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Abstract
Complex network data structures are considered to capture the richness of social phe-
nomena and real-life data settings. Multipartite networks are an example in which
various scenarios are represented by different types of relations, actors, or modes.
Within this context, the present contribution aims at discussing an analytic strategy
for simplifying multipartite networks in which different sets of nodes are linked. By
considering the connection of multimode networks and hypergraphs as theoretical
concepts, a three-step procedure is introduced to simplify, normalize, and filter net-
work data structures. Thus, a model-based approach is introduced for derived bipartite
weighted networks in order to extract statistically significant links. The usefulness of
the strategy is demonstrated in handling two application fields, that is, intranational stu-
dent mobility in higher education and research collaboration in European framework
programs. Finally, both examples are explored using community detection algorithms
to determine the presence of groups by mixing up different modes.
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1 Introduction

In recent years, the use of complex networks to capture the richness of social phe-
nomena has become more frequent, going beyond traditional statistical techniques
focused on attribute variables. Multipartite networks are an example of such a data
structure in which a multitude of scenarios are represented with different modes or
nodes and types of relations, such as multilayer (Interdonato et al. 2020; Magnani and
Wasserman 2017; Dickison et al. 2016; Kivelä et al. 2014; Batagelj et al. 2007), mul-
tiplex (Genova et al. 2022; Giordano et al. 2019; Bródka et al. 2018), multilevel (Zhu
et al. 2016), and multimode networks (Everett and Borgatti 2019; Borgatti and Everett
1992), and various temporal snapshots in a longitudinal perspective (Boccaletti et al.
2014). Network data can be enrichedwith additional features, such as nodes’ attributes
(Giordano and Vitale 2011) and links’ weights (Menichetti et al. 2014), with the aim
of describing real-life phenomena in more detail.

To the best of our knowledge, few papers have been devoted to the analysis of
multimode networks representing a generalization of the conceptual basis and the
matrix formalism of two-mode networks and bipartite graphs. In Fararo and Doreian
(1984) seminal paper, a tripartite network (a special case of a multimode network) is
defined as consisting of three types of nodes, and ties are present only between nodes
of distinct types. This structure can be extended to any number of modes, which gives
rise to multimode networks (Everett and Borgatti 2019).

In this scenario, the present contribution aims at introducing an analytic strategy
for handling complex networks with a procedure that relies on network simplification,
normalization, and filtering. Specifically, we propose a three-step procedure for the
data processing phase: 1) data simplification, which transforms a multipartite network
into bipartite weighted networks, passing through hypergraphs, without losing any
relevant information; 2) data normalization, which exploits log-linear models (Agresti
2007) to highlight interesting association patterns; and 3) data filtering, which retains
the most significant links through studentized residuals from the log-linear model. The
resulting networks can be examined with network analysis.

Such complex data structures may arise for a variety of systems inmany application
fields, such as in folksonomy (users, texts, tags, and topics; Giordano et al. (2021);
Saoud and Platoš (2018)), bibliographic data (papers, journals, keywords, references)
Batagelj and Cerinšek (2013), and genomic networks (genes, diseases, and patients).
Moving from these scenarios, we exploit the usefulness of the proposed procedure in
two real-life data settings involving higher education institutions in which weighted
directed and undirected graphs are defined for intranational student mobility flows
(Dotti et al. 2014) and scientific collaboration in projects (Garas and Argyrakis 2009),
respectively. The simplified networks for both examples are then analyzed with a flow-
based community detection algorithm (Blöcker and Rosvall 2020; Edler et al. 2017)
that partitions filtered bipartite, directed and undirected, weighted networks.

123



An analytic strategy for data...

This paper is organized as follows. Section2 briefly describes real-data examples
that demonstrate the usefulness and practical implications of the proposed approach.
Section3 reports the definition and the notation of multimode networks and hyper-
graphs. Section4 presents the technical details of the proposed analytic strategy with
the three-step procedure for complex network data processing. Section5 discusses the
results of the proposed strategy applied to the two real-data settings. Section6 reports
the main findings of clustering network algorithms performed on the simplified, nor-
malized, and filtered bipartite weighted networks derived for student mobility and
collaboration data. The last section provides concluding remarks and suggestions for
future research.

2 Description of real-data examples

Intranational mobility networks. Several researchers have reported the factors that
influence students’ decisions to stay in or leave their home province to undertake uni-
versity studies (Prazeres 2013) and consider whether drivers of international student
migration also apply to student mobility within a nation (Findlay et al. 2018). In addi-
tion to the persistence of interregional economic disparities between the South and
the Centre-North in Italy, the relevance of intranational university students’ mobility
is emphasized (Dotti et al. 2014). Student mobility in higher education is worth inves-
tigating due to the peculiar characteristics of the Italian university system (Columbu
et al. 2022; Santelli et al. 2022; Columbu et al. 2021; Genova et al. 2021; Santelli
et al. 2019). This phenomenon follows the traditional South-to-North migration chain
(Genova et al. 2019), as well as the recent North-to-North mobility (Rizzi et al. 2021).
Because of the availability of data at the individual level in the MOBYSU.IT (2016)
database,1 a very wide spectrum of data structures can be derived and further inves-
tigated with network analysis tools: i) directed unipartite weighted networks, with
provinces or universities as nodes and students’ flows as the links’ weights (Columbu
et al. 2022, 2021); ii) bipartite weighted networks, with student flows from the
provinces of origin and the universities of enrollment or the educational programs
(Santelli et al. 2022; Genova et al. 2019); and iii) multiplex unipartite weighted net-
works, with provinces or universities as nodes and the educational programs as layers
(Primerano et al. 2021).
The analysis we report reconstructs multimode networks in which students, regions,
provinces, universities, and educational programs are linked through a set of affiliation
networks generated by different kinds of relations.

Scientific collaboration networks. Scientific collaboration between institutions (uni-
versities, research centers, and private companies) in projects is another area of interest
widely investigated with network science tools. Themain focus is related to the impact
of interregional collaboration flows on knowledge diffusion and innovation captured

1 Data drawn from the “Anagrafe nazionale degli studenti e dei laureati (ANS)" of the Italian Ministry of
University and Research were processed according to the national research project “From high school to the
job market: analysis of the university careers and the university North–South mobility." The MOBYSU.IT
database includes information on students’ demographic characteristics, their high school backgrounds,
and their bachelor and master program choices at university since the 2008–2009 academic year.
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by weighted matrices that show the intensity of exchanges among partners in terms of
multiplex collaborative ties, that is, joint projects, patents, and publications (Meliciani
et al. 2022; Maggioni et al. 2013).
Open data derived from funding schemes provided by the European Framework Pro-
grams (EU-FP7) are often considered to explore the international cooperation networks
of partners that collaborate to address scientific problems. Specifically, researchers
have investigated topological and structural collaboration network patterns, discov-
ering that institutions or countries acting as central hubs in specific thematic areas
(Garas and Argyrakis 2009) and research collaboration networks enter into multilayer
data structures to measure multiple connections between academic and non-academic
actors in higher education institutions (Kosztyán et al. 2021).
In this scenario, the CORDIS2 database (European Commission 2022; Amoroso et al.
2018) consisting of institutions from European Union (EU) and non-EU countries and
several projects funded under the framework programs (FPs) is used to reconstruct
multimode networks in which countries, institutions, framework programs, projects,
and fields represent different modes.

3 Multimode networks and hypergraphs

Formally, a multimode networkM can be conceived of consisting of the pair (V,L).
V is the collection of M set of nodes {Vm}m=1,...,M , with Vm ≡ {vm1 , . . . , vmi , . . . , vmI }
the set of I nodes of the m − th mode. The sets of nodes Vm are mutually disjointed;
that is, m �= m′ ⇒ Vm ∩ Vm′ = ∅.

In the multimode network approach reported by Everett and Borgatti (Everett and
Borgatti 2019), links are defined only between each pair of nodes of different types.
In general, we have M(M−1)

2 affiliation networks describing the binary relationship
between a pair of sets of nodes. Then, the set of links L can be given by the possible
combinations Lm,m′ ⊆ Vm × Vm′

, ∀m �= m′; m,m′ = 1, . . . M . A link (vmi , vm
′

j ) ∈
Lm,m′

, with m �= m′, is an ordered pair that indicates whether vmi , the i-th node of the

m-th mode, is linked to vm
′

j , the j-th node of a different mode m′.
Generalizing the original idea of tripartite graphs (Fararo and Doreian 1984), it is

possible to define a unique adjacency matrix A = (amm′
i j ) given by the combination in

a block matrix of sociomatrixAmm′
corresponding to the two-mode networks Bmm′ =

(Vm,Vm′
,Lm,m′

), with amm′
i j = 1 if (vmi , vm

′
j ) ∈ Lm,m′

, and amm′
i j = 0 if (vmi , vm

′
j ) /∈

Lm,m′
.

For the sake of simplicity, using the intranational mobility network example
described in Sect. 1, we exploit the methodological formalization of the related mul-
timode networks as follows: V1 ≡ S ≡ {s1, . . . , si , . . . , sI } the set of students; V2 ≡
U ≡ {u1, . . . , u j , . . . , uJ } the set of universities; V3 ≡ E ≡ {e1, . . . , ek, . . . , eK } the
2 The Community Research and Development Information Service–CORDIS– is the European Commis-
sion’s primary source of results from the R&D projects funded by the EU’s framework programmes since
1990. It includes details about various research initiatives, grants, and collaborative projects across a wide
range of disciplines –science, technology, and innovation– aswell as projects’ information – title, objectives,
organizations, funding details, and outcomes.
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Fig. 1 Multipartite graph visualization for multimode networks with five modes (A toy example)

set of educational programs; V4 ≡ R ≡ {r1, . . . , rh, . . . , rH } the set of regions; and
V5 ≡ P ≡ {p1, . . . , pc, . . . , pC } the set of provinces. Figure1 shows the multipartite
graph described above.

Although all the bipartite networks express affiliation links, the meaning of the
links differs among the networks. For example, BSU contains the information about
the enrollement of students in universities, while BSR the residence of students in
regions; BRE considers if educational programs are present in regions. The network
BRP reports the information of the list of provinces in each region. Then, some links
are related to the choices of students and to their characteristics, while others are
related to the structure of the Italian university system or geographic information. The
corresponding adjacency matrix A is described as follows:

A =

⎡
⎢⎢⎢⎢⎣

0 ASU ASE ASR ASP
AUS 0 AUE AUR AUP
AES AEU 0 AER AEP
ARS ARU ARE 0 ARP
APS APU APE APR 0

⎤
⎥⎥⎥⎥⎦

.
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3.1 Projectingmultimode networks

As in the case of bipartite and tripartite networks, it is possible to define the projection
of multimode network on one (or more) mode(s).

Let us consider a tripartite network T = (V1,V2,V3,L1,2,3) and project it on one
of the threemodes, say,V3. The result of this projection is aweighted bipartite network,
3B12 = (V1,V2,3 L1,2,W), with 3L1,2 ⊆ V1×V2 and the functionw : 3L1,2 → N, in
which theweights of the linksw(v1i , v

2
j ) = wi j are the numbers of common links inV3

between v1i and v2j . This can be obtained also by considering the networkmultiplication

procedure defined in (Batagelj and Cerinšek 2013), that is, 3B12 = B13 ×B32, which
also corresponds to the affiliation matrices multiplication, 3A12 = A13A32.

Given the tripartite graph T , it is possible to define a double projection, say, on V3

and V2, ending up in one mode (2,3)N 1 = (V1, (2,3)L1,W), with (2,3)L1 ⊆ V1 × V1

and the function w : (2,3)L1 → N, in which the weights of the links w(v1i , v
1
i ′) = wi i ′

are the sums of the weights for the common links between v1i and v1i ′ in bipartite
network 3B12. In such a case, the graph is also directed and has self-loops. In terms of
the network multiplication, we have that (2,3)N 1 = 3B12 × B21 = B13 × B32 × B21,
and in matrix form (2,3)A1 = A13A32A21.

Analogously, we can consider other types of projections in more than two
dimensions. If we consider the multipartite network with four modes Q =
(V1,V2,V3,V4,L1,2,3,4), and its projection on one of the four modes (say, V4), we
get a weighted tripartite 3-uniform hypergraph 4HT 123 = (V1,V2,V3, 4L123,W),
with 4L123 ⊆ V1 × V2 × V3, the collection of hyper-edges, with the generic term
(v1i , v

2
j , v

3
k ) defined as

(v1i , v
2
j , v

3
k ) ∈ 4L123 ⇐⇒ (v1i , v

4
h) ∈ L1,4 ∧ (v2j , v

4
h) ∈ L2,4 ∧ (v3k , v

4
h) ∈ L3,4.

W is the set of weights obtained with the function w : 4L123 → N, and
w(v1i , v

2
j , v

3
k ) = wi jk is the number of common links in V4 among v1i , v2j , and v3k .

This network data structure can be described as a three-way array A = (ai jk), with
ai jk ≡ wi jk , called three-way networks (Batagelj et al. 2007).

In addition, we can define a new kind of projection, namely, the conditional projec-
tion, in which the link in the projection exists if some condition on other links of other
modes is satisfied. Consider a pentapartite network P(V1,V2,V3,V4,V5,L1,2,3,4,5),
and call 4HT 123

|B5m the projection of P into a tripartite hypergraph on V4 by condition-

ing on the presence of the links in the one of the bipartite B5m , m �= 5. The links of
this hypergraph 4L123

|B5m can be defined as follows:

(v1i , v
2
j , v

3
k )|B5m ∈ 4L123

|B5m ⇐⇒ (v1i , v
4
h) ∈ L1,4 ∧ (v2j , v

4
h) ∈ L2,4∧

∧(v3k , v
4
h) ∈ L3,4 ∧ (v5c , v

m
j ) ∈ L5,m .

Returning to our example related to student mobility, we consider only three of
the five modes (students, universities, and regions), and students as the mode for the
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projection, that is, the tripartite network T = (S,U ,R,LS,U ,R). A toy example of T
with six students, three universities and two regions is depicted in Fig. 2 (upper panel).
Projecting the tripartite network, we obtain a weighted bipartite network SBRU =
(R,U , SLR,U ,W), with SLR,U ⊆ R × U and w : SLR,U → N, in which the
weights of the links w(rh, u j ) = wh j are the numbers of students from region rh who
enroll in the university u j . Note that the projection gives rise to new networks in which
the links could have a different meaning with respect to the original ones. In the toy
example, the three universities are connected to the two regions with weights equal to
3, 2, and 1, respectively (Fig. 2, middle panel). Note that the sum of theweights is equal
to the total number of students. If we further project on the universities, we obtain a
one-mode network of regions (S,U)NR = (R, (S,U)LR,W), with S,ULR ⊆ R×R
and the functionw : S,ULR → N, in which the weights of the linksw(rh, rh′) = whh′
are the numbers of students residing region rh enrolled in a university located in region
rh′ . In the toy example, there are two students residing in region r2 who enroll in a
university located in region r1 (namely, s5 and s6), while the other students are enrolled
in a university located in the same region in which they reside (Fig. 2, bottom panel).

Ifwe consider themultipartite networkwith fourmodes,Q = (S,P,U , E,LS,P,U ,E ),
given by students, provinces, universities, and educational programs and its projec-
tion on students, we get a weighted tripartite 3-uniform hypergraph SHT PUE =
(P,U , E,S LPUE ,W) with SLPUE ⊆ P × U × E , the collection of hyperedges,
with generic term (pc, u j , ek), which is the link connecting the c-th province, the j-th
university, and the k-th educational program. W is the set of weights obtained with
the function w : SLPUE → N, and w(pc, u j , ek) = wcjk is the number of students
moving from province pc to university u j to attend a specific educational program ek .

Starting from the toy example in Fig. 2, three educational programs are added to
obtain the quadripartite network Q portrayed in Fig. 3 (upper panel). Projecting the
3-uniform hypergraph represented on the students Fig. 3 (bottom panel) is obtained.
The hypergraph has four hyperedges: (u1, e1, p1) with w111 = 2, (u1, e2, p1) with
w121 = 1, (u2, e2, p2) with w222 = 2, and (u3, e3, p2) with w332 = 1. None of the
other possible links are present.

Finally, considering the conditional projection for the student mobility data, we
are interested in describing the mobility trajectories of movers, that is, students who
enroll in universities outside their region of residence, with respect to stayers, that is,
students who enroll in universities within their region of residence. We start from the
quadripartiteQ and add information on the regions; that is, we add two nodes, r1 and
r2, and the relative links (Fig. 4, top panel). Projecting on the students and conditioning
on the regions, we can define two hypergraphs, one for the movers, SHT PUE

|BUR , and

one for the stayers, SHT PUE
|BUR . The hypergraph of movers, SHT PUE

|BUR , is defined as

follows:

(pc, u j , ek)|BUR ∈S LPUE
|BUR ⇐⇒ (si , pc)∈LS,P ∧ (si , u j )∈LS,U ∧(si , ek)∈LS,E

∧(si , rh) ∈ LS,R ∧ (rh, u j ) /∈ LR,U
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Fig. 2 Toy example: Tripartite graph visualization and its bipartite weighted projections on students and
universities
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Fig. 3 Toy example: Multipartite graph visualization with four modes and the corresponding projection in
a hypergraph

The hypergraph of stayers, SHT PUE
|BUR , is defined as follows:

(pc, u j , ek)|BUR ∈S LPUE
|BUR ⇐⇒ ∧(si , pc) ∈ LS,P ∧ (si , u j ) ∈ LS,U

∧(si , ek) ∈ LS,E ∧ (si , rh) ∈ LS,R ∧ (rh, u j ) ∈ LR,U .
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Fig. 4 Toy example: Multipartite graph visualization with four modes and its tripartite weighted projections
on students and universities

In the toy example (Fig. 4, upper panel), the two conditional projections give rise to
two hypergraphs. On the left side (Fig. 4, bottom panel), the hypergraph represents
the flow of two students (s5 and s6) who reside in region r2 who enroll in university
u2 located in province p1 in region r1. On the right side (Fig. 4, bottom panel) is the
hypergraph of the stayers.
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4 Data processing

To handle the complex network structures described above, we proposed a three-step
procedure for the data processing phase: 1) data simplification, 2) data normalization,
and 3) data filtering.

4.1 Data simplification

In statistical terms, array A can be interpreted as a three-way contingency table, and
then the statistical techniques for evaluating the association among variables, that is,
the modes, can be exploited (Agresti 2007). Because a three-way contingency table is
a cross-classification of observations by the levels of three categorical variables, we
define a network structure where the sets of nodes are the levels of the categorical
variables. Specifically, if two modes are jointly associated (or independent) on the
third mode, we assume that the tripartite hypergraph can be logically simplified into
a bipartite graph.

Given theweighted tripartite 3-uniformhypergraph 4HT 123 = (V1,V2,V3, 4L123,

W) defined in the previous section, we can join a pair of sets of nodes, V2 and V3,
in a new set ŐV2V3 = V2 × V3. The hypergraph can then be simplified in a bipartite
network 4B1Ň23 = (V1, ŐV2V3, 4L1,Ň23,W∗), with 4L1,Ň23 ⊆ V1× ŐV2V3. The new edges
(v1i , (v

2
j , v

3
k )) connect node v1i with the pair (v

2
j , v

3
k ), and the weightsW∗ are the same

as in the hypergraph; that is, w∗
i( j,k) = wi jk . Considering the matrix formulation, note

that the elements contained in the three-way arrayA are preserved, but are reorganized
in rectangular matrix A of I rows and (J × K ) columns, in the so-called flag matrix.

Considering the student mobility case study, for instance, we could join the pair of
nodes in U and in E , and then we handle the relationships between these dyads and the
nodes in P . Following this assumption, the sets of nodes in U and E are put together
in a set of joint nodes, namely, ŇUE . The hypergraph SHT PUE

|BUR can be represented as

the bipartite network SBPŊUE
|BUR . The set of hyperedges SLPUE

|BUR is thus simplified into

a set of edges SLP,ŊUE
|BUR ⊆ P × ŇUE . The new edges (pc, (u j ; ek)) connect province pi

with educational program ek running in given university u j . The weights are the same
as in the hypergraph, that is, w∗

c( j,k) = wcjk .
Starting from the hypergraph visualized in Fig. 5 (upper panel), the four hyper-

edges are simplified in four edges. For example, the hyperedges (u1, e1, p1) with
weight equal to 2 end up in the edge ((u1, e1), p1) with the same weight. Conditional
projections could be simplified in the same way (Fig. 5, bottom panel).

4.2 Data normalization and filtering

Several procedures have been introduced to normalize weighted network data (Primer-
ano et al. 2021; Giordano et al. 2019; Giordano and Primerano 2018; Batagelj and
Cerinšek 2013; Slater 2009). Here we propose a normalization procedure adapted for
handling bipartite weighted networks. The chosen method should be derived from
some aspects of the phenomenon under investigation. For example, as in the classical
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Fig. 5 Toy example: Conditional projection of the resulting weighted bipartite graph in Fig. 3
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contingency table, rows (or columns) conditional distributions can be derived because
the interest is in making comparisons among the row or column categories.

Another possibility is to derive normalizationweights fromsecondary data available
on the categories of interest, for instance, the gross number of inhabitants of each
province, the number of young people aged 19–25, the age group in which people
usually enroll in university, or the number of collaborations in a project. An important
concept to be considered is that a weighting scheme always has implications for
the profile similarity between pairs of nodes. Choosing different weighting schemes
affects the way relationships are perceived and similarity/dissimilarity measures are
computed. This, in turn, has direct effects on community detection purposes.

Recently, researchers have discussed two possible approaches. The first approach is
based on the opportunity to detect nodes’ similarity at themicro-level, that is, whenwe
are interested in a weighting procedure that preserves local (micro) network properties
(such as the neighboring proximities). The second approach relies on macroscopic
properties of the network, preserving topological characteristics, such as the scale-
free properties (Dey et al. 2020).

More complex schemes can be derived from the necessity to obtain complex nor-
malization criteria. For instance, in the case of adjacency matrices, a dual (by rows and
columns) normalization could be envisaged. Following Slater (2009) and Barthélemy
and Suesse (2018), Primerano et al. (2021) apply a multidimensional iterative propor-
tional fitting procedure (MIPFP) to student mobility data. This procedure starts from
the original adjacency matrix (e.g., universities-by-universities), where the row and
column totals represent the overall outgoing and incoming students for a given univer-
sity, respectively, and then performs a reshaping algorithm. This procedure defines a
value for each edge, ranging from 0 to 1, accounting for nodes’ attractiveness (columns
marginal) andnodes’ repulsion (rowsmarginal). Thus, in the end, eachweight is a value
that takes into account the overall number of incoming and outgoing edges. Namely,
the edges’ weights inversely depend on the number of students. Higher weights are
associatedwith universities having a small number of flows; lowerweights are attached
to universities characterized by a relatively large number of outgoing and incoming
students. In a different context (travelers’ activity on social media moving from one
tourist place to another), Giordano et al. (2021) propose a normalization scheme that
can define an asymmetric “performativity indicator” related to the number of actions
performed by individuals in a destination, given the number of actions performed in
the place of origin.

The need for the normalization process ismainly due to high unbalancing among the
different categories present in each network mode. For example, in the intranational
mobility data, the flows of students vary considerably, depending on provinces’ size or
contiguous territories gravitating around universities, universities’ size, and bureau-
cratic constraints. In the case of scientific collaboration projects, such an unbalancing
can be due to the different numbers of joint projects in which the institutions are
involved.

Beyond the data normalization process, network filtering methods are generally
based on the application of a threshold to the link’s weight. Several methods have
been proposed to filter the network’s significant mobility patterns within the backbone
extraction framework. A bistochastic filter approach (Foti et al. 2011) was proposed
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to examine migration flows even if it seems that this method can alter the network
structure due to the edge weight matrix manipulation. Similarly, Yongwan and Grif-
fith (2011) reported the application of an eigenvector spatial filtering procedure that
requires non-trivial data manipulation.

4.3 A proposal for network data normalization and filtering

In addition to the several approaches proposed in the literature, we propose a
model-based approach through the standardized residuals of a log-linear model for
contingency tables (Agresti 2007). This normalization procedure is applied to the A
matrix mentioned in Sect. 4.1.3 Recalling that an adjacency matrix can be seen as a
contingency table, a log-linear model of independence for a contingency table can be
estimated as follows:

log(μc( j,k)) = λ + λPc + λUE
( j,k), (1)

where μc( j,k) is the expected link weight for the pair c( j, k); and λPc and λUE
( j,k) are

the row and column effects for theAmatrix, respectively. Following this model-based
approach, the expected link weight μc( j,k) represents the co-occurrences for the pair
c( j, k) if the number of co-occurrences is proportional to the row and column effects of
A. Under this assumption, λPc and λUE

( j,k) can be interpreted as the repulsiveness effect
of c and the attractiveness effect of ( j, k), respectively. Significant deviations from
μc( j,k) can suggest an extra-flow w.r.t. a null hypothesis of random co-occurrences.
To evaluate these deviations, standardized residuals for contingency tables are used:

resc( j,k) = w∗
c( j,k) − μc( j,k)√

μc( j,k)(1 − wc+)(1 − w+( j,k))
(2)

where w∗
c( j,k) are the observed weights of theAmatrix for the pair c( j, k); μc( j,k) are

the estimated weights for the pair c( j, k) under the model reported in Eq. (1); andwc+
and w+( j,k) are the marginal fraction of the c − th row and the ( j, k) − th column of
the A matrix, respectively.

Theusefulness of the residuals inEq. (2) is twofold.On theonehand, they allowus to
normalize theweightsw∗

c( j,k) of theAmatrix, taking into account the size of the source
node, the size of the target node, and the whole size of the system. On the other hand,
by construction, resc( j,k) ∼ N (0, 1), and this allows us to filter the network using
a statistical threshold value. Significant deviations from the expected value μc( j,k)

estimated in Eq. (1) can be interpreted as an over-expression of the co-occurrences
w∗
c( j,k) with respect to a system in which the link weights are proportional to the

marginals of the A matrix. In statistical terms, this approach is able to discover over-
expression in the network with respect to a null hypothesis of random co-occurrences.
Residuals with values exceeding 2 (when the A matrix is small) or 3 (when the A
matrix is large) indicates a violation of the null hypothesis. For example, in the case

3 The normalization and filtering procedure notation outlined here specifically applies to the students’
mobility data example; however, its applicability extends to different contexts and applications.
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Table 1 Data processing of tripartite and bipartite network structures per student cohort

Year Tripartite Bipartite Filtered bipartite

N. nodes N. links N. nodes N. links N. nodes N. links

2008–2019 195 17,734 567 8, 867 122 116

2011–2012 195 17,204 551 8, 602 140 135

2014–2015 196 18,586 554 9, 293 140 127

2017–2018 196 20,886 562 10, 443 154 172

of a large A, setting a threshold of 3 is roughly equivalent to a right-tail test with
α = 0.01, and this enables us to select links with weights exceeding those estimated
under the null hypothesis.

Unlike a backbone extraction with an unconditional threshold in which the network
structure strongly depends on the chosen threshold (Zachary 2014; Coronnello et al.
2009), the proposed approach preserves structural and multi-scale features of the
network, controlling for the size of the source node (nc.), the size of the target node
(n. j ), and the whole size of the system (N ). Our proposal is an unsupervised and
data-driven method for evaluating statistically significant links between nodes. It aims
to reveal preferential patterns, that is, patterns that show a significant deviation in the
observed co-occurrences from the null hypothesis of random co-occurrences.

5 Real-data processing phase

Returning to the real-life examples, we exploit the usefulness of the proposed three-
step procedure in the two datasets described in Sect. 2.

Intranational student mobility. Considering the MOBYSU.IT database, data on stu-
dents enrolled in Italian universities in the academic years 2008-2009, 2011-2012,
2014-2015, and 2017-2018 are extracted. The procedure described in Sects. 3 and
4 is applied to the five modes of network data structures in which students, regions,
provinces, universities, and educational programs are linked through a set of affiliation
networks generated by different kinds of relations. This complex network data struc-
ture is analyzed with the final aim of revealing the presence of communities, mixing
up provinces of origin, universities of destination, and specific degree programs that
explain mobility choices.
Table 1 shows the changes in the student mobility network data structures before and
after the analytic strategy adopted to simplify, normalize, and filter relevant informa-
tion.

Scientific collaboration networks. By considering the CORDIS data, including details
of R&D projects funded by EU-FP7, a multimode network is derived in which coun-
tries, institutions, projects, framework programs, and fields define the different modes.
Specifically, we gathered information on collaboration among European institutions
from 2007 to 2018. From these data, we select information about the countries of
the institutions, the institutions’ ID, the project ID, the framework programs, and the
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Table 2 Data processing of tripartite and bipartite network structures per R&D collaboration in scientific
fields

Thematic areas Tripartite Bipartite Filtered bipartite

N. nodes N. links N. nodes N. links N. nodes N. links

Engineering and Natural Sciences 4,897 20,854 4,875 10,427 322 333

Social Sciences and Humanities 1,128 3742 1,107 1,871 36 30

Medical Health and Agricultural 1,453 6,076 1,433 3,038 123 121

scientific field. Each feature is considered a mode of the network structure, where
the edges’ weights are the number of earned projects between pairs of institutions.
The institution’s ID acts as the primary key projected to obtain different networks. For
instance, we consider the countries that are involved in different projects under several
grant programs; in doing so, we could condition the networks based on the thematic
field. This data structure is compatible with the one described in the simplification
procedure. The two modes of the tripartite network, Project and Framework, are
logically nested and yield a new conditional bipartite network. It allows us to ana-
lyze the countries’ and the institutions’ scientific collaboration in specific framework
programs and research projects with respect to a specific thematic field. The normal-
ization and filtering procedures obtain the links characterized by the over-expression
of collaboration between countries and (Project I D × Framework Programs).
Table 2 shows the changes in scientific collaboration data structures before and after
the analytic strategy adopted to simplify, normalize, and filter relevant information for
the three scientific fields.

6 Network results

The derived data structures are explored with network analysis tools. Specifically,
to reveal the presence of communities in the filtered networks, we use the Infomap
community detection algorithm (Blöcker and Rosvall 2020; Edler et al. 2017). The
algorithm is more suitable for examining the flows’ patterns in network structures
instead ofmodularity optimization that looks only at topological aspects of the network
(Blondel et al. 2008; Newman and Girvan 2004). To analyze mobility and project data,
flow-based approaches are likely to identify the most important features, revealing
communities characterized by similar patterns.
The rationale of Infomap (map equation) takes advantage of the duality between
finding communities and minimizing the length (codelength) of a random walker’s
movement on a network. The partition with the shortest path length best captures the
community structure in the bipartite data. Formally, the algorithm defines a module
partitionM of n nodes intommodules such that each node is assigned to one and only
one module. The algorithm looks for the bestM partition that minimizes the expected
codelength, L(M), of a random walker, given by the following map equation (Edler
et al. 2017):
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L(M) = q�H(Q) +
m∑
i=1

pi�H(P i ). (3)

In Equation (3), q�H(Q) is the entropy of the movement between modules weighed
for the probability that the random walker switches modules on any given step (q�),
and

∑m
i=1 p

i
�H(P i ) represents the entropy of movements within modules weighed

for the fraction of within-module movements that occur in module i , plus the proba-
bility of exiting module i (pi�), such that

∑m
i=1 p

i
� = 1 + q�.

6.1 Student mobility communities

By adopting the Infomap community detection algorithmon filtered bipartiteweighted
networks, for intranationalmobility data,we obtained good relative codelength savings
for student cohorts and a sort of stabilization phenomenon over time in terms of a
reduction in the number of clusters in the mobility trajectories showing the central
position of the most prestigious universities located in the Center-North (Table 3). For
the sake of simplicity, the cluster solutions of the first and the last student cohorts are
examined in detail.

• The 22 clusters for the 2008-2009 academic year show two main groups of attrac-
tive universities in North Italy, highlighting the main trajectories in the Italian
student mobility flows (South-to-North and South-to-Center), and several small
groups (Fig. 6, upper panel). The biggest group (23 units) contains the universities
of Bologna and Padua attracting students for Social Sciences, Pisa for Engineer-
ing, and Ca’ Foscari Venice for Arts and Humanities. The second group (21 units)
highlights the attractiveness of La Sapienza Rome university, mainly for Arts and
Humanities, Polytechnic of Turin for Engineering, and Cattolica Rome and Milan
for Business, Administration and Law. Several small clusters show, on the one
hand, the authority role played by public and private Northern universities and
on the other hand, the internal and external student flows among provinces and
universities due to the geographical proximity of some Italian regions.

• The 15 clusters for the 2017-2018 academic year is characterized by four
main clusters of provinces and universities-educational fields highlighting the
dichotomy between scientific and humanistic fields attracting South-to-North and
North-to-North student flows (Fig. 6, bottom panel). The biggest group (52 units)
contains, on the one hand, the universities of Ferrara,Marche, andModena-Reggio
attracting students for Engineering and Natural Sciences degree programs; on the
other hand, Chieti-Pescara and Trento [the Italian Adriatic coast route] for Social
Sciences. The second largest group (28 units) includes Bocconi, Cattolica and Flo-
rence for Business, Administration and Law; Polytechnic of Milan and Pisa for
Engineering.
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Fig. 6 Communities for student cohorts for the 2008-2009 academic year (upper panel) and the 2017-2018
academic year (bottom panel)
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Table 3 Infomap community
detection results per student
mobility data cohort

Cohort Clusters Codelength Relative codelength
savings

2008–2009 22 0.81 85.41%

2011–2012 18 0.75 86.78%

2014–2015 21 0.76 86.19%

2017–2018 15 1.19 79.15%

Table 4 Infomap community detection results per field of the EU-FP7 data

Field Clusters Codelength Relative codelength
savings

Engineering and Natural Sciences 24 1.29 62.45%

Medical Health and Agricultural 15 4.55 30.35%

Social Sciences and Humanities 8 2.51 45.00%

6.2 Collaboration network communities

The results of the Infomap community detection algorithm on CORDIS data applied
to the three scientific fields show good relative codelength savings for Engineering
and Natural Sciences, whereas the values are moderate for the other two fields. The
number of communities is higher for the Natural Sciences and Medical Health and
Agricultural fields than for Social Sciences and Humanities field, in line with the
different amounts of funds devoted to R&D projects for each field. Looking at the
communities reported for the three fields, we notice the following.

• The 24 clusters for countries and framework programs, conditioned to the Engi-
neering and Natural Science field (Fig. 7, upper panel on the left) are described by
six big groups around the main active countries, Germany (DE), the UK, France
(FR), Spain (ES), Italy (IT), and the Netherlands (NL). The biggest group (72
units), including Germany and Norway (NO), is described by participation in
projects related mainly to ICT and Nanosciences, Nanotechnologies, Materials
and New Production Technologies (NMP).

• The 15 clusters for countries and frameworkprograms, conditioned to theMedical,
Health, and Agricultural field (Fig. 7, upper panel on the right), are characterized
by two main groups with around 20 units. The biggest group incorporates the UK
and Sweden (SE) and projects related to Joint Technology Initiatives (JTI) and
Health.

• The 8 clusters for countries and framework programs, conditioned on the Social
sciences and Humanities field (Fig. 7, bottom panel), present a low number of
units including only one country per community and participation in multifaceted
projects.
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Fig. 7 Communities for countries and framework programs, conditioned to the Engineering and Natural
Science field (upper panel, left), the Medical, Health, and Agricultural field (upper panel, right), and the
Social Sciences and Humanities field (bottom panel)

7 Discussion and conclusions

Starting from complex network data structures, the present contribution discusses
an original analytic strategy for handling multipartite networks. Simplification, nor-
malization, and filtering procedures are adopted to analyze the complexity of these
networks with a model-based approach to extract statistically significant links in the
derived bipartite networks. Formal definition as well as the usefulness of the three-step
procedure for data processing are illustrated by considering two real-life data examples
regarding intranational student mobility flows and collaboration in scientific projects.

A flow-based community detection algorithm is adopted to partition the simpli-
fied network data structures. The partitioning solutions mixed up the different types
of modes, enriching the interpretation of the examples under analysis. First, the pro-
cedure brings to light the main characteristics of Italian student mobility flows by
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confirming the preferential attractiveness routes of Northern universities but also the
dichotomy between scientific and humanist fields.4 Second, the clustering solution for
collaboration in EU-FP7 projects shows that some European countries play a central
role in the participation in projects in specific thematic fields.

The three-step procedure is able to retain relevant information of complex data
structures, highlighting the main network features. In this way, the procedure also
provides feedback for policy makers to manage phenomena spanning a very wide
spectrum of fields. Specifically, regarding the findings of the two real datasets, it
offers suggestions for a more comprehensive assessment of universities’ performance
in achieving their core missions to attract students and in activating collaboration
with other institutions within funded EU-FP7 projects. Finally, the proposed approach
could be generalized to freely available and transparent data, such as CORDIS.

As future lines of research, a comparison with alternative approaches can be con-
sidered to deal with multiway weighted network data (Batagelj and Cerinšek 2013;
Batagelj et al. 2007) in order to identify important and meaningful groups in these
large and complex networks by discussing also other community detection algorithms
proposed for bipartite weighted networks (Beckett 2016).
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