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In recent times there has been considerable interest in scenarios for quantum gravity in which
particle kinematics is affected nonlinearly by the Planck scale, with encouraging results for the phe-
nomenological prospects, but also some concerns that the nonlinearities might produce pathological
properties for composite/multiparticle systems. We here focus on kinematics in the κ-Minkowski
noncommutative spacetime, the quantum spacetime which has been most studied from this per-
spective, and compare the implications of the alternative descriptions of the total momentum of a
multiparticle system which have been so far proposed. We provide evidence suggesting that priority
should be given to defining the total momentum as the standard linear sum of the momenta of
the particles composing the system. We also uncover a previously unnoticed feature concerning
some (minute but conceptually important) effects on center-of-mass motion due to properties of the
motion of the constituents relative to the center of mass.

I. INTRODUCTION

Various semi-heuristic arguments [1–3] suggest that the Planck scale should affect relativistic kinematics by
introducing some nonlinearities. This is also found deductively in some of the formalisms under consideration in
quantum-gravity research, such as the κ-Minkowski noncommutative spacetime [4, 6] and some models formulated
within the “relative-locality framework” [7, 8]. Also noteworthy is the fact that in 2+1D quantum gravity the
Planck scale does indeed introduce some nonlinearities in relativistic kinematics [9]. Further reasons of interest in
this possibility come from the phenomenology side: while most other conjectured Planck-scale effects are expected
to remain untestable for the foreseeable future, it happens to be the case that nonlinear deformations of relativistic
kinematics, even when introduced with Planck-scale suppression, are within the reach of some present and
forthcoming experiments and observations [10]. However, due to the complexity of the relevant formalisms, it is not
fully established whether models with nonlinear deformations of relativistic kinematics truly are a viable possibility
for consistent physics: for systems of only a small number of particles the phenomenological consequences are
plausible and interestingly within reach, but for systems composed of a large number of particles there are legitimate
concerns [11–13] that the nonlinearities, although minute for each individual particle composing the system, could
somehow add up to levels that might be in clear conflict with established experimental facts.
We here explore some of these issues through an analysis of multi-particle systems in the κ-Minkowski spacetime, a
3+1-dimensional spacetime whose key property is the non-commutativity of its coordinates:

[xi, x0] = iℓxi , [xi, xj ] = 0, (1)

where x0 is the time, xi are the three spatial coordinates and ℓ is a deformation parameter usually assumed to be of
the order of the Planck length. A large literature has been devoted to the fact that the symmetries of this quantum
space-time are described by the κ-Poincaré Hopf Algebra which is a non-linear deformation of the standard Poincaré
Lie Algebra. Of potential relevance for the description of multiparticle systems in κ-Minkowski is the observation
that, as reviewed in the next section, the structure of the κ-Poincaré algebra provides room for a nonlinear
deformation of the law of composition of momenta. Several studies (see, e.g. [10, 11, 13, 14]) have compared
descriptions of total momentum in κ-Minkowski based on such nonlinear laws of composition to the standard one
based on the linear composition of momenta. The main element of novelty we here contribute to this debate
concerns the needed consistency between the notion of total momentum and the notion of center-of-mass position
coordinates. Some valuable insight is gained when this observation is combined with the requirement that the
description of macroscopic systems (systems with a very large number of composing particles) should not be
pathological: nonlinearities in the definition of total momentum are in general admissible, but only if they do not
grow pathologically for macroscopic systems. Our findings suggest that priority should be given to defining the total
momentum as the standard linear sum of the momenta of the particles composing the system.
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Our investigations also uncover a feature which had previously gone unnoticed: in κ-Minkowski the relative motion
and the center of mass motion do not fully decouple. While this feature appears likely to produce only minute
(untestably small) effects, it could be rather significant conceptually and it does not appear to be a peculiarity of
κ-Minkowski: it may well be present in other quantum spacetimes, in which however techniques suitable for
exposing it have not yet been developed.
In the next section we briefly review some relevant properties of the κ-Poincaré Hopf algebra. In section III we show
how the nonlinear κ-Poincaré-inspired definition of total momentum leads to a pathological description of
macroscopic bodies. In Section IV we propose a new symmetry algebra for the composite system, and expose some
advantages of the standard linear definition of total momentum. Some closing remarks are offered in Section V.

II. THE k-POINCARÉ ALGEBRA

We shall adopt the most common description of κ-Poincaré Hopf algebra which is based on the so called bicross
product basis, such that the commutation relations among algebra generators take the following form

[Pµ, Pν ] = 0, [Ri, P0] = 0,

[Ri, Pj ] = iǫijkPk, [Ri, Rj ] = iǫijkRk,

[Ri, Nj ] = −iǫijkNk, [Ni, P0] = iPi,

[Ni, Pj ] = iδij

(1− e−2ℓP0

2ℓ
+

ℓ

2
|~P |

2
)

− iℓPiPj , [Ni, Nj ] = −iǫijkRk,

(2)

where Ri are rotation generators, Ni are boost generators, and Pµ are translation generators. These also imply a
deformaton of the mass Casimir

m2 =
(2

ℓ
sinh

ℓ

2
P0

)2

− eℓP0 |~P |2 , (3)

which indeed is an invariant of the symmetry algebra (2).
The fact that in the standard Poincarè Lie algebra the action of generators on products of functions is governed by
the Leibniz rule (X ⊲ (fg) = (X ⊲ f)g + f(X ⊲ g)) can be expressed in the language of Hopf algebras by stating that
the coproducts are primitive:

∆P0 = P0 ⊗ 1 + 1⊗ P0

∆Pi = Pi ⊗ 1 + 1⊗ Pi

∆Ni = Ni ⊗ 1 + 1⊗Ni

∆Ri = Ri ⊗ 1 + 1⊗Ri.

(4)

It is well established [4] that for the generators of the κ-Poincaré Hopf algebra one must adopt deformations of the
Leibniz rule, those codified in the following non-primitive coproducts:

∆P0 = P0 ⊗ 1 + 1⊗ P0

∆Pi = Pi ⊗ 1 + e−ℓP0 ⊗ Pi

∆Ni = Ni ⊗ 1 + e−ℓP0 ⊗Ni + ℓǫijkPj ⊗Rk

∆Ri = Ri ⊗ 1 + 1⊗Ri.

(5)

Such that, for example, Pi ⊲ (f(x)g(x)) = (Pi ⊲ f(x)) g(x) +
(

e−ℓP0 ⊲ f(x)
)

(Pi ⊲ g(x)).
The coproducts of translation generators indeed suggest a nonlinear law of composition of momenta, which for
example, in the case of two particles with momenta p and k gives

(p⊕ k)0 = p0 + k0 (p⊕ k)i = pi + e−ℓp0ki . (6)

However, while for microscopic particles p0 ≪ 1/ℓ (if ℓ is indeed of the order of the Planck length), if the two
momenta being composed are momenta of macroscopic bodies this composition law is evidently pathological. This
shall be a key observation for our description of multiparticle systems.
Also relevant for our investigations is the well-established fact that one can describe the symmetries of κ-Minkowski
in terms of the κ-Poincaré Hopf algebra [4]. For example, from the following rules of action of the translation
generators on coordinates:

P0 ⊲ x0 = i, Pi ⊲ xj = −iδij.
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one finds that the κ-Minkowski commutation relations are covariant:

Pi ⊲ [xj , x0] = Pi ⊲ xjx0 − Pi ⊲ x0xj =

= −iδijx0 − (e−ℓP0 ⊲ x0)Pi ⊲ xj = −iδijx0 + iδij(1 − ℓP0) ⊲ x0

= ℓδij = iℓPi ⊲ xj

In what here follows important roles are played by the associated deformed Heisenberg algebra [5],

[P0, x0] = i, [P0, xj ] = 0,

[Pi, x0] = −iℓPi, [Pi, xj ] = −iδij ,

and by the representation of boost generators Ni,

Ni = xi

(1− e−2ℓP0

2ℓ
+

ℓ

2
|~P |2

)

− x0Pi. (7)

III. TROUBLESOME DEFORMATION OF CENTER OF MASS COORDINATES FROM

DEFORMATION OF MOMENTUM-COMPOSITION LAW

Previous studies have focused on the fact that descriptions of total momentum based on the k-Poincaré-deformed
composition law could produce a paradoxical description of the total momentum of macroscopic bodies. We here
intend to notice that descriptions of total momentum based on the k-Poincaré-deformed composition law also lead
to an unsatisfactory description of the center-of-mass coordinates, an issue which will play a key role in our following
observations.
For simplicity we work in a 1+1-dimensional k-Minkowski and focus on only two identical particles A and B,
describing their total momentum in terms of the k-Poincaré-deformed composition law:

PT
0 = PA

0 + PB
0 ,

PT
1 = PA

1 + e−ℓPA
0 PB

1 .
(8)

Our requirement is that there should be a pair of coordinates, xT
0 , x

T
1 , describing the position of the center of mass of

the system. We expect to have that PT
µ and xT

µ are dual, i.e. they close a (possibly deformed) Heisenberg Algebra.
The standard choice of center-of-mass coordinates:

xT
0 =

xA
0 + xB

0

2
,

xT
1 =

xA
1 + xB

1

2

(9)

is clearly not suitable for (8), since one has that:

[PT
1 , xT

1 ] = [PA
1 + e−ℓPA

0 PB
1 ,

xA
1 + xB

1

2
]

= −
i

2
(1 + e−ℓPA

0 )

(10)

and therefore there is no closed (however deformed) center-of-mass Heisenberg algebra.
It is easy to show that a modified definition of the center-of-mass coordinates governed by a closed (deformed)
center-of-mass Heisenberg algebra can be found in the form:

xT
0 =

xA
0 + xB

0 + ℓ
2

(

xA
1 P

A
1 + PA

1 xA
1

)

2
,

xT
1 =

xA
1 + eℓP

A
0 xB

1

2

(11)
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The potential relevance of these coordinates could also be suggested by the fact that they are still k-Minkowski
coordinates, like those of the constituent particles:

[xT
1 , x

T
0 ] =

1

4
[xA

1 , x
A
0 ] +

1

4
[xA

1 , ℓx
A
1 P

A
1 ] +

1

4
[eℓP

A
0 xB

1 , x
A
0 ] +

1

4
[eℓP

A
0 xB

1 , x
B
0 ]

= i
ℓ

4
xA
1 + i

ℓ

4
xA
1 + i

ℓ

4
eℓP

A
0 xB

1 + i
ℓ

4
eℓP

A
0 xB

1

= iℓ
(xA

1 + eℓP
A
0 xB

1

2

)

= iℓxT
1

(12)

These {xT
1 , x

T
0 } together with {PT

1 , PT
0 } also satisfy the k-deformed Heisenberg algebra:

[PT
0 , xT

0 ] = i, [PT
0 , xT

1 ] = 0,

[PT
1 , xT

0 ] = −iℓPT
1 , [PT

1 , xT
1 ] = −i,

(13)

While all these might be technically reassuring, the emerging physical picture is not encouraging: if these were two
macroscopic bodies one would get an unsatisfactory picture not only for the total momentum specified by (8) but
also for the spatial coordinates of the center of mass: if PA

0 ≫ 1/ℓ (not uncommon for a macroscopic body if ℓ is of

the order of the Planck length) then xT
1 =

xA
1
+eℓP

A
0 xB

1

2
would assign a x1 coordinate to the center of mass which

either is very close to xA
1 , ignoring the xB

1 contribution completely (if ℓ < 0), or is close to being proportional to xB
1 ,

ignoring the xA
1 contribution completely (if ℓ > 0).

IV. SYMMETRY ALGEBRA OF A SYSTEM OF 2 IDENTICAL PARTICLES

One our way to an alternative picture, let us then reconsider two particles A and B of equal mass m and coordinates
xA
µ and xB

µ satisfying (µ ∈ {0, 1})

[xA,B
1 , xA,B

0 ] = iℓxA,B
1 , [xA

µ , x
B
ν ] = 0. (14)

For both of them we can build a κ-Poincaré algebra with generators {PA,B
µ , NA,B}, where in particular the

translation generators PA,B
µ act on the respective sets of plane waves as

PA,B
µ ⊲ eik

A,B
1

x
A,B
1 e−ik

A,B
0

x
A,B
0 = kA,B

µ eik
A,B
1

x
A,B
1 e−ik

A,B
0

x
A,B
0 . (15)

In other words the plane waves eik
A
1
xA
1 e−ikA

0
xA
0 and eik

B
1
xB
1 e−ikB

0
xB
0 diagonalize the action of the operators PA

µ and

PB
µ , respectively. As in the standard relativistic case, we would like to describe our two-particle system by separating

it in a “total” part and a “relative” part. To do so let us recall the undeformed center-of-mass coordinates

xT
µ =

xA
µ + xB

µ

2
(16)

and the relative ones

xR
µ =

xA
µ − xB

µ

2
. (17)

It is evidently noteworthy that these center-of-mass coordinates satisfy a 2κ-Minkowski commutation relation

[xT
1 , x

T
0 ] =

1

4
([xA

1 , x
A
0 ] + [xB

1 , x
B
0 ]) = i

ℓ

2
xT
1 . (18)

Unlike the case of the center-of-mass coordinates conjugated with the κ-deformed total momentum, these
center-of-mass coordinates give rise to a truly reassuring picture, in which our composite system composed of two
particles is governed by a halved deformation parameter. In this way as the number of particles composing the
system grows, the deformation effects should become weaker and weaker, thus recovering the standard
Poincaré/Galilei physics on macroscopic scales. The only challenges reside in the interface between center-of-mass
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degrees of freedom and degreees of freedom of the motion relative to the center of mass, as one can start to
appreciate by noticing that

[xT
1 , x

T
0 ] = i

ℓ

2
xT
1 , [xR

1 , x
T
0 ] = i

ℓ

2
xR
1 ,

[xT
1 , x

R
0 ] = i

ℓ

2
xR
1 , [xR

1 , x
R
0 ] = i

ℓ

2
xT
1 .

(19)

This is further exposed by studying the generators for center-of-mass and relative-motion symmetries which can be
paired with these coordinates. En route to those we consider the product of two plane waves, one of ”type A” and
one of ”type B”:

eik
A
1
xA
1 e−ikA

0
xA
0 eik

B
1
xB
1 e−ikB

0
xB
0 (20)

which we rewrite using the relationship between the coordinates xA,B
µ and the coordinates xT,R

µ , finding

eik
T
1
xT
1 eik

R
1
xR
1 e−ikT

0
xT
0 e−ikR

0
xR
0 (21)

with

kTµ = kAµ + kBµ , kRµ = kAµ − kBµ . (22)

It is therefore natural to adopt the following intuitive (standard) definition of translation generators

PT
µ = PA

µ + PB
µ , PR

µ = PA
µ − PB

µ (23)

for which one interestingly finds that

PT,R
µ ⊲ eik

T
1
xT
1 eik

R
1
xR
1 e−ikT

0
xT
0 e−ikR

0
xR
0 = kT,R

µ eik
T
1
xT
1 eik

R
1
xR
1 e−ikT

0
xT
0 e−ikR

0
xR
0 , (24)

where we took into account the canonical action of our operators (P0 ⊲ x0 = i, P1 ⊲ x1 = −i).
It is then straightforward to verify that

[PT
0 , xT

0 ] = i, [PT
0 , xR

0 ] = 0,

[PT
0 , xT

1 ] = 0, [PT
0 , xR

1 ] = 0,

[PR
0 , xT

0 ] = 0, [PR
0 , xR

0 ] = i,

[PR
0 , xT

1 ] = 0, [PR
0 , xR

1 ] = 0,

[PT
1 , xT

0 ] = −i
ℓ

2
PT
1 , [PT

1 , xR
0 ] = −i

ℓ

2
PR
1 ,

[PT
1 , xT

1 ] = −i, [PT
1 , xR

1 ] = 0

[PR
1 , xT

0 ] = −i
ℓ

2
PR
1 , [PR

1 , xR
0 ] = −i

ℓ

2
PT
1 ,

[PR
1 , xT

1 ] = 0, [PR
1 , xR

1 ] = −i

(25)

and derive the following coproducts

∆(PT,R
0 ) = PT,R

0 ⊗ 1 + 1⊗ PT,R
0 ,

∆(PT
1 ) = PT

1 ⊗ 1 + e−
ℓ
2
PT

0 cosh
ℓ

2
PR
0 ⊗ PT

1 − e−
ℓ
2
PT

0 sinh
ℓ

2
PR
0 ⊗ PR

1 ,

∆(PR
1 ) = PR

1 ⊗ 1 + e−
ℓ
2
PT

0 cosh
ℓ

2
PR
0 ⊗ PR

1 − e−
ℓ
2
PT

0 sinh
ℓ

2
PR
0 ⊗ PT

1 .

(26)

Notice how the first two coproducts (as well as the relevant commutators in the deformed Heisenberg algebra (25))
produce a picture in which the motion relative to the center of mass does not decouple from the motion of the center
of mass itself; however, this conceptually important feature might have little or no observable consequences, since for
small energy-momentum of the relative motion the decoupling is restored and for typical macroscopic bodies one
does expect small energy-momentum of the relative motion. We find that, when one can neglect the
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energy-momentum of the relative motion, the first two coproducts (as well as the relevant commutators in the
deformed Heisenberg algebra (25)) reduce to 2κ-Poincaré ones.
For what concerns boost generators, we get a promising picture by simply emulating the definition of our total and
relative translation generators, i.e.:

NT = NA +NB,

NR = NA −NB.
(27)

Using the single particle boost generators representation (7), the equations in (27) can be explicitly written as

NT = xT
1

[1− e−ℓPT
0 cosh ℓPR

0

ℓ
+

ℓ

4
(PT 2

1 + PR2

1 )
]

+ xR
1

(e−ℓPT
0 sinh ℓPR

0

ℓ
+

ℓ

2
PT
1 PR

1

)

− xT
0 P

T
1 − xR

0 P
R
1 . (28)

and

NR = xT
1

(e−ℓPT
0 sinh ℓPR

0

ℓ
+

ℓ

2
PT
1 PR

1

)

+ xR
1

[1− e−ℓPT
0 cosh ℓPR

0

ℓ
+

ℓ

4
(PT 2

1 + PR2

1 )
]

− xT
0 P

R
1 − xR

0 P
T
1 . (29)

Since we can easily go from the set of generators {PA,B
µ , NA,B} to the set {PT,R

µ , NT,R} and viceversa, these show

that the set {PT,R
µ , NT,R} forms a closed algebra of symmetry. For the commutators between the boost and the

time translation generators one straightforwardly finds

[NT , PT
0 ] = [NA +NB, PA

0 + PB
0 ] = iPT

1 ,

[NT , PR
0 ] = [NA +NB, PA

0 − PB
0 ] = iPR

1 ,

[NR, PT
0 ] = [NA −NB, PA

0 + PB
0 ] = iPR

1 ,

[NR, PR
0 ] = [NA −NB, PA

0 − PB
0 ] = iPT

1 .

(30)

The derivations of the remaining commutators are a little more involved but still manageable. For instance one has:

[NT , PT
1 ] = [NA, PA

1 ] + [NB, PB
1 ]

=
1− e−2ℓPA

0

2ℓ
−

ℓ

2
PA2

1 +
1− e−2ℓPB

0

2ℓ
−

ℓ

2
PB2

1

=
1− e−2ℓPA

0 +e−2ℓPB
0

2

ℓ
−

ℓ

2
(PA2

1 + PB2

1 )

=
1− e−ℓPT

0 cosh ℓPR
0

ℓ
−

ℓ

4
(PT 2

1 + PR2

1 ) .

(31)

and in similar fashion:

[NT , PR
1 ] = [NA, PA

1 ]− [NB, PB
1 ]

=
1− e−2ℓPA

0

2ℓ
−

ℓ

2
PA
1

2
−

1− e−2ℓPB
0

2ℓ
+

ℓ

2
PB
1

2

=
−e−2ℓPA

0 + e−2ℓPB
0

2ℓ
−

ℓ

2
(PA

1

2
− PB

1

2
)

= e−ℓPT
0

sinh ℓPR
0

ℓ
−

ℓ

2
PT
1 PR

1 .

(32)

It is easy to realize that the remaining two commutators are actually identical to the previous ones, since they end
up connecting the single particle generators A or B with the same signs + or −, that is

[NR, PT
1 ] = [NT , PR

1 ], [NR, PR
1 ] = [NT , PT

1 ]. (33)

Finally it is not hard to compute the coproducts of the total and relative boost generators:

∆(NT ) = NT ⊗ 1 + e−
ℓ
2
PT

0 cosh
ℓ

2
PR
0 ⊗NT − e−

ℓ
2
PT

0 sinh
ℓ

2
PR
0 ⊗NR

∆(NR) = NR ⊗ 1 + e−
ℓ
2
PT

0 cosh
ℓ

2
PR
0 ⊗NR − e−

ℓ
2
PT

0 sinh
ℓ

2
PR
0 ⊗NT ,

(34)



7

which unsurprisingly have the same form of the coproducts (26). Notice again that for small relative momentum,
both the commutators and the coproducts tend to the 2κ-Poincaré ones.
We therefore have a description of the relativistic symmetries of our two-particle system in terms of center-of-mass
degrees of freedom and degrees of freedom of the motion relative to the center of mass which is given by a robust
Hopf algebra, with generators {PT

0 , PR
0 , PT

1 , PR
1 , NT , NR}. In cases where there is negligible motion relative to the

center of mass the relativistic symmetries are fully described by a 2κ-Poincaré Hopf algebra, with the prefix ”2κ”
signaling the fact that, denoting with ℓ the deformation parameter of the κ-Poincaré Hopf algebra governing the
single-particle case, for the center of mass of a two-particle system we have exactly the same symmetries (if indeed
there is negligible motion relative to the center of mass) but with halved deformation parameter, ℓ

2
.

In closing this section we want to provide further (and more explicit) observations concerning the emergence of the
2κ-Poincaré Hopf algebra. We start by noticing that, in light of results established above, as basis for the space of
fields describing two identical particles in κ-Minkowski one can equivalently adopt either

eik
A
1
xA
1 e−ikA

0
xA
0 eik

B
1
xB
1 e−ikB

0
xB
0 . (35)

or

eik
T
1
xT
1 eik

R
1
xR
1 e−ikT

0
xT
0 e−ikR

0
xR
0 . (36)

Then a generic function describing the two particles can be written as

g(xT
1 , x

T
0 , x

R
1 , x

R
0 ) =

∫

d2kT d2kRg̃(kT1 , k
T
0 , k

R
1 , k

R
0 )e

ikT
1
xT
1 eik

R
1
xR
1 e−ikT

0
xT
0 e−ikR

0
xR
0 . (37)

The subspace CT of fields which depend exclusively on the center-of-mass coordinates can be characterized by
restricting the analysis to functions g̃ such that g̃(kT1 , k

T
0 , k

R
1 , k

R
0 ) = 0 whenever kR1 6= 0 and/or kR0 6= 0. On this

subspace of fields the relativistic symmetries are fully described by the 2k-Poincaré Hopf algebra, and in particular
for such fields the boost generator admits the following simple description

NT = xT
1

(1− e−ℓPT
0

ℓ
+

ℓ

4
PT 2

1

)

− xT
0 P

T
1 . (38)

V. SUMMARY AND OUTLOOK

The study we here reported intends to contribute to the search of the proper description of multi-particle systems in
some quantum spacetimes, using the κ-Minkowski spacetime as reference example. We obtained new results for both
of the most studied definitions of total momentum in κ-Minkowski. In particular, we observed that the definition of
total momentum which is inspired by the κ-Poincaré coproduct is even more concerning than previously appreciated:
we found that besides being, as already known, based on nonlinearities that could be pathological for macroscopic
bodies, it also leads to a paradoxical description of center-of-mass coordinates and/or a picture in which there is no
closed (deformed) Heisenberg algebra for the center-of-mass motion. The results we obtained for the alternative
undeformed definition of total momentum appear to be more encouraging: not only the total momentum does not
involve nonlinearities but also the full description of relativistic symmetries appears to be well behaved as the
number of particles in the system grows (signaled in our study by the emergence of a 2κ-Poincarè description for the
two-particle system from the κ-Poincarè description of the composing particles); moreover, one gets a closed
(deformed) Heisenberg algebra for the center-of-mass motion. The only residual peculiarity present when adopting
the undeformed definition of total momentum resides in an incomplete separation between center-of-mass motion
and motion relative to the center of mass, which however does not appear to be alarming since its form would be
inconsequential in typical many-particle systems, whose relative motion is strongly suppressed with respect to the
center-of-mass motion. Nonetheless, these limitations to the separation between center-of-mass motion and motion
relative to the center of mass are noteworthy from a conceptual perspective, and we conjecture that they will be
found also in other quantum spacetimes. We feel that some priority should be given to the development of suitable
techniques of analysis of this issue adapted to the different quantum spacetimes that might be affected by it.
Evidently our findings also provide motivation for further investigation of another long-standing issue for these
scenarios with deformed relativistic symmetries, which concerns the possibility of nonuniversal relativistic behavior:
if a two-particle composite system is governed by 2κ-Poincarè relativistic properties while single particles are
governed by κ-Poincarè relativistic properties then the description of processes involving both a two-particle
composite system and a fundamental particle should require a sophisticated picture that takes into account the
different relativistic properties. Preliminary results suggest that this can be done satisfactorily (see, e.g.,
Refs. [15, 16]), but more in-depth analyses are needed.



8

ACKNOWLEDGEMENTS

G.A.-C.’s work on this project was supported by the FQXi grant 2018-190483 and by the MIUR, PRIN 2017 grant
20179ZF5KS.

[1] G. Amelino-Camelia, Relativity in space-times with short-distance structure governed by an observer-independent
(Planckian) length scale, International Journal of Modern Physics D, Vol. 11, N. 01, pp. 35-59 (2002)

[2] S. Doplicher, K. Fredenhagen, J. E. Roberts, The quantum structure of spacetime at the Planck scale and quantum
fields,Communications in Mathematical Physics 172.1: 187-220 (1995)

[3] P.G. Bergmann, G.J. Smith, Measurability analysis of the linearized gravitational field, Gen. Rel. Grav. 14 1131-1166
(1982)

[4] S. Majid, H. Ruegg, Bicrossproduct structure of κ-Poincaré group and non-commutative geometry, Physics Letters B
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