
Citation: Volpe, F.; Nappi, C.;

Piscopo, L.; Zampella, E.; Mainolfi,

C.G.; Ponsiglione, A.; Imbriaco, M.;

Cuocolo, A.; Klain, M. Emerging Role

of Nuclear Medicine in Prostate

Cancer: Current State and Future

Perspectives. Cancers 2023, 15, 4746.

https://doi.org/10.3390/

cancers15194746

Academic Editors: Sonia Vallet

and Amedeo Columbano

Received: 5 July 2023

Accepted: 21 September 2023

Published: 27 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Emerging Role of Nuclear Medicine in Prostate Cancer: Current
State and Future Perspectives
Fabio Volpe , Carmela Nappi, Leandra Piscopo , Emilia Zampella , Ciro Gabriele Mainolfi,
Andrea Ponsiglione , Massimo Imbriaco , Alberto Cuocolo and Michele Klain *

Department of Advanced Biomedical Sciences, University of Naples Federico II, 80138 Naples, Italy;
fabio.volpe@unina.it (F.V.); c.nappi@unina.it (C.N.); lea-17-08@hotmail.it (L.P.); emilia.zampella@gmail.com (E.Z.);
c.mainolfi@libero.it (C.G.M.); a.ponsiglionemd@gmail.com (A.P.); mimbriaco@hotmail.com (M.I.);
cuocolo@unina.it (A.C.)
* Correspondence: micheleklain@libero.it

Simple Summary: The huge armamentarium of currently available theragnostic modalities allows
a novel approach to prostate cancer from imaging to therapy. Clinical examination is the starting-
point, then radiology and nuclear medicine are often needed to define the illness grading to set up the
best therapeutic strategy. Prostate cancer care horizons are opening with the aid of nuclear medicine,
which takes advantage of the technological ascendancy of prostate-specific membrane antigen-based
imaging and therapy and is currently evolving with machine-learning approaches. We have focused
our review on the current state, on the advancements, and on the future prospects of nuclear medicine
modalities that could change prostate cancer’s standard of care.

Abstract: Prostate cancer is the most frequent epithelial neoplasia after skin cancer in men starting
from 50 years and prostate-specific antigen (PSA) dosage can be used as an early screening tool.
Prostate cancer imaging includes several radiological modalities, ranging from ultrasonography,
computed tomography (CT), and magnetic resonance to nuclear medicine hybrid techniques such
as single-photon emission computed tomography (SPECT)/CT and positron emission tomography
(PET)/CT. Innovation in radiopharmaceutical compounds has introduced specific tracers with di-
agnostic and therapeutic indications, opening the horizons to targeted and very effective clinical
care for patients with prostate cancer. The aim of the present review is to illustrate the current
knowledge and future perspectives of nuclear medicine, including stand-alone diagnostic techniques
and theragnostic approaches, in the clinical management of patients with prostate cancer from initial
staging to advanced disease.

Keywords: prostate cancer; theragnostic; nuclear medicine; targeted therapy; radioligand therapy;
PET/CT

1. Introduction

Prostate cancer (PC) is the most frequent epithelial neoplasia after skin cancer in men
starting from 50 years [1], but it is often not clinically evident at the early stage as prostatic
intraepithelial neoplasia [2]. Not every intraepithelial neoplasia can progress to PC, even in
high-grade cases. Prostate-specific antigen (PSA) dosage can be used as an early diagnostic
tool, starting from the age of 50 years when the risk of PC increases. In the presence of spe-
cific risk factors such as family history, African ethnicity and BRCA1/2 carriers, screening
should be brought forward to 45 years [3]. The standard approach to PC diagnosis com-
prises PSA screening and digital rectal examination. Multiparametric magnetic resonance
(MR) and eventual prostate biopsy may be second-level tests [4–6]. Not every PC needs to
be treated immediately, especially at early presentation, and it can be considered a chronic
disease [7,8]. However, risk stratification (from very low to high risk) is the mainstream con-
tention of modern guidelines to evaluate treatment options in more aggressive disease [8,9].
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Different treatment options, ranging from early aggressive treatments, such as radical
prostatectomy and radical radiotherapy, to deferred treatments (i.e., treating men when
the disease progresses and becomes symptomatic), depend on parameters such as tumor
grade and tumor stage. Imaging plays an important role both in the non-invasive detection,
localization, grading, and staging of PC and in guiding histopathologic analysis by biopsies.
In particular, magnetic resonance (MR) has become a powerful tool for achieving these
goals [10–15]. Furthermore, the recent introduction of specific prostate ligands that can
carry radioactive isotopes including β+ (18F, 68Ga), β-/γ(177Lu), and α (225Ac) emitters
with diagnostic and therapeutic characteristics (Figure 1) may redefine the role of nuclear
medicine in PC [16].
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The aim of the present review is to illustrate current knowledge and future perspec-
tives of nuclear medicine, including stand-alone diagnostic techniques and theragnostic
approaches, in the clinical management of patients with prostate cancer from initial staging
to advanced disease.

2. Staging Prostate Cancer

The need for a reproducible description of cancer spread has been met by the creation
of the staging system. The American Joint Committee on Cancer’s TNM system is widely
used, but the most recent update dates from 2018 [17]. The TNM system for PC is based
on the PSA level at the time of diagnosis; the extent of the primary tumor is described by
the T parameter, the involvement of lymph nodes is described by the N parameter, and
cancer extension to other regions of the body is described by the M parameter. However,
the National Comprehensive Cancer Network (NCCN) Guidelines Version 1.2023 for
Prostate Cancer treatment recommendations, released recently [18], are based on a risk
stratification that includes TNM staging rather than on the American Joint Committee on
Cancer prognostic grouping. The grading system for PC (based on the Gleason score) tries
to measure how likely it is that the cancer will grow and spread quickly. This is determined
by the results of the direct prostate examination by the pathologist.

However, the prognostic value of American Joint Committee on Cancer 8th edition
staging is not applicable to some staged patients. Higher PSA levels or higher tumor grade
are associated with a worse prognosis than that of patients with a higher stage but lower
PSA level or lower tumor grade [19]. Several studies also showed that the high-grade group
has a significantly worse prognosis than the lower-grade group and should be considered a
distinct group [20–23]. Early-stage patients are commonly diagnosed with a localized, low-
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risk PC with excellent treatment outcomes [24–26]. Along with PSA, some other markers
have been proposed. For instance, PC gene 3, an overexpressed long non-coding RNA,
is detectable in urine sediments [27–29]. This gene correlates with cancer volume, but
some data cast doubt on its correlation with grade [30]. A PC gene 3 test is now used to
settle a second biopsy after a negative one [31]. The first attempt at risk categorization
was made by D’Amico and co-workers that classified patients into low-, intermediate-,
and high-risk groups according to PSA, tumor stage, and Gleason score at the moment
of diagnosis [32]. Clinical therapeutic and technological upgrades have stimulated the
need for a more precise risk assessment, because of the availability of a large variability of
therapeutic choices and of a cost-effective option. The National Institute for Health and
Care Excellence, European Association of Urology, Genito-Urinary Radiation Oncologists
of Canada, American Urological Association, National Comprehensive Cancer Network,
and Cambridge Prognostic Groups risk group systems have been created, which then
evolved into the Cancer of the Prostate Risk Assessment score [33] and the Memorial Sloan
Kettering Cancer Center nomogram [34]. Nomograms attempt to address the large amount
of single risk factors and imaging features that may affect the prognosis and the therapeutic
strategy of PC patients, with a simple readability of responses [35].

3. Radiological Imaging
3.1. Ultrasound

Following an abnormal PSA level or digital rectal examination, transrectal ultrasonog-
raphy (TRUS) is frequently used as the first step in the diagnostic process to identify
abnormalities and direct biopsies. Because of the high frequency of multiple localization,
systematic sextant biopsies are indicated [36]. On ultrasonography, the primary PC can
be hyper-echoic or isoechoic (30–40% of lesions), although it is typically detected as a
hypoechoic lesion (60–70%) at the gland’s periphery [37]. The preferred technique for
implanting brachytherapy seeds in the prostate is transrectal ultrasonography [38].

3.2. Magnetic Resonance

After ultrasound-guided prostate biopsy, MR plays a major role in the evaluation of
known PC in order to determine if there is extracapsular extension [39–41]. Thus, MR can
detect and localize cancer when the PSA is constantly elevated, but routine TRUS biopsy is
negative. Both the American College of Radiology and the European Society of Uroradiol-
ogy encourage the implementation of multiparametric MR for PC assessment consisting
in a combination of T2-weighted imaging with functional techniques such as diffusion-
weighted imaging, dynamic contrast-enhanced imaging, and spectroscopy [12]. MR can
guide prostate biopsy, in the case of negative TRUS biopsy but high clinical suspicion due
to elevated PSA levels [42,43]. MR has also has a role in PC patients surgically treated with
radical prostatectomy. The use of multi-parametric MR is helpful in detecting and localizing
a prostatic lesion [44]. T1 signal used as morphological examination can define prostate
contour, neurovascular bundle incasement, and post-biopsy bleeding [45]. T2-weighted
images acquired with an endorectal coil show PC usually appearing as a low-signal area
within a normally high-signal peripheral zone [46,47]. Diffusion-weighted imaging (DWI)
is the crucial sequence for peripheral zone tumor detection [48]. DWI/apparent diffusion
coefficient sequences demonstrate restricted diffusion. Dynamic contrast imaging shows
enhancement, but it is often a challenge in the central zone to distinguish lesions from pro-
statitis or benign prostatic hyperplasia. In addition, it has more specificity than T2 signal but
extends the post-processing time [49,50]. MR findings can also be expressed by the Prostate
Imaging Reporting and Data System (PI-RADS) score. PI-RADS has been released by a
consensus of American College of Radiology, European Society of Urogenital Radiology,
and AdMeTech Foundation experts to address and homologate the diagnosis likelihood
of clinically significant cancer from MR findings. The latest revision (PI-RADS 2.1) was re-
leased in 2019 [51,52] and its clinical use is supported by the literature [53], but the necessity
of a more precise assessment has led to the introduction of nomograms to integrate clinical,
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biological, and imaging data to improve diagnosis performance [54]. PI-RADS scoring has
a good correlation with malignant prostate findings and thus with the Gleason score. This
latter recognizes a primary and a secondary pattern, as well as five sub-patterns in each.
The sum of the two patterns provides the Gleason score, which has prognostic significance.
Patients with a low Gleason score do well clinically, whereas patients with a high score do
poorly. Figure 2 provides a representative example of MR findings in a PC patient.
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Figure 2. MR of a peripheral left lobe PC. T2 weighted sequence (A) shows an area of hyperintensity
in the left lobe. This finding is confirmed on apparent diffusion coefficient sequences (B). DWI
sequence (C) reveals hyperintensity in the lesion area.

3.3. Magnetic Resonance Spectroscopy

Some metabolites such as choline citrate or choline creatine are increased in PC
cells [55] and their levels can be evaluated by MR spectroscopy. The multiparametric
techniques have been increasingly used in the assessment of prostate malignancy with MR
but some issues have emerged with the use of powerful magnets, such as radiofrequency
field dis-homogeneity and high local specific absorption rates, that may increase local heat-
ing into the body tissues and give rise to safety concerns [56,57]. While T1-weighted images
can better describe lymphadenopathy, MR spectroscopy associated with fast T2-weighted
imaging is a promising technology for the detection of primary disease [57]. The prostate
physiologically produces citrate from the peripheral zone while PC cells do not [58]. Thus,
citrate and polyamine levels are high and choline levels low in normal prostatic tissue while
they have inverted concentrations in PC [59]. MR spectroscopy is definitely a powerful
instrument and can be a game changer in border-line patients [60], but a standardization of
findings is needed as inter-operator variability can affect medical report repeatability.

3.4. Computed Tomograhy

CT of the abdomen and pelvis and whole-body bone scans remain the standard
of care for the detection of visceral, nodal, and bone metastasis. CT is not perfect at
detecting in situ PC, and abdomen and pelvis scans are commonly used to finalize radiation
therapy planning. In advanced PC, a CT is used for staging purpose, to detect metastatic
lymph nodes in pelvis and the retroperitoneal space, hydronephrosis, and osteoblastic
metastases [61].

4. Nuclear Medicine Imaging
4.1. Planar Scintigraphy and Single-Photon Emission Computed Tomography

Bone scintigraphy with planar and single-photon emission computed tomography
(SPECT) imaging can detect high uptake of 99mTc-methylenediphosphonate (99mTc-MDP)
as result of the bone metabolism. It is not a tumor-specific tracer; in fact, its uptake is
higher at bone repair loci where bone metastasis can be located. PC bone metastases are
osteoblastic; hence a bone scan can detect them as hot spots or localized accumulation [62].
Currently, bone scintigraphy is one of the first-line imaging techniques for staging and
follow-up of PC bone metastasis, but the classical approach is only qualitative with low
specificity. Some software-based indexes have been proposed to optimize bone scintigraphy
medical reports [63–66]. The recent introduction of prostate-specific membrane antigen
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(PSMA) ligands has the potential to rapidly supersede bone scans with 99mTc-MDP [67]
when they have been demonstrated to be a cost-efficient imaging modality.

4.2. Choline

In the 90s, choline was proposed as a positron emission tomography (PET) radio-
tracer for tumor detection with low urinary excretion [68]. Tumor cells need choline to
make phosphatidylcholine and other choline-derived membrane constituents. Biochemical
analyses have demonstrated that choline kinase activity is increased in tumor cells [69,70].
18F-choline PET/CT can be a good tool in PC patients at a high risk of extracapsular dis-
ease and before surgery to exclude distant metastases [71] but it has demonstrated low
sensitivity, despite good specificity, in the evaluation of nodal localization [72]. 18F-choline
PET/CT is also characterized by high detection rate of local and distant recurrence post
initial treatment of PC [73,74]. 11C-choline is a valuable radiotracer, especially in bone
metastasis assessment. 11C has a higher positron energy than 18F (390 vs. 252 MeV) and
longer positron range (1.27 vs. 0.66 mm), which is in theory a disadvantage for image
quality [75], but probably can be useful in a dense stroma like bone. 11C-choline PET/CT
PC detection performance varies, as reported in numerous studies [76–79]. This is probably
due to the heterogeneity of patient samples regarding PSA level, staging, and castration
therapy. As proposed by some authors, PSA measurement is involved in the detection rate
of PC recurrence by 11C-choline PET/CT [76,80,81]; in particular, PSA doubling time and
PSA velocity are predictors for pathological PET scan findings. Figures 3 and 4 illustrate
18F-choline PET/CT and PET/MR imaging findings in patients with PC.
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on high b value DWI (B). 18F-choline PET/CT images (C,D) show increased tracer uptake in the right
posterior area of the prostate gland. Maximum intensity projection (E) 18F-choline PET images.

4.3. Prostate-Specific Membrane Antigen

PSMA is a type II membrane glycoprotein that activates the protein kinase B pathway [82].
It has been proposed as PC marker because it is expressed at very high levels in PC cells
but at lower levels also in normal prostate tissue, in the peripheral and central nervous
system, in the bowel, and in the salivary glands [83]. Nevertheless, PSMA imaging has not
demonstrated uptake in spinal cords without PC localization, and thanks to the blood–brain
barrier, PSMA brain uptake has not been seen [84]. PSMA expression in the gastrointestinal
tract is responsible for hydrolysis of poly-glutamate folates contained in foods. Folate
is then transported into enterocytes and then to the liver [85]. PSMA is also known as
folate hydrolase 1 and is involved in folate uptake; its substratum, however, can change
in different tissues, for instance, malignant neo-vasculature [85–87]. The role of PSMA in
carcinogenesis has been widely debated. Probably its overexpression can alter the G2/M
cell cycle, eliciting aneuploidy [88]. Folates provide activation of the protein kinase B
pathway in vitro and PSMA overexpression has been observed in more aggressive PC [82].
Given high PSMA expression in aggressive PC, patients probably must be careful about
dietary habits [89]. The evolution of theragnostics from the first released cancer-specific
antibodies to current tracers that can heal cancer with targeted radionuclide administration
sparing normal tissues can be considered exceptional. Considering PSMA as a target for
theragnostic purposes has been a natural consequence. 111In-capromab pendetide, a mouse
monoclonal antibody marked with 111In, was the first tracer for PSMA SPECT imaging in PC
patients; however, it was not perfect [90]. PSMA targeting has evolved with the introduction
of a group of low-molecular-weight ligands (MIP-1095, MIP-1404, PSMA-11/617/1007,
Piflufolastat, PSMA I&T) marked with 18F and 131I for imaging and therapy purposes,
respectively, and has been studied in several US trials. In particular, PSMA can be labelled
with 68Ga or 18F for PET/CT imaging. While 18F has better physics characteristics than
68Ga due to its lower positron range (2 mm vs. 3.5 mm), 68Ga and 18F have demonstrated
similar performance in malignancy detection [91]. Nevertheless, 18F-PSMA seems to be
sightly linked to potential false-positive findings, especially in bone tissue [92,93]. The role
of PSMA-targeted imaging in initial staging and re-staging of PC has been proven as an
effective option. CT, MR, and bone scans lack sensitivity and specificity for detecting occult
metastatic disease, in particular in the case of low PSA values [11]. When compared to
radio-labelled choline, PSMA imaging shows its strength in early PC recurrence detection,
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with PSA blood dosage lower than 1 ng/mL [94,95]. In addition, PSMA PET/CT imaging
can better estimate PC tumor burden [96]. Figure 5 demonstrates the clear superiority of
68Ga-PSMA PET/CT over bone scan scintigraphy with 99mTc-MDP. Recently, the European
Association of Nuclear Medicine and the Society of Nuclear Medicine and Molecular
Imaging published the second release of their procedure guidelines for PC imaging [97].
This joint venture updated the specific PET/CT indications for PSMA ligands that include
the initial staging of intermediate–high risk PC, the localization of metastasis in biochemical
recurrent or persistent PC, especially when other imaging methods have failed, and staging
and re-staging prior to and after radioligand therapy of PC [97]. This statement is confirmed
by several PC-specific guidelines such as those of the European Association of Urology,
European Society for Medical Oncology, National Comprehensive Cancer Network; and
American Society of Clinical Oncology [3,15,38,98]. Their high sensitivity and specificity
can be exploited by further improving MR-guided biopsy with multimodal imaging offered
by PET/MR, as proposed by the study by Ferraro and coworkers [99]. PSMA ligand
PET/TC needs some education in interpretation of uptake foci. Inflammation and infection,
salivary glands, ganglia (stellate and celiac), gall bladder, and all kinds of prostate pathology
can be associated with an increased PSMA uptake, whereby it can mimic a malignancy
localization [100]. To address this issue, PSMA-RADS Version 1.0 [101] and Prostate Cancer
Molecular Imaging Standardized Evaluation (PROMISE) criteria have been developed and
are currently evolving with clinical experience and technological advancement [102].
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Figure 5. 68Ga-PSMA PET/CT imaging in a patient with PC. Co-registered CT (A) shows hyper-
dense area in the left iliac bone with no evidence of focal uptake of 68Ga-PSMA on fused images (B).
99mTc-MDP bone scan anterior and posterior projection (C,D) shows normal tracer distribution.

4.4. Piflufolastat

Among PSMA ligands boasting high affinity for their extracellular domain, piflufo-
lastat labeled with 18F (18F-DCFPyL) has been extensively investigated, demonstrating
superior performance for the staging and re-staging of PC over traditional imaging modal-
ities in the OSPREY and CONDOR clinical trials [103,104]. Szabo and coworkers [105]
were the first to prospectively evaluate 18F-DCFPyL in nine hormone-naïve and castration-
resistant PC (crPC) patients with metastatic evolution confirmed by histological examina-
tion. Dosimetric evaluation revealed that the kidneys adsorbed the highest dose, followed
by the bladder wall, submandibular glands, and liver, with a distribution pattern similar
to 18F-FDG, while physiological bio-distribution was seen in the liver, spleen, kidneys,
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the lacrimal and salivary glands, and the small bowel. Jansen et al. [106] reported high
repeatability of both lesion detection rate and uptake in 12 patients with PC. Parameters
such as volume and standardized uptake values showed better accuracy with 18F-DCFPyL,
particularly for lymph node localization. If changes in semi-quantitative parameters are
recorded between baseline and follow-up 18F-DCFPyL PET/CT, the reader is confident
that such findings are not caused by uptake variability, suggesting that this compound may
be a reliable image biomarker for response assessment [107]. Li et al. [108] also reported on
variability in normal organ uptake using 18F-DCFPyL and demonstrated less variability
in normal liver relative to other organs. Of note, the variability was even lower when
compared to liver uptake using 18F-FDG (coefficient of variation, 18F-DCFPyL, 13.8–14.5%
vs. 18F-FDG, 21–23%) [108,109]. In addition, a recent study investigated whether uptake in
normal organs correlates with higher tumor burden [106]. Of note, in patients with high
18F-DCFPyL uptake metastatic volume, the tumor sink effect was minimal. However, it
should be considered that inter-patient and intra-patient factors may impact the intrin-
sic organ variability [110]. However, dosimetry for PSMA-targeted radioligand therapy
could be further improved and PET protocols could be better refined to enhance tracer
uptake in putative sites of disease. A recent randomized phase 2 research clinical trial
(ORIOLE) underlined the potential role of PSMA-targeted radioligand PET in directing
and enhancing the therapeutic efficiency of metastatic-directed therapy administered by
radionuclide therapy, and demonstrated that individuals with total consolidation of disease
detectable by PSMA-targeted PET-CT were associated with lower risk of new metastases at
6 months [111]. This work serves as an excellent example of the crucial function that PSMA
imaging plays.

4.5. Fluciclovine
18F-fluciclovine is an amino-acid analogue that takes advantage of the increased

energy demand of PC and acts as a radiotracer when labeled with 18F. It is taken in to
the cells by facilitated transport, in particular by alanine-serine-cysteine transporter and
L-type amino acid 1 transporter [112–114]. The US Food and Drug Administration and the
European Medicines Agency approved 18F-fluciclovine as a PET radiotracer in men with
PC with biochemical recurrence after radical prostatectomy or radiotherapy [113]. Uptake
is normally high in the liver and pancreas, while the salivary glands, pituitary, lymphoid
tissue of Waldeyer’s ring, thyroid, breast parenchyma, esophagus, stomach, adrenal glands,
bowel, and renal parenchyma show lower distribution. Although it has been shown
that urinary excretion is low, and it offers high contrast for primary PC detection, some
studies have demonstrated that 18F-fluciclovine PET cannot independently characterize
primary lesions requiring integration with multiparametric MR findings [115,116], so 18F-
fluciclovine cannot be used for PC staging. PC recurrence identification, especially in the
pelvis, is the most promising field of use of 18F-fluciclovine in the near future [117].The role
of 18F-fluciclovine PET/CT in PC patients with biochemical recurrence after curative-intent
primary therapy has been studied by the LOCATE (NCT02680041) [118] and FALCON
(NCT02578940) [119] trials. They found that this tracer could lead to the most appropriate
treatment approach by determining the tumor burden and location linked to biochemical
recurrence. In addition,18F-fluciclovine has demonstrated a superior recurrence detection
performance over 18F-choline PET/CT, especially in patients with blood PSA level inferior
to 1 ng/mL [120–123]. So, this radiolabeled compound can be considered to assess earlier
PC recurrency, with a possible advantage in clinical management and prognosis. However,
18F-choline PET/CT performance does not seems to be superior to the more accessible
radiolabeled PSMA PET/CT in recurrence detection far from the bladder [124,125].

4.6. Fluorodeoxyglucose
18F-fluorodeoxyglucose (FDG) is the first radiotracer utilized for human brain PET and

still is the radiotracer of choice in several PET/CT oncologic applications. 18F-FDG is rapidly
captured from plasma by cells, and then the 18F-FDG takes advantage of the Warburg effect
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and is phosphorylated to prevent further metabolism and blood recirculation [126]. 18F-
FDG is excreted by the kidneys, concentrated in urine and the bladder. Prostate proximity
to the bladder limits the utility of 18F-FDG PET/TC in primary PC definition [127]. It
should be also be taken into consideration that bone scan scintigraphy can be superior
to 18F-FDG PET/TC for the definition of bone metastasis [128–130]. A potential role of
18F-FDG PET/TC is as a technique of evaluating mismatches in 18F-FDG and prostate-
specific tracers PET/TC as an index of cancer de-differentiation with negative prognostic
connotation [131,132]. In particular, when PC has become castration-resistant, PSA cannot
be considered the best indicator of response to therapy, due to the increase in cancer cell
heterogeneity with the presence of PSA-producing and nonproducing cells and the presence
of flare phenomena as a result of therapy response. When PC progresses, despite therapy,
PSMA uptake may decrease along with an increase in 18F-FDG uptake, according to the
“flip flop” phenomenon [133]. In this scenario, 18F-FDG can be used parallel to PSMA
PET/TC and therapy plans can be changed according to PET findings, in order to monitor
and treat tumor de-differentiation, if possible [134].

4.7. Hetero-Bivalent Agents Targeting Gastrin-Releasing Peptide Receptor or Fibroblast Activation
Protein Inhibitor and PSMA

Gastrin-releasing peptide receptor (GRPR) belongs to the bombesin family, and its
concentration is highest in the pancreas. Low levels of GRPR are expressed in the bowel and,
interestingly, in benign prostate tissue [135]. GRPR is involved in intestinal smooth muscle
contraction and increases cancer cell proliferation [136,137]. Over-expression has been
observed in PC, but also in breast, lung, head and neck, pancreatic cancers, and malignant
brain tumors [138,139]. Radiopharmaceutical engineering has investigated ligands that can
target either PSMA or GRPR to improve PC theragnostics. Clinical application is linked to
single target expression homogeneity. Heterogeneity of expression of the two targets has
been explored by studies of the binding of 68Ga-Ga-RM2 and 68Ga-Ga-PSMA-11 to their
ligands in biochemically recurrent PC [140]. Large areas of negative PSMA expression can
be found in primary tumors or metastases, independently of the Gleason score, histological
class, and metastasis sites [141]. So, targeting both GRPR and PSMA could be an advantage.
On the other hand, PET/CT imaging with radiolabeled fibroblast activation protein (FAP)
inhibitor has been proposed in various diseases, including PC. This protein is a serine
peptidase expressed in the cell membrane that can be upregulated in activated fibroblasts
at wounds, inflammatory sites, and in cancer tissue. Quinoline-based PET tracers acting
as FAP inhibitors can accurately detect cancer-activated fibroblasts, demonstrating clear
tumor imaging when labeled with 68Ga [142–145].

Table 1 summarizes the available tracers for PET/TC imaging in patients with PC.

Table 1. Available tracers for PET/TC prostate cancer imaging.

Compound Physiological Uptake Target Benefits Drawbacks

18F-Choline and
11C-Choline

Liver, spleen, pancreas,
kidneys, adrenal
glands, salivary glands,
bowel, and
bone marrow

Choline kinase activity:
upregulated in PC cells,
especially metastatic
cells, but also seen in
other cancer cells

- Role in BCR, especially
extraprostatic disease

- Renal excretion which
may limit detection of
disease in
retroperitoneum and
pelvis, especially
with 18F-choline

- Short half-life of
11C-choline limits it to
in-site cyclotron
production

- Limited role in
primary staging

- PSA-dependent
(>1.4 ng/mL)

- ADT may impact
detection of disease
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Table 1. Cont.

Compound Physiological Uptake Target Benefits Drawbacks

18F-Fluciclovine

Liver, pancreas, lung,
red bone marrow, and
myocardium, and with
increasing time there
is uptake in
skeletal muscle

Amino acid
transporters:
upregulated in PC but
also expressed in a
wide variety of cancers.

- No significant
renal excretion

- Short uptake time
(4–10 min)

- Role in BCR, especially
extraprostatic disease

- Significant bone marrow
uptake which may limit
detection of
bone metastases

- ADT may impact
detection of disease

68Ga-Prostate-Specific
Membrane Antigen and
18F-Prostate-Specific
Membrane Antigen

Kidneys, salivary
glands, gastrointestinal
tract, lacrimal, thyroid,
adrenal, prostate
glands, blood pool,
vertebral bone marrow,
and testes

PSMA: transmembrane
glycoprotein with
folate hydrolase
activity, produced
primarily in cell
membranes of prostate
epithelial cells with
upregulation in PC

- Role in BCR and
primary staging (in
unfavorable
intermediate and
high-risk PC patients),
superior to conventional
imaging in detection of
extraprostatic disease,
especially nodes.

- Superior detection of
extraprostatic disease in
BCR compared to
choline and
Fluciclovine PET

- ADT improves the
detection of disease

- Limited role in
primary staging

- PSA-dependent
(>1.4 ng/mL)

- Renal excretion, which
may limit diagnosis of
disease in
retroperitoneum
and pelvis

- Cyclotron produced,
which limits availability

- PSA-dependent
(>0.2 ng/mL)

18F-Pifluflolastat

Lacrimal glands,
salivary glands, liver,
spleen, small intestine,
and kidneys

PSMA: folate hydrolase
transmembrane
glycoprotein, expressed
primarily in cell
membranes of prostate
epithelial cells with
upregulation in PC

- Role in BCR and
primary staging (in
unfavorable
intermediate- and
high-risk PC)

- Extremely low renal
excretion

- ADT use may increase
detection of disease

- 18F is extensively
available

- Significant liver uptake,
which may lower the
detection of metastatic
disease but not
common localization

- PSA-dependent
(>0.2 ng/mL)

18F-Fluorodeoxyglucose

Central nervous
system, liver,
spleen, kidneys,
bladder, bowel

Takes advantage of the
Warburg effect in
cancer cells

- High sensitivity

- High urinary
system uptake

- Low specificity, cannot
differentiate neoplastic
or inflammatory uptake

ADT: Androgen Deprivation Therapy, BCR: Biochemical Cancer Recurrency, PSA: Prostate-Specific Antigen.

5. Radioactive Therapy of PC Bone Metastasis

PC can metastasize to bones, especially in advanced stages. Several targeted bone
radioactive isotopes, such as 186Re, 89Sr, and 153Sm, were firstly introduced into clinical use
for treatment of bone metastasis; then they were superseded by 223Ra, an α-emitter, and
reserved for palliation therapy in selected patients. The ALSYMPCA trial [113,114,146] was
a phase 3 trial that demonstrated that 223Ra, an α-emitter, can improve crPC patients’ over-
all survival compared with placebo and it is well-tolerated. The National Comprehensive
Cancer Network also showed first-line use of 223Ra for symptomatic bone PC metasta-
sis or bone-predominant disease after chemotherapy in the case of absence of visceral
metastases [147]. Bone scintigraphy and 18F-fluorocholine PET/CT can help physicians to
predict 223Ra treatment response. A moderate burden of disease is a good predictor of good
response to 223Ra [148]. Nevertheless, 223Ra has inherent limits because of its restriction
to metastatic bone disease uptake. The therapeutic performance of 223Ra treatment has
been proved by several studies that demonstrate an increase in overall survival and quality
of life, along with an excellent safety profile, especially when introduced earlier into the
treatment iteration [149–151].
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6. Radioligand Therapy of Advanced Prostate Cancer

The main actors on the ground for a promising novel approach to treat PC are 177Lu
and 225Ac [152]. 177Lu is a widely used radioisotope for targeted cancer radiotherapy
with a half-life of 6.7 days, emitting both beta particles with an energy of 490 KeV and a
therapeutic range of 0.7 to 2.1 mm and gamma rays (112.9 and 208.4 KeV peaks) [153–156].
225Ac is an alpha emitter (energies ranging from 5.8 to 8.4 MeV) with a half-life of 9.9 days
and a very short tissue range (47 to 85 µm) [157]. 225Ac can be considered the natural
alpha-emitting counterpart to 177Lu because of its similar radiolabeling characteristics.
Alpha emitters have a clear advantage over beta emitters in cancer cell destruction. They
can provoke very efficient double-strand DNA damage, cell cycle arrest; and micronu-
clei formation, leading ultimately to cell death. Current research suggests that treating
the primary tumor or metastases with radionuclides may improve survival in carefully
chosen patients with low-volume metastatic PC [158]. However, visceral localization and
high alkaline phosphatase are negative predictors of response to 177Lu ligand therapy.
On the other hand, the onset of high-grade hematotoxicity (anemia, thrombocytopenia,
and leukopenia) should be taken into account [159,160]. Although 177Lu-PSMA treatment
produced an impressive response for pre-treated patients, 40% of PC patients did not
respond [161]. Kratochwil et al. [161] tested 225Ac-PSMA therapy in strongly pre-treated
crPC patients and realized that α-emitters can be more effective than β-emitters. Moreover,
α-emitters can have an edge over β-emitters in the case of bone diffused disease, acting as
a super-scan for nuclear medicine imaging and sparing bone marrow thanks to low tissue
penetration. The VISION phase 3 trial of targeted radioligand therapy including 831 pa-
tients demonstrated that radionuclide therapy with 177Lu-PSMA extended imaging-based
progression-free survival (8.7 vs. 3.4 months) and overall survival (15.3 vs. 11.3 months)
when added to standard care in patients with metastatic crPC [162]. TheraP, a phase 2
study, compared 177Lu-PSMA to chemotherapy in two hundred men [163]. Prostate-specific
antigen (PSA) levels, which usually increase with cancer growth, were monitored. 177Lu-
PSMA treatment made PSA levels fall by half and, according to the VISION trial, a longer
delay of cancer progression was found, confirmed by conventional imaging. 177Lu-PSMA
was generally well-tolerated, but it also had side effects including fatigue, nausea, kid-
ney complications, and bone marrow suppression. The safety, kinetics, and dosimetry of
177Lu-PSMA have been evaluated on a large cohort of patients, demonstrating favorable
safety in metastatic crPC patients [164]. The highest absorbed doses among healthy organs
were observed for the lacrimal and parotid glands, still not resulting in any significant
clinical side effects. Given the encouraging clinical trial results, the European Association
of Nuclear Medicine guidelines stated that 177Lu-PSMA therapy can be administered when
chemotherapy or new androgen-axis compounds therapies have failed, in metastatic crPC
with documented PSMA uptake, still with therapeutic purposes rather than with the aim
of palliation [165]. However, the safety and efficacy of 177Lu-PSMA have suggested po-
tential earlier use in PC [166,167]. Some studies have suggested the possibility of early
adoption of 177Lu-PSMA therapy, taking advantage of better initial conditions of crPC
patients, naïve to chemotherapy, or prior to surgery. [168,169]. However, resistance can
occur sometimes. In the LuPIN trial [170], the combination of 177Lu-PSMA with NOX66, a
flavonoid derivate that activates the mitochondrial caspase system, has been evaluated in
end-stage patients, while a 177Lu-PSMA combination with abiraterone has been tested in a
different sub-trial [171]. 177Lu-PSMA can prolong PC patients’ survival, but cannot always
inhibit progression, usually to bone but also to liver [155]. In the AlphaBet trial, 223Ra
has been combined with 177Lu-PSMA in order to treat pre-clinical bone micrometastasis
and possibly prevent progression to bone, also taking into account that low bone marrow
irradiation is a challenge [172]. Drug combinations can be considered as salvage therapies
when a single drug fails, but a multimodal approach can also be used. External beam
radiation and 177Lu-PSMA combined therapy can be considered as an option, but criticality
may emerge from the dosimetric point of view [173]. 177Lu-PSMA therapy is a reliable
option for men with metastatic crPC, but should also have utility in less advanced PC.
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For now, 177Lu-PSMA and 225Ac-labeled PSMA are reserved to PC patients after failure
of all approved therapies, and generally a limited life expectancy is anticipated; this can
affect the duration of possible side effects as well. Some authors have investigated the
possible synergic therapeutic effect of 225Ac-PSMA after previous administration of 177Lu-
PSMA. A recent meta-analysis highlights the possible development of cancer resistance
as a drawback of a previous exposure to 177Lu [174]. Other authors tried a simultaneous
administration of 177Lu-PSMA and 225Ac-PSMA in late-stage crPC patients to enhance the
response rate [175,176].The PSMA determinant is physiologically expressed in the salivary
glands by acinar and ductal cells. A risk of salivary gland toxicity in the case of administra-
tion of alpha-emitter radiolabeled PSMA is possible [177]. A risk-to-reward ratio should be
evaluated to determine the eligibility criteria of PC patients, the isotope of choice, and the
optimal therapy to be administered. Earlier α-therapy administration should be carried
out in the context of prospective studies to reduce the treatment administered according to
optimal therapeutic efficacy. Therapeutic window optimization will be a strong argument
for a more controlled and systematic assessment of radioligand therapy.

7. Conclusions and Future Perspectives

Promising compounds labelling radionuclides are ready to deal with the limitations
of the first released theragnostic radioligands. Salivary gland toxicity is a major challenge
because it is frequent and can be irreversible. The PSMA uptake mechanism in the salivary
glands is not clear, but some strategies to decrease accumulation are currently available.
Nevertheless, long-term salivary gland toxicity needs to be investigated. A recent pilot
study investigated the use of cold DCFPyL instillation into the salivary glands in order
to decrease salivary uptake, mitigating xerostomia in patients scheduled for radioligand
therapy [178]. Numerous studies have recently evaluated the application of Cu as PET/TC
radiotracer in oncology because of its capacity to act as diagnostic and theragnostic ra-
diotracer. It can produce β+ emissions and high-resolution PET images, while β and
Auger electrons emission are suitable for targeted radiotherapy. The production of 64Cu is
convenient: due to its long half-life, it can be produced by a single center and distributed to
several PET centers, even if far away. Cu is essential for multiple biological functions, such
as cellular respiration, redox reactions, cellular adhesion, and connective tissue synthesis.
High serum Cu levels have been found in some tumors, and a correlation with disease
stage has been demonstrated [179]. 64CuCl2 as a PET tracer in PC has been explored in
few studies. Capasso et al. [180] compared 64CuCl2 PET/CT with multiparametric MR for
staging purpose. The detection rate for primary tumors was similar, and the radiotracer
had no urinary excretion and no side effects. Piccardo et al. [181] studied 50 patients with
biochemical relapse with 64CuCl2 PET/CT, 18F-Choline PET/CT, and MR. They found
that 64CuCl2 PET/CT was better than 18F-Choline PET/CT and multiparametric MR in
metastatic detection. A high liver uptake was observed, but no organ-specific toxicity was
detected. From a theragnostic point of view, the potential of 64CuCl2 in PC has only been
evaluated in an in vitro setting. PSMA-directed molecular imaging is currently evolving
through machine-learning approaches. Leung et al. described an automated deep-learning
method comparing conventional and semi-automated thresholding-based methods for
18F-DCFPyL PET/CT evaluation in 207 patients [182]. They found that a deep-learning
approach can help with more accurate segmentation and can lead to better therapy moni-
toring and future care planning. Machine learning and radiomics are emerging topics in
clinical imaging. It can extract multiple features from pathological findings and potentially
define new markers of disease [183–185]. Radiomics has the potential to further increase
the value of imaging in PC management; nevertheless, its introduction into current clinical
practice is full of questions, as emphasized by several radiomic studies [186–189]. Several
approaches have been proposed and standardization is the major issue.

Recently, a new beta emitter, 161Tb (half-life = 6.89 days; Eβav = 154 keV), has been
proposed as a potential player in the radio-theragnostic playground in various types of can-
cer, including PC. Labeled with PSMA, it seems to have a better emission profile than 177Lu
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regarding adsorbed dose, because of its rich Auger electron emission rate [190,191]. Among
alpha emitters, 212Pb and 213Bi with a short half-life (10.64 h and 1 h, respectively) [192],
227Th (half-life 18.7 days), and 211At (half-life 7.2 h) are promising radioisotopes. In par-
ticular, 211At provides a better biodistribution and strong labelling of PSMA, decreasing
the dose delivered to non-targeted tissue, especially in regard to the salivary glands [193].
Furthermore, 211At production cost is considerably lower than other alpha emitters, re-
sulting in a clear advantage for future application [194]. However, dosimetry remains
the main challenge, requiring a robust body of investigation to optimize the potential of
PSMA theragnostics.
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