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Abstract
We consider a setting where a user wants to pose
a query against a dataset where background knowl-
edge, expressed as logical sentences, is available,
but only a subset of the information can be used
to answer the query. We thus want to reformulate
the user query against the subvocabulary, arriving
at a query equivalent to the user’s query assuming
the background theory, but using only the restricted
vocabulary. We consider two variations of the prob-
lem, one where we want any such reformulation
and another where we restrict the size. We present
a classification of the complexity of the problem,
then provide algorithms for solving the problems
in practice and evaluate their performance.

1 Introduction
A basic problem dealt with in databases and knowledge repre-
sentation is query reformulation with background knowledge.
The input to the problem includes a logical formula Q, the
input query, and a set of sentences of first-order logic Σ, the
background theory or integrity constraints. We also have a
specification of an “interface restriction”: what data can we
actually access? For example, we can specify the allowed
data as a sub-vocabulary V of the vocabulary of Σ and Q. We
want to know if the answer to Q can be obtained using the
restricted interface. It is well-known that this is the case if
and only if there is another formulaQ′ that is logically equiv-
alent Q over all instances satisfying Σ, and which uses only
relations from V . We call such Q′ a reformulation of Q over
Σ in V . We can also restrict Q′ to be in some specific logical
fragment L, talking about L-reformulation.

Variants of the reformulation problem have been consid-
ered in several communities.

• Within the database community the emphasis has been on
theories given as “dependencies”—that is, Horn sentences in
predicate (first-order) logic. The bulk of the work has been
on “view-based reformulation”: the vocabulary is divided up
into the “base relations”, and the “view relations” which are
derived from the base ones. Each view relation Vi in V is as-
sociated with a defining formula ϕi, and the sentences Σ state
that Vi corresponds exactly to its definition: Vi(~x) ↔ ϕi(~x).

The interface relations are then the Vi in V . The problem has
been extensively studied in the case where the “view defini-
tions” ϕi are built up from ∧,∃ (that is, they are conjunc-
tive queries, or CQs). One desires a target Q′ as another
CQ, perhaps adding a requirement that Q′ contains no re-
dundant atoms. The view-based reformulation problem has
been extended to reformulation with dependencies, using the
chase and backchase (C&B) method [Deutsch et al., 2006;
Popa, 2000]. The method proceeds by first generating con-
sequences under the dependences (the chasing phase) and
then searching for a minimal subset of the consequences that
are equivalent to the original formula Q (the backchasing
phase). The C&B exploits properties specific to dependen-
cies: the full set of consequences can often be generated
compactly; further the consequences can be instrumented
in such a way as to make the backchasing phase efficient
[Meier, 2014; Ileana et al., 2014]. Reformulation over both
sub-vocabularies and functional interfaces is considered in
[Toman and Weddell, 2011; Benedikt et al., 2016]. In [Toman
and Weddell, 2011] the authors describe implementations of
reformulation via interpolation and via the C&B method, but
the implementation discussion focuses (as with [Meier, 2014;
Ileana et al., 2014]) on the case without disjunction. Extract-
ing efficient reformulation from tableaux proofs is the topic of
[Hudek et al., 2015], but without complexity bounds or exper-
imental evaluation. In contrast, [Benedikt et al., 2016] deals
strictly with theoretical issues, providing complexity bounds
on the existence of a reformulation for richer languages such
as the guarded fragment, but not for intermediate languages,
and not for reformulation with a size bound.

• In the knowledge representation community both the back-
ground knowledge and the problem statement have been dif-
ferent. For background theories, the focus has been on de-
scription logics. The vocabulary is usually restricted to have
only unary and binary predicates; but the sentences may allow
more flexibility than the Horn fragments considered in the
database community, including both disjunction and nega-
tion. The emphasis has not been on reformulation as defined
above, where we desire a target formula that gives exactly
the same results as the input query on an instance satisfying
the background theory. Instead the emphasis is on convert-
ing theories in one vocabulary to theories in a smaller vo-
cabulary, preserving consequences [Cate et al., 2006; Konev
et al., 2010], and in getting the best upper approximation of



a formula that uses a given vocabulary [Lang et al., 2003;
Lutz and Wolter, 2011; Koopmann and Nikitina, 2017; Konev
et al., 2009; Lutz et al., 2012; Nikitina and Rudolph, 2014].

In this paper our input will be a theory representing back-
ground knowledge and a conjunctive query (CQ). We look for
a formula that is exactly equivalent relative to the background
theory, as in the database work above. Thus the tools will be
quite different from works considering the “best approxima-
tion” of a theory as in [Lutz and Wolter, 2011; Koopmann and
Nikitina, 2017; Lutz and Wolter, 2011; Konev et al., 2009;
Lutz et al., 2012; Nikitina and Rudolph, 2014]. However, un-
like work in the database community, we consider theories
that allow disjunction and negation; this is motivated by the
usefulness of these operators in modelling the relationship of
local and global schemas (e.g. in “global-as-view mappings”)
within data integration. We distinguish the problem of de-
termining if some reformulation exists from the problem of
finding one that is within a certain size bound; the latter prob-
lem has not been studied even in the view-based case. Both
problems can be attacked by a reduction to entailment. For
finding some reformulation there is a reduction using inter-
polation in theorem proving, dating back to the birth of in-
terpolation [Craig, 1957b]. For size-bounded reformulation
one can use a “guess-and-check” method that is analogous to
the C&B, but accommodating disjunction and negation in the
theories. Surprisingly, we give lower bounds showing that
both these approaches provide optimal complexity for their
respective problems, over a range of logics and targets for
reformulation.

After completing an examination of the complexity of re-
formulation in Section 3, we turn to practice in Section 4.
We discuss several ways of implementing the approaches
of Section 3, focusing on an approach using a new vari-
ant of Huang’s interpolation algorithm for resolution [Huang,
1995]. We perform an extensive experimental comparison of
the “optimized Huang” approach on top of an existing theo-
rem prover with several alternatives, including both an exten-
sion of C&B to disjunction (based on [Deutsch et al., 2008])
and an approach using an interpolation algorithm that is in-
tegrated with a theorem prover. Our work is the first look
at query reformulation over a sub-vocabulary for logics that
include disjunction in arbitrary arity, either either from the
point of view of complexity or experimental evaluation.

Organization. Section 3 studies the complexity of refor-
mulation, considering both propositional and predicate logic
theories. Section 4 turns to reformulation in practice, out-
lining our implementation strategy, experimental testbed, and
experimental results. Conclusions are in Section 5.

2 Reformulation Problems
Given a fragment of first-order logic L, called target frag-
ment, a Boolean conjunctive query (CQ) Q, the input query,
a finite set Σ of first-order sentences, the background theory,
and a sub-vocabulary V of the vocabulary of Q and Σ, an L-
reformulation of Q over Σ in V is a sentence in L over V that
is logically equivalent Q over all instances satisfying Σ.

The first, most basic problem we consider is the refor-
mulation existence problem for a target fragment L, denoted

∃REFL(Q,Σ,V), which is true for an input query Q, back-
ground theory Σ, and sub-vocabulary V if and only if there
exists an L-reformulation of Q over Σ in V .

The size-restricted reformulation problem for a target frag-
ment L, REF≤L (Q,Σ,V, k), has an additional integer argu-
ment k, written in unary; it is true whenever there is a L-
reformulation of Q over Σ in V of size at most k, where the
size is the length of a binary representation.

We consider several variants of these two problems, which
are parametrised along the following dimensions.

First, besides arbitrary vocabularies, we consider vocab-
ularies with bounded arity and propositional vocabularies—
that is, the setting when all relations are nullary. Second,
target fragment L can be one of the following: (Boolean)
conjunctive queries CQ—that is, existentially quantified con-
junctions of atoms (i.e., propositions in the propositional set-
ting), unions of conjunctive queries UCQ—that is, disjunc-
tions of Boolean CQs, positive existentially quantified sen-
tences POS, and all (first-order or propositional) sentences
ALL. Note that in the propositional case quantification is ir-
relevant. For ∃REF there is no difference between POS and
UCQ, because these have the same expressiveness; we thus
talk of monotone reformulation in both cases.

Finally, our basic language for Σ is the language of tu-
ple generating dependencies (TGDs)—that is, (implicitly
universally quantified) sentences of the form

∧
iRi(~x) →

∃~y S(~x, ~y). Most reasoning problems concerning arbitrary
TGDs are undecidable, so in the general setting we con-
sider the following two restrictions: full TGDs—that is TGDs
without existentially quantified variables ~y on the right, and
weakly-acyclic (sets of) TGDs—that is, TGDs such that none
of them can fire unboundedly often (see [Fagin et al., 2005]
for a precise definition). Besides this, we also investigate
the theories consisting of full disjunctive TGDs—that is, sen-
tences of the form

∧
iRi(~x) →

∨
j Sj(~x). These sen-

tences arise naturally in data integration, both to model bi-
directional relationships between a local and global schema
and to capture datatype restrictions. Note that although the
syntax of full disjunctive TGDs matches disjunctive Datalog
[Eiter et al., 1997], the semantics is classical entailment, dif-
ferent from the one in [Eiter et al., 1997]. In the propositional
setting, (full) TGDs are just Horn formulas; hence, we also
refer to full disjunctive TGDs as disjunctive Horn formulas.
Finally, in this setting we also consider the general case where
Σ ranges over all sets of propositional formulas.

3 Complexity of reformulation
We now investigate the reformulation problems in theory. All
upper bounds follow from reduction to entailment for the the-
ory in question. The lower bounds require more effort.

3.1 Complexity Of ∃REF
The fact that the ∃REF problem for both general reformula-
tion and monotone reformulation can be reduced to entail-
ments from interpolation, dates back to work of Craig [Craig,
1957b]. For any formula ϕ, let ϕ′ be formed by replac-
ing any relation R by a fresh copy R′. Then, given a vo-
cabulary V , let ForwAxV =

∧
R∈V ∀~xR(~x) → R′(~x) and



background vocabulary
theory any fixed arity prop.

full TGDs EXPTIME NP P
w.-a. TGDs 2EXPTIME 2EXPTIME P

full disj. TGDs CONEXPTIME /
undecidable

Πp
2 /

undecidable CONP

prop. sentences – – CONP

Table 1: Summary of results for ∃REF: all bounds are tight and all
hold for any target fragment L among ALL, POS, UCQ and CQ,
except those with ‘/’ in which case the second bound is for CQ and
the first is for the others.

background vocabulary
theory any fixed arity prop.

full TGDs EXPTIME NP NP
w.-a. TGDs 2EXPTIME 2EXPTIME NP
full disj. TGDs CONEXPTIME Σp

3 Σp
2

prop. sentences – – Σp
2

Table 2: Summary of results for REF≤: all bounds are tight and all
hold for any target fragment L among ALL, POS, UCQ and CQ,
except Σp

3 , which is tight for POS, UCQ and CQ, but only known
to be an upper bound for ALL.

BackAxV =
∧

R∈V ∀~xR′(~x) → R(~x). From [Craig, 1957b]
and [Lyndon, 1959] we have the following proposition.
Proposition 1. Given an input query Q, theory Σ and sub-
vocabulary V , ∃REFALL(Q,Σ,V) is true if and only if Σ ∧
Q ∧ ForwAxV ∧ BackAxV ∧ Σ′ ∧ ¬Q′ is not satisfiable;
∃REFPOS(Q,Σ,V) is true if and only if Σ ∧Q ∧ ForwAxV ∧
Σ′ ∧ ¬Q′ is not satisfiable.

In these works it is also shown that reformulations can be
read off from a proof of unsatisfiability in a suitable proof sys-
tem, using an interpolation algorithm. We discuss this further
in Section 4. For now we note that this immediately provides
upper bounds when Σ is restricted to range over theories with
decidable entailment. For example, in the propositional set-
ting the following bounds for general and monotone reformu-
lations follow from the same bounds for entailment.
Corollary 1. In the propositional setting, problems
∃REFALL(Q,Σ,V) and ∃REFPOS(Q,Σ,V) are in CONP as
Σ ranges over either all (propositional) or disjunctive Horn
formulas. They are in P as Σ ranges over Horn formulas.

The same approach can be applied to first-order predicate
logic. For full TGDs, it is well-known that entailment is in
EXPTIME, and becomes NP if we fix the arity of the vocabu-
lary. If we consider weakly-acyclic TGDs, then entailment is
2EXPTIME-complete [Calı̀ et al., 2010], no matter whether
the arity is bounded or not. For full disjunctive TGDs, we
make use of the following folklore fact: entailment problem
for full disjunctive TGDs is CONEXPTIME-complete; it is
Πp

2-complete when the arity of the vocabulary is bounded.
Thus, Craig’s reduction above gives the following bounds.

Corollary 2. Problems ∃REFALL(Q,Σ,V) and
∃REFPOS(Q,Σ,V) are in EXPTIME and in NP for bounded
arity as Σ ranges over full TGDs. They are in 2EXPTIME for
weakly-acyclic TGDs. They are CONEXPTIME and in Πp

2
for bounded arity for full disjunctive TGDs.

Craig’s reduction does not provide any information
about reformulating when the target does not allow for
disjunction—that is, when L is CQ. However, in the proposi-
tional setting, there is a simpler reduction of ∃REFCQ to en-
tailment: letting S be the propositions in V that are entailed
byQ∧Σ, ∃REFCQ(Q,Σ,V) holds exactly if S∧Σ entailsQ.
Proposition 2. The bounds in Corollary 1 hold also for
∃REFCQ(Q,Σ,V).

In the non-propositional setting, it is known that if a CQ Q
has a UCQ-reformulation over TGDs Σ in a sub-vocabulary V
then it has a CQ-reformulation as well. Indeed, one disjunct
in the UCQ-reformulation must be a CQ-reformulation.
Proposition 3. The bounds in Corollary 2 on full and weakly-
acyclic TGDs hold also for ∃REFCQ(Q,Σ,V).

For full disjunctive TGDs, disjunction in the target frag-
ment may be essential in the reformulation; thus in this case
we cannot make use of either Craig’s reduction or a reduction
that considers each atom at a time. In fact, we can show the
following.
Theorem 1. ∃REFCQ(Q,Σ,V) is undecidable when Σ
ranges over full disjunctive TGDs even if the arity is bounded.

The proof is by reduction of the Datalog containment prob-
lem. Intuitively, solving ∃REF requires us to be able to decide
if a union Q of CQs is equivalent to a CQ Q′ with respect
to a set of full TGDs Σ, and this is the same as checking
equivalence of the Datalog programs Σ ∪ {Q → Goal} and
Σ ∪ {Q′ → Goal}, for a fresh nullary predicate Goal.

Table 1 summarizes our bounds for ∃REF. The matching
lower bounds can be easily shown by a reduction from entail-
ment for the corresponding background theories.

3.2 Complexity Of REF≤

Problem REF≤ does not have a similar direct reduction to
entailment. However, one can reduce it to “guessing plus en-
tailment”: the machine first guesses Q′ and then checks if Q′
is a reformulation using an oracle for entailment. For exam-
ple, from this technique we get the following upper bounds
for propositional setting.
Proposition 4. In the propositional setting, problems
REF≤L (Q,Σ,V, k), for L ∈ {ALL,POS,UCQ,CQ}, are all
in Σp

2 as Σ ranges over either all (propositional) or disjunc-
tive Horn formulas. They are in NP for Horn formulas.

Outside of the propositional setting, the guessing phase is
often negligible on top of entailment; the only exception is the
case of vocabulary of bounded arity and theories consisting of
full disjunctive TGDs, in which the phase adds a level in the
polynomial hierarchy.

Proposition 5. Problems REF≤L (Q,Σ,V, k), for L ∈ {ALL,
POS,UCQ,CQ}, are in EXPTIME and in NP for bounded
arity as Σ ranges over full TGDs. They are in 2EXPTIME for



weakly-acyclic TGDs. They are CONEXPTIME and in Σp
3 for

bounded arity for full disjunctive TGDs.
The upper bounds provided by the guess-and-check tech-

nique turn out to be almost always tight, but unlike for ∃REF,
this is not obvious for the Σp

2 bound in Proposition 4 and the
Σp

3 bound in Proposition 5 —that is, when the complexity of
REF≤ differs from the complexity of entailment.

In the propositional setting, for REF≤ALL(Q,Σ,V, k) where
Σ ranges over arbitrary propositional formulas, the Σp

2 lower
bound follows from results on minimization of Boolean for-
mulas in [Umans, 2001]. Indeed, using related results [Buch-
fuhrer and Umans, 2011] one can show hardness for the vari-
ant of the problem where we fix the number of alternations of
∨ and ∧. However, the technique of [Buchfuhrer and Umans,
2011] requires formulas with hard satisfiability problems, so
it is not applicable when formulas in Σ are not arbitrary and
always satisfiable, such as disjunctive Horn formulas. Thus
in this case we need a “native” reduction for Σp

2-hardness.

Theorem 2. In the propositional setting, REF≤L (Q,Σ,V, k),
for L ∈ {POS,UCQ,CQ}, is Σp

2-hard when Σ ranges over
sets of disjunctive Horn formulas.

Sketch. The proof is by reduction of ∃∀3SAT problem. Sup-
pose ϕ = ∃~u∀~v ¬ψ is formula with ~u and ~v tuples of propo-
sitional variables, and ψ a conjunction of clauses `1 ∨ `2 ∨ `3
with each `j a variable from ~u ∪ ~v or its negation.

We construct a set of propositional disjunctive Horn for-
mulas Σ and a set of propositional variables V such that ϕ
holds if and only if there exists a positive formula Q′ over V
with k = |~u| occurrences of variables such that Q′ is equiv-
alent to a propositional variable Q over Σ (for simplicity, we
assume here that the size ofQ′ is the number of occurrences).
The vocabulary V consists of variables TrueXi and FalseXi,
for each ui in ~u, while Σ guarantees the following:
1. Q implies all the variables in V , so the equivalence of Q

and Q′ over Σ boils down to the containment of Q′ in Q;
2. containment of Q′ in Q over Σ is only possible if Q′ im-

plies either TrueXi or FalseXi for each ui; since the size
of Q′ is bounded by k, it means that Q′ can only be of the
form AsX1∧· · ·∧AsXk, for AsXi ∈ {TrueXi,FalseXi}—
that is, Q′ corresponds to an assignment of variables ui;

3. if a set of propositions and Σ imply TrueXi or FalseXi

for each ui, then they imply either TrueYi or FalseYi for
each universally quantified vi in ~v, which corresponds to
an assignment of ~v;

4. if one of the minimal extensions of a set of propositions
satisfying Σ (“disjunctive chase models”) falsifies a clause
in ψ under this encoding, which corresponds to falsifying
the whole of ψ, then this extension implies Q.

These guarantees imply the statement of the theorem.

Moving outside of propositional logic, there is a mismatch
between the Σp

3 upper bound from Proposition 4 and Πp
2 lower

bound inherited from the entailment in the case when the ar-
ity of the vocabulary is bounded and Σ ranges over full dis-
junctive TGDs. For positive L, we show Σp

3-hardness via
a direct reduction of the ∃∀∃3SAT problem (and leave the
case of ALL open). The reduction uses a similar idea to

the Σp
2-reduction in the propositional case, but it is more in-

volved: the inner existential quantification is encoded by a
homomorphism-existence check from a candidate Q′ to Q.

Theorem 3. Problem REF≤L (Q,Σ,V, k), for L ∈ {POS,
UCQ,CQ}, is Σp

3-hard if Σ ranges over sets of full disjunctive
TGDs and the arity is bounded by 2.

Table 2 summarizes our bounds for REF≤. The match-
ing lower bounds for the cases not considered in Theorems 2
and 3 can be easily shown by a reduction of entailment for
the corresponding background theories.

4 Implementing Reformulation
In this section, we develop and evaluate three approaches for
finding a reformulation. We concentrate on target fragments
with disjunction—that is, leaving CQ aside. We start with a
description of the approaches in Section 4.1 and then proceed
to their evaluation in Section 4.2.

4.1 Reformulation Algorithms
Two of our three approaches are based on Proposition 1, re-
ducing reformulation to Craig and Lyndon interpolations.

A Craig interpolant for an entailment ϕ1 |= ϕ2 of first-
order formulas ϕ1 and ϕ2 is a formula ψ over relations com-
mon to ϕ1 and ϕ2 such that ϕ1 |= ψ and ψ |= ϕ2. A Lyn-
don interpolant further has the property that a relation appears
positively in ψ only if it appears positively in both ϕ1 and ϕ2,
and similarly for appearing negatively.

It is shown in [Craig, 1957a] that first-order Craig inter-
polants exist for all first-order entailments, while [Lyndon,
1959] showed the same for Lyndon interpolants. By the argu-
ment of [Craig, 1957b], a Craig interpolant for the entailment

BackAxV ∧ Σ ∧Q |= ForwAxV ∧ Σ′ → Q′,

where BackAxV , ForwAxV , Σ′ and Q′ are as in Section 3.1,
can be converted to a reformulation of a CQ Q over a theory
Σ in a sub-vocabulary V; conversely the entailment is also
a necessary condition for such a reformulation to exist. A
variation of the argument shows that a Lyndon interpolant for

Σ ∧Q |= ForwAx ∧ Σ′ → Q′

is itself a monotone reformulation of Q, and the entailment
is likewise necessary. Thus reformulation using Craig’s tech-
nique requires finding proofs witnessing the appropriate en-
tailment, and then applying an interpolation procedure.

We implemented two approaches for finding monotone re-
formulation following this high-level strategy, both using ex-
isting state-of-the-art theorem provers. The first approach is
based on an interpolation module native to a prover, which
is used as a “black box” to get reformulations. In our im-
plementation we use Vampire, a prover with the most ro-
bust built-in support for interpolation [Hoder et al., 2010;
2012]. Unfortunately, it is not clear if these interpolants are
Lyndon, so resulting reformulations might not be monotone.

The second approach is based on our own implementation
of interpolation, on top of resolution theorem proving. This
approach has several variations, as described next.
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polation algorithms on top of MathSat.

There exist a number of algorithms that extract an interpo-
lation from a resolution-based proof. They proceed in a top-
down manner, creating a “partial interpolant” on each step of
resolution, and the complete interpolant is the formula asso-
ciated with the final contradiction in the resolution proof. The
Huang ([Huang, 1995]) and Bonacina-Johansson ([Bonacina
and Johansson, 2011]) algorithms are similar; the base cases
assign either True or False to input clauses, while the induc-
tive step for resolution may introduce new atoms. In contrast,
the McMillan algorithm ([McMillan, 2003]) has a more com-
plex base case, while the propagation is purely compositional.

It is desirable to produce a monotone reformulation, for
which we need an implementation of Lyndon interpolation.
The Bonacina-Johansson algorithm has this property, but
Huang and McMillan have not. We developed a variant
of Huang algorithm, called optimized Huang, that addresses
this, also performing optimizations that we found crucial to
produce good-quality reformulations. Next we briefly de-
scribe our algorithm, leaving details for the full version.

Consider an entailment ϕ1 |= ϕ2, where ϕ1 and ϕ2 are
first-order formulas. In a resolution proof of this entailment,
we search for a contradiction from the CNF of ϕ1 ∧ ¬ϕ2 by
means of resolving of clauses. For brevity, we assume that ϕ1

and ¬ϕ2 are already in CNF—that is, conjunctions of clauses
(the general case can be handled via skolemization, as de-
scribed in [Huang, 1995]). A resolution proof is a DAG, with
nodes representing clauses derived within the proof. In par-
ticular, source nodes are clauses of ϕ1 and ¬ϕ2, each inter-
mediate node γ has two clauses that resolve to γ as parents,
and the drain is the contradiction (we assume that factoring is
incorporated into the resolution steps).

For purposes of constructing interpolants, the literals in the
nodes are first annotated with a provenance, which is either
LEFT or RIGHT. The literals in the source clauses of ϕ1 have
provenance LEFT and the literals of ¬ϕ2 have RIGHT; in-
ductively, in the clause resulting from a resolution step, each
literal inherits the provenance of the corresponding literal in
one of the parents. After the provenance, we inductively as-
sign partial interpolants to each clause. Following [Huang,
1995], we assign False to the root nodes corresponding to the
clauses in ϕ1, and True to the root nodes corresponding to
¬ϕ2. For a non-root node γ with parents γ1 and γ2, we form

the partial interpolant ψ as follows. Suppose the partial in-
terpolants assigned to γ1 and γ2 are ψ1 and ψ2, respectively.
Suppose also the literals involved in the resolution are P (~t)
in γ1 and ¬P (~s) in γ2, and the provenances of these literals
are DIR1 and DIR2, respectively. Let the unifier be σ. Then

– if DIR1 = DIR2 = LEFT then ψ = (ψ1 ∨ ψ2)σ;
– if DIR1 = DIR2 = RIGHT then ψ = (ψ1 ∧ ψ2)σ;
– if DIR1 = LEFT and DIR2 = RIGHT then ψ = (ψ1∨(ψ2∧
P (~t)))σ; and

– if DIR1 = RIGHT and DIR2 = LEFT then ψ = ((ψ1 ∧
¬P (~s)) ∨ ψ2)σ.

The distinction from [Huang, 1995] is that [Huang, 1995] col-
lapses the last two cases into one, producing ((ψ1∧¬P (~s))∨
(ψ2 ∧P (~t)))σ as the partial interpolant in both cases. This is
the reason why the original algorithm lacks the Lyndon prop-
erty. Our modification is inspired by [Bonacina and Johans-
son, 2011].

In the above algorithm, we assume that factoring and ab-
sorption rules are applied silently at each inductive step. In
our implementation we further apply several optimisations.
For example, if P is a proposition, then we simplify the
second-to-last case by producing (ψ1 ∨ (ψ′2 ∧ P ))σ, where
ψ′2 substitutes True for occurrences of P and then simplifies
by absorption; in the last case, False substitutes P in ψ′1.

Proposition 6. The interpolant computed by the optimised
Huang algorithm is a Lyndon interpolant.

We implemented the Huang, optimized Huang, Bonacina-
Johansson, and McMillan algorithms for finding interpola-
tion. All of these procedures require resolution proofs as in-
puts. For the propositional case, there are several tools pro-
ducing such proofs, and we focused on one of them, namely
MathSat [Cimatti et al., 2013]. To the best of our knowl-
edge, the only first-order theorem prover that produces suffi-
ciently detailed resolution proofs is E [Schulz, 2013], so we
integrated it into our system as well.

Our third approach, which is complete only for the propo-
sitional case and when the background theories are disjunc-
tive Horn formulas, does not rely on interpolation to find an
reformulation. Instead, it relies on a variant of the “disjunc-
tive chase” technique of [Deutsch et al., 2008], making use of
the disjunctive logic programming system DLV [Leone et al.,



2006]. Given an input CQ Q, disjunctive Horn formulas Σ
and sub-vocabulary V , we generate, using DLV, all minimal
models of Q ∧ Σ by chasing Q with Σ. For each such model
we consider the conjunction of all its propositional letters that
are in V , and our candidate reformulation Q′ is the disjunc-
tion of these conjunctions. Then, we check that Q′ implies Q
under Σ, again using DLV.

4.2 Evaluation Of Reformulation Approaches
We tested the approaches for finding reformulation described
in the previous section. We concentrate on the propositional
case with disjunctive Horn formulas in background theories.
For the target language, we consider general and monotone
reformulations—that is, classes ALL and POS. However,
some approaches (e.g., Vampire-based) cannot guarantee a
monotone reformulation even if it exists, so we always allow
these approaches to return reformulations with negation.

Our testing infrastructure consists of two components: the
generator of reformulation problems and the evaluator of the
implemented approaches on the outputs of the generator.

The generator has two parts. The first part randomly gener-
ates a canonical target reformulation Q′ in one of the follow-
ing six classes: arbitrary or positive propositional formulas
either in CNF, or in DNF, or which are alternations of con-
junctions and disjunctions of literals with alternation depth
varying from 2 to 5. The second part takes reformulation Q′
as input and outputs a CQ Q, disjunctive Horn formulas Σ,
and sub-vocabulary V such that Q′ is a reformulation of Q
over Σ in V . The tool generates sentences that follow the
structure of Q′ to witness that Q implies Q′; for example, if
Q′ is B ∧ (A1 ∨ A2), then Σ contains clauses equivalent to
Q → C, C → B, C → D, D → A1 ∨ A2, and additionally
some “noise clauses” (controlled by an input parameter).

The second component of the testing infrastructure runs
our implementations of the reformulation approaches on the
output of the generator and measures their running times and
the sizes of the output reformulations. In particular, we tested
ten variants of the approaches, based on one of the following:
– native interpolation of Vampire 4.1 for CASC J8;
– one of the Huang, optimized Huang, Bonacina-Johansson,

and McMillan algorithms applied to the proofs constructed
by either MathSat or E resolution-based theorem provers;

– disjunctive logic programming system DLV.
Note that in all settings the existence of the reformulation is
guaranteed (because the canonical Q′ is such), but the tested
procedures do not know this and do not have an access to Q′.

We report the results of our experiments with more than
3600 runs in our infrastructure, more than 600 for each of the
six classes for the canonical target reformulation.

We first evaluate the running time of the procedures. Since
the interpolation algorithms themselves are linear, the perfor-
mance of the interpolation-based approaches is dominated by
the time of theorem proving. The MathSat-based procedure
was fastest at proving, requiring only few milliseconds. The
DLV-based procedure was next, always terminating within 86
seconds. We timed out any other computation within 5 times
of the running time of the DLV-based procedure, since the lat-
ter gives an idea of the complexity of brute-force search. The
percentage of terminating runs is given at bottom of Fig. 1.

Next we briefly summarise the results on the size of re-
formulations, deferring details for the full version, and the
github repository of [Benedikt et al., 2017]. The bars in Fig-
ure 1 show the average size of output reformulations for all
10 approaches when the canonical target reformulation is in
CNF, in DNF, or an alternation of conjunctions and disjunc-
tions. Note that only terminating runs are taken into account.

The DLV-based approach always generates reformulations
in DNF, so it is not surprising that it performs badly in cases
where the canonical reformulation is not in DNF. Even in the
case of DNF, it is slightly inferior to the optimised Huang al-
gorithm on top of MathSat; intuitively the disjunctive chase
fails to identify succinct representations achieved by leverag-
ing repetition of atoms across different minimal models. The
Vampire-based approach failed to find a reformulation within
the timeout in a significant percentage of the cases, and fur-
ther the size of reformulation was, in average, poor. Due to
the “black-box” nature of this approach we can only speculate
on the reason. However, we note that the interpolation proce-
dures of Vampire are geared towards examples from verifica-
tion [Hoder et al., 2010; 2012], and our experiments can be
seen as indicating a strong difference between interpolation
for reformulation and verification.

We can also observe the superiority of MathSat over E,
as well as of the optimized Huang and McMillan algorithms
over the others. Figure 2 contains a finer comparison of these
two algorithms on top of MathSat, which shows that the opti-
mized Huang is superior on most examples. Our experiments
also show that the McMillan algorithm is much more robust
to inefficiencies of theorem provers—that is, even with long
proofs it can produce relatively smaller reformulations. This
may be explained by the compositionality of the McMillan al-
gorithm, while the optimized Huang introduces literals at res-
olution steps, inducing redundancy in the resulting formula.

5 Conclusion
Our theoretical results shows that the most straightforward
algorithms for ∃REF and REF≤ provide the optimal com-
plexity. While ∃REF can be polynomially reduced to entail-
ment over the corresponding logic, our lower bounds show
that REF≤ requires an additional layer of non-determinism.
There is no obvious implementation other than brute-force
for this. In our experiments we focused on the interpolation-
based approach, showing that for propositional theories good
performance can be achieved with an optimized resolution-
based interpolation algorithm on top of a high-performance
theorem-prover. Limitations in the proofs exposed by first-
order theorem-provers currently represent a bottleneck to ap-
plication of this approach to richer logics. An interesting di-
rection is to allow the search heuristics of a theorem-prover
to be guided by the size of partial-interpolants, thus giving
“interpolant-driven theorem-proving”. We are examining the
implementation of this over open-source provers such as E.
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