiple-
implementation testing of supervised learning software,” in AAAI Work-
shops. Association for the Advancement of Artificial Intelligence, 2018.

[5] Z. Li, X. Ma, C. Xu, C. Cao, J. Xu, and J. Lü, “Boosting Opera-
tional DNN Testing Efficiency through Conditioning,” in Proceedings
of the 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, 2019, pp. 499–509.

[6] J. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing:
Survey, landscapes and horizons,” IEEE Transactions on Software En-
gineering, pp. 1–1, 2020.

[7] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao, and Y. Wang, “DeepMutation: Mutation Testing of
Deep Learning Systems,” in 29th Int. Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2018, pp. 100–111.

[8] C. Murphy, G. Kaiser, L. Hu, and L. Wu, “Properties of machine learning
applications for use in metamorphic testing.” in 20th International Con-
ference on Software Engineering and Knowledge Engineering (SEKE),
2008, pp. 867–872.

[9] X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen,
“Testing and validating machine learning classifiers by metamorphic
testing,” Journal of Systems and Software, vol. 84, no. 4, pp. 544–558,
2011.

[10] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated Testing of
Deep-neural-network-driven Autonomous Cars,” in Proceedings of the
40th Int. Conference on Software Engineering (ICSE). ACM, 2018,
pp. 303–314.

[11] X. Xie, L. Ma, F. Juefei-Xu, H. Chen, M. Xue, B. Li, Y. Liu, J. Zhao,
J. Yin, and S. See, “DeepHunter: Hunting Deep Neural Network Defects
via Coverage-Guided Fuzzing,” arXiv, 2018.

[12] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated White-
box Testing of Deep Learning Systems,” in Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP). ACM, 2017, pp.
1–18.

[13] S. Ma, Y. Liu, G. Tao, W.-C. Lee, and X. Zhang, “NIC: Detecting
adversarial samples with neural network invariant checking,” in Network
and Distributed System Security Symposium (NDSS), 2019.

[14] J. Gao, C. Tao, D. Jie, and S. Lu, “Invited paper: What is AI software
testing? and why,” in Proc. IEEE Int. Conf. on Service-Oriented System
Engineering (SOSE). IEEE, 2019, pp. 27–46.

[15] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[16] Y. LeCun and C. Cortes, “MNIST handwritten digit
database,” http://yann.lecun.com/exdb/mnist/, 2010. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[17] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[18] T. A. Thayer, M. Lipow, and E. C. Nelson, Software Reliability. North-
Holland Publishing, TRW Series of Software Technology, Amsterdam,
1978.

130

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on July 27,2022 at 07:51:42 UTC from IEEE Xplore. Restrictions apply.

