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The aim of the present paper is to investigate the fluid dynamic evolution of a circular cylinder wake
controlled by a synthetic jet (SJ) to reduce the related aerodynamic drag via Particle Image Velocimetry
(PIV).

In the field of flow manipulation, the control of the wake of bluff bodies, characterized by vortex shed-
ding phenomena, has a great relevance due to its importance in several engineering applications. Many
strategies have been adopted by researchers to pursue this aim and categorized into two main groups: pas-
sive and active flow control. The latter group includes SJ actuators which have been proven as an efficient
flow control technique thanks to their advantageous features, such as reduced size and weight, improved
manufacturability, low cost and high reliability, as reported also by |Greco et al.|(2020). Several works (e.g.,
Feng and Wang| 2010) explored the possibility to improve the performance of synthetic jets varying the
input signal shape, however in these works the signal was defined in a parametric way (sinusoidal signals
with varying suction duty cycle were investigated).

In the present study, Machine Learning (ML) algorithms, in particular Genetic Programming, are used
to overcome the limitations inherent to the assumption of a parametric waveshape and to find the optimal
waveshape of the input signal for the drag reduction of the cylinder body.

The experiments are carried out in a subsonic open circuit wind tunnel with a rectangular test section of
300 mm x 400 mm and a low turbulence intensity level (0.1 %). The test body is a hollow cylinder, whose
inner and outer diameters are 24 and 30 mm, coupled with a loudspeaker driven by an electrical signal which
is generated using a wave generator coupled with a four-channel power amplifier. Thanks to the oscillation
of the loudspeaker, the fluid is periodically ejected and sucked from a slot placed on the cylinder surface at
the rear stagnation point, generating the synthetic jet. The cylinder aerodynamic drag is measured by two
LAUMAS single point load cells, located at the basis of the cylinder, whose output signals are amplified and
then acquired through a LAUMAS TBL4 RS485 weight transmitter. The wind tunnel facility is equipped
with a planar PIV system used to carry out velocity measurements of the wake in a plane orthogonal to the
cylinder axis. Such a system consists of a Quantel Evergreen laser (Nd-YAG, 200 mJ/pulse) and an Andor
Zyla 5.5 mega-pixels sSCMOS camera equipped with a 50 mm focal length lens, thus obtaining a resolution
of 24.85 pixel mm~'. The flow is seeded with oil droplets, generated by a Laskin nozzle, having a nominal
diameter of 1 pm and the wind tunnel is operated at a free-stream velocity of 10.4 m/s, as also measured by
PIV.

The gradient-enriched machine learning control (gMLC) algorithm developed by Maceda et al.| (2021)
is used to find the best open-loop control law in terms of the input voltage signal. This algorithm is based
on a Genetic Programming framework to build control laws starting from a selected library of analytical
functions, which are evolved through genetic operations. The minimum of the objective function is found
via a downhill simplex method. In the present case, in a first analysis, the starting population of analytical
functions consists of 12 sine and cosine functions and the algorithm combines these laws using several
operations (sum, difference and multiplication) and mathematical operators (sine and cosine). Figure
illustrates the learning process of gMLC algorithm for the aerodynamic drag reduction of a circular cylinder
by reporting the trend of the cost function with respect to the number of tested individuals (left panel) and
the optimal waveshape of the voltage input signal (that corresponding to the individual with the minimum
cost) compared to a sinusoidal signal with the same frequency and amplitude. In the present case, the
ML algorithm has found an optimal waveshape exhibiting a non-sinusoidal trend; on the contrary, the best
individual has a shape that resembles more a square wave, still characterized by a duty cycle equal to 50%.

Figure [2] reports the maps of the streamwise-normal components of the Reynolds stress tensor for three
configurations analyzed via PIV measurements: the uncontrolled one, the reference sinusoidal waveshape
and the ML-based. High values of Reynolds stresses can be observed along the shear layers, in the vortex
core region of the time-average von Karman vortices for the uncontrolled case and along the centreline



1.02¢ 5 ; ; ‘ i 1 T T
xq o P e . Monte Carlo
oo . . :
Q 0 0w o o0 8% tem , . e Reflection
S 15 %n‘%%?" ;g. oo 0; '.:. Contraction || — 0.5} ]
| 00000 o‘.“ 2o e e e Expansion =
a % @ Te% ®%, ee * .I.; o Shrink ~
ol .,
@) Ll %9q0 5%%". o " .‘." [ ':0 e Mutation || g)o 0
¥ : ° Ce . ."‘ e S . Crossover S
.. Ch e o o 3
—~ . 'L'. o % See, >
.96 s Voo {:: . o, 1 05¢ 1
bATER L X0
! . oe 3! ¥
1 1 L & -1 )
0.6 0.8 1

0 100 200 300 400 500 0 0.2 0.4
# of Evaluations t/T

Figure 1: Left: Distribution of the costs during the gMLC optimization process; right: waveshape of the
best-individual voltage control law found via the gMLC algorithm (blue curve) compared with the sinusoidal
one (red curve). T is the period of the sinusoidal wave.

where the synthetic jet is issued; in this region, a peak for the streamwise-normal Reynolds stresses can be
observed for both the controlled cases. ML-based actuation reports higher values of the normal Reynolds
stresses in the shear layers and at the rear stagnation point with respect to the sine controlled actuation and
this implies a better suppression of vortex shedding phenomenon.
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Figure 2: Dimensionless streamwise-normal Reynolds stress maps for: (a) baseline case, (b) controlled
configuration with sinusoidal waveshape, (c) controlled configuration found via gMLC algorithm.

This study demonstrates the effectiveness of the synthetic jet in controlling the von Kérman Street when
applied in the cylinder rear stagnation point. The optimization procedure allowed to identify an optimal
waveshape found via gMLC algorithm able to reduce efficiently the aerodynamic drag with respect to nat-
ural case better than the sinusoidal conteurpart. In fact, the gMLC control law leads to a percentage drag
reduction with respect to the uncontrolled configuration /= 1.25 times greater than the sinusoidal control law.
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