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Abstract. In the present note we construct new families of free plane
curves starting from a curve C and adding high order inflectional tangent
lines of C, lines joining the singularities of the curve C, or lines in the tan-
gent cone of some singularities of C. These lines L have in common that
the intersection C ∩L consists of a small number of points. We introduce
the notion of a supersolvable plane curve and conjecture that such curves
are always free, as in the known case of line arrangements. Some evidence
for this conjecture is given as well, both in terms of a general result in the
case of quasi homogeneous singularities and in terms of specific examples.
We construct a new example of maximizing curve in degree 8 and the first
and unique known example of maximizing curve in degree 9. In the final
section, we use a stronger version of a result due to Schenck, Terao and
Yoshinaga to construct families of free conic-line arrangements by adding
lines to the conic-line arrangements of maximal Tjurina number recently
classified by Beorchia and Miró-Roig in arXiv:2303.04665
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1. Introduction

Our goal in this paper is to construct new free or nearly curves by adding
inflectional tangents or lines passing through the singularities of a given plane
projective curve. Sometimes, when high order inflectional tangents are missing,
lines in the tangent cones of the singularities may replace them successfully.
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The use of tangent cones is a must when we want to get supersolvable curves
with the modular point belonging to a non-linear irreducible component, see
Definition 1.9.

To determine the existence of inflectional tangents, we start by recalling
some facts about inflection points. Let C : F = 0 be a reduced plane curve in
the complex projective plane P2 which is defined by a homogeneous polynomial
F ∈ S = C[x, y, z] of degree d ≥ 2. The Hessian of F is given by the following
well-known formula

H = det

⎛
⎝

Fxx Fxy Fxz

Fxy Fyy Fyz

Fxz Fyz Fzz

⎞
⎠ . (1.1)

Let HC : H = 0 be the Hessian curve associated to C. It is known that the
intersection XC = C ∩ HC consists exactly of the set of inflection points IC

of C union with the set of singular points YC of C. Recall that if p ∈ C is a
smooth point of this curve, and TpC denotes the projective line tangent to C
at p, then the inflection order of p is by definition

ιp(C) = (C, TpC)p − 2, (1.2)

where (C, TpC)p denotes the intersection multiplicity of the curves C and TpC
at the common point p. Moreover, we say that p is an inflection point of C,
i.e., p ∈ IC , if and only if ιp(C) > 0.

The intersection multiplicity (C,HC)p of the curves C and HC at the
point p is a key invariant in understanding the geometry of the plane curve C.
When p ∈ IC is an inflection point, then the relation between the inflection
order ιp(C) of p and the intersection multiplicity (C,HC)p is well-known, see
for instance [16, Theorem 9.7 and Corollary 9.10].

Theorem 1.1. For any reduced plane curve C of degree d ≥ 2 and any smooth
point p ∈ C, one has

ιp(C) = (C,HC)p.

It is clear that ιp(C) ≤ d−2, except the case when p sits on a line L = TpC
which is an irreducible component of C. In the later case, one has ιp(C) = ∞,
and it is easy to check that the line L is also an irreducible component of the
Hessian curve HC . From now on, while searching for the inflection points, we
assume that no irreducible component of C is a line.

When p ∈ YC is a singular point, then the description of the intersection
multiplicity (C,HC)p is more subtle. Let TCp(C) be the reduced projective
tangent cone of the curve C at p. For any line L ∈ TCp(C) we define the
corresponding tangential multiplicity

mL(C) = (L,CL)p,

where (CL, p) is the union of all branches of the singularity (C, p) whose tangent
line at p coincides with L. With this notation, one has the following general
result, which is a user-friendly reformulation of [15, Proposition 25].
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Theorem 1.2. Assume that C is a reduced plane curve and that p ∈ C is any
singular point. Then one has

(C,HC)p = 3μp(C) + mp(C) − 3 +
∑

L∈TCp(C)

mL(C),

where μp(C) is the Milnor number and mp(C) is the multiplicity of the singu-
larity (C, p).

The case when (C, p) is irreducible is also stated in [19, Theorem 2.1.9].
Indeed, in this case, one has μp(C) = 2δp(C) with δp(C) being the δ-invariant
of the singularity (C, p). We discuss in detail the statement of Theorem 1.2
and give some examples in the next section.

Our new results are the following. Consider the case when (C, p) is an
ordinary k-multiple point, that is there are k smooth branches C1, . . . , Ck

at p, with distinct tangent lines L1, . . . , Lk. If we set mj = (Cj , Lj)p ≥ 2
for j ∈ {1, . . . , k}, then we call (C, p) an ordinary k-multiple point of type
(m1, . . . ,mk). Moreover, we say that (C, p) is an ordinary simple k-multiple
point if mj = 2 for all j ∈ {1, . . . , k}.

Theorem 1.3. For any reduced plane curve C of degree d ≥ 3 and any singular
point p ∈ C with multiplicity mp(C) = k, one has

(C,HC)p ≥ 3k(k − 1),

and equality holds if and only if (C, p) is an ordinary simple k-multiple point.

Corollary 1.4. For any reduced plane curve C of degree d ≥ 3 and having s
singular points, one has

i(C) ≤ 3d(d − 2) − 6s.

More precisely, if nk denotes the number of singular points of C of multiplicity
k, then

i(C) ≤ 3d(d − 2) −
∑

k

3k(k − 1)nk.

The equality occurs if and only if all the singularities of C are ordinary simple
k-multiple points for various k.

This result is a significant improvement of the inequality
∑
p∈IC

ιp ≤ 3d(d − 2) − s

which is given in [16, Corollary 9.9]. Our next result is a general construction
of free curves by adding inflectional tangents and lines passing through the
singularities of the initial curve C, which is a curve of Thom-Sebastiani type.
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Let m ≥ 2 be a positive integer and let �j(x, y) with j ∈ {1, . . . , m} be m
distinct linear forms in x and y. Consider the curve

C : F =
m∏

j=1

�j(x, y)kj − zd = 0,

in P
2, where kj ≥ 1 are positive integers such that

∑
kj = d, and the family

of lines Lj : �j(x, y) = 0. The line Lj is the inflectional tangent at the point
pj = (xj : yj : 0) where (xj : yj) ∈ P

1 is the zero set of �j whenever kj = 1,
and it is the reduced tangent cone at the singularity pj when kj > 1.

Theorem 1.5. With the notation as above, the curve

C ′ = C ∪
m⋃

j=1

Lj : F ′ = F ·
m∏

j=1

�j = 0

of degree d + m is free with the exponents (m − 1, d). Moreover, if L : z = 0 is
the line passing through all the points pj of C, then the curve

C ′′ = C ′ ∪ L : F ′′ = zF ·
m∏

j=1

�j = 0

of degree d + m + 1 is free with the exponents (m − 1, d + 1).

Starting with a smooth Fermat type curve and adding all of its inflectional
tangents and the 3 coordinate axes, one gets again a free curve, as the following
result shows. Consider the Fermat curve C : xd + yd + zd = 0. Let ε be any
root of the equation td + 1 = 0 in C. Then the line Lε : y = εx intersects C
only at the point pε = (1 : ε : 0). Hence pε is an inflection point of the maximal
order and hence i(Lε) = d − 2, i.e., one has the equality in (2.10). In this way,
we get d inflection points, which are just the intersection of C with the line
z = 0. Cyclically permuting x, y, z, we get all the 3d inflection points of this
type, and these are all the inflection points of C by (2.8). The following result
is a special case of Theorem 1.5, when kj = 1 for all j.

Corollary 1.6. The union C ′ : F ′ = (xd + yd)F = 0 of the smooth Fermat
curve C : F = xd + yd + zd = 0 of degree d with the d inflectional tangents
Lε meeting at one point, is a free curve of degree 2d and the exponents are
(d − 1, d). When d = 3, the curve C ′ is maximizing of degree 6. The union
C ′′ : F ′′ = zF ′ = 0 of the curve C ′ with the line L : z = 0 passing through all
the flex points pε of C, is a free curve of degree 2d + 1 and the exponents are
(d − 1, d). When d = 3, then the curve C ′ is maximizing of degree 7.

Note that if we continue to add just inflectional tangents, the resulting
curve is no longer a free curve. For instance, the curve

C ′′ : F ′′ = (x3 + y3 + z3)(x3 + y3)(y3 + z3) = 0
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is nearly free with the exponents (4, 5), and the curve

C ′′′ : F ′′′ = (x3 + y3 + z3)(x3 + y3)(y3 + z3)(x3 + z3) = 0

is not even nearly free. However, we have the following general result.

Theorem 1.7. The smooth Fermat curve C : F = xd + yd + zd = 0 has exactly
3d inflectional tangents and their union forms the following line arrangement

A : (xd + yd)(yd + zd)(xd + zd) = 0.

The union of the curve C, the lines in A, and the 3 coordinate axes produce a
new curve

C ′ : F ′ = xyz(xd + yd)(yd + zd)(xd + zd)(xd + yd + zd) = 0

of degree 4d + 3, which is free with the exponents (2d + 1, 2d + 1). Moreover,
the curve C ′′ ⊂ C ′ given by

C ′′ : F ′′ = xy(yd + zd)(xd + zd)(xd + yd + zd) = 0

has degree 3d + 2 and it is free with the exponents (d + 1, 2d).
When d = 2, then the curve C ′′ is maximizing of degree 8.

It is easy to prove that the curve

C : F = xmym + ymzm + xmzm = 0

has no inflection points using Theorem 1.2, see Example 6.3 below. To get a free
curve from C, we may add two of the three tangent cones, or just one tangent
cone and two lines joining singular points. Indeed, one has the following result.

Theorem 1.8. The curve

C ′ : F ′ = (xmym + ymzm + xmzm)(xm + ym)(ym + zm) = 0

has degree 4m and it is free with exponents (2m − 1, 2m) for any m ≥ 2. The
curve

C ′′ : F ′′ = yz(xmym + ymzm + xmzm)(ym + zm) = 0

has degree 3m + 2 and it is free with exponents (m + 1, 2m) for any m ≥ 2.

Definition 1.9. Given a reduced plane curve C, we say that p ∈ C is a modular
point for C if the central projection

πp : P2 \ {p} → P
1

induces a locally trivial fibration of the complement M(C) = P
2\C. We say

that a reduced plane curve C is supersolvable if it has at least one modular
point.
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The map induced by πp is a locally trivial fibration if and only if for any
line Lp passing through p and not an irreducible component of C, one has

(C,Lp)p = multp(C) and (C,Lp)q = 1 for any q ∈ C ∩ Lp, q 
= p.

This fibration has as base and as fiber a projective line P
1 with a number of

points deleted, and hence the complement M(C) is a K(π, 1) space. When C is
a line arrangement, this definition of a modular point coincides with the usual
one, and a line arrangement is supersolvable by definition if it has a modular
point. In particular, the existence of a modular point for a line arrangement
C implies that C is free, see for all these well known facts [3,20]. We venture
to make the following.

Conjecture 1.10. A supersolvable plane curve C is free.

One setting where this conjecture holds is the following.

Theorem 1.11. Let C be a reduced plane curve, let p ∈ M(C) be a point and
let A be the set of lines L passing through p such that there is a point q ∈
L ∩ C with (C,L)q > 1. Assume that all the singularities of the curve C ′

obtained by adding all the lines in A to C are quasi homogeneous. Then C ′ is
supersolvable and free. In particular, this holds when all the singularities s of
C have multiplicity 2, and p is not on any tangent cone TCs(C) for (C, s) a
singularity with μ(C, s) ≥ 3.

When C is a plane curve having only nodes A1 and cusps A2 as singular-
ities, and in addition p is a generic point, this result is known, see [4, Theorem
1.12]. Moreover, it is easy to see that the free curves C ′ and C ′′ constructed
above in Theorem 1.5 are special cases of the construction in Theorem 1.11.
On the other hand, the free curve C ′′ constructed above in Theorem 1.8 is of
a different nature, since in this case p ∈ C and the resulting curve C ′′ has not
only quasi homogeneous singularities. However, this curve gives new examples
where Conjecture 1.10 holds, in view of the following result.

Proposition 1.12. The free curve C ′′ constructed in Theorem 1.8 is supersolv-
able. In particular, the associated complement M(C ′′) is a K(π, 1) space.

We explain in Example 4.11 that the other free curves constructed above
in Theorems 1.7 and 1.8 are not supersolvable.

The organization of the paper goes as follows. In Sect. 2, we discuss the
proof of Theorem 1.2 explaining all the necessary details. In Sect. 3 we recall
basic facts on the free, nearly free and maximizing curves.

In Sect. 4 we deliver our proofs of Theorems 1.3, 1.5, 1.7, 1.8 and 1.11,
and of Proposition 1.12. Then, in Sect. 5, we describe all smooth plane quar-
tic curves admitting the maximal possible number of flexes of maximal order,
i.e., flexes of order 2. There are two such curves, and only one of them, the
Fermat curve, yields free curves as in Corollary 1.6 and in Theorem 1.7. In
Sect. 6 we discuss some singular plane curves and the free curves obtained
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from them, which are sometimes supersolvable as well, given rise to supersolv-
able free curves not covered by our general Theorem 1.11. In Example 6.4 we
construct a new example of maximizing curve in degree 8 and the first and
unique known example of maximizing curve in degree 9. In the final section,
we use a stronger version of a result due to Schenck, Terao and Yoshinaga in
[22] to construct families of free conic-line arrangements starting with the free
conic-line arrangements C : F = 0 with exponents (1, d−2), where d = deg F ,
which have been recently classified by V. Beorchia and R. M. Miró-Roig in [1].
These families contain free conic-line arrangements with arbitrary exponents
and also provide countable examples where the Conjecture 1.10 holds even in
the presence of non quasi homogeneous singularities, see Remarks 7.4 and 7.5.

We would like to thank the referee for his/her careful reading of the
manuscript and the useful suggestions.

2. Discussion on Theorem 1.2 and Some Examples

The paper [15] uses rather heavy notations, and perhaps due to this fact has a
smaller impact than it deserves. Let us introduce some notation. For a reduced
plane curve C : F = 0 and any point q = (α : β : γ) ∈ P

2, we define the polar
Δq(C) of C with respect to q by the equation

Δq(C) : αFx + βFy + γFz = 0. (2.1)

For a property P, the authors of [15] use the notation 1P to denote 1 if P
is true and 0 otherwise, see the discussion before Theorem 2 in [15]. The
first equality in [15, Proposition 25] gives the expression of the intersection
multiplicity (C,Δq(C))p for any singular point p ∈ C and any point q ∈ P

2.
Using our discussion above, we see that for q 
= p, q not on any line L in the
tangent cone TCp(C), this multiplicity (C,Δq(C))p is given by a double sum
S, i.e., the second sum involving the characteristic functions 1P vanishes. With
this observation, the second equality in [15, Proposition 25] can be stated as

(C,HC)p = 3(C,Δq(C))p + Ip, (2.2)

where Ip =
∑

i∈I(i(i)p − 2). Here I is a set of indices parametrizing the pro-
branches of (C, p) and i

(i)
p is the tangential intersection number of the pro-

branch Bi, see [15, Definition 22]. Recall that any branch B of a plane curve
singularity (C, 0) at the origin of C2, such that x = 0 is not a tangent line, can
be defined by a Weierstrass polynomial

ΓB(x, y) =
∏

j=1,mB

(y − φB,j(x))

where mB is the multiplicity of the branch B and there is an analytic function
φB(x) ∈ C{x} with ordφB(x) ≥ mB such that

φB,j(x) = φB(exp(2πij/mB)x
1

mB ). (2.3)
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With this notation, the branch B has mB associated pro-branches

Bj : y − φB,j(x) = 0

and the corresponding tangential intersection number is given by

i
Bj

0 = ord(φB,j(x) − φ′
B,j(0)x) ∈ Q.

It follows from equation (2.3) that i
Bj

0 = iBk
0 for any 0 ≤ j ≤ k ≤ mB and

hence

mBi
Bj

0 = (L,CL)0,

for any j, with L the tangent line to B and CL = B. This discussion implies
that one has

Ip =
∑
i∈I

(i(i)p − 2) =
∑

L∈TCp(C)

mL(C) − 2mp(C), (2.4)

since clearly |I| = mp(C), each branch having exactly a number of pro-
branches given by the multiplicity of that branch. Next, we return to the
intersection multiplicity (C,Δq(C))p. We can assume that p = (0 : 0 : 1) and
set f(x, y) = F (x, y, 1), then one has

fx(x, y) = Fx(x, y, 1), fy(x, y) = Fy(x, y, 1), and xfx + yfy + Fz(x, y, 1) = f.

If we define the generic local polar variety of the singularity

(C, 0) : f(x, y) = 0

by the equation

Δ0(C) : α′fx + β′fy = 0,

with (α′ : β′) ∈ P
1 being a generic point, it is easy to see that

(C,Δ0(C))0 = (C,Δq(C))p. (2.5)

In fact, the line L′ : z = 0 is clearly not in the tangent cone TCp(C) since
p /∈ L′, and hence we may take γ = 0 and (α : β) ∈ P

1 generic in the formula
(2.1). In order to compute this local intersection number

κ0(C) = (C,Δ0(C))0,

which is also called the κ-invariant of the singularity (C, 0), we can use for
instance [14, Proposition 3.38] and get

κ0(C) = μ(C, 0) + m0(C, 0) − 1. (2.6)

If we use this formula for the singularity (C, p), we get from (2.2) and (2.4)
the following equality

(C,HC)p = 3(μp(C) + mp(C) − 1) +
∑

L∈TCp(C)

mL(C) − 2mp(C)

= 3μp(C) + mp(C) − 3 +
∑

L∈TCp(C)

mL(C).
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This proves our reformulation of [15, Proposition 25] in Theorem 1.2.
In order to construct free plane curves starting with a curve C of degree

d, by adding lines, in particular inflectional tangents, we have to look for lines
L such that the sum

i(L) =
∑

p∈L∩IC , TpC=L

ιp(C) (2.7)

is as large as possible with respect to the degree d. Given a curve C, first we
use Theorem 1.2 to count the total number of inflection points of C, namely

i(C) =
∑
p∈IC

ιp(C) = 3d(d − 2) −
∑

p∈YC

(C,HC)p. (2.8)

One clearly has for any line L

i(L) ≤ i(C), (2.9)

and the equality holds if and only if for any point p ∈ IC one has TpC = L.
Moreover,

i(L) ≤
∑

p∈L∩C

((C,L)p − 2) = d − 2|L ∩ C|, (2.10)

and the equality holds if and only if for any point p ∈ L∩C one has TpC = L.

Example 2.1. Let us consider the case when (C, p) is a node A1, that is there
are two smooth branches (C1, p) and (C2, p) meeting transversally at p. Let
T1 = TpC1 and T2 = TpC2 be the associated tangent lines and define the type
of the node (C, p) to be the pair of integers

(m1,m2) = ((C1, T1)p, (C2, T2)p).

It is clear that mj ≥ 2 for j = 1, 2. When m1 = m2 = 2, then (C, p) is said
to be a simple node, and one knows that (C,HC)p = 6, see [13, pp. 68–69]. In
the general situation, Theorem 1.2 gives the equality

(C,HC)p = 3 + 2 − 3 + m1 + m2 = m1 + m2 + 2.

More generally, consider the case when (C, p) is an ordinary m-multiple point,
that is there are m smooth branches C1, . . . , Cm with distinct tangent lines
L1, . . . , Lm. If we set mj = (Cj , Lj)p for j = 1, . . . , m, then Theorem 1.2 gives
the equality

(C,HC)p = 3(m − 1)2 + m − 3 +
∑

j=1,m

mj = m(3m − 5) +
∑

j=1,m

mj .

Example 2.2. Let us consider the case when (C, p) is a singularity A2m−1 with
m ≥ 2. Then there are two tangent smooth branches with a common tangent
line L. If we set mL = (C,L)p, then Theorem 1.2 gives the equality

(C,HC)p = 3(2m − 1) + 2 − 3 + mL = 2(3m − 2) + mL.
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Example 2.3. Let us consider the case when (C, p) is a singularity A2m with
m ≥ 1. Then there is a unique branch, with a tangent line L. If we set mL =
(C,L)p, then Theorem 1.2 gives the equality

(C,HC)p = 3(2m) + 2 − 3 + mL = 6m − 1 + mL.

When (C, p) is a cusp A2, only the value mL = 3 is possible, and hence
(C,HC)p = 8 in this case.

3. Free, Nearly Free and Maximizing Curves

In this section we recall some basic facts on free, nearly free and, maximizing
curves in P

2 following [8,9].
Let

Der(S) = {∂ := a · ∂x + b · ∂y + c · ∂z, a, b, c ∈ S}
be the free S-module of C-linear derivations of the polynomial ring S. For a
reduced curve C : F = 0, we introduce

D(F ) = {∂ ∈ Der(S) : ∂ F ∈ 〈F 〉},
the graded S-module of derivations preserving the ideal 〈F 〉. We have the
following decomposition

D(F ) = D0(F ) ⊕ S · δE ,

where δE = x∂x + y∂y + z∂z is the Euler derivation and

D0(F ) = {∂ ∈ Der(S) : ∂ F = 0}
is the set of all C-linear derivations of S killing the polynomial F .

Definition 3.1. We say that a reduced curve C : F = 0 is free if D(F ), or
equivalently D0(F ), is a free graded S-module. The exponents (d1, d2) of a
free curve C are the degrees of a basis for the free graded S-module D0(F )
which rank 2.

Remark 3.2. The exponents (d1, d2) of a free curve C : F = 0 of degree d
are known to satisfy d1 + d2 = d − 1. Conversely, if there are two elements
r1, r2 ∈ D0(F ), which are S-linearly independent and satisfy

d1 + d2 = d − 1

then the curve C is free with exponents (d1, d2), see [24,25].

Definition 3.3. The minimal degree of derivations killing F , or of Jacobian
syzygies involving the partial derivatives of F , is defined as

mdr(F ) = min{r ∈ N : D0(F )r 
= 0}.

To check whether a given plane curve is free, one may use the following
result by du Plessis and Wall [11].
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Theorem 3.4. Let C : F = 0 be a reduced plane curve of degree d, let r =
mdr(F ) and let τ(C) be the total Tjurina number of C. Then the following
two cases hold.
(a) If r < d/2, then τ(C) ≤ τ(d, r)max = (d − 1)2 − r(d − r − 1) and the

equality holds if and only if the curve C is free.
(b) If d/2 ≤ r ≤ d − 1, then τ(C) ≤ τ(d, r)′

max, where, in this case, we set

τ(d, r)′
max = τ(d, r)max −

(
2r − d + 2

2

)
.

Definition 3.5. A reduced curve C : F = 0 of degree d is nearly free if either
mdr(F ) < d/2 and τ(C) = τ(d, r)max − 1, or mdr(F ) = d/2 and τ(C) =
τ(d, r)max. In addition, the exponents of a nearly free curve C : F = 0 of
degree d are given by the pair (mdrF, d − mdrF ).

Definition 3.6. A curve C : F = 0 of degree d having only ADE-singularities
is maximizing if either d = 2m and τ(C) = 3m(m − 1) + 1, or d = 2m + 1
and τ(C) = 3m2 + 1.

The relation between maximizing curves and free curves is the following,
see [8].

Theorem 3.7. A curve C : F = 0 of degree d having only ADE-singularities
is maximizing if and only if either d = 2m and C is a free curve with the
exponents (m − 1,m), or d = 2m + 1 and C is a free curve with the exponents
(m − 1,m + 1).

In the sequel we need the following version of [4, Theorem 1.10].

Theorem 3.8. Let C : F = 0 be a reduced plane curve of degree d and let p be
any point of C. Let A be the union of the irreducible components of C which are
lines passing through p, and let C ′ : G = 0 be the union of the other irreducible
components of C. We assume that p ∈ C ′. Let m = |A| and e = deg G. Then
r = mdr(F ) can be in one of the following cases.
(a) r = e;
(b) r = m − 1 and C is free with exponents (m − 1, e);
(c) m ≤ r ≤ e − 1.

The only difference of this result with respect to [4, Theorem 1.10] is that
here p ∈ C ′.

Proof. The key part of the proof of [4, Theorem 1.10] is contained in [4, Lemma
4.3], where a Jacobian syzygy

ρ : aFx + bFy + cFz = 0

is constructed using a differential 2-form ω, and it is shown that this syzygy is
primitive, that is there is no common factor for a, b, c ∈ S. It is in this latter
part that the condition p /∈ C ′ was used. If we assume that p = (0 : 0 : 1), it
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is easy to see that the Jacobian relation ρ constructed there is still a Jacobian
syzygy in our situation. Moreover, it is a primitive syzygy if and only if G
and Gz have no common factor. Let M ∈ S be an irreducible polynomial
which is a common factor for G and Gz. Note that M cannot involve only x
and y, since this would correspond to a line in C ′ passing through p, which is
impossible by the definition of C ′. It follows that Mz 
= 0. If G = MN , then
Gz = MzN + MNz, which implies that either M divides N or M divides Mz.
But M cannot divide N , since C ′ is reduced. And M cannot divide Mz, since
the degree of Mz as a polynomial in z is strictly smaller than the corresponding
degree of M . This contradiction proves our claim. �

4. The Proofs of Our Main Results

4.1. Proof of Theorem 1.3

We can assume that p = (0 : 0 : 1) and set f(x, y) = F (x, y, 1), g(x, y) =
jkf(x, y) the initial form of f , that is the sum of the lowest degree terms in
the Taylor expansion of f at 0. The notation jkf(x, y), the k-th jet of f at 0,
is an alternative way of notation for this binary form of degree k. Let n be the
number of distinct factors of g. If n = k, then using Example 2.1 we have

(C,HC)p = k(3k − 5) +
∑

j=1,k

mj ≥ 3k(k − 1),

since mj ≥ 2. Moreover, it is obvious that the equality holds if and only if
(C, p) is an ordinary simple k-multiple point.

Assume now that n < k and let

g(x, y) = �a1
1 · ... · �an

n

be the decomposition of g as a product of linear factors. Recall that for two
isolated plane curve singularities (X, 0) and (Y, 0) with no common component
one has

μ(X ∪ Y, 0) = μ(X, 0) + μ(Y, 0) + 2(X,Y )0 − 1, (4.1)

see [26, Theorem 6.5.1]. Let Cj : fj = 0 be the union of the branches of
(C, p) which are tangent to the line Lj : �j = 0 with j ∈ {1, . . . , n}. Then
(C, p) = (C1, p)∪ ...∪(Cn, p) and we estimate μp(C) = μ(C, p) using the above
formula. To start with, note that since jajfj = �

aj

j , it follows that

μ(Cj , p) ≥ aj(aj − 1).

We prove by induction on m that

μ((C1, p) ∪ ... ∪ (Cm, p)) ≥ (a1 + . . . + am)2 − (a1 + . . . + am) − m + 1
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for any 1 ≤ m ≤ n. This inequality holds for m = 1 as we have already seen
above. Assume that the inequality holds for some m < n. Then it follows that

μ((C1, p) ∪ ... ∪ (Cm, p) ∪ (Cm+1, p))
≥ ((a1 + . . . + am)2 − (a1 + . . . + am) − m + 1)

+am+1(am+1 − 1) + 2am+1(a1 + . . . + am) − 1
= (a1 + . . . + am+1)2 − (a1 + . . . + am+1) − m,

which completes our proof by induction. Since a1 + . . . + an = k, this yields
the inequality

μ(C, p) ≥ k2 − k − n + 1.

On the other hand, one has

mLj
= (Cj , Lj)p ≥ aj + 1

and hence ∑
j

mLj
≥ k + n.

Using Theorem 1.2, we get

(C,HC)p ≥ 3(k2 − k − n + 1) + k − 3 + k + n

= 3k(k − 1) + 2(k − n) > 3k(k − 1),

since we have assumed n < k. This completes the proof of Theorem 1.3.
Corollary 1.4 is an obvious consequence of Theorem 1.3.

4.2. Proof of Theorem 1.5

The curve C was studied in [10, Example 4.5] and it was shown that the
minimal degree of a Jacobian relation for C is given by

mdr(F ) = m − 1.

Since the minimal degree of a Jacobian relation can only increase when one
adds lines to a given curve, see [7, Proposition 3.1], it follows that

mdr(F ′) ≥ mdr(F ) = m − 1.

The curve C has m inflection points and singularities on the line z = 0, locally
given by equations ukj − vd = 0, located at the points pj = (aj : bj : 0), with
�j(aj , bj) = 0 for j ∈ {1, . . . , m}. When we add the line Lj , we get at the point
pj a weighted homogeneous singularity of degree dj = 1 with respect to the
weights w1 = wt(uj) = 1

kj+1 and w2 = wt(z) = kj

d(kj+1) , where uj = �j is a
local coordinate at pj on the line Lj . It follows the following equality involving
Tjurina and Milnor numbers:

τ(C ′, pj) = μ(C ′, pj) =
(1 − w1)(1 − w2)

w1w2
= (d − 1)kj + d.
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Hence the total Tjurina number of C ′ is

τ(C ′) = d(d − 1) + md + (m − 1)2,

since clearly

τ(C ′, p) = μ(C ′, p) = (m − 1)2.

Now a curve of degree d′ = d + m with r′ = mdr(F ′) satisfies the inequality

τ(C ′) ≤ τ(d′, r′)max

where the function

τ(d′, r′)max = (d′ − 1)2 − r′(d′ − 1 − r′)

is a decreasing function of r′ for 2r′ < d′, which follows from Theorem 3.4,
and the equality τ(C ′) = τ(d′, r′)max implies that 2r′ < d′ and C ′ is free with
the exponents (r′, d′ − r′ − 1). In our case, we get

τ(d′,m − 1)max = (d + m − 1)2 − d(m − 1) = τ(C ′),

and this proves our claim. The proof of the second claim goes analogously.

Remark 4.3. One can check that the curve C ′, resp. C ′′, can be regarded as
a special case of the curve C constructed in Theorem 1.11, starting from the
curve C0 : F = 0 and p = (0 : 0 : 1) for C ′, resp. C0 : zF = 0 and p = (0 : 0 : 1)
for C ′′. This is an alternative way to proving Theorem 1.5.

4.4. Proof of Theorem 1.7

We start with the following.

Lemma 4.5. Consider the line arrangement

B : g = xyz(xd + yd)(yd + zd)(xd + zd) = 0.

Then mdr(g) = 2d + 1.

Proof. We consider first the subarrangement of B given by

B0 : g0 = xyz(xd + yd)(yd + zd) = 0.

Note that in this arrangement B0 there are two points of multiplicity d + 2,
connected by the line y = 0. All the lines pass through one of these two points,
and the other intersection points are all double points. It follows that B0 is a
line arrangement of type L̂(d + 2, d + 2), as in [6, Definition 4.9], and

mdr(g0) = d + 1,

see [6, Example 4.11]. To get the arrangement B from B0, we have to add the
d lines L1, ..., Ld given by xd + zd = 0. At the stage k, where 1 ≤ k ≤ d, we
have to add the line Lk to the arrangement

Bk = B0 ∪ L1 ∪ ... ∪ Lk−1.
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Note that the intersection of Lk and Bk consists of exactly 2d + 2 points. If
Bk is given by the reduced equation fk = 0, for 1 ≤ k ≤ d, it follows from [7,
Corollary 6.4] that one has

mdr(fk) = mdr(fk−1) + 1

for all 1 ≤ k ≤ d. Hence

mdr(g) = mdr(fd) = d + 1 + d = 2d + 1.

�

Using [7, Theorem 5.1 (b)] we see that mdr(F ′) ≥ 2d + 1. We compute
now the total Tjurina number of the curve C ′. This curve has 3d2 nodes A1

and 3 points with local equation uv(ud +vd) coming from the double points of
the line arrangement B not situated on xyz = 0 and the 3 points of multiplicity
d + 2. The line x = 0 in B contains d double points of this line arrangement,
which are precisely the inflection points of order d − 2 of the Fermat curve C
situated on this line. The corresponding inflectional tangents are the lines given
by yd + zd = 0. Therefore, when we add C, each of these d points becomes a
singularity of type D2d+2. Similar remarks apply to the lines y = 0 and z = 0.
It follows that

τ(C ′) = 3d2 + 3(d + 1)2 + 3d(2d + 2) = 12d2 + 12d + 3.

On the other hand, we have

τ(4d + 3, 2d + 1)max = (4d + 2)2 − (2d + 1)2 = 12d2 + 12d + 3.

The equality

τ(C ′) = τ(4d + 3, 2d + 1)max

implies as above that r′ = mdr(F ′) = 2d + 1 and that C ′ is a free curve with
the exponents (2d + 1, 2d + 1). The claims for the curve C ′′ are proved in a
similar way. The line arrangement

B′ : g′ = xy(yd + zd)(xd + zd) = 0

satisfies mdr(g′) = d + 1, see [6, Proposition 4.10]. The lines x = 0 and y = 0
contain each d points of type D2d+2 as above. Besides these points, the line
arrangement B′ has two points of multiplicity d + 1 and d2 + 1 double points.
It follows that

τ(C ′′) = 2d(2d + 2) + 2d2 + (d2 + 1) = 7d2 + 4d + 1 = τ(3d + 2, d + 1)max.

Remark 4.6. The line arrangement B considered in Lemma 4.5 is clearly a
subarrangement of the line arrangement

C : xyz(x2d − y2d)(y2d − z2d)(x2d − z2d) = 0,

and hence B is a triangular arrangement as defined in [18]. One can obtain
an alternative proof of Lemma 4.5 using results from Section 4 in [18]. It is
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interesting to note that the line arrangement formed by the corresponding 3d
inflectional tangent lines is the arrangement

B′′ : (xd + yd)(yd + zd)(xd + zd) = 0,

which is far from being free. This can be seen using [18, Theorem 5.1], since
B′′ is itself a triangular arrangement. On the other hand, the line dual to the
inflection point pε = (1 : ε : 0) is L′

ε : x + εy = 0, and the union of all these
d dual lines obtained when ε varies, is given by xd − yd = 0 when d is odd.
Therefore, for d odd, the line arrangement formed by the corresponding 3d
dual lines is precisely the free monomial (or Fermat) line arrangement

(xd − yd)(yd − zd)(xd − zd) = 0.

The case d = 3 is, of course, well-known.

4.7. Proof of Theorem 1.8

First we consider the curve C ′. The reader can check the following Jacobian
relations r1, r2 ∈ D0(F ′)

r1 : zm−1(xm + ym)F ′
x − xm−1(ym + zm)F ′

z = 0

and

r2 : xym−1(2xm + 3ym)F ′
x − (2F + y2m)F ′

y + zym−1(2zm + 3ym)F ′
z = 0,

where F = xmym + ymzm + xmzm. Since

deg r1 + deg r2 = (2m − 1) + 2m = deg F ′ − 1,

our claim is proved by Remark 3.2.
We consider now the curve C ′′. First we show that mdrF ′′ = m + 1. To

do this, we first determine a minimal degree Jacobian syzygy r1 for F . One
has

r1 : a1Fx + b1Fy + c1Fz = 0,

where a1 = x(ym−zm), b1 = −y(ym+zm) and c1 = z(ym+zm). Now we apply
[7, Theorem 3.3] and see that if we add a line L0 to C given by an equation
� : sy + ty = 0 such that � divides

sb1 + tc1 = (−sy + tz)(ym + zm),

the resulting curve C0 = C ∪ L0 : F0 = �F = 0 has again

mdrF0 = mdrF = m + 1.

Moreover, the coefficients of a minimal degree syzygy for F0 can be obtained
from the discussion just before [7, Theorem 3.3]. It follows that one can add
one by one all the lines in the arrangement

yz(ym + zm) = 0

and get at the end mdrF ′′ = mdrF = m + 1, as we have claimed. To show
now that C ′′ is free with the given exponents, it is enough to apply Theorem
3.8.



Construction of Free Curves by Adding Lines Page 17 of 31    11 

Remark 4.8. If one likes to use Theorem 3.4 as above to prove that the curve
C ′ is free, one needs to compute the total Tjurina number τ(C ′). This in turn is
complicated, since the singularities of C ′ at the points p1 = (1 : 0 : 0) and p3 =
(0 : 0 : 1) are no longer quasi homogeneous, and hence τ(C ′′, pj) < μ(C ′′, pj),
for j = 1 and j = 3. In fact, our Theorem 1.8 combined with Theorem 3.4
implies that

τ(C ′′, p1) = τ(C ′′, p3) = 5m2 − 2m,

perhaps a result that would not be easy to prove otherwise.

4.9. The Proof of Theorem 1.11

By its very construction, it is clear that p is a modular point for C ′. Let
e = deg C and m = |A| = multp(C ′). Hence d = deg(C ′) = e + m. Then the
fibration

πp : M(C ′) → B

induced by the central projection with center p has as a fiber F the projective
line P

1 minus e + 1 points, and as a base B the projective line P
1 minus m

points. It follows that the Euler number E(M(C ′)) of the complement M(C ′)
is given by

E(M(C ′)) = E(F )E(B) = (1 − e)(2 − m).

On the other hand, we know that

E(M(C ′)) = E(P2) − E(C ′) = 3 − (μ(C ′) − d(d − 3)),

where μ(C) is the total Milnor number of C. The above two equations give us

μ(C ′) = (e + m)2 − em − 2m − e + 1.

Since all the singularities of C ′ are supposed to be quasi homogeneous, we get
the following equality for the total Tjurina number τ(C ′) of C ′

τ(C ′) = μ(C ′) = (e + m)2 − em − 2m − e + 1.

To show that C ′ : F = 0 is free we apply [4, Theorem 1.10]. It follows that
r = mdr F satisfies one of the following properties.

(a) r = e. Then

τ(e + m, e)max = (e + m − 1)2 − e(m − 1) = τ(C ′),

which implies that e < m and C ′ is free with exponents (e,m − 1) using
Theorem 3.4.

(b) r = m − 1. Then

τ(e + m,m − 1)max = (e + m − 1)2 − (m − 1)e = τ(C ′),

which implies that m ≤ e and C ′ is free with exponents (m − 1, e) again
by Theorem 3.4.
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(c) m ≤ r < e. This case is impossible, since it implies

τ(C ′) ≤ τ(e + m, r)max < τ(e + m,m − 1)max = τ(C ′).

The first inequality follows from Theorem 3.4, and the second one by the
fact that the function t �→ τ(e + m, t)max is decreasing for 2t < e + m.
To prove the last claim in Theorem 1.11, first notice that the possible

non quasi homogeneous singularities of C ′ may occur only at the intersection
s = L∩C, where s is a singular point of C and L is a line in A. If mults C = 2
and L is not in the corresponding tangent cone TCs(C), as we have assumed,
then mults C ′ = 3 and the 3-jet j3g of a local equation (C ′, s) : g = 0 is a binary
cubic form with at least 2 distinct factors. It follows from the classification of
singularities, see for instance [2], that such a singularity has type Dk, for some
k ≥ 4, and in particular it is quasi homogeneous. If μ(C, s) = 1 and L is in the
corresponding tangent cone TCs(C), then (C, s) is a node A1, and the same
argument as above works, namely (C ′, s) is a Dk singularity. Finally, when
μ(C, s) = 2 and L is in the corresponding tangent cone TCs(C), then (C, s)
is a cusp A2, and the new singularity (C ′, s) is easily seen to be of type E7,
hence again quasi homogeneous.

4.10. The Proof of Proposition 1.12

The point p = (1 : 0 : 0) is a modular point in this case since any line Lp

through p, not an irreducible component for C ′′, is given by z = ty with t 
= 0
and tm + 1 
= 0. The intersection Lp ∩ C ′′ is described by the equation

ty2(xmym + tmy2m + tmxmym)(ym + tmym)
= t(tm + 1)y2m+2((1 + tm)xm + tmym) = 0.

The solution y = 0 corresponds to the point p, which has multiplicity 2m + 2
on C ′′, and there are m = deg F ′′ − (2m + 2) other intersection points coming
from the solutions of (1 + tm)xm + tmym = 0.

Example 4.11. Here we show first that the free curves C ′ and C ′′ coming from
Theorem 1.7 are not supersolvable. For the curve C ′, it is clear that the only
candidates for modular points are the point p = (0 : 0 : 1) and the 2 other
points obtained from p by permutation of coordinates. Indeed, a modular point
has to contain all the tangents to the Fermat curve issued from it. Now the
point p is not a modular point for C ′, since the line Lp : y − x = 0 is not an
irreducible component of C ′ and it satisfies

2d + 2 = |Lp ∩ C ′| < |L′ ∩ C ′|
= deg C ′ − multp(C ′) + 1 = 4d + 3 − (d + 2) + 1 = 3d + 2.

The same line Lp : y −x = 0 shows that the point p is not a modular point for
C ′′ either. The point p′ = (1 : 0 : 0) is also not a modular point, as the choice
of the line Lp′ : z = 0 shows. The point p′′ = (0 : 1 : 0) has the same property,
as our curve is invariant under the coordinate change x �→ y and y �→ x. To
show that the free curve C ′ coming from Theorem 1.8 is not supersolvable, we
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use the same approach as above, the lines Lp to use in this case are given by
x = 0, y = 0 or z = 0, respectively.

5. Examples: The Case of Smooth Quartic Curves

In this section we discuss examples of smooth quartic curves having the max-
imal possible number of flexes of high order. Let us recall that by Theorem
1.2 the maximal possible number of flex points of order 2 for smooth quartics
is 12. It is natural to wonder whether there exists a complete classification of
smooth quartics which have exactly 12 flexes of order 2. In order to do so,
we discuss interesting properties of the following pencil of quartics which was
studied by Ciani in the 19th century.

Let us define

Cλ : x4 + y4 + z4 + λ · (y2z2 + z2x2 + x2y2) = 0. (5.1)

It is easy to observe that each curve in the pencil is invariant under the natural
action of an octahedral group of collineations.

There are some values of λ which lead to special members of the pencil,
namely

• λ = 0 gives us the Fermat quartic curve, or Dyck’s curve, which has a
group of 96 collineations;

• if λ is a root of λ2 + 3λ + 18 = 0, then we get the Klein quartic curve
having a group of 168 collineations.

In the case of the Fermat quartic, by a discussion presented above, we know
that it has exactly 12 flexes of order 2, so the maximal possible number in the
class of smooth quartics. In the case of the Klein quartic curve, we know that
this curve has only flex points of order 1, so exactly 24 flexes. Now we pass
to another interesting element in the pencil of quartics by taking λ = 3. The
resulting quartic C3 is smooth and it has the group of collineations of order
24. It was verified directly by Edge in [12] that the curve C3 admits exactly 12
flexes of order 2 and he provided both the coordinates of these points and the
equations of the associated tangent lines. Now we recover Edge’s calculations.
Looking precisely on the Hessian H of C3, which is

H = 2x6 + x4(3z2 + 3y2) + x2(8y2z2 + 3z4 + 3y4) + 2z6 + 2y6 + 3z4y2 + 3z2y4,

one can show that flexes of order 2 are just the intersection points of the curve
C3 with the 6 lines given by the linear factors of

F = (x2 + y2)(y2 + z2)(z2 + x2). (5.2)
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The flex points have the following coordinates:

P1 : (i : 1 : −1), P2 : (−i : 1 : −1),
P3 : (−1 : i : 1), P4 : (−1 : −i : 1),
P5 : (1 : −1 : i), P6 : (1 : −1 : −i),
P7 : (−i : 1 : 1), P8 : (i : 1 : 1),
P9 : (1 : −i : 1), P10 : (1 : i : 1),
P11 : (1 : 1 : −i), P12 : (1 : 1 : i).

Observe that these 12 flexes of order 2 are uniformly distributed, four on each
of the lines defined by F .

Up to now we described exactly two smooth quartics having the maximal
possible number of flexes of order 2. However, as it turns out by a result due to
Kuribayashi and Komiya [17], these are the only smooth plane quartic curves
having 12 flexes of order 2, and this is rather surprising.

Remark 5.1. We have seen in Theorem 1.7 that if we add to the Fermat quartic
its 12 inflectional tangents of order 2 and the triangle Δ : xyz = 0 determined
by the inflection points, then we get a free curve of degree 19. If we try to apply
the same construction to the quartic curve C3, the resulting curves are far from
being free. One explanation for this fact may be the following. The union AF

of the 12 inflectional tangents of the Fermat quartic is a line arrangement
having 3 points of multiplicity 4. On the other hand, the union A3 of the 12
inflectional tangents of the quartic C3 is a line arrangement having only double
points, and hence the total Tjurina number τ(A3) is much smaller than τ(AF ).
If we add the triangle Δ to AF , we get a line arrangement having 3 points
of multiplicity 6. On the other hand, if we add to A3 the 6 lines determined
by (5.2), we get a line arrangement having only points of multiplicity 2 and
3, and hence having small total Tjurina number compared with respect to its
degree.

6. Examples: The Case of Singular Curves

Example 6.1. Any nodal cubic is projectively equivalent to the cubic

C : F = xyz + x3 + y3 = 0.

The corresponding Hessian is H = −2(3(x3+y3)−xyz). Hence the intersection
C ∩ HC consists of the following 4 points:

p1 = (0 : 0 : 1) and pj = (1 : j : 0),

where j3 + 1 = 0. The point p1 is a simple node, and the points pj give rise to
3 inflection points of order 1. This is reflected in the equality

(C,HC)p1 +
∑

j

(C,HC)pj
= 6 + 1 + 1 + 1 = 9,
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recall Example 2.1. The 3 inflectional tangents Lk for k = 1, 2, 3 are given by
the equations Lk : 3x+3j3ky+jkz = 0, where jk are the 3 roots of the equation
j3 + 1 = 0. It follows that these 3 inflectional tangents Lk are not concurrent,
so their addition to C will not give free curves as in Remark 5.1 above. On the
other hand, if we add to C the tangent cone at the singular point, we obtain
the curve

C ′ : F ′ = xy(xyz + x3 + y3) = 0,

which is free with exponents (2, 2) as a direct computation with SINGULAR
shows. Moreover, this curve C ′ is supersolvable, since clearly p1 is a modular
point for C ′.

Any cuspidal cubic is projectively equivalent to the cubic

C : F = x2z + y3 = 0.

The corresponding Hessian is H = −24x2y. Hence the intersection C ∩ HC

consists of the following 2 points

p1 = (0 : 0 : 1) and p2 = (1 : 0 : 0).

The point p1 is a cusp A2, and the point p2 is an inflection point of order 1.
This is reflected in the equality

(C,HC)p1 + (C,HC)p2 = 8 + 1 = 9,

recall Example 2.3. This is a special case of Theorem 1.5, and gives rise to two
free curves by adding one or two lines, as explained there.

Example 6.2. In this example we consider some plane quartic curves.
Consider the quartic C : F = (x3 + y3)z + x4 + y4 = 0, which has a

D4-singularity at p1 = (0 : 0 : 1). The corresponding Hessian is

H = −54(xyz(x3 + y3) + 2x2y2(x2 + y2)).

The point p1 is an ordinary simple singularity of multiplicity k = 3, and hence
(C,HC)p1 = 18 by Theorem 1.3. There are in addition 6 inflection points of
order 1, with are the points (1 : 0 : −1), (0 : 1 : −1) and the 4 points (u : v : w),
where (u : v) is coming from the 4 solutions of the equation

u4 + v4 − 2uv(u2 + v2) = 0

in P
1 and w = −(u4 +v4)/(u3 +v3). If we add the tangent cone of the singular

point, namely the lines x3 + y3 = 0, we get a free curve

C ′ : F ′ = (x3 + y3)F = 0,

of degree 7 and exponents (3, 3). Moreover, this curve C ′ is supersolvable, since
clearly p1 is a modular point for C ′.

Next, consider the quartic

C : F = x2y2 + y2z2 + x2z2 = 0, (6.1)
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which has 3 nodes. It is easy to see that all of them have type (3, 3), and hence
C has no inflection points by Example 2.1. The corresponding Hessian is

H = −24(x4y2 + x2y4 + y4z2 + y2z4 + x4z2 + x2z4 − 6x2y2z2).

If we add to C one tangent line at each of the 3 nodes, namely the lines

(x + iy)(y + iz)(z + ix) = 0,

we get a free curve of degree 7 with exponents (3, 3). All the singularities of
this curve are simple, but this curve is not maximizing, recall our discussion
in Sect. 3 on these curves. Finally the quartic

C : F = x2y2 + y2z2 + x2z2 − 2xyz(x + y + z) = 0,

which has 3 cusps A2. Hence C has no inflection points by Example 2.3. The
corresponding Hessian is

H = 144(x3y3 + y3z3 + x3z3 − x3(y2z + yz2) − y3(x2z + xz2) − z3(x2y + xy2).

Let L1, L2 and L3 be the 3 lines which are the reduced tangent cones cor-
responding to the 3 cusps, which are given up to an order by the equations
x − y = 0, y − z = 0 and z − x = 0. Then the curves

C1 = C ∪ L1, C2 = C1 ∪ L2 and C3 = C2 ∪ L3

are all free, with exponents respectively

(2, 2), (2, 3) and (2, 4).

We get in this way a free curve C1 of degree 5 and maximizing curves C2 and
C3, of degree 6 and 7, respectively, as already pointed out in [8]. It is interesting
to note that the curve C3 is supersolvable, and the point p = (1 : 1 : 1) is a
modular point for it. Indeed, the lines joining p to the singularities of C are
already in C3. It remains to show that any line Lp through p, different from
L1, L2, L3 meets C in exactly 4 points, that is Lp is not a tangent line to C.
If q = (u : v : w) ∈ C is a smooth point such that the tangent line TqC passes
through p, then we have

Fx(q) + Fy(q) + Fz(q) = 0.

A direct computation shows that

Fx(q) + Fy(q) + Fz(q) = −12uvw

and hence at least one of the coordinates of q vanishes. But then q ∈ C
implies that 2 coordinates vanish, and therefore q is a singularity of C, a
contradiction. Note that the curve C3 is an example of curve satisfying both
the first assumption in Theorem 1.11, since all of its singularities are quasi
homogeneous, and the second assumption, even if p belongs to the tangent
cones TCs(C) of the three cusps, as they have Milnor numbers equal to 2.
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Example 6.3. In this example we consider the curve

C : F = xmym + ymzm + xmzm = 0

of degree d = 2m ≥ 4. This curve has 3 ordinary m multiple points

p1 = (1 : 0 : 0), p2 = (0 : 1 : 0) and p3 = (0 : 0 : 1)

which have type (m + 1, . . . , m + 1)︸ ︷︷ ︸
m times

. These singularities are easily seen to be

quasi homogeneous and hence

μ(C, pj) = τ(C, pj) = (m − 1)2,

for j ∈ {1, 2, 3}. It follows by Theorem 1.2 that

(C,HC)pj
= 3(m − 1)2 + m − 3 + m(m + 1) = 4m(m − 1).

The equality (2.8) implies that C has no inflection points. The reader can
check that this curve C is not even nearly free, e.g. for m = 3. On the other
hand, we show now that the curve

C ′ : F ′ = xyzF = 0

is free with exponents (m + 1,m + 1). In order to show this we note first that
the only singularities of C ′ are again the points pj for j ∈ {1, 2, 3}, which are
ordinary quasi homogeneous singularities of multiplicity (m + 2). For the last
claim one can use [2, Exercise (7.33)]. It follows that

τ(C ′) = 3(m + 1)2.

The equality

x(ym − zm)Fx − y(ym + zm)Fy + z(ym + zm)Fz = 0

shows that mdr(F ) = m+1. This implies that one has mdrF ′ ≥ mdr F = m+1
and

τ(2m + 3,m + 1)max = (2m + 2)2 − (m + 1)2 = τ(C ′).

This equality implies our claim by Theorem 3.4.

Example 6.4. In this example we construct a new example of maximizing curve
in degree 8 and the first and unique known example of maximizing curve in
degree 9. Such maximizing curves of odd degree seem to be quite exceptional,
for instance we know no example in degrees ≥ 11. The curve

C : F = (x2 + y2 + z2)3 − 27x2y2z2 = 0

is the dual of the quartic with 3 nodes in (6.1). This sextic curves has six
cusps A2 at the points (0 : 1 : ±i), (1 : 0 : ±i) and (1 : ±i : 0), where
i2 = −1 and four nodes A1 at the points (1 : ±1 : ±1). This curve is far from
being free, since the corresponding module D0(F ) has 4 generators, as one can
check using, for instance, Singular. If we add the line L1 : x = 0, the curve
C1 = C ∪ L1 is nearly free with exponents (3, 4). If we add one more line,
namely L2 : y = 0, the resulting curve C2 = C1 ∪ L2 is free with exponents
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(3, 4), and this gives a new example of maximizing curve in degree 8. Finally,
if we add the third line L3 : z = 0, the resulting curve

C3 = C2 ∪ L3 : F ′ = xyz
(
(x2 + y2 + z2)3 − 27x2y2z2

)
= 0

has six singularities E7 at the points (0 : 1 : ±i), (1 : 0 : ±i) and (1 : ±i : 0),
and seven nodes A1 at the points (1 : ±1 : ±1), (1 : 0 : 0), (0 : 1 : 0) and
(0 : 0 : 1). It follows that

τ(C3) = 6 · 7 + 7 · 1 = 49,

and this equality implies our claim by Definition 3.6. Theorem 3.7 tells us that
C3 is a free curve with exponents (3, 5) obtained from C by adding the three
lines L1, L2 and L3.

7. On a Theorem by Schenck, Terao and Yoshinaga and
Conic-Line Free Arrangements

We start with a remark concerning the paper [22]. Let C1 : F1 = 0 and C2 :
F2 = 0 be two reduced curves in P

2, without common irreducible components.
We denote dj = deg Fj and rj = mdr(Fj) for j = 1, 2. Consider now the
union of the two curves C : F = F1F2 = 0, and let d = d1 + d2 = deg F
and r = mdr(F ). Using the main result in [22], namely [22, Theorem 1.6 and
Remark 1.8], one can obtain relations among the 3 integers r1, r2 and r. The
hypothesis in [22, Theorem 1.6 and Remark 1.8] are the following: all the
singularities of C1 and C are quasi homogeneous, and C2 is a smooth curve.
However, the quasi homogeneity of the singularities of C1 and C is only used
in[22, Proposition 2.5] to compute the difference

τ(C) − τ(C1)

using [22, Lemma 2.4], which is the equality (4.1) above. In this difference, the
contribution of the singularities of C1 not on C2 cancels, and hence we need to
control only the change in the Tjurina numbers at the points of the intersection
C1 ∩C2, when we add the curve C2. Hence the hypothesis in [22, Theorem 1.6
and Remark 1.8] can be relaxed to the following: all the singularities of C1 and
C situated on C2 are quasi homogeneous, and C2 is a smooth curve. In view
of this remark, we have the following stronger version of [7, Corollary 6.4].

Corollary 7.1. With the above notation, assume that C2 is a smooth curve,
and that all singularities of the curves C1 and C situated on C2 are quasi
homogeneous. Let R be the reduced scheme of C1 ∩ C2. If

|R| > (r1 + 1)d2,

then r = r1 + d2.
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We use this stronger result to construct a family of free conic-line ar-
rangements as follows. Let C0 be the union of m smooth conics belonging to a
hyperosculating pencil of conics, that is a pencil of conics with one base point.
Let C1 = C0 ∪L0, where L0 is the common tangent to all the conics in C0. An
explicit equation for a special case of such curves C0 : F0 = 0 and C1 : F1 = 0
can be found in [5, Equation (1.8)], namely

F0 = x2m + (xz + y2)m and F1 = xF0 = x(x2m + (xz + y2)m). (7.1)

These curves have been considered by several authors, see for instance [26,
Section 7.5, p. 179] and [21,23], in relation with the maximal Milnor number a
singular point on a plane curve of degree d might have. These authors showed
in particular that

μ(Cj) = (dj − 1)2 −
⌊

dj

2

⌋
,

where dj = deg Cj for j = 0, 1. On the other hand, it is known that these
curves are free with rj = mdr(Fj) = 1, for j = 0, 1, see [1, Theorem A], where
C0 is denoted by C1 and C1 is denoted by CL1. See also [5] for the particular
curves in (7.1). It follows that

τ(Cj) = (dj − 1)2 − dj + 2 < μ(Cj)

as soon as dj ≥ 5. Hence the singularity of the curve Cj at the point p =
C0 ∩ L0, the base point of the pencil, is not quasi homogeneous when dj ≥ 5.
Let q ∈ L0 be a point distinct from p. Let Q1, . . . , Qm be the smooth conics in
C0 and let Lj be the tangent from q to the conic Qj , distinct from the tangent
L0. With this notation we have the following.

Proposition 7.2. For any m ≥ 2 and j = 2, . . . ,m + 1, the conic-line arrange-
ment

Cj = C1 ∪ L1 ∪ . . . ∪ Lj−1 : Fj = 0

is a free curve of degree dj = 2m + j with rj = j.

Proof. We prove this claim by induction on j. The case j = 1 is proved in
[1], as we said above. Assume that the claim holds for some curve Ck, with
1 ≤ k < m + 1, and let’s prove it for Ck+1. The fact that dk+1 = 2m + k + 1 is
obvious. Note that the line Lk is tangent to the conic Qk and meets any other
conic Qj for j 
= k in 2 points. To see this, one may use Remark 7.3 below.
Hence

|Rk| = |Ck ∩ Lk| = 2(m − 1) + 1 + 1 = 2m > k + 1 = rk + 1,

since k < m + 1 ≤ m + 1 + (m − 2) = 2m − 1. Using Corollary 7.1 we get
rk+1 = rk + 1 = k + 1. Note that

2rk+1 = 2(k + 1) ≤ dk+1 − 1 = 2m + k
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since k ≤ 2m − 2 as we have seen above. Hence, using Theorem 3.4, the curve
Ck+1 is free if and only if

τ(Ck+1) = τ(dk+1, rk+1)max.

In other words, we have to check that the addition of the line Lk to Ck increases
its total Tjurina number by

Δk = τ(dk+1, rk+1)max − τ(dk, rk)max = dk + rk = 2m + 2k.

At the point q, the change in Tjurina number is

k2 − (k − 1)2 = 2k − 1,

since we pass essentially from a local equation uk +vk = 0 to uk+1 +vk+1 = 0.
Except the point q, there is a singularity of type A3 corresponding to the
tangent point, and 2(m − 1) nodes A1 on the line Lk. Hence, we get

2k − 1 + 3 + 2(m − 1) = Δk,

which completes our proof. �
Remark 7.3. Note that a line Lk, which is tangent to the conic Qk, cannot
be also tangent to another conic Qj with j 
= k. To show this, it is enough
to consider the curve C1 when m = 2. If there is a point q ∈ L0 such that
the equality L1 = L2 holds, then the curve C2 has degree d2 = 6, r2 = 2 by
Corollary 7.1, and the contribution of the line L1 to τ(C2) would be

3 + 3 + 1 > Δ1 = 5 + 1.

This is a contradiction with Theorem 3.4 since our calculation above would
yield

τ(C2) > τ(6, 2)max.

Remark 7.4. Note that the curve Cm+1 is supersolvable since q is a modular
point. Since the singularity at p is not quasi homogeneous for m ≥ 2, we get a
new countable family of supersolvable curves, supporting our Conjecture 1.10,
and not covered by Theorem 1.11. An explicit equation for such a curve is the
following, obtained from (7.1):

Cm+1 : Fm+1 = x(xm + zm)(x2m + (xz + y2)m) = 0,

where p = (0 : 0 : 1) and q = (0 : 1 : 0).

Remark 7.5. In [1, Theorem A], the authors classify all the conic-line arrange-
ments C : F = 0 which are free with mdr(F ) = 1. Besides the union of
concurrent lines and the curves C0 and C1 discussed above, the other 4 types
of such curves, denoted by CLj with j = 2, 3, 4, 5, are obtained using a bi-
tangent pencil of conics. It is easy to see, using for instance [7, Equation 5.1]
with x2 − y2 replaced by xy, that in these cases all the singularities of these
curves are quasi homogeneous. One can obtain new families of free conic-line
arrangements from them by adding concurrent tangent lines, but, in particu-
lar, the resulting supersolvable curves are covered by our Theorem 1.11. As an
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example, consider the curve CL5 studied in [1]. This curve, which we denote by
D0, is the union of m smooth conics belonging to a bitangent pencil of conics,
the tangent lines T0 and resp. T ′

0 in the tangency points p and resp. p′ of the
pencil, and the line L0 joining the two tangency points, see [1, Theorem A].
Let q be a point on L0, distinct from p and p′. Then add one by one tangents
to the smooth conics in D0 passing through q. For each conic we can add one
or two tangents. If we denote by Dk, for 1 ≤ k ≤ 2m, one of the several
conic-line arrangements obtained from D0 by adding k such tangent lines, it
it easy to show exactly as in the proof of Proposition 7.2 that Dk : Fk = 0 is
a free conic-line arrangement with dk = deg Fk = 2m + 3 + k and rk = k + 1.
Note that in this case the difference δk given by

δk = dk − 1 − 2rk = 2m − k ≥ 0

can be as small as we like, can even vanish when k = 2m, that is for the curve
corresponding to k = 2m in this family. On the other hand, for the curves Ck

in Proposition 7.2 one has

δk = dk − 1 − 2rk = 2m + k − 1 − 2k = 2m − k − 1 ≥ m − 2 > 0

when m > 2.
To get a supersolvable curve from D2m, it is enough to add the line L′

0

joining the point q with the intersection point q′ = T0 ∩ T ′
0. Note that

|D2m ∩ L′
0| = 2m + 2 = r2m + 1,

and hence Corollary 7.1 cannot be applied. On the other hand, we know that
D2m+1 = D2m ∪ L′

0 : F2m+1 = 0 is a free curve by Theorem 1.11, and
hence

2m + 1 = r2m ≤ r2m+1 ≤ deg F2m+1 − 1
2

=
4m + 3

2
.

It follows that one has

2m + 1 = r2m = r2m+1.
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[24] Simis, A., Tohăneanu, S.O.: Homology of homogeneous divisors. Israel J. Math.
200, 449–487 (2014)
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