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Abstract
Over the past 20 years, our understanding of volcanic eruption impacts on the built environment has transformed from being 
primarily observational with small datasets to one grounded in field investigations, laboratory experiments, and quantitative 
modeling, with an emphasis on stakeholder collaboration and co-creation. Here, we summarize key advances and knowledge 
gaps of impacts across volcanic hazards and built environment types from the past 20 + years. Studies have concentrated on 
impacts from tephra fall (ash) and to buildings, with less examination of other hazards’ impacts to critical infrastructure. As 
we look to the next decade, we speculate on likely research directions, including the increasing role of new technologies, 
higher resolution modeling, transdisciplinary collaborations, and evidence-based mitigative solutions.

Keywords  Built environment · Decadal review · Volcanic consequences · Volcanic hazard · Volcanic impacts · Volcanic 
risk

Introduction

For millennia, societies have faced a variety of volcanic 
eruption impacts, from nuisance to major disruption to loss 
of life, home, and livelihoods. Today, over 1 billion people 
live within 100 km of an active volcano (Freire et al. 2019), 
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and societies farther afield can experience physical and dis-
ruptive consequences from volcanic activity (Wilson et al. 
2012). This contribution focuses on advances over the last 
20 + years to characterize the impacts of volcanic eruptions 
on the built environment, where built environment is defined 
as “[person]-made or modified structures that provide people 
with living, working, and recreational spaces” (EPA 2020), 
including buildings and critical infrastructure (energy, water, 
transportation, telecommunication). We consider both direct 
(damage to specific asset or component) and indirect (system 
functionality loss) impacts (Merz et al. 2010). Not covered 
here are impacts to aviation (Mastin et al. in press), health 
(Stewart et al. this issue), agriculture (Craig et al. 2016; Wil-
son et al. 2011), or economies (e.g., Cardwell et al. 2021; 
Rodriguez et al. 2017; Zuccaro et al. 2013), or advances in 
hazard modeling.

While all volcanic hazards can adversely impact the built 
environment, most of the research effort to date has focused 
on tephra fall (ash) impacts (Figs. 1 and 2). This is due to 
a combination of factors, including high-profile explosive 
eruptions with large tephra deposits, comparatively frequent 
and larger ash footprints (relative to other hazards) that affect 
more communities, diverse impacts and impact mechanisms 
that can be gradational (contrary to perceived binary flow 
hazards: untouched/destroyed), and mitigative solutions 
beyond avoidance (Wilson et al. 2014a). Documentation 
of the 1980 Mount St. Helens eruption impacts was foun-
dational (Blong 1984), and subsequent twentieth century 

research similarly focused on describing impacts from nota-
ble volcanic eruptions (Fig. 1), with some early attempts to 
identify systemic drivers of volcanic impacts (Johnston et al. 
2000). In the last 20 years, such work has continued, accom-
panied by more approaches (see next section) to understand 
the causes and ramifications of specific impacts and wider 
systemic drivers. There has been a concerted effort to apply 
this knowledge to forecast eruption impacts from volca-
noes around the world (Fig. 2). More recently, there is a 
growing focus on understanding dynamic, multi-hazard and 
cascading impacts, and their associated consequences for 
livelihoods and habitability, as well as quantifying damage 
ranges, interdependencies, and evidence-based mitigation.

Approaches

Previous approaches for identifying and characterizing the 
causes of volcanic impacts to the built environment (Fig. 1) 
include:

Post-eruption investigations—identifying and describ-
ing eruption consequences, including both qualitative and 
quantitative data, with comprehensive observations and 
data generally collected during dedicated impact investi-
gation visits (e.g., Baxter et al. 2005; Blong 1984, 2003; 
Jenkins et al. 2013; Johnston et al. 2000; Magill et al. 
2013; Spence et al. 1996; Wantim et al. 2018);

Fig. 1   Approaches used and hazards studied in articles on volcanic 
impacts to the built environment, published since 1980 (limited to 
English language publications; see Supplementary Information for 
selection methodology). a Stacked area chart timeline of approaches 
used, arranged by order of appearance in the literature. Volcanoes 
that have erupted since 1980 and been studied in these articles are 
highlighted. b Number of articles for a particular volcanic hazard. 

“Other” includes volcanic earthquakes, ground deformation, volcano-
genic tsunami, edifice building, and sector collapse. A single study 
can adopt multiple approaches and study multiple hazards. Half of 
the articles since 1980 have been published in the last 7 years (2014 
onwards). The 140 studies contributing to this analysis are indicated 
in Supplementary Information
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Controlled experiments—primarily laboratory studies, 
generally with “real” materials, removing the require-
ment for post-experiment scaling (e.g., Blake et al. 2016; 
Spence et al. 2004; Wardman et al. 2014);
Engineering calculations and theoretical modeling—
often based on standards/approaches developed for other 
natural hazards (e.g., Petrazzuoli and Zuccaro 2004; Val-
entine 1998; Zuccaro and Ianniello 2004); and
Review—synthesis of observational, experimental, and 
modeling data (e.g., Stewart et al. 2006; Wilson et al. 
2014a, 2012).

Across these approaches, there has been a push to iden-
tify and correlate key hazard intensity metrics (HIMs)—an 
often numeric characterization of the relationship between 
the severity of a hazard in a given location—to consequence, 
as described using a damage state or other ordinal scale or a 
numeric ratio, such as damage ratio. Numerous studies have 
developed vulnerability (% damage/loss relative to specified 
“worst-case” outcome) and fragility (probability of exceed-
ing specified impact/damage state) functions (Rossetto et al. 
2013) using data derived from one or more of the approaches 
catalogued above (e.g., Blake et al. 2017a; Blong et al. 2017; 
Wilson et al. 2017).

In parallel, several approaches have been used to pre-
pare for and explore the potential ramifications of volcanic 
impacts to the built environment:

Cataloguing exposure—identifying assets that may be 
exposed to future volcanic activity (e.g., Jenkins et al. 
2014; Marti et al. 2008; Pomonis et al. 1999);
Scenario development and analysis—exploring conse-
quences of credible eruption scenarios (e.g., Blong and 
Aislabie 1988; Deligne et al. 2017; Spence et al. 2008; 
Zuccaro and De Gregorio 2019);
Risk modeling—probabilistic assessment of the likeli-
hood of adverse impacts occurring (e.g., Biass et al. 2016; 
Magill and Blong 2005; McDonald et al. 2017); and
Systems analysis—identifying and characterizing inter-
dependencies, particularly between various critical infra-
structure networks (Sword-Daniels et al. 2015; Wild et al. 
2019), but sometimes also between volcanic hazards in 
the context of impact severity (e.g., Williams et al. 2019; 
Zuccaro et al. 2008, 2018).

Additionally, considerable effort has gone towards mak-
ing research findings useful and usable, through the devel-
opment of sector-specific educational posters (Wilson et al. 
2014b), now available in several languages (https://​www.​
gns.​cri.​nz/​Home/​Learn​ing/​Scien​ce-​Topics/​Volca​noes/​
Global-​Ash-​Impact-​Poste​rs), web resources (https://​volca​
noes.​usgs.​gov/​volca​nic_​ash/), and the coordinated availabil-
ity of the research community to provide expert knowledge 
to responders during multiple crises within the last several 
years.

Fig. 2   Spatial representation of studies on volcanic impacts on the 
built environment, analyzed in Fig.  1, shown by volcano. Studies 
include post-eruption impact assessments and forward-looking risk 
assessments and scenario development. The size of the pie chart cor-
responds to the number of studies, and the hazards considered include 
tephra fall (dark blue), projectiles (light blue), pyroclastic density cur-

rent (PDC: green), lahar (orange), lava (red), gas (yellow), and other 
(purple; includes volcanic earthquakes, volcanogenic tsunami, edifice 
building, and sector collapse). A single study may consider impacts 
from several hazards. The 99 studies contributing to this analysis are 
indicated in Supplementary Information
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Advances

Below is a brief review of findings thus far, framed by 
consequence severity (Figs. 3 and 4). While much of the 
earlier work was focused on severe consequences, more 
recent studies consider a wider range of potential impacts. 
The following summaries are cumulative (e.g., functional-
ity loss findings also encompass results from nuisance).

Nuisance impacts can occur with small quantities of 
tephra or distal lahars, either primary or remobilized, and 
accompanying gases. Considerable time and resources 
can be required for the increased, and at times constant 

and costly, maintenance of infrastructure systems, service 
provision, and clean-up (Hayes et al. 2015; Wilson et al. 
2012), although pre-event planning is rarely undertaken.

Functionality loss across critical infrastructure sectors 
can occur with minimal to no permanent asset damage and 
with low hazard intensity (Wilson et al. 2014a). For exam-
ple, electrical transmission lines can flashover (short cir-
cuit) with as little as 3 mm of tephra accumulation, result-
ing in electricity disruption “downstream” (Wardman et al. 
2012c, 2014). While physical damage is unlikely, clean-up 
is often required for service restoration. Likewise, tephra 
deposits as thin as 0.5 mm can obscure road markings, 

a) Nuisance b) Functional loss

c) Asset damage d) Asset destruction

Fig. 3   Photos of impacts to the built environment at different con-
sequence severity and for different volcanic hazards: (a) Nuisance: 
minor corrosion to farming equipment that occurred overnight 
(observed by the photographer and confirmed by the farmer) as a 
result of gas and/or tephra during the explosive phase of the 2010 
eruption of Eyjafjallajökull, Iceland (credit: SF Jenkins); (b) Func-
tionality loss: tephra induced flashover (short-circuiting) across a por-
celain insulator during laboratory experiments (left) and the thin layer 
of damp tephra responsible (right) (credit: JB Wardman and G Wil-

son); (c) Asset damage: cracked window glass and melting of plastic 
components such as light fixtures (center), plastic piping and water 
tank (upper right), and PVC sheet roofs (rear of property) by low-
energy, dilute pyroclastic density currents during the 2010 eruption 
of Merapi, Indonesia (credit: SF Jenkins); (d) Asset destruction: roof 
collapse and structural damage to walls from ~ 50 cm of tephra fall on 
a timber frame building during the 1994 eruption of Rabaul, Papua 
New Guinea (credit: RJ Blong)
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reducing road network functionality (Blake et al. 2016; 
Magill et al. 2013). Controlled laboratory experiments 
have been invaluable for identifying and validating thresh-
olds at which functionality loss occurs for various asset 
types (e.g., Blake et al. 2017b; Wardman et al. 2012b; 
Williams et al. 2017).

Asset damage can occur with minimal to high hazard 
intensity. Several studies have proposed hazard-specific 
damage state scales, used to categorize observed damage 
and to forecast future damage given exposure (e.g., Hayes 
et al. 2019; Jenkins et al. 2015; Williams et al. 2020; Wilson 
et al. 2014a). Much effort has focused on identifying suitable 

Fig. 4   Summary across built environment type (rows) and hazard 
(columns) combinations of impacts considering four areas, (1) (top 
left quadrant; blue) dominance of one or a few hazard intensity met-
rics (HIM) in accounting for the impact consequence, (2) (bottom left 
quadrant; red) types of studies undertaken, (3) (top right quadrant; 
green) handling of multi-hazard impacts, and (4) (bottom right quad-
rant; purple) status of quantitative and qualitative function develop-
ment. In hazards, “edifice” refers to edifice formation (for example, 
vent opening, cinder cone formation), while “A.R.” stands for acid 
rain. Darker colors indicate greater dominance of a single HIM (HIM 
quadrant), more sophisticated treatment (multi-hazard quadrant), 
or more rigorous quantitative study (remainder). Empty cells reflect 
no study. For HIMs, if one (dark blue) or two to three (blue) HIMs 
account for the majority of impact, the HIM is listed. Light blue cor-
responds to several or variable HIMs required, and a slash indicates 
that other factors, such as network design, are more important. Types 
of studies include laboratory experiments (L), observations on ground 
(O) or by remote sensing (R), analytical /engineering studies (E), or 
studies reliant on expert judgment (J). For multi-hazard handling, 
dark green corresponds to studies that consider the compounding 

effects of hazard impacts (M). For example, such a study might exam-
ine how the impact changes depending on whether tephra fall occurs 
before or after ballistics; if compounding impacts are considered, the 
other concerned hazard(s) are listed. Also, in the multi-hazard quad-
rant, medium green corresponds to several hazards considered in 
parallel (P), reflecting the multi-hazard nature of volcanic eruptions, 
but without consideration of compounding and cascading effects of 
hazards and impacts. Light green indicates hazards have only been 
studied in isolation (I). Finally, for function development, dark pur-
ple indicates existing fragility (F) and/or vulnerability (V) functions, 
purple indicates critical thresholds (T) and/or damage state scales (D) 
are established, and light purple indicates only anecdotal (A) or quali-
tative data is available. A single study will often contribute to several 
quadrants and can contribute several designations within the bottom 
two quadrants. Built-environment systems are often complex and so 
require bespoke approaches to assessing volcanic impacts; an absence 
of vulnerability model in this figure does not necessarily imply lack 
of knowledge on this topic. The studies contributing to this analysis 
are indicated in Supplementary Information
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hazard intensity metrics for various built environment and 
hazard combinations. This is possible for some combinations 
(e.g., residential building damage is well described by tephra 
loading) but has poor success for others (e.g., wastewater 
treatment plant design is a stronger control on damage than 
any tephra HIM). Interestingly, recent work documents that 
pyroclastic density currents (PDCs) and lava flows—gener-
ally considered binary impact hazards—can cause partial but 
incomplete damage of a structure (Jenkins et al. 2017, 2013).

Asset destruction studies have mostly been concerned 
with tephra, lava flows, PDCs, and lahars. There is no sin-
gle mechanism of destruction—volcanic hazards can destroy 
through burial, removal, incineration, and collapse, among 
others. Cataloguing post-eruption damage has been invalu-
able in informing pre-eruption impact assessments, e.g., 
through fragility functions. However, there has been limited 
work on engineered solutions to reduce the likelihood of 
asset damage destruction (Willingham 2005; Zuccaro and 
Leone 2012); more emphasis is placed on hazard avoidance 
and/or redesign of infrastructure networks (Sword-Daniels 
et al. 2011).

While most volcanic hazards can cause destruction of 
the built environment, in terms of life-safety concerns it 
is more likely that people are killed by the volcanic hazard 
(unlike for earthquakes where collapsed buildings can be an 
important cause of fatalities). Buildings can in some situa-
tions decrease the severity of projectile and PDC exposure, 
offering some (unreliable) protection to inhabitants (e.g., 
Fitzgerald et al. 2017; Jenkins et al. 2013; Williams et al. 
2019). However, buildings can also offer a false sense of 
security or compel individuals to remain behind and protect 
assets in the face of a life-threatening hazard. Life-safety 
concerns can also arise from disruption to critical service 
provision for vulnerable persons or from clean-up activi-
ties, such as falls from roofs (Brown et al. 2017; Wardman 
et al. 2012a).

Opportunities

Figure 4 provides a visual gap analysis (lighter/empty cells) 
highlighting opportunities for further study. Tephra impacts 
across the built environment and building impacts across the 
various hazards are comparatively well studied, while gas/
acid rain and proximal hazard impacts to critical infrastruc-
ture have had limited examination.

While great strides have been made in understanding the 
causes and ramifications of impacts to the built environment, 
this knowledge has limited applicability without detailed 
asset data—a usable inventory of buildings and critical 
infrastructure networks populated with relevant up-to-date 
information. Such databases are very difficult to obtain/
maintain but are required to correctly identify the range of 

damage in a post-eruption assessment and, importantly, to 
support assessments before or during a crisis to identify 
likely impacts and inform mitigative solutions.

Further, volcanic eruptions are multi-hazard events that 
can last seconds through to decades: there has been nascent 
work on multi-hazard and dynamic interactions, or cascad-
ing and compounding impacts (Fig. 4). The spatio-temporal 
dynamism of exposure and vulnerability also remains an 
important, but underdeveloped, research area.

Each eruption with documented impacts improves our 
fundamental understanding of how volcanic eruptions affect 
the built environment. However, this knowledge has not yet 
been translated into regulatory codes or widespread policy 
adoption beyond land-use avoidance. It may be that such risk 
management is inappropriate or cost prohibitive for the built 
environment in volcanic settings, but it is an area for future 
exploration and transdisciplinary study.

Future directions

In the next decade, we anticipate the continuation of studies 
applying similar methods as described in Approaches, lead-
ing to more robust observational datasets and an enhanced 
understanding of the causes, ranges, and ramifications of 
impacts. Particularly, we expect validation, refinement, and/
or calibration of the quantitative relationships between haz-
ard intensity and impact.

In addition, we anticipate several important growth areas:

1.	 Expanded role of big Earth data and data science to 
fully exploit satellite and UAV technologies; stake-
holder, media, and crowdsourced data for asset inven-
tories; rapid hazard and damage mapping; and loss esti-
mation.

2.	 Higher spatial and temporal resolution modeling, 
considering eruption narratives, multi-hazard interac-
tions, cascading and compounding events, systemic 
response and dynamic changes in exposure and vulner-
ability.

3.	 Transdisciplinary collaborations exploring the role of 
engineering, policy, insurance, crisis management, and 
habitability considerations to improve the lived experi-
ence of volcanic eruptions in the context of the built 
environment.

4.	 Development of more evidence-based mitigative solu-
tions, applicable in pre-, syn-, and post-eruptive set-
tings.

The international volcanological community has a criti-
cal role in reducing the societal damage that can be caused 
by volcanic eruptions. As part of this role, we encourage 
consideration of a funded, rapid, international response 
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team with a mandate to offer evidence-based information 
and support concerning the impacts of volcanic eruptions 
to the built environment.

The last 20 + years has been an era of remarkable 
growth in knowledge concerning impacts of volcanic 
eruptions on the built environment. We look forward to 
continued momentum and discoveries over the next decade 
and more.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00445-​021-​01506-8.
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