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ABSTRACT: Several methods for joint dimension reduction and cluster analysis of
categorical, continuous or mixed-type data have been proposed over time. These
methods combine dimension reduction (PCA/MCA/PCAmix) with partitioning clus-
tering (K-means) by optimizing a single objective function. Cluster stability assess-
ment is a critical and inadequately discussed topic in the context of joint dimension
reduction and clustering. We introduce a resampling scheme that combines boot-
strapping and a measure of cluster agreement to assess global cluster stability of joint
dimension reduction and clustering solutions and a Jaccard similarity approach for
empirical evaluation of the stability of individual clusters. Both approaches are imple-
mented in the R package clustrd.
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1 Joint dimension reduction and clustering

Joint dimension reduction refers to a set of algorithmic or non-model based
techniques aimining at simultaneously finding an optimal reduction of the vari-
ables and an optimal partitioning of the objects of a rectangular data set. Re-
duced K-means (De Soete & Carroll, 1994) and Factorial K-means (Vichi &
Kiers, 2001) combine Principal Component Analysis (PCA) for dimension re-
duction with K-means for clustering and are suitable for data sets with contin-
uous variables. In the case of categorical variables, MCA K-means (Hwang,
Dillon & Takane, 2006), IFC-B (Iodice D’Enza & Palumbo, 2013) and Cluster
Correspondence Analysis (van de Velden, Iodice D’Enza & Palumbo, 2017)
a variant of Correspondence Analysis is used in the dimension reduction step
and K-means is used for clustering. In the case of mixed-type data, that is when
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the data set contains both continuous and categorical variables, one can resort
to GROUPALS (Van Buuren & Heiser, 1989) and Mixed Reduced/Factorial K-
means (Vichi, Vicari & Kiers, 2009). These methods combine PCA for mixed
data with K-means.

The general objective can be formulated as follows:

minfCDR (B,ZK) = a
��X�XBB0

��2
+(1�a)kXB�PXBk

2 (1)

where X is a n ⇥ Q data matrix, B a Q ⇥ d columnwise orthonormal loadings
matrix, d is the user supplied dimensionality of the reduced space, ZK a n⇥K
binary matrix indicating cluster memberships of the n observations into the K
clusters, P = ZK (Z0

KZK)�1 Z0
K is a projection matrix, and G = PXB a K ⇥ d

cluster centroid matrix.
For categorical variables, the CDR objective can easily be adjusted by sub-

stituting D�1/2
z MZ for X in all equations. Similarly, for mixed-type data, X is

set to
⇣

X D�1/2
z MZ

⌘
.

For given a, the following alternating least-squares algorithm is used to
minimize the loss function in Eq.1:

1. Generate an initial cluster allocation ZK (e.g., by randomly assigning
subjects to clusters).

2. Find loadings B by taking the eigendecomposition of
X⇤0 ((1�a)P� (1�2a)I)X.

3. Update the cluster allocation ZK by applying K-means to the reduced
space subject coordinates XB.

4. Repeat the procedure (i.e., go back to step 2) using ZK for the cluster
allocation matrix, until convergence. That is, until ZK remains constant.

Note that, for a = 1 CDR reduces to PCAMIX, for a = 1/2 we get mixed
RKM method and for a = 0 we have mixed FKM.

2 Global and local cluster stability via resampling

Cluster validation is important because cluster analysis presents clusters in
almost any case. Here we focus on the stability of a partition in the case of
joint dimension and clustering, that is, given a new sample from the same
population, how likely is it to obtain a similar clustering? Stability can also be
used to inform the selection of the number of clusters because if true clusters
exist, the corresponding partition should have a high stability.
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Resampling approaches (that is, bootstrapping, subsetting, replacement of
points by noise) provide an elegant framework to computationally derive the
distribution of interesting quantities describing the quality of a partition (Hen-
nig 2007, Dolnicar & Leisch 2010). Simulations so far seem to suggest that
resampling makes a lot of difference; the exact scheme used is not that impor-
tant. Leisch (2015) provides a generic scheme for assessing cluster stability
via resampling. Based on this scheme, we provide below two algorithms, one
for assessing global stability, or the overall stability of a clustering partition,
and one for assessing local or cluster-wise stability, or the stability of each one
of the clusters in a given partition.

Algorithm GLOBAL STABILITY
Resampling: Draw bootstrap samples S i and T i of size n from the data and use
the original data as evaluation set E i = X. Apply a joint dimension reduction
and clustering method to S i and T i and obtain CS ,i and CT ,i.
Mapping: Assign each observation xi to the closest centers of CS ,i and CT ,i us-
ing Euclidean distance, resulting in partitions CXS ,i and CXT ,i, where CXS ,i is
the partition of the original data X predicted from clustering bootstrap sample
S i (same for T i and CXT ,i).
Evaluation: Use the Adjusted Rand Index (ARI, Hubert & Arabie, 1985) or
the Measure of Concordance (MOC, Pfitzner 2008) as measure of agreement
and stability.
Inspect the distributions of ARI/MOC to assess the global reproducibility of
the clustering solutions.

Algorithm LOCAL STABILITY
Resampling: Draw bootstrap samples S i and T i of size n from the data and use
the original data as evaluation set E i = X. Apply a joint dimension reduction
and clustering method to S i and T i and obtain CS ,i and CT ,i.
Mapping: Assign each observation xi to the closest centers of CS ,i and CT ,i

using Euclidean distance, resulting in partitions CXS ,i and CXT ,i.
Evaluation: Obtain the maximum Jaccard agreement between each original
cluster Ck and each one of the two bootstrap clusters, CXS ,i

k0 and CXT ,i
k0 as mea-

sure of agreement and stability, and take the average of each pair:

si
k =

⇣
max

ik0K

Ck \CXS ,i
k0

Ck [CXS ,i
k0

+ max
ik0K

Ck \CXT ,i
k0

Ck [CXT ,i
k0

⌘
/2

Inspect the distributions of si
k to assess the cluster level (local) stability of the

solution.
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The two algorithms are implemented in the R package clustrd via functions
global bootclus() and local bootclus(), respectively.

3 Conclusions

Stability is an important aspect of clustering quality. Resampling approaches
provide an elegant framework to assess global stability of Joint Dimension Re-
duction and Clustering solutions, as well as local quality of a cluster. However,
maximizing stability for estimating the number of clusters amounts to implic-
itly defining the “true clustering” as the one with highest stability, which may
not be appropriate. A comprehensive simulation study trying different combi-
nations could offer guidance what works best in which situations.
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