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LEFSCHETZ PROPERTIES OF JACOBIAN ALGEBRAS AND

JACOBIAN MODULES

ALEXANDRU DIMCA1 AND GIOVANNA ILARDI

Abstract. Let V : f = 0 be a hypersurface of degree d ≥ 3 in the complex
projective space Pn, n ≥ 3, having only isolated singularities. Let M(f) be the
associated Jacobian algebra and H : ℓ = 0 be a hyperplane in Pn avoiding the
singularities of V , but such that V ∩H is singular. We related the Lefschetz type
properties of the linear maps ℓ : M(f)k → M(f)k+1 induced by the multiplication
by linear form ℓ to the singularities of the hyperplane section V ∩H . Similar results
are obtained for the Jacobian module N(f).

1. Introduction

Let S = C[x0, . . . , xn] be the graded polynomial ring in n+1 variables with complex
coefficients, with n ≥ 2. We denote by Sk the degree k homogeneous component of
S. Let f ∈ Sd be a homogeneous polynomial such that the hypersurface V : f = 0
in the projective space Pn is smooth. Then the Jacobian algebra M(f) = S/J(f) is
a standard graded Artinian Gorenstein algebra with socle degree T = (n+1)(d−2),
where we set

fj =
∂f

∂xj

for j = 0, . . . , n and J(f) = (f0, . . . , fn) ⊂ S is the Jacobian ideal of f . This algebra
is also known as the Milnor algebra of f . In fact, the hypersurface V : f = 0 is
smooth if and only if M(f) is an Artinian algebra.

Definition 1.1. Let M = ⊕T
i=0Mi be an Artinian graded C−algebra with MT 6= 0.

(1) The algebra M is said to have the Weak Lefschetz Property in degree i, for
i < T , for short WLPi, if there exists an element L ∈ M1 such that the
multiplication map L : Mi → Mi+1 is of maximal rank. We say that the
algebra M has WLP if it has WLPi for all 0 ≤ i ≤ T − 1.

(2) We say that M has the Strong Lefschetz Property in degree k < T/2, for
short SLPk, if there is L ∈ M1 such that the linear map LT−2k : Mk → MT−k

is an isomorphism. We say that the algebra M has SLP if it has SLPk in
degree k for all k < T/2.
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Example 1.2. This example is due to Stanley [28] and Watanabe [30] and it is
considered to be the starting point of the research area of Lefschetz properties for
graded algebras. Consider the standard graded Artinian Gorenstein algebra

M =
C[x0, . . . , xn]

(xa0
0 , . . . , xan

n )

with integers ai > 0, for all i = 0, . . . , n. Then M has SLP .

In particular, for a Fermat type polynomial

fF = xd
0 + . . .+ xd

n,

the Jacobian algebra M(fF ) has SLP . By obvious semi-continuity properties, it
follows that the Jacobian algebra M(f) has SLP for a generic polynomial f ∈ Sd.
However, it seems that we have no control on the meaning of the word ’generic’ in
this claim. In fact, one has the following.

Conjecture 1.3. The Jacobian algebra M(f) has SLP for any polynomial f ∈ Sd

such that the associated hypersurface V : f = 0 is smooth.

Remark 1.4. We list here the known results related to this conjecture.

(1) When n = 2, for any smooth curve V : f = 0, the associated Jacobian algebra
M(f) has WLP , as follows from the more general results in [22]. Moreover,
when d = 2d′ is even, then the multiplication by the square of a generic linear
form ℓ ∈ S1 induces an isomorphism

ℓ2 : M(f)3d′−4 → M(f)3d′−2.

In particular, when d = 4, the Jacobian algebra M(f) has the SLP , see [13].
(2) When n = 3, if V : f = 0 is any smooth cubic surface in P3, then M(f)

has the SLP , see [13]. In fact, this result is a consequence of the classical
Hesse-Gordan-Noether’s Theorem, see for instance [21, 25]. Moreover, for
any smooth surface V (f), the SLP holds in degree 1, see for instance [3,
Theorem B]. For any smooth surface in P3 of degree d ∈ {4, 5, 6}, the WLP
holds in all degrees, see [2, Corollary 7.2]. Moreover, for degrees d > 6, the
WLP holds in all degrees up to (3d− 2)/2, see [2, Corollary 7.3].

(3) For n = 4, if V : f = 0 is any smooth cubic 3-fold in P4, then M(f) has the
SLP , [3, Theorem C].

(4) For arbitrary dimension n and degree d, one knows that M(f) has the WLP
in degree ≤ d− 2, see [24]. The SLP0 also holds for obvious reasons. Indeed,
if ℓT ∈ J(f) for all ℓ ∈ S1, then the hessian polynomial hess(f) /∈ J(f) would
have no Waring decomposition.

(5) In [1] WLP is proven for some complete intersection algebras presented in
degree 2, improving some previous bounds. Finally, in [4], SLP1 for the
Jacobian Algebra of a smooth cubic fourfold is proved.

Remark 1.5. Using the duality of the Jacobian algebra M(f), in order to prove the
WLP for M(f), it is enough to prove the WLPi for i < T/2.

In fact, one can define WLP for more general graded objects as follows.
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Definition 1.6. LetM = ⊕i≥0Mi be a graded C−algebra (resp. a graded S-module)
with dimMi < +∞ for any i ≥ 0. The algebra (resp. module) M is said to have
the Weak Lefschetz Property in degree i, for short WLPi, if there exists an element
L ∈ M1 (resp. L ∈ S1) such that the multiplication map L : Mi → Mi+1 is of
maximal rank. We say that M has WLP if it has WLPi for all i ≥ 0.

When the hypersurface V : f = 0 in Pn is singular, then one can consider the
Jacobian algebra M(f) = S/J(f) and the Jacobian module N(f) ⊂ M(f) given by
N(f) = I(f)/J(f), where I(f) is the saturation of J(f) with respect to the maximal
ideal m = (x0, . . . , xn), see [26]. Recall that, for any homogeneous ideal I in S,

we define its saturation Î with respect to m as the set of all elements s ∈ S such
that for any i = 0, ..., n there is a positive integer mi such that xmi

i s ∈ I. One has
N(f) = M(f) if and only if V : f = 0 is smooth, so N(f), which is always an
Artinian module, can be thought of as a replacement of M(f) when V is singular.

Example 1.7. Let C : f = 0 be a reduced degree d curve in P
2. Then the corre-

sponding Jacobian algebra M(f) satisfies WLPi for any

i <
3(d− 2)

2

and the corresponding mappings M(f)i → M(f)i+1 are injective. Moreover, the
Jacobian algebra M(f) satisfies WLPi for any

i ≥ i0 =
⌊3(d− 2)

2

⌋

and the corresponding mappings M(f)i → M(f)i+1 are surjective if and only if

(1.1) ct(C) ≥ 3(d− 2)− i0,

see [16, Corollary 4.4]. Here

ct(C) = max{k ∈ Z : dimM(f)j = dimM(fF )j for all j ≤ k},

where fF denotes the Fermat degree d polynomial as in Example 1.2. As explained
in [16, Remark 4.5], many curves satisfy the condition 1.1, in particular all nodal
curves. Moreover, it has been shown in [16, Corollary 4.3] that the Jacobian module
N(f) satisfies WLP for any reduced plane curve.

Example 1.8. Let V : f = 0 be a degree d hypersurface in Pn having only isolated
singularities. Then the corresponding Jacobian algebra M(f) satisfies WLPi for any

i > n(d− 2)

and the corresponding mappings M(f)i → M(f)i+1 are surjective. For i > (n +
1)(d− 2) these mappings are isomorphisms, see [9, Corollary 8].

In this note, we fix a hypersurface V : f = 0 in Pn having only isolated singularities
and a hyperplane H : ℓ = 0 in Pn avoiding the singularities of V , with n, d ≥ 3. The
hyperplane section V (f, ℓ) = V (f) ∩ H has then at most isolated singularities, as
follows from the following.
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Lemma 1.9. Let V be a hypersurface in Pn of degree d, with n, d ≥ 2. Assume that
H is a hyperplane such that H ∩ Vs = ∅, where Vs denotes the singular set of V .
Then V and V ∩ H have at most isolated singularities. Moreover, when V has at
most isolated singularities, then there are hyperplanes H such that H ∩ Vs = ∅ and
V ∩H is singular, except when V is a cone.

As usual, V is a cone if one can choose the coordinates x such that f0 = 0, hence
f does not depend on the variable x0. If V : f = 0 is a cone with an isolated
singularity, then up to a linear change of coordinates, we have that f is a polynomial
g ∈ C[x1, ..., xn] and the corresponding hypersurface g = 0 is smooth in H : x0 = 0.
Then obviously the multiplication by x0 is injective in any range, since

M(f) = M(g)⊗ C[x0].

Remark 1.10. Note that any hypersurface W ⊂ H with only isolated singularities
may occur as a section W = V ∩ H for a certain smooth hypersurface V , see [10,
Proposition (11.6)].

In this setting, and under the assumption that V (f, ℓ) is singular, we investigate
the injectivity of the multiplication maps ℓ : M(f)k → M(f)k+1. Our main result is
stated in terms of some numerical invariants of the hyperplane section V (f, ℓ), which
we define now. Clearly V (f, ℓ) is a hypersurface in H = Pn−1. If we choose a system
of coordinates y = (y1, . . . , yn) on H , then V (f, ℓ) given by an equation g = 0, hence
it has a Jacobian ideal J(g) in the polynomial ring R = C[y1, ..., yn]. Let I(g) be the
saturation of the Jacobian ideal J(g) with respect to the maximal ideal (y1, ..., yn)
and let s(g) be the initial degree of the graded ideal I(g), namely

(1.2) s(g) = min{j ∈ N : I(g)j 6= 0} ≤ d− 1,

where d = deg f = deg g. Let gj denote the partial derivative of g with respect to yj
and consider the graded R-module Syz(g) of first order syzygies of g1, . . . , gn, namely

(1.3) Syz(g) = {a = (a1, . . . , an) ∈ Rn : a1g1 + . . .+ angn = 0}.

Let r(g) be the initial degree of the graded module Syz(g), namely

(1.4) r(g) = min{j ∈ N : Syz(g)j 6= 0} ≤ d− 1.

It is clear that both invariants r(g) and s(g) do not depend on the choice of the linear
coordinates y on H = P

n−1. Note that V (f, ℓ) singular implies s(g) > 0. On the
other hand, r(g) = 0 if and only if V (f, ℓ) is a cone. With this notation, our main
result is the following improvement of the second author result recalled in Remark
1.4 (4).

Theorem 1.11. Let V : f = 0 be a hypersurface in Pn of degree d, with n, d ≥ 2.
Assume that H : ℓ = 0 is a hyperplane such that H ∩ Vs = ∅, where Vs denotes the
singular set of V , and that V (f, ℓ) = V ∩H is singular. Then the multiplication map
ℓ : M(f)k → M(f)k+1 is injective for any

k ≤ min{d− 3 + r(g), d− 3 + s(g)}.
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Theorem 1.11 can give theWLP for the Jacobian algebraM(f) (in some degrees or
in all degrees) for some generic classes of hypersurfaces, with a precise meaning of the
word ’generic’, as well as for many new non generic classes of smooth hypersurfaces.

In terms of the Jaconian module N(f), this result implies the following.

Corollary 1.12. Let V : f = 0 be a hypersurface in Pn of degree d, with n, d ≥ 3.
Assume that H : ℓ = 0 is a hyperplane such that H ∩ Vs = ∅, where Vs denotes the
singular set of V , and that V (f, ℓ) = V ∩H is singular. Then the multiplication map
ℓ : N(f)k → N(f)k+1 is injective for any

k ≤ k0 = min{d− 3 + r(g), d− 3 + s(g)}.

Moreover, the multiplication map ℓ : N(f)k → N(f)k+1 is surjective for any

k ≥ (n+ 1)(d− 2)− k0 − 1.

In section 2 we prove Lemma 1.9 , Theorem 1.11, and Corollary 1.12. In section 3
we apply Theorem 1.11 to surfaces S in P3 with isolated singularities. The surfaces
of degree 4 are considered in Example 3.1 and Example 3.5. The surfaces having a
section C = S∩H which is a nodal curve and such that all irreducible components of
C are rational (resp. C is a free or a nearly free curve) are considered in Proposition
3.2 (resp. Proposition 3.4). When the surface S is smooth, all the results in this
section except Proposition 3.2 are obtained in stronger forms in [2].

In section 4, we consider higher dimensional hypersurfaces V , having a nodal
hyperplane section Y = V ∩H with many singularities, e.g. Y is a Kummer surface
in Proposition 4.1, respectively a Chebyshev hypersurface in Proposition 4.2. Finally,
an application to WLP of a recent result of the authors, see Theorem 4.3 below
quoted from [15], is given in Corollary 4.4 and Corollary 4.5. We state all the results
in this section for a smooth hypersurface V , but all of them, except Theorem 4.3,
have obvious versions for a hypersurface V having only isolated singularities.

We would like to thank Arnaud Beauville for very useful discussions related to this
paper. We also thank the referee for the very careful reading of our manuscript and
for his suggestions to improve the presentation.

2. The proofs of Lemma 1.9, Theorem 1.11 and Corollary 1.12

2.1. The proof of Lemma 1.9. Since H ∩ Vs = ∅, it is clear that dimVs ≤ 0.
Assume that V : f = 0 and H : x0 = 0. The singular set of V ∩H is then given by

Z : f1(0, x1, . . . , xn) = f2(0, x1, . . . , xn) = . . . = fn(0, x1, . . . , xn) = 0.

If dimZ > 0, then any point in the non-empty intersection of Z with the hypersurface
f0(0, x1, . . . , xn) = 0 would give rise to a point in Vs ∩H . This contradiction shows
that dimZ ≤ 0.

The second claim in Lemma 1.9 is more subtle. Assume from now on that V is
not a cone. For any singular point p ∈ Vs, denote by Hp the hyperplane in the dual
space (Pn)∨ corresponding to all the hyperplanes in Pn passing through p. Note that
the dual hypersurface V ∨ is irreducible, since V is so since n ≥ 3. It follows that if
V ∨ is contained in the union of all hyperplanes Hp, for p ∈ Vs, there is a point q ∈ Vs
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such that V ∨ ⊂ Hq. We can assume that q = (1 : 0 : . . . : 0), and then this condition
means

f0(x) = 0 for all x ∈ V \ Vs.

But this implies that f0 is divisible by f , which is possible only if f0 = 0, that is
when V is a cone. This contradiction shows that there is a hyperplane H : ℓ = 0
such that H ∩ Vs = 0 and H is tangent to V . In fact H corresponds to a point in
V ∨ not in any Hp, for p ∈ Vs. This implies that the section V ∩H is singular.

2.2. The proof of Theorem 1.11. Without loss of generality, we may take ℓ = x0

and yj = xj for all j = 1, . . . , n. Then one may write

f(x0, y) = g(y) + x0h(y) + x2

0p2(y) + . . .+ xd
0pd(y),

where pj ∈ Rd−j . Assume that ℓ : M(f)k → M(f)k+1 is not injective. Then there is
a homogeneous polynomial q ∈ Sk such that

q /∈ J(f)k and x0q ∈ J(f)k+1.

It follows that one has a relation

x0q = b0f0 + . . .+ bnfn,

with homogeneous polynomials bj ∈ Sk+2−d, not all divisible by x0. If we set x0 = 0,
this yields

(2.1) c0h+ c1g1 + . . .+ cngn = 0,

where not all the polynomials cj(y) = bj(0, y) ∈ Rk+2−d are zero. There are two cases
to discuss.

Case 1. c0 6= 0. Then note that the singular set of the hypersurface V on the
hyperplane x0 = 0 is given by the solutions of the system

h = g1 = . . . = gn = 0.

Since Vs ∩H = ∅, and V (f, ℓ) is assumed to be singular, it follows that h does not
vanish on the singular set of the section V (f, ℓ), which is given by the solutions of
the system

g1 = . . . = gn = 0.

In other words, if q is a singular point of V (f, ℓ), and u ∈ Rd−1 is a homogeneous
polynomial not vanishing at q, the regular function germ of h/u at q is an invertible
element in the corresponding local ring OH,q. This observation and the equation
(2.1) imply that c0 ∈ I(g), see the discussion at the beginning of Section 2 in [11].
Indeed, equation (2.1) implies that the germ of rational function associated to c0 at
each singular point q of V (f, ℓ) belongs to the stalk at p of the sheaf associated to the
Jacobian ideal at g, which is an ideal in the local ring OH,q. This property implies
that c0 ∈ I(g). Hence k + 2− d = deg c0 ≥ s(g) which gives k ≥ d− 2 + s(g).

Case 2. c0 = 0. Then the equation (2.1) becomes a non-zero homogeneous element
ρ ∈ Syz(g). It follows that k + 2 − d = deg ρ ≥ r(g). In other words, we have
k ≥ d− 2 + r(g).

This ends the proof of Theorem 1.11.
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2.3. The proof of Corollary 1.12. The first claim follows from Theorem 1.11,
since N(f) is a submodule in M(f). The second claim follows from the duality
property of the Jacobian module N(f), namely

N(f)∨j
∼= N(f)T−j ,

for any integer j = 0, . . . , T , where T = (n+ 1)(d− 2), see either [26, Theorem 3.4]
or [29, Theorem 4.7].

3. Surfaces of degree d ≥ 4 in P3

In this case the plane section V (f, ℓ) is a plane curve of degree d, with isolated
singularities. We discuss several possibilities.

Example 3.1. For smooth surfaces of degree 4 WLP holds in all degrees, see [2,
Corollary 7.2]. Let V : f = 0 be a surface of degree 4 in P3 having isolated singular-
ities and containing no line, and let H : ℓ = 0 be a plane such that V (f)s ∩H = ∅
and the plane curve V (f, ℓ) = V ∩ H has at least 3 singular points with total Tju-
rina number τ(V (f, ℓ)) at most 5. Then clearly s(g) ≥ 2, since any element in I(g)
vanishes at the singular points and V (f, ℓ) has no line components. Using the lower
bound on τ(V (f, ℓ)) given in [20], we see that r(g) ≥ 2. It follows from Theorem 1.11
and Corollary 1.12 that the multiplication map ℓ : M(f)i → M(f)i+1 is injective for
i ≤ 3 and that the Jacobian module N(f) has WLP . Other quartic surfaces are
discussed in Example 3.5.

Proposition 3.2. If the surface V : f = 0 with isolated singularities admits a plane
section V (f, ℓ) = V ∩ H, where H : ℓ = 0, such that Vs ∩ H = ∅ and V (f, ℓ) is
a nodal curve, all irreducible components of V (f, ℓ) being rational curves, then the
corresponding Jacobian algebra M(f) has the WLPk for k < 2d−4 and the Jacobian
module N(f) has WLP .

Proof. Using [18, Theorem 4.1], it follows that r(g) ≥ d− 2. On the other hand, we
have s(g) ≥ d − 2, using [7, Theorem 3.2]. It follows from Theorem 1.11 that the
multiplication map ℓ : M(f)k → M(f)k+1 is injective for k < 2d − 4 = T/2. We
conclude using Corollary 1.12. �

Remark 3.3. Any generic quartic surface in P3 admits a section which is a rational
nodal curve, see [8, Theorem 1.2]. On the other hand, for d ≥ 5, a generic degree d
surface in P3 does not admit a section which is a rational nodal curve. More precisely,
in this case any irreducible component C of a section V (f, ℓ) of a generic surface has
geometric genus satisfying the inequality

g(C) >
d(d− 3)

2
− 3,

see [31, Theorem 1]. In the same paper, Xu shows that the list of singularities on
the section V (f, ℓ) is one of the following, see [31, Proposition 3].

(1) A1, 2A1, 3A1;
(2) A2, A1A2

(3) A3.
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In other words, only list of singularities with total Tjurina number τ(V (f, ℓ)) ≤ 3
may occur for a generic surface of degree d ≥ 5. For a similar result, see also [5].

For a curve C : g = 0, we set n(f)k = dimN(g)k for any integer k and also
ν(C) = maxj{n(g)j}. Recall that the curve C is free if and only if N(g) = 0 and
hence ν(C) = 0, and C is nearly free if and only if ν(C) = 1, see for instance [7, 19].
For a free (resp. nearly free) curve, the exponents are d1 = r(g), the initial degree
of the graded R-module Syz(g) and d2 = d− 1− d1 (resp. d2 = d− d1).

Proposition 3.4. If the surface V : f = 0 with isolated singularities admits a plane
section V (f, ℓ) = V ∩ H, where H : ℓ = 0, such that Vs ∩ H = ∅ and V (f, ℓ) is
a free (resp. nearly free) curve with exponents (d1, d2), then the multiplication map
ℓ : M(f)k → M(f)k+1 is injective for any

k ≤ d+ d1 − 3.

In the case of smooth surfaces V , this result is weaker than [2, Corollary 7.2].

Proof. For a free curve V (f, ℓ) : g = 0 one has J(g) = I(g) and hence s(g) = d − 1.
By definition one has r(g) = d1 and it is known that 2d1 ≤ d − 1 which implies
d1 ≤ d− 1 = s(g). This proves our claim for a free curve.

For a nearly free curve V (f, ℓ) : g = 0 one has s(g) = min{d − 1, d+ d1 − 3}, see
[19, Corollary 2.17]. By definition r(g) = d1 and it is known that d1 + d2 = d. It
follows that d1 ≤ d− 1 and also d1 ≤ d+ d1 − 3 since we suppose d ≥ 3. �

In view of the point (4) in Remark 1.4, the above result is useful only when d1 ≥ 2.

Example 3.5. Let V be a surface of degree 4 with isolated singularities in P3 and
let H : ℓ = 0 be a plane avoiding the singularities of V (f) and such that the plane
curve V (f, ℓ) = V (f) ∩H has one of the following lists of singularities, not covered
by the discussion in Example 3.1.

(1) 3A2;
(2) A2A4

(3) A6

(4) 6A1

(5) A1A5.

In the first 3 cases the curve V (f, ℓ) is irreducible and rational, while in case (4) the
curve V (f, ℓ) is a union of 4 lines in general position. In particular, the case (4) can
be treated using also Proposition 3.2. In case (5), the curve V (f, ℓ) is a union of two
conics, meeting at 2 points, with intersection multiplicities 1, and respectively 3. All
these curves are shown to be nearly free with exponents (2, 2), see [19, Example 2.13]
and [14, Proposition 5.5]. It follows from Proposition 3.4 that the multiplication map
ℓ : M(f)k → M(f)k+1 is injective for k ≤ 3.

Remark 3.6. All the possibilities of the singularities of a plane section of a smooth
quartic surface in P3 are listed in [6]. We have discussed above only some of these pos-
sibilities, assuming that they occur also as sections of quartic surfaces with isolated
singularities.
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4. Hypersurfaces in Pn, n ≥ 4, having sections with many nodes

As already said in Introduction, all the results in this section are stated for a
smooth hypersurface V , but all of them, except Theorem 4.3, have obvious versions
for a hypersurface V having only isolated singularities. In this section the hyperplane
section V (f, ℓ) ∈ H = Pn−1 is assumed to have only nodes, namely ordinary double
points, also known as A1-singularities. In this case, it is known that

(4.1) r(g) = d− 1,

when d ≥ 3, see [12]. To get lower bounds on s(g) we impose a large number of
singularities on the hyperplane section V (f, ℓ). We discuss several cases.

Proposition 4.1. If the smooth 3-fold V : f = 0 in P4 of degree 4 admits a hy-
perplane section V (f, ℓ) : g = 0 that is a nodal surface, with at least 10 nodes, not
all on a quadric, then the corresponding Jacobian algebra M(f) has the WLP . In
particular, this occurs when the hyperplane section K = V (f, ℓ) : g = 0 is a Kummer
surface with 16 nodes.

Proof. Using the equality (4.1), it follows that r(g) = 3. In the first claim, we assume
that s(g) ≥ 3. This claim follows now from Theorem 1.11 and Remark 1.5, since
T = 10 in this case.

We show now that s(g) ≥ 3 in the case of a section being a Kummer surface. LetX
be the minimal resolution of K. Denote by H ′ the pull-back on X of a plane section
of K and let E1, . . . , E16 be the exceptional divisors. Assume there is a quadric Q in
the hyperplane H = P3, passing through all the 16 nodes of K. Then the pull-back
on X of this quadric Q gives an effective divisor D in the linear system

|2H ′ −
16∑

i=1

Ei|.

On the other hand, there are 16 planes in H , classically called tropes, each of them
tangent to K along a conic passing through 6 of the singularities of K, see [23,
Chapter 1]. Hence the proper transform Cj of one of these conics satisfies

2Cj = H ′ −
∑

i∈Ij

Ei,

with |Ij| = 6. It follows that

Cj ·D =
1

2
(H ′ −

∑

i∈Ij

Ei) · (2H
′ −

16∑

i=1

Ei) = −2.

Since Cj is irreducible, this implies that D contains the curve Cj. Note that D ·H ′ =
8, Cj ·H

′ = 2 for all j = 1, . . . , 16, hand hence D cannot contain all the conics Cj.
This contradiction shows that I(g)2 = 0, and hence s(g) ≥ 3. �

There is a family of nodal hypersurfaces X : g = 0, in any dimension n and
degree d, for which the subtle invariant s(g) is known. They are the Chebyshev



10 ALEXANDRU DIMCA AND GIOVANNA ILARDI

hypersurfaces C(n, d) ⊂ Pn, defined as follows. For more details see [17]. Consider
the d-th Chebyshev polynomial

Td(x) = cos(d arccos(x)).

Then the affine part of Chebyshev hypersurface C(n, d), that is before homogenization
with respect to x0, is defined by the affine equation

g(n, d) = Td(x1) + · · ·+ Td(xn) = 0

when n is even, and by

g(n, d) = Td(x1) + · · ·+ Td(xn) + 1 = 0

when n is odd. The equality

(4.2) s(g) = d− 2,

follows from [17, Proposition 3.1].

Proposition 4.2. If the smooth hypersurface V : f = 0 in Pn, n ≥ 4, of degree
d ≥ 3 admits a hyperplane section V (f, ℓ) : g = 0 which is a Chebyshev hypersurface,
then the multiplication map ℓ : M(f)k → M(f)k+1 is injective for any

k ≤ 2d− 5.

Proof. It is enough to use Theorem 1.11 and the formulas (4.1) and (4.2). �

We recall the following result, see [15].

Theorem 4.3. Generic hypersurfaces of degree d in Pn, with d, n ≥ 3, have hyper-
plane sections with n nodes in general position.

Using this result, we can improve by one, in the case of generic hypersurfaces, the
result of the second author, mentioned above in Remark 1.4, (4).

Corollary 4.4. If the smooth hypersurface V : f = 0 in Pn, n ≥ 3, of degree d ≥ 3
admits a nodal hyperplane section V (f, ℓ) = V ∩H, which has exactly n singularities
in general position, then the multiplication map ℓ : M(f)k → M(f)k+1 is injective
for any k ≤ d− 1. In particular, this property holds for a generic hypersurface V in
Pn, n ≥ 3, of degree d ≥ 3.

Proof. It is enough to use Theorem 1.11, the formulas (4.1) and the obvious fact that
s(g) ≥ 2 in this situation, since the nodes are in general position.

�

When n = 3, Corollary 4.4 is much weaker than [2, Corollary 7.3]. The following
is a special case of the previous result, for n = 5.

Corollary 4.5. If the smooth 4-fold V : f = 0 in P
5 of degree 3 admits a hyperplane

section V (f, ℓ) = V ∩H : g = 0 that is a nodal 3-fold, with at least 5 nodes, not all
on a hyperplane in H, then the corresponding Jacobian algebra M(f) has the WLP .
In particular, this occurs for a generic 4-fold V (f) : f = 0 in P5 of degree 3 and for a
smooth 4-fold V : f = 0 in P5 of degree 3 having a hyperplane section V (f, ℓ) : g = 0
which is a Segre 3-fold with 10 nodes.
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Proof. Using the inequality (4.1), it follows that r(g) ≥ 2. The assumptions in the
first claim imply that s(g) ≥ 2. This claim follows now from Theorem 1.11 and
Remark 1.5, since T = 6 in this case. The fact that a this situation occurs for a
generic 4-fold V (f) : f = 0 in P5 of degree 3 follows from Corollary 4.4

We treat next the case of the Segre 3-fold section. The Segre 3-fold is unique up-to
a projective transformation, and can be given by the equation

X : g = x3

1 + x3

2 + x2

3 + x3

4 + x3

5 − (x1 + x2 + x3 + x4 + x5)
3 = 0,

where x1, x2, x3, x4, x5 are the coordinates on H = P4. The 10 nodes are located at
(1 : 1 : 1 : −1 : −1) and the other 9 points obtained by permuting the coordinates.
Using this description of the singular set of X , it follows that I(g)1 = 0, and hence
s(g) ≥ 2. We conclude as for the first claim above. �
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