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A B S T R A C T   

Crack propagation analyses are fundamental for all mechanical structures for which safety must be guaranteed, e. 
g. as for the aviation and aerospace fields. The estimation of life for structures in presence of defects is a process 
inevitably affected by numerous and unavoidable uncertainty and variability sources, whose effects need to be 
quantified to avoid unexpected failures or excessive conservativism. 

In this work, residual fatigue life prediction models have been created through neural networks for the purpose 
of performing probabilistic life predictions of damaged structures in real-time and under stochastically varying 
input parameters. In detail, five different neural network architectures have been compared in terms of accuracy, 
computational runtimes and minimum number of samples needed for training, so to determine the ideal ar-
chitecture with the strongest generalization power. The networks have been trained, validated and tested by 
using the fatigue life predictions computed by means of simulations developed with FEM and Monte Carlo 
methods. A real-world case study has been presented to show how the proposed approach can deliver accurate 
life predictions even when input data are uncertain and highly variable. 

Results demonstrated that the “H1-L1” neural network has been the best model, achieving an accuracy (Mean 
Square Error) of 4.8e-7 on the test dataset, and the best and the most stable results when decreasing the amount 
of data. Additionally, since requiring only very few parameters, its potential applicability for Structural Health 
Monitoring purposes in small cost-effective GPU devices resulted to be attractive.   

1. Introduction 

Mechanical components generally fail at notches or at some critical 
locations due to microscopic deformations or defects from which cracks 
nucleate [1–3]. Although the material processing technologies have 
been greatly improved in the last years, it is still practically impossible to 
manufacture components without any defect [4]. Holes, voids or cracks 
are commonly found in components after almost any manufacturing 
process, from traditional processes (e.g. welding [5–9]), to composite 
manufacturing [10] and especially for the latest additive manufacturing 
technologies [11,12]. Predicting the residual fatigue life of structures 
has become an essential issue in numerous engineering sectors in order 
to prevent safety accidents and economic losses [13,14]. 

The crack nucleation process is usually followed by Fatigue Crack- 
Growth (FCG) through the section/thickness of components that can 
consequently lead to the complete failure of a structure. Unfortunately, 

FCG processes show considerable variability even in “identical” 
repeated laboratory tests, e.g. see [15]. This variability is due to 
geometrical factors, material scattering, statistical uncertainty, ap-
proximations, errors and to all those factors that can influence the 
structural integrity of a component during its service life [16–19]. 
Quantifying and controlling all these factors is essential to enhance the 
competitiveness in designing fatigue-safe products, although measuring 
their impact on the predictions can be rather demanding, e.g. because 
the distributions of parameters are generally unknown and the related 
experimental measurements are either impractical (e.g. due to unac-
ceptable time/cost) or even impossible in many cases. Therefore, the 
need to resort to advanced tools for predicting the life of structures, 
possibly that monitor the structures and update their predictions in real- 
time, appears to be essential. 

With the unprecedented and massive development of computer sci-
ence, various numerical simulation techniques have been developed to 
estimate the life of mechanical structures [20–22], so to increase safety 
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and/or to reduce maintenance costs (e.g. by enlarging inspection in-
tervals). Such improvements have been accomplished by also leveraging 
on the “damage tolerance” designing philosophy that allowed to better 
understand and control the damaging process of structures. Nowadays, 
crack propagation processes are numerically simulated by means of 
several methodologies (such as boundary element method [23–28], 

meshless method [29,30], Finite Element Method (FEM) [31–34], etc.) 
allowing to find new insights and knowledge about the evolution of 
defects in many types of materials and structures. Among these methods, 
FEM represents the most widely recognized method thanks to its gen-
erality, robustness and widespread employment in industry. Currently, 
FEM allows to solve fracture problems with high accuracy in reasonable 

Nomenclature 

a crack length 
Anom nominal (uncracked) cross section of plate 
aμ mean value for crack length 
aσ standard deviation for crack length 
C coefficient of Paris’ law 
da/dN crack-growth rate 
P Applied load amplitude 
Pμ mean value for the applied load amplitude 
Pσ standard deviation for the applied load amplitude 
fl Number of filters per convolutional layer 
f Newman’s crack closure coefficient 
m exponent of Paris’ law 
Nf residual fatigue life, reference value 
Nf* residual fatigue life, NN prediction 
nl number of neurons per dense layer 
K stress intensity factor 
KI Mode-I stress intensity factor 
Kmax maximum value of stress intensity factor 
Kmin minimum value of stress intensity factor 
R load ratio = Kmin/Kmax 
R2 Coefficient of determination 
s number of samples 
smax applied maximum stress 
t specimen thickness 

tμ mean value for specimen thickness 
tσ standard deviation for specimen thickness 
α constraint factor 
ΔK range of stress intensity factor 
μ mean value 
σ standard deviation 
σnom nominal (uncracked) stress value 
σI Maximum principal stress value 
σUTS ultimate tensile strength 
σys yield stress 
σ0 flow stress 
ADAM Adaptive Model Estimation 
CGR Crack-Growth Rate 
FCG Fatigue Crack-Growth 
FEM Finite Element Method 
GPU Graphics Processing Unit 
LM Levenberg-Marquardt 
MAE Mean Average Error 
MC Monte Carlo 
MSE Mean Squared Error 
NN Neural Network 
RMS Root Mean Square 
SGD Stochastic Gradient Descent 
SHM Structural Health Monitoring  

Fig. 1. Overall description of the approach for fatigue crack-growth assessments under uncertainty using FEM, Monte Carlo simulations and Neural Networks.  
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runtimes. Many applications can be found in literature in this regard that 
demonstrate sound agreements with experimental observations [35], 
even when only deterministic predictions are considered [25]. However, 
when the need to deliver a robust (e.g. probabilistic) prediction arises, 
runtimes of FEM can become unacceptable. Also for Structural Health 
Monitoring (SHM) applications, the usage of FEM results to be unlikely, 
even though some procedures have been proposed in literature to 
circumvent these issues [1,36,37]. 

Recently, Neural Networks (NNs) have been successfully used to 
solve engineering issues due to the availability of a great number of 
datasets gathered from physical experiments or numerical simulations 
[38–40]. Traditional methods are not able to generalize due to the high 
variability of the data, whereas NNs can offer more precise assessments 
under highly variable and uncertain experimental conditions [40]. With 
the increase in datasets’ size and complexity, NNs are able to process 
information more accurately and complexly. Deep convolutional NNs 
are often used for two or three-dimensional image and video processing 
[41,42], but they are also used to extract deep features from one- 
dimensional data such as speech signals or raw input data vectors for 
various tasks. Combining traditional computational methods with deep 
NNs has shown great promise also for fracture analyses [43–48], simu-
lating both the propagation direction and the residual life [49]. Addi-
tionally, there is literature on using deep NNs for fatigue life prediction 
of structures with uncertain parameters, and for real-time monitoring 
processes [50,51]. 

This research attempts to fill some of the currently existing literature 
gaps by combining traditional and shallow/deep learning methodolo-
gies for structural life prediction applications. The paper discusses the 
development of NNs to perform FCG predictions of mechanical struc-
tures with high accuracy, in real-time and under uncertain and highly 
variable input data. 

In more detail, FCG simulations were carried out with FEM by 
considering a single set of deterministic input parameters. The 
advancing of the crack through the structure was simulated via FEM, 
allowing to compute the crack advancing direction and the K values at 
the crack tip along the growth. Once obtained the variation of the K 
values vs. crack size a, these data were parametrized so to account for 
stochastically varying input data, viz. allowing to consider large varia-
tions of the input data. Consequently, Monte Carlo (MC) simulations 
were developed on the FEM results so to accelerate the generation of the 
numerous amount of life predictions, for a given set of input parameters, 
needed by NN afterwards. The so obtained data were then used to train 
and validate multiple NNs architectures that were eventually tested 
against an independent set of input/output data. This research seeks to 

identify the best NN configuration and optimizer for residual life pre-
diction when the input parameters are subject to significant variations. 
To do so, different types of NNs (such as Fully Connected and 1-D 
Convolutional) and multiple layer depths and hidden layers were 
compared. The performance of each NN architecture was compared in 
terms of accuracy, computational runtimes and minimum number of 
samples needed for training, so to determine the ideal architecture with 
the strongest generalization power. Finally, the best NN was used to 
calculate a considerable amount of life predictions for various distri-
butions of the input parameters in a negligible runtime. 

The overall description of the approach is shown in Fig. 1. 
It is worth noting that a priori information about the distribution 

functions and ranges of variation of the input parameters was not 
needed, consistently with real-life cases for which this information is 
generally unknown. Therefore, this approach allows to save times and 
costs usually needed to make these evaluations through experimental 
tests on any specific structure. This investigation can be considered as an 
example case where this approach has been set up, tested and its validity 
demonstrated. Such an approach was developed by using a simple me-
chanical component as a case study, i.e. a thin plate with a central hole 
from which cracks can nucleate [51]. Though the simplicity of this 
component, with the appropriate adjustments, the same approach can 
be easily extended to study larger and more complex industrial com-
ponents in a straightforward manner. Furthermore, as detailed in section 
3, the constructed NNs can provide real-time forecasts on cost-effective 
GPU devices, making it ideal for SHM applications in real-world engi-
neering problems. 

The rest of this document is organised as follows: 
Section 2 comprises all the details of the presented approach. Firstly, 

the fatigue crack propagation simulation using FEM is introduced 
together with the presentation of the case study. The MC simulation 
procedure is then briefly detailed and, finally, a description of the NN 
models is given. 

Section 3 reports the results of the proposed approach with an 
extensive discussion of them. Comparisons among MC results and 
among the NNs results are presented in terms of both accuracy and 
computational time. Finally, a probabilistic life assessment is made to 
show an example of application of the presented approach. 

The concluding remarks are given in Section 4. 

2. Materials and methods 

The procedure presented in this research is based on the interaction 
of FEM, MC method and NNs with the aim of performing residual life 

Fig. 2. Case study description: CAD model with highlights of the loading conditions and the central hole from which two cracks can nucleate.  
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predictions of structures under variable input parameters. The proced-
ure has been presented here as applied to a simple case study, i.e. a thin 
plate with a central hole under variable and uniaxial loading conditions, 
see [52–54]. This geometry was chosen thanks to its similarity with the 
specimens’ geometry used to obtain the experimental data adopted in 
this work [15,55]. Although this application can be considered as an 
example case only to show the validity of the proposed procedure, this 
latter can be applied to more complex components by only changing the 
input FEM model. Hence, no particular complications are expected in 
extending this procedure to the analysis of a more complex mechanical 
structure. 

All the details of this procedure are provided in this Section. 

2.1. Fracture simulation with FEM 

The CAD/FEM model of the mechanical component under analysis is 
shown in Fig. 2. This represents a thin plate with a central hole that can 
be considered as representative of a bolted joint from which cracks can 
nucleate at the bolt hole due to the local stress concentration [52–54]. 
The material of the joint was the aluminium alloy 2024-T3 whose ma-
terial data related to FCG were available in literature [15,55], see Fig. 3. 
One crack propagation simulation was carried out on this geometry by 
assuming two small cracks as triggered at the central hole of the plate, 
see Fig. 2. The simulation was performed with the commercial code 
FRANC3D [56] with the main objective of calculating the variation of 
the K values along the crack-growth as a function of the crack length a. 
The advancing of the crack was simulated according to geometry, 
loading conditions and material properties of the plate, by means of a 
step-by-step incremental procedure (see Fig. 4), thus consisting of the 
repetitions of the phases of: crack insertion in the model, FEM solving, 
crack extension and related FEM remeshing. The simulation started by 
assuming two initial cracks of length a0 = 2.0mm each and stopped 
when their lengths were representative of the complete failure of the 
component (af = 30mm each). The initial length of the crack was 
defined as sufficiently long to justify the usage of a long-crack propa-
gation model. When this cannot be guaranteed, short-crack propagation 
models or equivalent approaches [27,28] can be considered. 

An overall representation of this FEM simulation is reported in Fig. 4. 
The reader is referred to [1,32,57–59] for further examples and details 
on how the propagation of cracks can be simulated numerically with 
FEM. 

One of the primary results of a crack-growth simulation is the pos-
sibility to predict the residual fatigue life of a mechanical component 
through the integration of the K vs. a curve with a FCG law calibrated on 
the experimental data of the material. To this aim, a Paris’ law was 
selected in this work to perform the fatigue cycle counting, see Eqs. (1)– 
(3): 

da
dN

= C
[(

1 − f
1 − R

)

ΔK
]m

(1)  

f =
Kop

Kmax
=

⎧
⎨

⎩

max
(
R,A0 + A1R + A2R2 + A3R3),R ≥ 0

A0 + A1R, − 2 ≤ R < 0
(2) 

Fig. 3. FCG material data for aluminium alloy 2024-T3. [15,50].  

Fig. 4. Description of the incremental FEM simulation of a crack propagation process.  
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(3) 
In Eq. (1), N is the number of applied fatigue cycles, a is the crack 

length, therefore da/dN represents the CGR (i.e. the Crack-Growth 
Rate), R is the stress ratio equals to Pmin/Pmax = Kmin/Kmax (set to 0.2 
according to the selected experimental tests [15]), whereas ΔK is the 
stress intensity factor range, equals to Kmax − Kmin = (1 − R)Kmax. C and 
m are empirical constants used to modify shift and slope of the CGR 
curve respectively. As detailed below, C and m do not need to be 
explicitly defined thanks to the adopted MC procedure. f is the crack 
opening function that allows to consider a partial contribute of ΔK to the 
propagation speed da/dN, as reported in [60–62]. 

In Eq. (3), α is a plane stress/strain constraint factor (set to 1.5), 
whereas smax/σ0 (= 0.14) is the ratio of the maximum applied stress smax 
to the flow stress σ0, this latter generally considered as σ0 =

(σYS +σUTS)/2 (σYS = 381.8MPa and σUTS = 496.2MPa). As explained in 
[1,55,57], C and m warrant a modelling as distributions whereas α and 
smax/σ0, which do not play a significant role in a life prediction calcu-
lation, can be left as constant values. 

2.2. Probabilistic fatigue life assessment with MC method 

Only one FRANC3D FEM simulation was needed to simulate the 
crack propagation through the component. This allowed to obtain the 
variation of the K values as a function of the crack length a and, once 
obtained the K vs. a curve, this curve was parametrized so to account for 
stochastically varying input data, thus allowing to consider any possible 

variation of the input data. These variations were considered through 
the MC method implemented within MATLAB [63] in such a way to 
accelerate the generation of the numerous amount of life predictions 
typically needed to train a NN. A procedure similar to that reported in 
[52] was adopted in this work for the MC simulations. The reader is 
referred to [1,55,57,58,64] for further reading, whereas only an overall 
description is reported herein. 

Each MC simulation started with the sampling of the two material 
parameters C and m so to generate a FCG curve (material data α and 
smax/σ0 were kept as constants [1,57]). Such a curve was then compared 
with the experimental data for a validation and, if judged as acceptably 
correlating the test data (when RMS < 2%), it was used for a life pre-
diction. This prediction was calculated by using a K vs. a curve 
computed with randomly sampled parameters for the applied load P, the 
initial crack length a0 and the plate thickness t. The related ranges of 
variability of input parameters for MC simulations were reported in 
Table 1. It is worth noting that it was not necessary to enforce specific 
distribution functions (e.g. Gaussian) to the input parameters, being 
these MC simulations only required to accelerate the data generation to 
train and validate the NNs. Specific distributions were instead consid-
ered afterwards (Section 3.1) so to account for the actual distributions of 
data during a probabilistic life assessment. 

Through this MC-based procedure, it was possible to perform 
numerous fatigue life predictions accounting for material scattering 
(through C and m), uncertainty in the actual applied loads (P), uncer-
tainty in the initial crack length (a0) and geometrical tolerances 
(through the thickness t). 

2.3. Selection and optimization of NN models 

Although MC method did not require a significant computing power 
for this application, it is still unlikely that it will be used for real-time 
calculations. Therefore, an ablation study was conducted to determine 
which NN model was able to accurately predict the residual fatigue life 
with a reduced computational cost. The ablation study aimed to select 
the best combination of architectures (see Fig. 5) and optimizers (among 
ADAM, SGD and LM) that would lead to accurate and fast predictions. In 
this study, the NN models which are often used for regression tasks in 
engineering research [40,43–51,65,66] were chosen as the basis to 
construct more complex ones. Furthermore, a hyperparameter optimi-
zation over the values of the learning rate for different types of opti-
mizers and the number of neurons/filters per layer was performed. 

Table 1 
Min/Max values for input parameters of MC simulations.   

Distribution Min value Max value 

Applied load P [kN] Random 11 17 
Initial crack length a0 [mm] Random 1.5 2.5 
Plate thickness t [mm] Random 2.1 2.9  

Fig. 5. Scheme of the considered NN architectures. In model names: H symbolizes hidden layers, C stands for 1-dimensional convolutional layers, L represents linear 
activation layers, dropout layer is indicated by D. 
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Namely, the ablation study aimed to select the best combination of ar-
chitectures and optimizers keeping as fixed learning rate (set to 0.1 for 
all models) and number of neurons (see Fig. 5). Once that the two-best 
performant models were designated, hyperparameter tuning was 
settled down by changing gradually the learning rate (ranging from 
0.0001 to 0.5) and the number of neurons/filters per layer. 

To this aim, MC simulations were performed until a total of 10 k 
combinations of input and output parameters were computed (~5 min 
of run on a mid-budget laptop). As described in the previous paragraphs, 
the parameters (C, m, Pmax, t, a0) represented the input for the NNs while 
the target was the residual fatigue life Nf in log scale. All data provided 
as input and target were normalized in a 0–1 range by considering 
material data C and m as ranging between (− 10.3, − 9.1) and (2.3, 3.5) 
(as obtained in [15,55]), whereas ranges listed in Table 1 were used for 
Pmax, t and a0. The NNs target was constrained into the interval from 4.2 
to 5.5 since this was the range of variation for Nf obtained with MC 
method, see Section 3. Training, validation and test sets remained the 
same in the ablation study, while different model architectures and 
optimizers were tested. All NNs were trained using a training set of 8 k 
records, validated with a validation set of 2 k records, and tested 
considering two further 10 k records as test sets. 

The five NN architectures and the three optimizers compared in the 
ablation study were mainly characterized by shallow fully connected- 
dense or hybrid one-dimensional convolutional/dense NNs configured 
to address a regression task. Fig. 5 shows the first three shallow NNs 
built with fully connected layers (in orange) and the last two hybrid- 
architectures comprising convolutional layers (in green). All models 
were designated by using H for the number of hidden layers, C for the 
number of 1-D convolutional layers, L for the Linear prediction layer 
(the last layer in the architecture), D for the dropout. Utilizing non-
linearities via the activation function allowed the networks to learn 
intricate relationships in the data. Thus, before the ablation study, the 
most well-known activation functions (such as Rectified Linear Unit, 
Softmax, etc.) were tested to ascertain the most suitable for the current 
models. Such tests allowed to identify that the sigmoidal activation 
function was the best choice for H and C layers in all of the presented 
models. 

H1-L1 comprises just one hidden layer and is the simplest model, 
while H1-D-H1-L1 is slightly more complex and contains two H layers 
and a dropout layer with a 10% drop rate. The fourth and fifth models, i. 
e. C1-H1-L1 and C1-D-H1-L1, comprises a 1-D convolutional layer with 
32 filters and a kernel size of 2, followed by a flatten layer and a fully 
connected layer. The fifth model also contains a dropout layer with a 5% 
drop rate. 

The optimizers chosen for this ablation study were: Stochastic 
Gradient Descent (SGD) [67], ADAM (Adaptive Model Estimation) and 
Levenberg-Marquardt (LM) (a second-order optimizer) [68]. ADAM is 

an optimization algorithm that uses past information of the gradient to 
adapt the learning rates of each parameter, SGD is a simpler optimiza-
tion algorithm that requires direct tuning of the learning rate, LM is an 
optimization algorithm well-suited for non-linear least squares problems 
on datasets with low complexity. At the training step, LM is a combi-
nation of SGD and the Newton’s method, much faster than the tradi-
tional SGD. Meanwhile, SGD updates the parameters of the NN in the 
direction of the negative gradient of the loss function MSE with respect 
to the parameters. Finally, ADAM is an optimization algorithm that 
combines the advantages of both SGD and RMSProp (Root Mean Square 
Propagation). This adaptive algorithm utilizes the moving averages of 
parameters in order to compute the second raw moments of the gradi-
ents and adjusts the learning rates for each parameter based on the prior 
gradient data, hence the “adaptive” term in its name. 

The Mean Squared Error (MSE; Eq. (4)) metric was utilized as loss 
function to drive the selected optimizers to minimize the divergence 
between the predicted value and the true value. Also the Mean Average 
Error (MAE; Eq. (5)) was considered for monitoring purposes only since 
less sensitive to outliers than MSE. Coefficient of determination R2 and 
MAE were considered for performance monitoring purposes only. 

MSE =
1
s

∑s

1

(
N*

f − Nf

)2
(4)  

MAE =
1
s

∑s

1

(
N*

f − Nf

)
(5)  

R2 = 1 −
∑s

1

(
Nf − N*

f

)2
/
∑s

1

(
Nf − Nf

)2 (6)  

where Nf represents the average value of Nf . 
For each optimizer, the underlying non-linear function inferred by 

the input data is traced through the propagation of the predictions from 
the previous layers to the next one, and the weights of the NN models are 
updated by backpropagating the predictions over the training epochs. It 
is worth noting that if the learning rate is set too high, it could lead to 
drastic changes in the optimization, while if too low, the training process 
could become very slow and imprecise. For all models, in the last fully 
connected layer L, the optimizers are regularized both at the kernel and 
at the bias levels by Euclidean norm (L2-norm) [69] based penalty 
function with the fixed parameter at 0.06. Additionally, bias and kernels 
of the last layers are initialized using a Glorot Uniform distribution [70] 
with a fixed seed to potentially reduce overfitting. The convergence of 
the models was determined by running multiple learning rates and 
epochs. It was observed that all models achieved convergence prior to 
the 300th epoch with batch size 1000. The estimators of the models were 

Fig. 6. Maximum principal stress σI [MPa] plot at the maximum load Pmax for an general crack length a of 20 mm; distribution of KI values along the whole fracture 
simulation for a unitary nominal stress value σnom. 
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determined by the checkpoints obtained at the termination of every 
training epoch, based on the minimum loss attained on the validation set 
throughout the training process. The output of the 5 NNs was a pre-
diction of Nf* in the range between 0 and 1. These predictions were then 
converted back to their original range by using the inverse min–max 
normalization function. 

3. Results and discussion 

The presented approach for fatigue life assessment accounted for the 
uncertainty coming from material scattering, the main geometrical tol-
erances, loading conditions and the inherent uncertainty in knowing the 
actual sizes of the defects. The FEM model shown in Fig. 2 was used as a 

Fig. 7. Probabilistic fatigue life assessment performed with the MC method (input data of Table 1); table reporting an example of data provided to NNs for 
their training. 

Fig. 8. Comparison of residual fatigue lives obtained with MC method and some NNs configurations; perfect replication observed only when using LM optimizer; all 
NN configurations not reported for brevity. 
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starting point for a crack propagation simulation. The results obtained 
with this simulation were reported in Fig. 6 with reference to a general 
intermediate crack length a of 20 mm. The distribution of KI values (for a 
unitary nominal stress value σnom) in Fig. 7 is that calculated at half 
thickness, see insets in Fig. 7. Negligible KII and KIII were obtained due to 
the chosen pure Mode-I case study. The reliability of these results was 
not double checked here even though many other cross-validations have 
already been documented [1,25,32,59]. 

Afterwards, MC method was used to perform the life prediction 
allowing for a probabilistic fatigue life assessment of the cracked 
component. Such results were summarised in Fig. 7. An average value of 
10^4.86 = 72 k fatigue cycles was computed, even though, it is worth 
noting that the life distribution demonstrated a large range of vari-
ability, with the fatigue life ranging between 29 k and 179 k cycles, if 
assuming a μ ± 3σ of variation (99.7% of probability). 

For sake of clarity, it is worth reiterating that the life distribution 
shown in Fig. 6 was computed by considering input parameters varying 
in the ranges reported in Table 1. Therefore, this life distribution has to 

be considered as an intermediate result only, being arbitrary the dis-
tributions of the input data considered for its generation. Nevertheless, 
the purpose of this intermediate calculation was not the thorough life-
span estimate but only the generation of data to feed the NNs so as to 
build up mathematical models that allow to perform these quantifica-
tions. Indeed, once trained the NNs, more realistic input data distribu-
tions were considered and, consequently, a reliable probabilistic life 
assessment was obtained, see Section 3.1. 

As described in Section 2.3, five NN architectures of increasing 
complexity were implemented, including a shallow NN (which is often 
used in engineering for regression tasks) and ultimately culminating in a 
mixed-convolutional NN. A total of 10 k samples was generated with MC 
as training dataset for the NNs. Five parameters were considered as 
input to the networks (material data C and m, thickness t, initial crack 
size a0, maximum load Pmax) whereas the only output was the predicted 
residual fatigue life Nf* in log scale, see Fig. 7. 

A comparison of residual fatigue lives obtained with MC method (i.e. 
the reference data) and those obtained with the trained NNs was 

Table 2 
NNs information and results.  

Architecture Optimizer MSE MAE R2 Parameters Runtime [ms] 

H1-L1 LM 4.8e-7 5.5e-4  0.99 50 22 
H1-L1 SGD 3.7e-3 4.9e-2  0.04 50 17 
H1-L1 ADAM 2.7e-3 4.1e-2  0.86 50 18 
H2-L1 LM 1.7e-6 1.0e-3  0.93 79 21 
H2-L1 SGD 3.8e-3 6.1e-2  0.02 79 18 
H2-L1 ADAM 3.3e-3 4.6e-2  3.7e-5 79 18 
H1-D-H1-L1 LM 4.2e-4 1.7e-2  0.98 223 27 
H1-D-H1-L1 SGD 3.8e-3 4.9e-2  0.02 223 17 
H1-D-H1-L1 ADAM 3.2e-3 4.5e-2  1.1e-6 223 18 
C1-H1-L1 LM 3.4e-7 4.4e-4  0.99 1007 16 
C1-H1-L1 SGD 3.8e-3 4.9e-2  0.05 1007 16 
C1-H1-L1 ADAM 2.5e-3 1.3e-2  0.04 1007 17 
C1-D-H1-L1 LM 1.2e-4 9.1e-3  1.9e-4 1345 25 
C1-D-H1-L1 SGD 3.5e-3 4.7e-2  1.0e-3 1345 20 
C1-D-H1-L1 ADAM 3.5e-3 4.7e-2  2.5e-6 1345 17  

Fig. 9. Scatter plots of input/target relationships for C1-H1-L1 model with LM optimizer on the test dataset; similar good replications observed only for LM opti-
mizer; all configurations not reported for brevity; only 1 k data are shown to improve readability. 

V. Giannella et al.                                                                                                                                                                                                                              



Computers and Structures 288 (2023) 107157

9

reported in Fig. 8. A comparison of performances among the NNs was 
instead reported in Table 2. Despite the relative simplicity of the NNs 
employed, the ablation study revealed that the three models H1-L1, H2- 
L1 and C1-H1-L1 yielded impressively low reconstruction errors when 
driven by the LM optimizer. Effectively, the ablation study clearly 
demonstrated that the LM optimizer yielded the best results for all 
configurations and over the same models when driven by SGD and 
ADAM optimizers. These latter optimizers did not provide sufficient 
correlation, see Fig. 8. The addition of dropout layers in NN architec-
tures often improves generalization ability, however this was not the 
case. Indeed, models without dropout were more effective, as the use of 
a dropout layer led to a decrease in the accuracy of predictions, even 

when the drop rate was low. The best model in terms of performance was 
C1-H1-L1 (and LM optimizer), with a reasonable threshold between 
learnable parameters and prediction time. However, the relatively 
simplistic nature of the first shallow network H1-L1 (with LM optimizer) 
resulted to be the second-best model. From the architectural point of 
view, in the first model, the 1-D convolutional operation, leads to a 
richer feature abstraction and projection in a more complex feature 
space, thereby providing more meaningful information to the next fully 
connected layer. Conversely, in the second model, the presence of a 
fully-connected layer made it better suited for a robust and non-linear 
regression task. In both the cases, all the proposed NNs were capable 
of predicting the desired data with a reasonable accuracy. 

Fig. 10. Results of hyperparameter optimization for NN architectures (a) H1-L1 and (b) C1-H1-L1 (both with LM optimizer).  

Fig. 11. NN prediction errors for tests as a function of the dataset size used for NN training: (a) C1-H1-L1 and (b) H1-L1 architectures (both with LM optimizer); 
yellow and green asterisks stand for the dataset sizes returning well-trained NNs with 50% and 100% of probability respectively. 
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A perfect replications of MC results with the trained NNs was evident 
for mostly all NN architectures optimized with LM. Same conclusions 
can be draw by also looking at the scatter plots reported in Fig. 9 where 
it can be noticed that all trends were correctly captured by NNs trained 
with the LM optimizer. Besides the perfect replication of data achieved 
through the NNs, a comparison was also arranged (Table 2) in terms of 
computational runtimes, especially relevant when the NN has to be 
implemented in a small GPU device, like NVIDIA Jetson Nano, for SHM. 

A hyperparameter optimization over the values of the learning rate 
for different types of optimizers and the number of neurons/filters was 
performed. Results of such optimization were reported in Fig. 10 by 
considering MSE as key parameter performance. Namely, the ablation 
study aimed to select the best combination of architectures and opti-
mizers maintaining the learning rate fixed to 0.1 and the number of 
neurons/filters fixed to those reported in Fig. 5. Then, once the two-best 
performant models were selected (see e.g. Table 2), hyperparameter 
tuning was settled down by gradually changing learning rate and 
number of neurons/filters. All relevant parameters and hyperparameters 
out from the hyperparameter optimization were kept in a fixed config-
uration to ensure fairness, e.g. batch size, error regularizers, as well as 
all the seeds used to control models’ randomness (e.g. Bias and Kernel 
initializers, dropout pruning strategy, etc.). 

Fig. 10 displays how the MSE changes for the two best models by 
varying these two hyperparameters. Regarding the H1-L1 model 
(Fig. 10a), the best learning rate resulted to be around 0.1 ÷ 0.5, thus 
validating the previously considered value of this hyperparameter. On 
the other hand, no particular variation was observed by increasing/ 
decreasing the number of neurons. Regarding the C1-H1-L1 model 
(Fig. 10b), both hyperparameters resulted to play a role, with the lowest 
MSE given by the highest learning rate and the highest number of filters, 
perhaps suggesting that bigger values would deliver even better per-
formances. However, the downside is that increasing these parameters 
would produce longer runtimes, to not count the fact that these MSEs are 
much higher than those provide by H1-L1 in any case. 

It is evident that all NNs, especially C1-H1-L1 and H1-L1 models with 
LM optimizer, demonstrated very good accuracy when 8 k input/output 
data are considered as training dataset size. Although 8 k data can be 
easily calculated through the adopted FEM-MC procedure, it could be of 
interest to evaluate the minimum dataset size that allows to reach an 
acceptable accuracy. To this aim, C1-H1-L1 and H1-L1 models were 
repeatedly trained with reduced amount of data randomly sampled 
among the 10 k already available. This to determine how many records 
were necessary before the network’s generalization power on the 
problem decreased. It is important to emphasize that, for each sample 
size, the training set was randomly selected without repetition propor-
tionally to its size; for example, with a training set comprising 8 k re-
cords with a sample size of 1 k, only 8 non-overlapping samples of 1 k 
records were used for individual retraining. 

The so obtained prediction errors (MSE and MAE) were reported 
with black dots in Fig. 11 as a function of the dataset size used for 
training (red lines represent the median values). As expectable, the 
larger the training dataset size, the lower the prediction errors. Best 
model resulted to be H1-L1 providing better performances than C1-H1- 
L1 when considering reduced amount of training data. This because H1- 
L1 presents a smaller number of trainable parameters with respect to C1- 
H1-L1. H1-L1 demonstrated decreasing dispersions of prediction errors 
by increasing the dataset size, consistently with the expectations. This 
was not the case of C1-H1-L1 model, suggesting that the lowest error 
obtained with 8 k training data could have been just a lucky outcome. 

By visual observation of the so obtained life predictions, it can be 
roughly defined that a MSE of 1e-5 can be considered as a sufficiently 
low error value. Therefore, with reference to the H1-L1 model, it 
resulted that nearly 25 data are needed to guarantee 50% of probability 
of achieving a well-trained NN (yellow asterisk in Fig. 11b), whereas 30 
to 40 data are instead needed for a probability around 100% (green 
asterisk in Fig. 11b). Similarly, C1-H1-L1 requires nearly 30 data for a 

50% of probability, whereas an enormously larger dataset (1 k to 2 k 
data) seems to be required to guarantee sufficiently low MSE errors. 
These results give indications on the number of simulations and/or 
experimental data needed to set up a life prediction model based on NNs 
(with LM as optimizer). If considering also that these data are randomly 
generated, a proper set up of the Design of Experiment would also 
reduce the here defined data requirements. 

3.1. Probabilistic life assessment 

Many factors can influence the residual life of a structure, such as 
geometrical factors, material variability, statistical uncertainty, uncer-
tain loading conditions, modelling approximations, etc. All these con-
tributors can have an effect that either cannot be reduced in size but 
needs to be quantified or cannot be estimated at all because of lack of 
information. Probabilistic lifing methodologies attempt to fill some of 
these gaps through more robust predictions than those provided by 
deterministic tools allowing to avoid unnecessary conservativism. 

In this work, the fatigue life prediction models developed by means 
of NNs were designed in order to be able to output probabilistic life 
distributions in real-time. Material scattering, loading conditions, initial 
crack size and geometrical tolerances were considered here as being the 
principal sources of uncertainty appearing during this structural integ-
rity assessment. A realistic probabilistic life assessment was performed 
with the best NN (i.e. H1-L1) by considering the ranges of variation 
provided in Table 3. Namely, if considering a μ ± 3σ of variation 
(99.73% of probability), the maximum applied load Pmax was considered 
as varying in the range 14 ± 2.0 kN, the thickness of the plate t in the 
range 2.5 ± 0.3 mm, the initial crack size a0 in the range 2.0 ± 0.5 mm. 
The adoption of Gaussian distributions for geometrical tolerances and 
loading conditions can be considered as a common engineering practice 
for many engineering problems [16,17,57,58,71,72]. Although more 
debatable, also the initial crack size a0 was considered as following a 
Gaussian distribution, as similarly assumed in [59]. Instead, material 
scattering was quantified through the MC procedure presented in Sec-
tion 2, therefore no specific distributions were arbitrarily enforced. 

It is worth noting that the NNs were trained by considering the po-
tential variation of input data and, therefore, they can be used to deliver 
fatigue life predictions as a distribution. At the same time, in-situ mea-
surements for SHM are generally made through accelerometers, strain 
gauges and/or load cells, hence they are usually deterministic data (with 
known measurement errors). Therefore, the so trained NNs can be used 
to calculate deterministic life predictions, when fed by deterministic 
data, or can produce probabilistic life distributions, when fed by dis-
tributions of data. Additionally, measurements accuracies are generally 
contributes known a priori and, therefore, probabilistic life distributions 
can be estimated even when only (deterministic) sensor measurements 
are available in real-time if coupling these measurements with their 
known ranges of variation. Same holds true for material scattering and 
geometrical tolerances that represent two contributes whose variations 
can be quantified off-line. 

The results of the probabilistic life assessment were reported in 
Fig. 12. The overall fatigue life distribution can be well replicated by a 
lognormal distribution with an average value of 10^4.86 = 72 k fatigue 
cycles. Although more realistic Gaussian distributions were considered 

Table 3 
Min/Max values of input parameters for the probabilistic life assessment.  

Contributor Distribution Mean 
value 

Standard 
deviation 

Maximum applied load Pmax 

[kN] 
Gaussian 14  0.7 

Initial crack length a0 [mm] Gaussian 2.0  0.17 
Plate thickness t [mm] Gaussian 2.5  0.1 
Material scattering [-] quantified based on material data of Fig. 2.  

V. Giannella et al.                                                                                                                                                                                                                              



Computers and Structures 288 (2023) 107157

11

(instead of those random as per Fig. 7 results), this distribution 
demonstrated a large range of variability, with the fatigue life ranging 
between 40 k and 127 k cycles, if assuming a μ ± 3σ of variation (99.7% 
of probability). This range of variability of the component life came from 
unavoidable sources of uncertainty, such as the inherent scattering of 
material data and initial crack size uncertainty, as well as from more 
controllable parameters, such as the geometrical tolerances and the 
loading conditions. Quantifying and controlling all these parameters 
during the in-service life of mechanical components is essential to 
quantify the probability of failure so as to guarantee safety [57,59]. 

4. Conclusions 

This research presented an innovative methodology that allows to 
construct models able to perform probabilistic residual life predictions 
in real-time and under uncertain input data. 

Such a methodology was developed through a collaboration of 
advanced FEM crack-growth simulations, MC method and complex 
multi-level NNs. FEM was used to simulate the propagation of a crack by 
considering a simple mechanical structure (i.e. a thin plate with a central 
hole) as a demonstrator for the proposed methodology. Consequently, 
MC method was used to generate the output data (residual fatigue lives) 
needed as input for training the NNs. Particularly, five different NNs 
architectures and 3 different optimizers were set up and benchmarked so 
to determine the ideal model architecture. 

Results demonstrated that the most part of the considered NNs 
perfectly replicated the MC reference data, in particular those adopting 
the LM optimizer. The mixed model, which included 1-d convolutional 
and fully-connected layers, had the best level of accuracy (with a MSE of 
3.4e-7 on the test set) when trained with a large number of records. 
Nonetheless, the shallow model (H1-L1) resulted to be the best choice 
since demonstrating a comparable accuracy (MSE of 4.8e-7 on the test 
set) and much better and stable results for lower amount of data. 
Additionally, since requiring only very few parameters, its potential 
applicability for SHM purposes in small cost-effective GPU devices 
resulted to be more attractive. 

Finally, the best model (H1-L1) was used to perform a probabilistic 
fatigue life assessment as a demonstrator for its potential applicability 
for real case scenarios where uncertainty of data and measurements is 
typical. 
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