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We revisit the approaches to the solution of parity games based on
progress measures and show how the notion of quasi dominions can
be integrated with those approaches. The idea is that, while progress
measure based techniques typically focus on one of the two players,
little information is gathered on the other player during the solution
process. Adding quasi dominions provides additional information on
this player that can be leveraged to greatly accelerate convergence to
a progress measure. To accommodate quasi dominions, however, non
trivial refinements of the approach are necessary. In particular, we need
to introduce a novel notion of measure and a new method to prove
correctness of the resulting solution technique.

1. Introduction

Parity games are two-player infinite-duration games on graphs, which play

a crucial role in various fields of theoretical computer science. These are

games played on graphs, whose nodes, called positions, are labelled with

natural numbers, called priorities, and controlled by one of two players:

player 0 and player 1. Each player can choose edges, called moves, when

the game is at one of its positions. The goal of player 1 is to force a play

π, namely an infinite path in the underlying graph, such that the maximal

priority occurring infinitely often along π is of odd parity. If such a play

cannot be enforced by player 1, player 0 wins the game. In this case, player

0 can indeed force a play whose maximal recurring priority is even.

Finding efficient algorithms to solve these games in practice is a core

problem in formal verification and reactive synthesis, as it leads to efficient

solutions of the model-checking and satisfiability problems of expressive
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temporal logics. These algorithms can, indeed, be used as back-ends of

satisfiability and model-checking procedures [1–3]. In particular, the solution

problem for these games has been proved linear-time interreducible with the

model-checking problem for the modal µCalculus [2] and it is closely related

to other games of infinite duration, such as mean payoff [4, 5], discounted

payoff [6], simple stochastic [7], and energy [8] games. Parity games are also

central to several techniques employed in automata theory [9–12]. Besides the

practical importance, parity games are also interesting from a computational

complexity point of view, since their solution problem is one of the few

inhabitants of the UPTime ∩ CoUPTime class [13]. That result improves

the NPTime ∩ CoNPTime membership [2], which easily follows from the

property of memoryless determinacy [10, 14].

A number of quite different approaches to solve parity games have

been proposed in the literature that exhibit quite different characteris-

tics. Typically, the most efficient ones in practice are those based on game

decomposition, such as the Recursive Algorithm [15, 16], Priority Promo-

tion [17–19], and Tangle Learning [20], which, however, usually suffer from

poor worst-case bounds. On the other hand, the approaches based on

progress measures [21, 22] often lead to good worst-case behaviours [23, 24],

but typically perform very poorly in practice. The main reason for this

inefficiency resides in the fact that those algorithms iteratively explore a

space of functions assigning some value, called measure, to each position

in the game. At each iteration, the measures of some of the positions may

increase and when they become stationary for all the positions, a fixpoint

is reached and a solution can be extracted from the resulting measures.

In order to guarantee correctness, measures are allowed to increase very

slowly, which often leads to slow convergence to a solution and makes these

approaches less appealing in practical contexts. The slow growth is the result

of a uniform measure update policy for one of the two players, specifically

player 1, which only allows for a minimal measure increase for each of its

positions that must be updated.

In this chapter we show that the update policy can be considerably

improved upon, without sacrificing correctness. Instead of relying on the

minimal increase policy to ensure soundness of measure updates, we propose

an approach that brings quasi dominions into the equation. Note that the

same idea has been implemented for Mean Payoff Games in [25] where the

resulting algorithm proved to be very efficient. Informally, a quasi dominion

is a set of positions from which one of the players, say player 0, can win

the game as long as the opponent, player 1, chooses not to escape from
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that set. As such, the notion is not new and is at the very heart of the

Priority Promotion algorithms [26]. The idea is to leverage quasi dominions

to justify a larger, but still sound, increase in the measure for positions

controlled by player 1. The crucial observation is that player 1 surely loses

from any position of a quasi dominion for player 0, unless it can escape that

set by taking some exiting move. Therefore, player 1 can safely increase

the measure of the escaping position according to the exiting moves chosen,

regardless of the fact that the increase may not be minimal. In this way, we

are able to skip lower measures and jump directly to measures that would

be reached anyway, albeit with a number of iterations that is usually much

higher.

The integration of progress measures and quasi dominions, however,

requires (i) a richer form of measure, able to encode additional information

that allows us to identify quasi dominions in the game, and (ii) a new

update algorithm that takes this information into account when increasing

the measures.

The main contributions of this chapter can be summarised as follows:

(a) a novel solution algorithm for parity games based on the integration

of progress measures and quasi dominions; (b) the experimental results

showing an improvement on the performance of orders of magnitude w.r.t.

the classic and quasi-polynomial small progress measure algorithm; (c) the

present approach can pave the way to practically efficient quasi-polynomial

algorithms based on the integration of succinct progress measures, such as

those in [23,24].

2. Preliminaries

A two-player turn-based arena is a tupleA =〈Ps0,Ps1,Mv〉, with Ps0∩Ps1 =

∅ and Ps , Ps0 ∪ Ps1, such that 〈Ps,Mv〉 is a finite directed graph without

sinks. Ps0 (resp., Ps1) is the set of positions of player 0 (resp., 1) and

Mv ⊆ Ps× Ps is a left-total relation describing all possible moves. A path

in V ⊆ Ps is a finite (possible empty) or infinite sequence π ∈ Pth(V) of

positions in V compatible with the move relation, i.e., (πi, πi+1) ∈ Mv , for all

0 ≤ i < |π|−1. The set FPth(v) contains all the finite (possible empty) paths

originating at the position v. For a finite path π, with lst(π) we denote the last

position of π. Finally, SPth(v,V) is the set of simple paths in FPth(v) that

are completely composed of positions in V. Notice that, if v does not belong

to V, then we have that SPth(v,V) = {ε}. A positional strategy for player

α ∈ {0, 1} on V ⊆ Ps is a function σα ∈ Strα(V) , (V∩Psα)→ Ps, mapping
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each α-position v in V to a position σα(v) compatible with the move relation,

i.e., (v, σα(v)) ∈ Mv . With Strα(V) we denote the set of all α-strategies on

V. Given an α-strategy σα ∈ Strα(V) and a set of positions U ⊆ Ps, the

operator σα ↓ U restricts σα to the positions in V ∩ U. A play in V ⊆ Ps

from a position v ∈ V w.r.t. a pair of strategies (σ0, σ1) ∈ Str0(V)×Str1(V),

called ((σ0, σ1), v)-play, is a path π ∈ Pth(V) such that (π)0 = v and, for all

0 ≤ i < |π| − 1, if (π)i ∈ Ps0 then (π)i+1 = σ0((π)i) else (π)i+1 = σ1((π)i).

The play function play : (Str0(V) × Str1(V)) × V → Pth(V) returns, for

each position v ∈ V and pair of strategies (σ0, σ1) ∈ Str0(V)× Str1(V), the

maximal ((σ0, σ1), v)-play play((σ0, σ1), v). A path π ∈ Pth(v) is called a

(σα, v)-play in V, if π = play((σ0, σ1), v), for some σα ∈ Strα(V).

A parity game is a tuple a =〈A,Pr, pr〉 ∈ PG, where A is an arena, Pr ⊂
N is a finite set of priorities, and pr : Ps→ Pr is a priority function assigning

a priority to each position. The priority function can be naturally extended

to games and paths as follows: pr(a) , maxv∈Ps pr(v); for a path π ∈ Pth, we

set pr(π) , max0≤i<|π| pr((π)i), if π is finite, and pr(π) , lim supi∈N pr((π)i),

otherwise. A set of positions V ⊆ Ps is an α-dominion, with α ∈ {0, 1},
if there exists an α-strategy σα ∈ Strα(V) such that, for all α-strategies

σα ∈ Strα(V) and positions v ∈ V, the induced play π = play((σ0, σ1), v) is

infinite and pr(π) ≡2 α. In other words, σα only induces on V infinite plays

whose maximal priority visited infinitely often has parity α. By a\V we

denote the maximal subgame of a with set of positions Ps′ contained in

Ps\V and move relation Mv ′ equal to the restriction of Mv to Ps′.

3. Solving Parity Games via Progress Measures

The abstract notion of progress measure [27] has been introduced as a way

to encode global properties on paths of a graph by means of simpler local

properties of adjacent vertexes, i.e., of edges. In particular, this notion

has been successfully employed in the literature, e.g., for the solution of

automata theory [28–32] and program verification [33,34] problems.

In the context of parity games [21], the graph property of interest, called

parity property, asserts that, along every path in the graph, the maximal

priority occurring infinitely often is of odd parity. More precisely, in game

theoretic terms, a parity progress measure witnesses the existence of a

strategy σ for one of the two players, from now on player 1, such that each

path in the graph induced by fixing σ satisfies the desired property, where

the graph induced by that strategy is obtained from the game arena by

removing all the moves exiting from position owned by player 1, except
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those specified by σ itself. A parity progress measure associates with each

vertex of the underlying graph a value, called parity measure (or simply

measure, for short), taken from some totally-ordered set. Measures are thus

associated with positions in the game and the measure η of a position v

can intuitively be interpreted as a local assessment of how far v is from

satisfying the parity property, with the maximal value η = > denoting

failure in the satisfaction of the property for v. More precisely, a progress

measure implicitly identifies a strategy σ with the following characteristic:

in the graph induced by σ, along every path, measures cannot increase and

they strictly decrease when passing through an even-priority position. This

ensures that every path eventually gets trapped into a cycle whose maximal

priority is odd.

In order to obtain a progress measure, we start from some well-behaved

assignment of measures to positions of the game. The local information

encoded by these measures is, then, propagated back along the edges of

the underlying graph so as to associate with each position the information

on the priorities occurring along the plays of some finite length starting at

that position. The propagation process is performed by means of a low-level

measure-update operator, called stretch operator +. The operator computes

the contribution that a given position v would provide to a given measure

η. Consider, for instance, a position v that has an adjacent position u with

measure η. Then η + v is the measure that v would obtain by choosing

the move leading to u, namely, the one obtained by augmenting η with

the contribution of (the priority of) position v. When v is an even-priority

position, the augmented measure η + v strictly increases, moving further

away from the parity property.

The process described above terminates when no position can be pushed

further away from the property. More specifically, each even position has

to strictly dominate the measures obtainable through all, respectively one

of, its adjacent positions, depending on whether that position belongs to

player 0 or to player 1, respectively. Similarly, each odd position must have

measures no lower than those obtainable through all, respectively one of,

its adjacent moves, again depending on the owner of the position. When

this happens, the positions with measure > are the ones from which player

0 wins the parity game, while the remaining ones are those from which

the opponent can win, by simply forcing plays of non-increasing measures.

The measures currently associated with this second set of positions form a

progress measure for the game.

Different notions of parity measures have been proposed in the literature,
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see, e.g., [21–24]. In this section we introduce an abstract concept of measure

space and progress measure. All the progress measure based approaches in

the literature, including the one presented in this chapter, can be viewed as

instantiations of this abstract schema.

3.1. Measure-Function Spaces

As mentioned above, techniques based on progress measures rely on attach-

ing, at each step of the computation, suitable information to all positions in

the game and updating it until a fixpoint is reached. The piece of informa-

tion associated with every single position is called the current measure of

that position, whereas the set of all possible measures is called a measure

space. Such a space is a totally ordered set, with minimum and maximum

elements, and provides the two special operations of truncation and stretch

that evaluate and update the measure of a given position w.r.t. another

position. Intuitively, the truncation operator �v disregards the contribution

to a given measure that is due to positions with priority lower than that of

v along the explored finite plays. The stretch operator +, introduced in the

previous paragraph, propagates the contribution that the position would

provide to a given measure.

These two operators essentially embed the semantics of the parity prop-

erty into the propagation operation that sits at the basis of the computation

of a progress measure. At the abstract level, canonical instances of these

operators can be any functions that preserve the maximum element and the

order, except for possibly mapping different measures onto the same one.

All these requirements are formalised by the following definition.

Definition 3.1: (Measure Space) A measure space is a mathematical struc-

ture M ,〈Ms, <,⊥,>, �,+〉, whose components enjoy the following proper-

ties:

(1) 〈Ms, <,⊥,>〉 is a strict total order with minimum and maximum

on elements referred to as measures;

(2) the function � : Ms× Ps→ Ms, called truncation operator, maps a

measure η ∈ Ms and a position v ∈ Ps to a measure η�v ∈ Ms; this

operator is canonical whenever (i) η = > iff η�v = > and (ii) if

η ≤ η? then η�v ≤ η?�v, for all η? ∈ Ms;

(3) the function +: Ms × Ps → Ms, called stretch operator, maps a

measure η ∈ Ms and a position v ∈ Ps to a measure η + v ∈ Ms;

this operator is canonical whenever (i) η = > iff η + v = > and
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(ii) if η ≤ η? then η + v ≤ η? + v, for all η? ∈ Ms.

Notice that both operators are canonical if they are monotone in their

first argument and preserve the distinction between the measure > and the

other measures, in the sense that > cannot be obtained by truncating or

stretching a non-top measure and, vice versa, no non-> measure is derivable

by truncating or stretching >. a

Given a measure spaceM, a measure function µ formalises the intuitive

association discussed above by mapping each position v in the game to a

measure µ(v) in M. In addition, the order relation < between measures

declared in M induces a pointwise partial order v on the set measure

functions MF defined in the usual way. This set together with its induced

order form what we call a measure-function space.

Definition 3.2: (Measure-Function Space) The measure-function space

induced by a given measure space M is the partial order F , 〈MF,v〉,
whose components are defined as prescribed in the following:

(1) MF , Ps→ Ms is the set of all functions µ ∈ MF, named measure

functions, mapping each position v ∈ Ps to a measure µ(v) ∈ Ms;

(2) for all µ, µ ∈ MF, it holds that µ v µ iff µ(v) ≤ µ(v), for all

positions v ∈ Ps.

By taking µ⊥ as the measure function associating measure ⊥ with every

position, the following property of measure-function spaces immediately

follows.

Proposition 3.3: Every measure-function space F contains a unique min-

imal element µ⊥ ∈ MF.

aReaders familiar with the research published in [21, 23] might find it interesting to

observe that both the small progress measure [21] and the succinct progress measure [23]

algorithms make implicit use of a measure space with a canonical truncation operator,
but a non-canonical stretch operator. In more detail, the d/2-tuples associated with the

positions during an execution form a totally ordered set with minimum and maximum,
once extended with the value > and where the value ⊥ is identified with the unique
all-zero d/2-tuple. Moreover, the truncation operator is represented by the function that

zeros all components of a d/2-tuple with indexes smaller than the priority of the position
given as second argument. Finally, the maps over d/2-tuples induced by the ternary

functions Prog(·, ·, ·) [21] and lift(·, ·, ·) [23], used in the definition of the function Lift(·, ·)
at the core of the algorithms, implement the corresponding stretch operators. Such
operators are, however, not canonical, since they can map some of the non-> measures
to >, failing so to satisfy the if direction of Condition 3i of Definition 3.1.
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The 0-denotation (resp., 1-denotation) of a measure function µ ∈ MF is

the set ‖µ‖0 , {v ∈ Ps : µ(v)�v = >} (resp., ‖µ‖1 , ‖µ‖0) of all positions

having maximal (resp., non-maximal) measures associated with them in µ,

once truncated. Similarly, the ⊥-denotation (resp., +-denotation) of µ is

the set ‖µ‖⊥ , {v ∈ Ps : µ(v)�v = ⊥} (resp., ‖µ‖+ , ‖µ‖⊥) of all positions

having minimal (resp., non-minimal) measures.

According to the intuition reported at the beginning of this section, the

measure associated with a given position v is meant to encode information

about the priorities encountered along the plays starting at that positions.

More specifically, each measure contains the information gathered along some

finite path and can be obtained by repeatedly applying the stretch operator

backwards from the last position of that path. To formalise this intuition, we

introduce the notion of measure η(π) of a finite path π, including the empty

one ε, that can be recursively computed via the function η : FPth→ MF as

follows:

η(π) ,

{
⊥, if π = ε;

η(π′) + v, otherwise.

Where π = v · π′, for some unique v ∈ Ps and π′ ∈ FPth.

At this point, we can constrain a measure function µ, by requiring the

measure µ(v) of a position v to be witnessed by some finite path π starting

at v, i.e., µ(v) = η(π). By doing this, we obtain a ground measure function.

Definition 3.4: (Ground Measure-Function Space) The ground measure-

function space induced by a given measure spaceM is the subspace 〈GM,v〉
of the measure-function space F , where GM , {µ ∈ MF : ∀v ∈ Ps. µ(v) ∈
GMs(v)} with GMs(v) , {η(π) : π ∈ FPth(v)}.

All progress-measure approaches proposed in the literature implicitly

work by updating ground measure functions only. The same holds true for

the algorithm proposed in the current work, which actually runs on the even

more restricted set of simple measure functions introduced in Sec. 4.

3.2. (Progress-Measure Functions)

The following definition, which tightly connects the truncation and stretch

operators, formalises the essential semantic features of a measure space that

are required to provide a meaningful notion of progress measure, as proven

in Theorem 3.7.

Definition 3.5: Progress Measure Space A measure space M is a progress
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measure space if the following properties hold true, for each measure η ∈ Ms

and position v ∈ Ps:

(1) η�v < (η + v)�v, if η�v < > and pr(v) is even;

(2) η�u ≤ (η + v)�u, for all even-priority positions u with pr(v) ≤ pr(u).

The first condition requires that the contribution to a measure due to

an even position v cannot be cancelled out by truncating at v itself and

that such contribution is always meaningful, namely strictly increasing. This

matches the intuition that even priorities tend to move away from the parity

property, therefore increasing the associated measure. The second property,

instead, ensures that no lower-priority position v can overcome a higher even

priority position u, in the sense that the contribution of v to the measure

cannot move closer to the parity property, once the stretched measure is

analysed w.r.t. u. Technically, this means that the stretch forced by a lower

priority position is always viewed as a non-strict improvement by any even

position with higher priority, regardless of the parity of the first one.

We can now turn our attention to the notion of progress measure. In-

tuitively, a measure function over a progress measure space is a progress

measure if it guarantees that every position with a non-> measure can

progress toward the parity property, namely toward lower measures. In

other words, this establishes a type of stability property on the positions of

a game according to the following intuition, which takes into account the

opposite attitude of the two players. While player 0 tries to push toward

higher measures, the opponent will try to keep the measure as low as possible.

If player 0 cannot increase the measures of its positions and the opponent is

not forced to increase the measures of its own positions, then player 0 cannot

prevent player 1 from winning the game from all those positions whose

measure did not reach value >. This corresponds to requiring that player 0

cannot increase the measure of its positions by stretching the measure of

any adjacent move, while the opponent can always choose a move whose

corresponding stretch does not force the increment of the measure. The

following definition precisely formalises this intuitive explanation.

Definition 3.6: (Progress Measure) A measure function µ ∈ MF is a

progress measure if the following conditions hold, for all positions v ∈ Ps:

(1) µ(w) + v ≤ µ(v), for all adjacents w ∈ Mv(v) of v, if v ∈ Ps0;

(2) µ(w) + v ≤ µ(v), for some adjacent w ∈ Mv(v) of v, if v ∈ Ps1.

A 1-strategy σ ∈ Str1 is µ-coherent if µ(σ(v)) + v ≤ µ(v), for all 1-positions
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v ∈ Ps1.

Assuming a progress measure space with a canonical truncation operator,

the notion of progress measure actually ensures that any play satisfying

this progress condition will eventually be trapped in a cycle in which the

maximal priority is odd, thereby witnessing a win for player 1. This is

established by the following theorem.

Theorem 3.7: (Progress Measure) Let µ ∈ MF be a progress measure w.r.t.

a progress measure space M with a canonical truncation operator. Then,

‖µ‖1 is a 1-dominion for which all µ-coherent 1-strategies are 1-winning.

Proof: Let us consider an arbitrary µ-coherent 1-strategy σ1 ∈ Str1. All

measures µ(v) of positions v ∈ ‖µ‖1 ∩ Ps1 are a progress for v w.r.t. the

measures µ(σ1(v)) of their adjacents σ1(v), i.e., formally, µ(σ1(v))+v ≤ µ(v).

The existence of such a coherent strategy is ensured by the fact that µ is a

progress measure. Indeed, by Condition 2 of Definition 3.6, there necessarily

exists an adjacent w? ∈ Mv(v) of v such that µ(w?) + v ≤ µ(v).

It can be shown that σ1 is a winning strategy for player 1 from all the

positions in ‖µ‖1, which implies that ‖µ‖1 ⊆Win1. To do this, consider a

0-strategy σ0 ∈ Str0 and the associated play π = play((σ0, σ1), v) starting

at a position v ∈ ‖µ‖1. Assume, by contradiction, that π is won by player 0.

Since the game a is finite and the strategies are memoryless, π must contain

a finite simple cycle, and so a finite simple path, and the maximal priority

seen infinitely often along it needs to be even. In other words, there exist two

natural numbers h ∈ N and k ∈ N+, such that (π)h = (π)h+k and pr(ρ) ≡2 0,

where ρ , ((π)≥h)<h+k is the simple path named above. Moreover, one can

choose the value of the index h in such a way that pr((π)h) ≥ pr((π)i), for

all i ∈ N with h < i < h+ k. Recall that ((π)i, (π)i+1) ∈ Mv , for all indexes

i ∈ N. Thanks to the two conditions of Definition 3.6 and the notion of play,

it holds that

µ((π)i+1) + (π)i ≤ µ((π)i).

By Item 2ii of Definition 3.1, for all indexes h ≤ i < h+ k, it immediately

follows that

(µ((π)i+1) + (π)i)�(π)h ≤ µ((π)i)�(π)h . (∗)

At this point, it is important to observe that µ cannot associate the

maximum value > with any position in the play, in particular when restricted

to (π)h, which means that the entire path is contained into ‖µ‖1. The first
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element of the play trivially satisfies such a constraint, as µ((π)0) = µ(v) 6=
>, since v ∈ ‖µ‖1. Hence, µ((π)0)�(π)h 6= >, by Item 2i of Definition 3.1.

Now, suppose by contradiction that µ((π)i+1)�(π)h = >, for some index

i ∈ N+. By Inequality (∗) and Item 2 of Definition 3.5, it follows that

> = µ((π)i+1)�(π)h ≤ (µ((π)i+1) + (π)i)�(π)h ≤ µ((π)i)�(π)h ,

being pr((π)h) the maximal priority along the path ρ that is also even. Due to

the maximality of > ensured by Item 1 of Definition 3.1, it obviously follows

that µ((π)i)�(π)h = > as well. Therefore, by iterating this process until

index 0 is reached, one would obtain µ((π)0)�(π)h = >, which is impossible,

as previously observed.

To complete the proof, we can exploit the properties of the progress

measure space. Recall that µ((π)h+1)�(π)h < >, thanks to the above obser-

vation. Thus, by Item 1 of Definition 3.5 and the fact that pr((π)h) is an

even priority, one can derive that

µ((π)h+1)�(π)h < (µ((π)h+1) + (π)h)�(π)h . (<)

Moreover, by applying again Item 2 of Definition 3.5 and due to the fact that

pr((π)h) is the maximal priority in the cycle, for all indexes h < i < h+ k,

it holds that

µ((π)i+1)�(π)h ≤ (µ((π)i+1) + (π)i)�(π)h . (≤)

As a consequence of the transitivity of the order relation between measures,

by putting together Inequalities (∗), (<), and (≤), one would therefore

obtain

µ((π)h+k)�(π)h < µ((π)h)�(π)h .

However, (π)h+k = (π)h, leading to µ((π)h)�(π)h < µ((π)h)�(π)h , which is

clearly impossible, being < an irreflexive relation.

4. Solving Parity Games via Quasi-Dominion Measures

The framework set forth in the previous section is already sufficient to define

a sound and complete approach for the solution of parity games, as shown

in [21]. Here, however, we shall further refine the measure space in order to

accommodate the notion of quasi dominion into the measure functions.
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4.1. Quasi-Dominion-Measure Functions

The notion of quasi dominion was originally introduced for parity games

in [17, 26] and, in a slightly different form, in [35]. Here we provide a

somewhat more general version that can be easily integrated with measure

functions.

Definition 4.1: (Quasi Dominion) A set of positions Q ⊆ Ps is a weak

quasi 0-dominion if there exists a 0-strategy σ0 ∈ Str0(Q), called 0-witness

for Q, such that, for all 1-strategies σ1 ∈ Str1(Q) and positions v ∈ Q,

if the induced play π = play((σ0, σ1), v) is infinite then pr(π) is even. If

the even-parity condition holds also for finite plays, then Q is called quasi

0-dominion.

Essentially, a quasi 0-dominion consists in a set Q of positions, starting

from which player 0 can force plays whose maximal prefixes contained in

Q have even maximal priority. Observe that, in case the maximal prefix

contained in Q is infinite, then the play is actually winning for player 0.

When the condition holds only for infinite plays, the set is called weak quasi

0-dominion. Clearly, any quasi 0-dominion is also a weak quasi 0-dominion.

Moreover, the latter are closed under subsets, while the former are not. It

is an immediate consequence of the definition above that all infinite plays

induced by the 0-witness, if any, are winning for player 0. This also entails

that any subset Q? of a weak quasi 0-dominion Q, in which the player 0

can remain and from where the opponent cannot escape, is a 0-dominion.

Indeed, in such a set of positions, player 0 always has moves that remain in

Q?, while the opponent can only choose moves remaining in Q?. Hence, any

play compatible with the 0-witness for Q that starts in Q? is infinite and

entirely contained in Q?. We have, so, the following result.

Corollary 4.2: (Quasi Dominion) Let Q ⊆ Ps be a weak quasi 0-dominion,

σ0 ∈ Str0(Q) one of its 0-witnesses, and Q? ⊆ Q a subset such that for all

positions v ∈ Q?∩Ps0 it holds σ0(v) ∈ Q? and for all positions v ∈ Q?∩Ps1
it holds Mv(v) ⊆ Q?. Then, Q? is a 0-dominion.

The notion of progress measure introduced in the previous section basi-

cally gives us positions that do satisfy the parity property and, thus, are

winning for player 1, namely the non-> positions. This is done by enforcing

on the measure space the conditions of Definition 3.5 that formally captures

the idea that even priority positions push further away from the parity

property. However, the progress measure is an asymmetric notion, centred
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around one of the two players, specifically player 1, and does not provide any

meaningful information on the other player. More specifically, no estimation

on how far player 0 is from winning the game starting in a given position,

i.e., from satisfying the dual/even parity property, can be extracted from it.

Quasi dominions, however, are precisely intended to encode the dual

information for player 0. In this case, the odd priority positions are those

that push further away from satisfying the dual/even parity property. A

natural way to embed information about quasi dominions into the measures

is, thus, to enforce the dual conditions of Definition 3.5, which leads us

to the notion of regress measure. Here we constrain the behaviour of the

truncation and stretch operators w.r.t. the odd positions, instead of the

even ones.

Definition 4.3: (Regress Measure Space) A measure space M is a regress

space if the following properties hold true, for each measure η ∈ Ms and

position v ∈ Ps:

(1) (η + v)�v < η�v, if ⊥ < η�v < > and pr(v) is odd;

(2) (η + v)�u ≤ η�u, for all odd-priority positions u with pr(v) ≤ pr(u).

We can now define the notion of regress measure as the dual of the

progress measure.

Definition 4.4: (Regress Measure) A measure function µ ∈ MF is a regress

measure if the following conditions hold, for all positions v ∈ ‖µ‖+ \ ‖µ‖0:

(1) µ(v) ≤ µ(w) + v, for some adjacent w ∈ Mv(v) of v, if v ∈ Ps0;

(2) µ(v) ≤ µ(w) + v, for all adjacents w ∈ Mv(v) of v, if v ∈ Ps1.

A 0-strategy σ ∈ Str0 is µ-coherent if µ(v) ≤ µ(σ(v)) + v, for all 0-positions

v ∈ Ps0.

Regress measures are meant to ensure that all the positions whose

truncation is neither ⊥ nor > form a weak quasi dominion for player 0, as

established by the following theorem.

Theorem 4.5: (Regress Measure) Let µ ∈ MF be a regress measure w.r.t.

a regress measure space M with a canonical truncation operator. Then,

‖µ‖+ \‖µ‖0 is a weak quasi 0-dominion for which all µ-coherent 0-strategies

are 0-witnesses, once restricted to ‖µ‖+ \ ‖µ‖0.

Proof: Mutatis mutandis , the proof proceeds similarly to the one previously

presented for Theorem 3.7.
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First of all, let us consider an arbitrary µ-coherent 0-strategy σ0 ∈ Str0.

All measures µ(v) of positions v ∈ ‖µ‖0 ∩ Ps0 are a regress for v w.r.t. the

measures µ(σ0(v)) of their adjacents σ0(v), i.e., formally, µ(v) ≤ µ(σ0(v))+v.

The existence of such a coherent strategy is ensured by the fact that µ is a

regress measure. Indeed, by Condition 1 of Definition 4.4, there necessarily

exists an adjacent w? ∈ Mv(v) of v such that µ(v) ≤ µ(w?) + v.

To prove that Q , ‖µ‖+ \ ‖µ‖0 is a weak quasi 0-dominion with σ0 ↓
Q ∈ Str0(Q) as 0-witness, consider a 1-strategy σ1 ∈ Str1(Q) such that the

associated play π = play((σ0 ↓ Q, σ1), v) starting at a position v ∈ Q is

infinite. Now, one needs to show that pr(π) is even. Assume by contradiction

that this condition on the parity of the priority does not hold. Since the

game a is finite and the strategies are memoryless, π must contain a finite

simple cycle, and so a finite simple path, and the maximal priority seen

infinitely often along it needs to be odd. In other words, there exist two

natural numbers h ∈ N and k ∈ N+, such that (π)h = (π)h+k and pr(ρ) ≡2 1,

where ρ , ((π)≥h)<h+k is the simple path named above. Moreover, one can

choose the value of the index h in such a way that pr((π)h) ≥ pr((π)i), for

all i ∈ N with h < i < h+ k. Recall that ((π)i, (π)i+1) ∈ Mv , for all indexes

i ∈ N. Thanks to the two conditions of Definition 4.4 and the notion of play,

it holds that

µ((π)i) ≤ µ((π)i+1) + (π)i.

By Item 2ii of Definition 3.1, for all indexes h ≤ i < h+ k, it immediately

follows that

µ((π)i)�(π)h ≤ (µ((π)i+1) + (π)i)�(π)h . (∗)

At this point, we can exploit the properties of the regress measure space.

By construction, π ∈ Pth(Q), where we recall that Q , ‖µ‖+ \ ‖µ‖0. Thus,

observe that both µ((π)i)�(π)i 6= ⊥ and µ((π)i)�(π)i 6= > hold, for all i ∈ N.

This implies that ⊥ < µ((π)i)�(π)i and µ((π)i)�(π)h < >, thanks to Item 2i

of Definition 3.1. By Item 2 of Definition 4.3 and the fact that pr((π)h) is

an odd priority, one can derive that

(µ((π)h+1) + (π)h)�(π)h ≤ µ((π)h+1)�(π)h .

Hence, by Inequality (∗) and the above observations, it follows that

⊥ < µ((π)h)�(π)h ≤ (µ((π)h+1) + (π)h)�(π)h ≤ µ((π)h+1)�(π)h < >,

which in turn implies

⊥ < µ((π)h+1)�(π)h < >.
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Now, by Item 1 of Definition 4.3, one can obtain that

(µ((π)h+1) + (π)h)�(π)h < µ((π)h+1)�(π)h . (<)

Moreover, by applying again Item 2 of Definition 4.3 and due to the fact that

pr((π)h) is the maximal priority in the cycle, for all indexes h < i < h+ k,

it holds that

(µ((π)i+1) + (π)i)�(π)h ≤ µ((π)i+1)�(π)h . (≤)

As a consequence of the transitivity of the order relation between measures,

by putting together Inequalities (∗), (<), and (≤), one would derive

µ((π)h)�(π)h < µ((π)h+k)�(π)h .

However, (π)h+k = (π)h, leading to µ((π)h)�(π)h < µ((π)h)�(π)h , which is

obviously impossible, being < an irreflexive relation.

A quasi-dominion measure is, then, defined as a regress measure with the

additional property that all the positions with measure > form a 0-dominion,

i.e., are indeed winning for player 0.

Definition 4.6: (Quasi-Dominion Measure) A measure function µ∈MF

is a quasi-dominion measure (qdm, for short) if it is a regress measure for

which ‖µ‖0 is a 0-dominion. QDM denotes the set of all qdms.

The following theorem establishes the main property of quasi-dominion

measures, namely that the set of non-⊥ positions always forms a weak quasi

0-dominion.

Theorem 4.7: (Quasi-Dominion Measure I) Let µ ∈ MF be a quasi-

dominion measure w.r.t. a regress measure space M with a canonical

truncation operator. Then, ‖µ‖+ is a weak quasi 0-dominion for which

all µ-coherent 0-strategies that are winning on ‖µ‖0 are 0-witnesses, once

restricted to ‖µ‖+.

Proof: Let Q , ‖µ‖+ and σ0 ∈ Str0 be an arbitrary µ-coherent 0-strategy

that is winning on ‖µ‖0. To prove that Q is a weak quasi 0-dominion with

σ0 ↓ Q ∈ Str0(Q) as 0-witness, consider any 1-strategy σ1 ∈ Str1(Q) such

that the play π = play((σ0 ↓ Q, σ1), v) from position v ∈ Q is infinite. We

need to show that pr(π) is even. The following two different cases may arise,

where H , ‖µ‖+ \ ‖µ‖0 ⊆ Q:
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• [π ∈ Pth(H)]. By Theorem 4.5, H is a weak quasi 0-dominion with

σ0 ↓ H = (σ0 ↓ Q) ↓ H as 0-witness. Moreover, π is a (σ0 ↓ H, v)-

play in H. Hence, the thesis immediately follows from the definition

of weak quasi 0-dominion.

• [π 6∈ Pth(H)]. Since π 6∈ Pth(H), there clearly exists and index

i ∈ N such that (π)≥i ∈ Pth(‖µ‖0). This follows from the fact

that ‖µ‖0 is a 0-dominion with σ0 as a 0-winning strategy, since

every play compatible with σ0 gets necessarily trapped in ‖µ‖0.
Moreover, (π)≥i is a (σ0 ↓ ‖µ‖0, (π)i)-play in ‖µ‖0. Hence, we

immediately obtain the thesis from the definition of 0-dominion,

since pr(π) = pr((π)≥i).

4.2. Simple-Measure Functions

While the solution of a parity game involves checking the parity property

along infinite plays, as the solution algorithm proceeds, the measure of

a position v encodes a finite horizon approximation of that condition for

v. This approximation is progressively refined during the computation, by

exploring longer and longer finite prefixes of the possible plays starting from

v. Clearly, any play that contains a cycle is either winning for player 0 or

for the opponent. In a sense, the shortest prefix of the play that ends with

a repetition of some position already provides all the necessary information

to assess the winning player of the entire infinite play. This observation

suggests that measures need only encode information of finite simple paths

in the game, since those are the only prefixes that need to be extended to

obtain finer approximations.

From now on, we shall fix a measure space M and, thus, the induced

measure-function space F . Given a position v ∈ Ps and a set of positions

X ⊆ Ps, we introduce the set

SMs(v,X) , {η(π) ∈ Ms : π ∈ SPth(v,X)} ∪ {>}

of the simple measures of v w.r.t. X. This set contains, besides the measure

>, only those measures induced by the finite simple paths originating at

v and composed only of positions in X. It is immediate to observe that

SMs(v,X) = {>,⊥}, whenever v 6∈ Ps, since SPth(v,V) = {ε}.

Proposition 4.8: 〈SMs(v,X), <,⊥,>〉 is a finite strict total order with

minimum and maximum, for all positions v ∈ Ps and sets of positions

X ⊆ Ps.
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Following the observations above, simple measure functions restrict the

possible measures of each position to those induced by finite simple paths

contained in the quasi 0-dominion ‖µ‖+.

Definition 4.9: (Simple Measure Function) A measure function µ ∈ MF

is a simple measure (sm, for short) if µ(v) ∈ SMs(v, ‖µ‖+), for all positions

v ∈ Ps. SM denotes the set of all sms.

The next proposition shows that, for simple measures µ, if the truncation

of the measure µ(v) w.r.t. the position v itself is ⊥, then the original measure

µ(v) needs to be⊥ as well, since (i) SMs(v, ‖µ‖+) = {>,⊥} and (ii)>�v = >,

due to Item 2i of Definition 3.1.

Proposition 4.10: For every simple measure µ ∈ SM and position v ∈
‖µ‖⊥, it holds that µ(v) = ⊥.

The measure function µ⊥ is clearly the minimal element w.r.t. v in the

set SM of simple measures.

Proposition 4.11: 〈SM,v〉 is a finite partial order with µ⊥ ∈ SM as unique

minimal element.

Putting together Definitions 4.6 and 4.9, we obtain simple quasi-dominion

measures, which enjoy a stronger property than the one stated in Theo-

rem 4.7.

Theorem 4.12: (Quasi-Dominion Measure II) Let µ ∈ MF be a simple

quasi-dominion measure w.r.t. a regress measure space M with a canonical

truncation operator satisfying the equality ⊥�v = ⊥, for all odd priority

positions v. Then, ‖µ‖+ is a quasi 0-dominion for which all µ-coherent

0-strategies that are winning on ‖µ‖0 are 0-witnesses, once restricted to

‖µ‖+.

Proof: By Theorem 4.7, Q , ‖µ‖+ is a weak quasi 0-dominion. Therefore,

to prove that it is a quasi 0-dominion with σ0 ↓ Q ∈ Str0(Q) as 0-witness,

for some arbitrary µ-coherent 0-strategy σ0 ∈ Str0 that is winning on

‖µ‖0, consider a 1-strategy σ1 ∈ Str1(Q) for which the associated play

π = play((σ0 ↓ Q, σ1), v) starting at a position v ∈ Q is finite. Now, one

needs to show that pr(π) is even.

Suppose by contradiction that pr(π) is odd. Then, there exists an in-

dex h ∈ N with 0 ≤ h ≤ n , |π| − 1, such that pr((π)h) ≡2 1 and

pr((π)h) ≥ pr((π)i), for all i ∈ N with h ≤ i ≤ n. Thanks to Definition 4.4,
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Items 2i and 2ii of Definition 3.1, Item 2 of Definition 4.3, and the fact that

µ((π)h)�(π)h 6= ⊥ and pr((π)h) is the maximal priority along the finite path

(π)≥h that is also odd, one can obtain the following inequality, by applying

the same inductive reasoning employed in the second half of the proof of

Theorem 4.5:

⊥ < µ((π)h)�(π)h ≤ µ((π)n)�(π)h . (∗)

Since π if finite, either one of the two strategies σ0 and σ1 have to terminate

in (π)n, i.e., we necessarily have that w? ∈ ‖µ‖⊥, where w? , σ0((π)n), if

(π)n ∈ Ps0, and w? , σ1((π)n), otherwise. Hence, by Proposition 4.10, it

holds that µ(w?) = ⊥, due to the fact that µ is a simple measure. Moreover,

again by Definition 4.4, it holds that

µ((π)n) ≤ µ(w?) + (π)n = ⊥+ (π)n,

from which, by Item 2ii of Definition 3.1, it follows that

µ((π)n)�(π)h ≤ (⊥+ (π)n)�(π)h . (�)

At this point, by Item 2 of Definition 4.3 and the equality ⊥�v = ⊥, for the

odd-priority position v, one can obtain that

(⊥+ (π)n)�(π)h ≤ ⊥�(π)h = ⊥. (⊥)

Thus, as an immediate consequence of Inequalities (∗), (�), and (⊥), one

would derive ⊥ < ⊥, which is obviously impossible, being < an irreflexive

relation.

Since µ⊥ is the measure function induced by the empty path on each

position, the following property is immediate.

Proposition 4.13: The minimal measure function µ⊥ ∈ MF is a simple

quasi-dominion measure.

5. A Concrete Algorithm

This section describes an algorithm that solves any parity game by main-

taining and updating a simple quasi-dominion measure function, until it

reaches a fixpoint that is both a progress and a quasi-dominion measure.

At that point, the results in the previous sections ensure that the winning

positions for both players are determined and easily recovered from the final

measure by computing the 0- and 1-denotations.
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5.1. A Concrete Measure Space

The measures used by the concrete algorithm associate a non-negative

integer with each priority in the game, in other words, they are sequences of

naturals, one for each priority. For technical reasons, however, we introduce

a more general class of concrete measures CMs , Pr→ Z, whose range also

includes the negative integers. This allows us to provide algebraic operations

on measures, such as addition and subtraction, which will prove instrumental

in the implementation of the basic operators used by the algorithm. More

specifically: (i) the null element 0 ∈ CMs is the distinguished measure such

that (0)(k) , 0, for all indexes k ∈ Pr; (ii) the opposite of a measure

and the sum of two measures are defined point-wise: (−φ)(k) , −φ(k)

and (φ + φ)(k) , φ(k) + φ(k), for all k ∈ Pr. Recall that, according

to Definition 3.1, measures need to be totally ordered. For our concrete

measures, we employ an alternate lexicographic order, that is, if we interpret

a measure as a sequence of integers, with decreasing indexes from left to right,

values that are later in the sequence are less important than those that come

earlier: as in the standard numeric representation, the left-most integer is the

most-significant digit, while the right-most integer is the least-significant one.

Moreover, values with even indexes are ordered in the natural way, namely

by increasing magnitude, whereas those with odd indexes are ordered in the

opposite fashion, i.e., by decreasing magnitude. Formally, <⊆ CMs× CMs

is the strict total order defined as follows: φ < φ if there exists an index

k ∈ Pr such that (i) k is the greatest index for which φ(k) 6= φ(k) and

(ii) φ(k) < φ(k), if k is even, and φ(k) < φ(k), otherwise. A special

family of measures is given by the Kronecker delta δ : Pr→ (Pr→ {0, 1}),
where δi(i) , 1, and δi(j) , 0, for all j 6= i. Obviously, δi ∈ CMs, for every

index i ∈ Pr. It is quite immediate to show the following property.

Proposition 5.1: The structure C ,〈CMs, <,0,−,+〉 is a totally-ordered

Abelian group.

We can now define the measure space used by the concrete algorithm. It

suffices to restrict the measures to only assign non-negative values to the

existing priorities in the game, and then define the appropriate canonical

truncation and stretch operators. Let CMs+ denote the set of all the concrete

measures φ ∈ CMs with the following two properties: (i) the highest priority

k for which φ(k) > 0 is even; (ii) φ(k) ≥ 0, for all k ∈ Pr.

Definition 5.2: (Concrete Measure Structure) The concrete measure struc-

ture is the tuple M ,〈Ms, <,⊥,>, �,+〉, whose components are defined as
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follows:

(1) Ms , CMs+ ∪ {>}, where > is a distinguished fresh element and

⊥ , 0;

(2) <⊆ Ms×Ms is the order on CMs+ extended with η < >, for every

measure η ∈ CMs+;

(3) � : Ms×Ps→ Ms is the operator such that, for all positions v ∈ Ps,

the following holds: (i) >�v , >; (ii) (η�v)(p) , η(p), if p ≥ pr(v),

and (η�v)(p) , 0, otherwise, for all η ∈ CMs+ and p ∈ Pr;

(4) +: Ms×Ps→ Ms is the operator such that η+v , max{0, η+δpr(v)},
for all positions v ∈ Ps.

Truncating a measure w.r.t. a position v consists in setting to zero the

value associated with all priorities smaller than the priority of v. Stretching a

measure w.r.t. a position v, instead, means incrementing the value associated

with the priority of v, unless the result is lower than 0, in which case the

stretch is set to 0, so as to enforce it to belong to CMs+. For example, consider

a game with priorities from 0 to 4 and the three measures η , (0, 0, 1, 0, 1),

η , (0, 0, 1, 1, 0), and η , (0, 0, 1, 1, 1). Then, we have η < η < η.

Indeed, 0 is the greatest priority in which η and η differ, it is even,

and η(0) = 0 < 1 = η(0). Moreover, 1 is the greatest priority in which

both η and η differ from η, it is odd, and η(1) = η(1) = 1 > 0 =

η(1). By truncating the three measures at a position v with priority 1,

we obtain η�v = η�v = (0, 0, 1, 1, 0) < η�v = (0, 0, 1, 0, 0). We also have

η + u = η + u = η + u = ⊥, if u is a position with priority 3 and

(η + w) + u = (1, 1, 1, 1, 0) < (1, 0, 1, 2, 0) = (η + w) + v, if w is a position

with priority 4.

The following straightforward result states that the concrete measure

structure satisfies all the desired properties introduced in the previous

sections, plus some additional ones. Specifically, the truncation operator

preserves the ⊥ measure, the truncation of a non-⊥ stretch cannot lead to

the ⊥ measure, and the stretch operator commutes with the addition on

measures.

Proposition 5.3: The concrete measure structure is a progress and regress

measure space, whose restriction and stretch operators are canonical. More-

over, the following properties hold true, for all positions v ∈ Ps, measures

η ∈ Ms, and evaluations φ ∈ CMs: (i) ⊥�v = ⊥; (ii) if η + v 6= ⊥ then

(η + v)�v 6= ⊥; (iii) if η + v 6= ⊥ then (η + v) + φ = (η + φ) + v.
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5.2. The Solution Algorithm

The algorithm we now propose, which makes implicit use of the concrete

measure structure just introduced, is based on repeatedly applying two

progress operators, prg+ and prg⊥, to an initial quasi-dominion measure

function µ, until a fixpoint µ? is reached. At that point, the positions whose

measure is > in µ? are winning for player 0, while all other positions are

winning for player 1.

Recall that a function f on an ordered set is inflationary if for all

elements x of its domain it holds x ≤ f(x). We show in the following that

both progress operators are inflationary, so that the fixpoint µ? is the limit

of the ascending sequence of measures obtained by repeated application of

those progress operators (a.k.a. the inflationary fixpoint). We denote by

sol(µ) such limit, as a partial mapping from MF to MF, when starting from

measure µ:

sol , ifpµ . prg+(prg⊥(µ)) : MF ⇀ MF.

Intuitively, all positions with a non-⊥ measure in µ, i.e., Q , ‖µ‖+, form

a quasi 0-dominion and the prg+ (resp., prg⊥) operator is responsible for

enforcing the progress condition on the positions inside (resp., outside) Q

that do not satisfy the proper inequalities between the measures along

the moves. This is done in such a way to preserve the properties of quasi-

dominion measure function and represents the main point where the classic

progress-measure approaches and the proposed technique diverge.

Both operators prg+ and prg⊥ internally employ a lift operator lift : MF×
2Ps × 2Ps → MF, that adjusts a measure function so that it locally satisfies

the conditions of both the progress and regress measures (Definitions 3.6

and 4.4). The two operators need to selectively adjust the measure of specific

sets of positions. For this reason, besides the current measure function, the

lift operator carries two additional arguments: (i) the set of positions S

whose measure we want to update, and (ii) the set of successor positions

T that the update must be based on. Formally, we obtain the following

definition:

lift(µ,S,T)(v) ,


max{µ(w) + v : w ∈ Mv(v) ∩ T}, if v ∈ S ∩ Ps0;

min{µ(w) + v : w ∈ Mv(v) ∩ T}, if v ∈ S ∩ Ps1;

µ(v), otherwise.

The prg⊥ operator is tasked with adjusting the measure of the positions

that currently have the minimal measure ⊥. After the update, some of

them will acquire a positive measure, thus entering into the current quasi



July 15, 2023 Lecture Note Series, IMS, NUS — Review Vol. 9in x 6in Article page 22

22 M. Benerecetti, D. Dell’Erba, M. Faella, and F. Mogavero

0-dominion. From an operational viewpoint, prg⊥ consists of a single call to

lift:

prg⊥(µ) , lift(µ, ‖µ‖⊥,Ps) : MF→ MF.

Applying the definitions, one can easily see that prg⊥ raises the measure

of those positions such that: (i) they have the minimal measure ⊥, (ii) they

either belong to player 0 and have an adjacent with positive measure or

belong to player 1 and have all adjacents with positive measures, and (iii) the

stretch of the adjacent measures is greater than ⊥.

The following lemma states the main properties of interest for the prg⊥
operator, where we assume MF⊥ , {µ ∈ MF : ∀v ∈ ‖µ‖⊥ . µ(v) = ⊥} and

QDM⊥ , QDM ∩MF⊥. Observe that, by Proposition 4.10, it holds that

SM ⊆ MF⊥.

Lemma 5.4: The progress operator prg⊥ enjoys the following properties:

(i) it is an inflationary function from MF⊥ to MF⊥; (ii) it maps QDM⊥
into QDM⊥; (iii) it maps SM into SM; (iv) every fixpoint µ ∈ MF of prg⊥
is a progress measure over ‖µ‖⊥.

Proof: We analyse the four properties separately, where we recall that

prg⊥(µ) = lift(µ, ‖µ‖⊥,Ps).

• [i]. Let v be a position such that µ?(v) 6= µ(v), where µ? , prg⊥(µ).

By definition of the lift operator, it holds that v ∈ ‖µ‖⊥. Obviously,

µ(v) = ⊥, since µ ∈ MF⊥. Thus, by Item 1 of Definition 3.1, it

follows that µ(v) = ⊥ < µ?(v), being ⊥ the minimal measure.

Hence, µ v µ?, due to the arbitrary choice of v, which means that

prg⊥ is inflationary on MF⊥, as required by the lemma statement.

In addition, it holds that µ? ∈ MF⊥. Indeed, again by definition of

the lift operator, there exists an adjacent w ∈ Mv(v) of v such that

µ?(v) = µ(w) + v. If v has even priority, then either µ(w)�v = >
and, so, µ?(v)�v = >, by Item 1 of Definition 3.1 and Item 2 of

Definition 3.5, or µ(w)�v < > and µ?(v)�v = (µ(w)+v)�v > µ(w)�v,

by Item 1 of Definition 3.5. If v has odd priority, instead, by Item ii of

Proposition 5.3, it holds that if µ(w)+v 6= ⊥ then (µ(w)+v)�v 6= ⊥,

from which it follows that µ?(v)�v = (µ(w) + v)�v 6= ⊥, since

µ(w) + v = µ?(v) 6= µ(v) = ⊥. Thus, in all cases, µ?(v)�v 6= ⊥, i.e.,

v 6∈ ‖µ?‖⊥, which vacuously satisfies the definitional requirement of

MF⊥.
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• [ii]. Let µ be a qdm in MF⊥. Thanks to the above item, it suffices

to prove that µ? , prg⊥(µ) is a qdm as well. To do this, one first

needs to show that µ? is a regress measure. Consider an arbitrary

position v ∈ ‖µ?‖+ \ ‖µ?‖0. Then, two cases may arise.

– [v ∈ ‖µ‖+]. µ?(v) = µ(v), so, v ∈ ‖µ‖+ \ ‖µ‖0. Since µ is a

quasi-dominion measure and, therefore, also a regress measure,

it satisfies both conditions of Definition 4.4 at v. It is quite

immediate to prove that the same holds for µ? at the same

position v as well, thanks to Item 3ii of Definition 3.1, since

µ v µ? as proved in Item i above.

– [v 6∈ ‖µ‖+]. In this case, one needs to analyse the following

two subcases. If v ∈ Ps0, it holds that

µ?(v) = max{µ(w) + v : w ∈ Mv(v)}
≤ max{µ?(w) + v : w ∈ Mv(v)} = µ?(w) + v

for some w ∈ Mv(v) adjacent to v. Thus, Condition 1

of Definition 4.4 is satisfied for µ?. If v ∈ Ps1, in-

stead, it holds that µ?(v) = min{µ(w) + v : w ∈ Mv(v)} ≤
min{µ?(w) + v : w ∈ Mv(v)} ≤ µ?(w) + v, for all w ∈ Mv(v)

adjacent to v. Hence, also Condition 2 of Definition 4.4 is satis-

fied for µ?. Observe that, to prove both conditions, we applied

again Item 3ii of Definition 3.1 and the fact that µ v µ?, as

proved in Item i above.

At this point, it only remains to prove that ‖µ?‖0 is a 0-dominion.

By hypothesis, it is known that ‖µ‖0 is a 0-dominion, being µ a

qdm. Therefore, let us consider a position v ∈ ‖µ?‖0 \ ‖µ‖0. We

can show that, again by definition of the lift operator, there exists

an adjacent w ∈ Mv(v) of v, such that w ∈ ‖µ‖0, if v ∈ Ps0, and

all adjacents w ∈ Mv(v) of v satisfy w ∈ ‖µ‖0, otherwise. Indeed,

if v ∈ Ps0, there exists an adjacent w ∈ Mv(v) of v, such that

µ(w) + v = µ?(v) = >. This implies that µ(w) = >, due to Item 3i

of Definition 3.1. Hence, w ∈ ‖µ‖0. Similarly, if v ∈ Ps1, all adjacents

w ∈ Mv(v) of v satisfy the equality µ(w) + v = µ?(v) = >. Thus,

again by Item 3i of Definition 3.1, it holds that µ(w) = >, which

means that w ∈ ‖µ‖0. As an immediate consequence, every play

starting at v and compatible with the 0-winning strategy on ‖µ‖0,
suitably extended to ‖µ?‖0, is won by player 0. Therefore, ‖µ?‖0 is

necessarily a 0-dominion, as required by the definition of qdm.
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• [iii]. Let µ be a sm and µ? , prg⊥(µ) the result of the prg⊥
operator. One needs to prove that the latter is a sm too. To do this,

let us focus on a position v, such that µ?(v) 6= µ(v). If µ?(v) = >,

there is nothing more to show, as > ∈ SMs(v, ‖µ?‖+), as required

by Definition 4.9. Therefore, assume µ?(v) 6= >. By definition

of the lift operator, there exists an adjacent w ∈ Mv(v) of v,

such that µ?(v) = µ(w) + v. Now, by Item 3i of Definition 3.1,

it follows that µ(w) 6= >. Thus, thanks to the fact that µ is a

sm, it holds that µ(w) ∈ SMs(w, ‖µ‖+), which means that there

exists a simple path π ∈ SPth(w, ‖µ‖+), such that µ(w) = η(π).

Obviously, µ?(v) = µ(w) + v = η(π) + v = η(v · π). Moreover,

v · π is a simple path passing through positions in {v} ∪ ‖µ‖+,

i.e., v · π ∈ SPth(v, {v} ∪ ‖µ‖+), since v 6∈ ‖µ‖+. As shown at the

end of the proof of the first item of this lemma, µ?(v)�v 6= ⊥, so,

v ∈ ‖µ?‖+. Thus, as an immediate consequence, one obtains that

v · π ∈ SPth(v, ‖µ?‖+), being {v} ∪ ‖µ‖+ ⊆ ‖µ?‖+, which implies

that µ?(v) ∈ SMs(v, ‖µ?‖+). Hence, µ? is a sm.

• [iv]. Let µ be a fixpoint of prg⊥, i.e., µ = lift(µ, ‖µ‖⊥,Ps), and

v ∈ ‖µ‖⊥ an arbitrary position. If v ∈ Ps0, it holds that µ(w) + v ≤
max{µ(w) + v : w ∈ Mv(v)} = µ(v), for all adjacents w ∈ Mv(v) of

v. Thus, Condition 1 of Definition 3.6 is satisfied on ‖µ‖⊥. If v ∈ Ps1,

instead, it holds that µ(w) + v = min{µ(w) + v : w ∈ Mv(v)} =

µ(v), for some adjacent w ∈ Mv(v) of v. Hence, Condition 2 of

Definition 3.6 is satisfied on ‖µ‖⊥ as well.

Algorithm 1: Operator prg+

signature prg+ : MF→ MF

function prg+(µ)

1 Q← ‖µ‖+
2 while esc(µ,Q) 6= ∅ do

3 E← bep(µ,Q)

4 µ← lift(µ,E,Q)

5 Q← Q \ E

6 µ← µ[Q 7→ >]

7 return µ

We now turn our attention to the progress operator prg+, whose pseudo-

code is reported in Algorithm 1. Besides the lift function, this operator

employs two other functions, esc : MF×2Ps → 2Ps and bef : MF×2Ps×Ps→
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CMs, called, respectively, escape function and best-escape position function.

Given a set of positions Q, the escape function collects the subset of positions

in Q from which their owner wants or is forced to exit from Q, according to

their objective. Specifically, those are (i) the 1-positions having a successor

outside Q and (ii) the 0-positions v, such that none of their successors w

belonging to Q support the measure of v in the current measure function.

Formally:

esc(µ,Q) , {v ∈ Q ∩ Ps1 : Mv(v) \Q 6= ∅}
∪

{v ∈ Q ∩ Ps0 : ∀w ∈ Mv(v) ∩Q . µ(w) + v < µ(v)}.

All positions belonging to Q must be lifted during the execution of prg+.

However, they must be lifted in the appropriate order: namely, the first

positions to be lifted are those whose measure will rise the least. This is the

role of the bep function and its supporting best escape forfeit function bef.

The bep simply collects the positions v having minimal forfeit bef(µ,Q, v)

(defined below).

bep(µ,Q) , argmin
v∈Q

bef(µ,Q, v) : MF× 2Ps → 2Ps.

Assuming that v is a position in the escape set esc(µ,Q), its forfeit is

the difference between the measure that v would acquire if lifted and its

current measure. In the following, we use the difference operation φ−φ ,
φ + (−φ) defined as usual.

bef(µ,Q, v) ,



max{(µ(w) + v)− µ(v) : w ∈ Mv(v) \Q},
if v ∈ esc(µ,Q) ∩ Ps0;

min{(µ(w) + v)− µ(v) : w ∈ Mv(v) \Q},
if v ∈ esc(µ,Q) ∩ Ps1;

>, otherwise.

Notice that the following inclusions are an immediate consequence of

the definitions: bep(µ,Q) ⊆ esc(µ,Q) ⊆ Q.

We can now describe Algorithm 1, which computes operator prg+. The

purpose of this operator is to enforce the progress condition on the positions

in Q, by lifting their value. Line 1 identifies Q as the set of positions with

non-minimal measures. If Q is closed (condition at Line 2), namely the

escape set of Q is empty, then every position in Q is lifted to value > (Line

6). Indeed, by Theorem 4.7, Q is a weak quasi 0-dominion and any strategy
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compatible with µ is a possible 0-witness. The emptiness of esc(µ,Q) implies

that player 1 cannot exit from Q and player 0 has a strategy compatible with

µ to remain in the set. Hence, by Corollary 4.2, Q is a dominion for player 0.

Otherwise, if Q is not closed, Line 3 collects the best escape forfeit set of

positions in E. This step ensures that the positions are lifted in increasing

order of forfeit. Once the positions in E have been lifted, Lines 4 and 5

remove them from Q, and the function iterates Steps 2-5 until Q is either

empty or closed. The following lemma is the core result of this section and

proves the key properties of the progress operator prg+.

Lemma 5.5: The progress operator prg+ enjoys the following properties:

(i) it maps MF⊥ into MF⊥; (ii) it is an inflationary function from QDM

to QDM; (iii) it maps SM into SM; (iv) every fixpoint µ ∈ MF of prg+ is a

progress measure over ‖µ‖+.

Proof: Let us assume ‖µ‖+ 6= ∅, since there is nothing to prove, otherwise,

being µ? , prg+(µ) = µ, and consider the three (potentially) infinite

sequences Q,Q, . . ., E,E, . . ., and µ, µ, . . . generated by Algorithm 1,

which explicitly implements the progress operator prg+. These sequences

are defined as follows: (i) Q , ‖µ‖+ and µ , µ; (ii) Qi+ , Qi \ Ei and

µi+ = lift(µi,Ei,Qi), where Ei , bep(µi,Qi) ⊆ esc(µi,Qi), for all i ∈ N.

Since |Q| < ∞ and Qi+ ⊆ Qi, there necessarily exists an index k ∈ N,

such that Qk+ = Qk, µk+ = µk, Ek = ∅, and Ej 6= ∅, for all j < k.

Moreover, observe that µ? = µk[Qk 7→ >]. At this point, we analyse the

four properties separately.

• [i]. To prove that µ? ∈ MF⊥, whenever µ ∈ MF⊥, one can focus

on those positions v that changed their measure from µ to µ?, i.e.,

such that µ?(v) 6= µ(v). If v ∈ ‖µ?‖+, there is nothing to prove,

as v vacuously satisfies the definitional requirement of MF⊥. If

v 6∈ ‖µ?‖+, instead, it holds that µ?(v)�v = ⊥. Due to the fact that

the position changed its measure, there is an index i ∈ [0, k], such

that v ∈ Ei and, so, µ?(v) = µi+(v). Therefore, by definition of

the lift operator, there exists an adjacent w ∈ Mv(v) \Qi, such that

µi+(v) = µi(w) + v. At this point, we can observe that v has odd

priority. Indeed, if, by contradiction, v has even priority, by Item 1 of

Definition 3.1 and Item 2 of Definition 3.5, one would have µi(w)�v =

⊥ 6= >, since µi(w)�v ≤ (µi(w) + v)�v = µ?(v)�v = ⊥, which would

in turn imply ⊥ = µi(w)�v < (µi(w) + v)�v = µ?(v)�v = ⊥, due

to Item 1 of the same definition, which is obviously impossible,
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being < an irreflexive relation. Thus, as a consequence of Item ii

of Proposition 5.3, µi(w) + v = ⊥, since (µi(w) + v)�v = ⊥, which

means that µ?(v) = ⊥, as required by the definition of the set MF⊥.

Hence, µ? ∈ MF⊥
• [ii]. We first prove the inflationary property of the progress operator,

assuming µ = µ ∈ QDM is a quasi-dominion measure, hence also a

regress measure. To do this, consider the sequence of forfeit values

φ, . . . , φk− ∈ CMs defined as follows: φi , minv∈Qibef(µi,Qi, v),

for all indexes i ∈ [0, k). In addition, let ι : ‖µ‖+ \ Qk → [0, k) be

the function associating each position v ∈ ‖µ‖+ \Qk with the index

ι(v) ∈ [0, k), such that v ∈ Eι(v). Due to the way the sequence

of measure functions µ, µ, . . . is constructed, it is immediate to

observe that, for all positions v ∈ Ps and indexes i ∈ [0, k], it holds

that

if v ∈ ‖µ‖+ \Qk and ι(v) < i then µi(v) = µι(v)(v) + φι(v)

else µi(v) = µ(v). (∗)

At this point, by induction on the index i ∈ [0, k) and in that

specific order, we can prove the following four auxiliary properties:

(a) µ v µi; (b) for each position v ∈ ‖µ‖+ \ Qi+, there exists an

adjacent w ∈ Mv(v) \Qi, such that µi+(v) = µi(w) + v 6= >; (c) if

i > 0 then φi− ≤ φi; (d) 0 ≤ φi.
– [a]. If i = 0 then µ v µi, since µ = µ. If i > 0, instead, by

the Inductive Hypotheses a and d, it holds that µ v µi− and

0 ≤ φi−. Moreover, by the previous Observation (∗), it follows

that µi(v) 6= µi−(v) only if v ∈ Ei− and, in this case, µi(v) =

µi−(v) +φi−, since ι(v) = i−1. As a consequence, if µi(v) 6=
µi−(v) then µi(v) > µi−(v), thanks to Proposition 5.1, which

implies, in general, that µi(v) ≥ µi−(v) ≥ µ(v). Hence, µ v µi
holds true.

– [b]. Let v ∈ ‖µ‖+ \ Qi+. If v ∈ ‖µ‖+ \ Qi then i > 0, since

Q = ‖µ‖+. By the Inductive Hypothesis b, there exists an

adjacent w ∈ Mv(v)\Qi−, such that µi(v) = µi−(w)+v 6= >.

Thanks to Observation (∗), we have that µi+(v) = µi(v) and

µi(w) = µi−(w), since ι(v) < i and ι(w) < i − 1. Thus,

µi+(v) = µi(w) + v 6= >, as required. If v 6∈ ‖µ‖+ \ Qi,

instead, it holds that v ∈ Ei. As a consequence, by definition

of the lift operator, there exists an adjacent w ∈ Mv(v) \Qi,

such that µi+(v) = µi(w) + v. Notice now that µi(w) 6= >.
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Indeed, if w ∈ ‖µ‖+ then µi(w) 6= > directly follows from

the Inductive Hypothesis b. Otherwise, w ∈ ‖µ‖⊥, which

implies that µ(w) 6= >, thanks to Item 2i of Definition 3.1.

Moreover, µi(w) = µ(w), by Observation (∗). To conclude,

µi+(v) = µi(w) + v 6= >, due to Item 3i of Definition 3.1.

– [c]. Let i > 0 and v ∈ Ei. Thanks to Observation (∗), we

have that µi+(v) = µi(v) + φi and, so, φi = µi+(v)− µi(v),

due to Proposition 5.1. To continue, we need to consider the

following case analysis in three parts, which is partially based

on ownership of the positions v.

∗ [v ∈ Ps0∩esc(µi−,Qi−)]. Since v ∈ Ps0∩esc(µi−,Qi−),

it holds that µi−(u) + v < µi−(v), for all adjacents u ∈
Mv(v) ∩Qi−. However, by Condition 1 of Definition 4.4,

there exists an adjacent w ∈ Mv(v), such that µ(v) ≤
µ(w) + v. By Observation (∗), µi−(v) = µ(v), as ι(v) = i.

Thus, µi−(v) = µ(v) ≤ µ(w)+v ≤ µi−(w)+v, thanks to

the Inductive Hypothesis a and Item 3ii of Definition 3.1.

As a consequence, w 6∈ Qi− and, so, w 6∈ Qi, since all

adjacents of v inside Qi− falsify the inequality, as shown

before. Moreover, v 6∈ Ei−, as v ∈ Ei. Hence, φi− <

bef(µi−,Qi−, v). At this point, the following inequalities

hold:

φi− < bef(µi−,Qi−, v)

= min{(µi−(u) + v)− µi−(v) : u ∈ Mv(v) \Qi−}
≤ (µi−(w) + v)− µi−(v)

= (µi(w) + v)− µi(v)

≤ max{µi(u) + v : u ∈ Mv(v) \Qi} − µi(v)

= lift(µi,Ei,Qi)(v)− µi(v)

= µi+(v)− µi(v)

= φi.

Notice that the first equality follows from the definition

of the best escape forfeit function, while the second one

is due to Observation (∗). Indeed, µi−(v) = µi(v) and

µi−(w) = µi(w), since ι(v) = i and ι(w) < i− 1. Finally,

from the last inequality onward, we applied the definition

of the lift operator.
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∗ [v ∈ Ps0\esc(µi−,Qi−)]. Since v ∈ Ps0\esc(µi−,Qi−),

there exists an adjacent w ∈ Mv(v) ∩ Qi−, such that

µi−(v) ≤ µi−(w) + v. Moreover, by Observation (∗),
µi−(v) = µi(v), as ι(v) = i, from which we derive µi(v) ≤
µi−(w) + v and, so, (µi−(w) + v) − µi(v) ≥ 0, due

to Proposition 5.1. Obviously, ι(w) ≥ i − 1, due to the

definition of the function ι, since the membership of w in

Qi− implies w 6∈ Ej , for all indexes j < i − 1. Actually,

it holds true that the value ι(w) is precisely i− 1. Indeed,

suppose, by contradiction, that ι(w) > i − 1. Then, we

would have µi−(w) = µi(w) and, thus, µi(v) ≤ µi−(w) +

v = µi(w) + v, contradicting the fact that v ∈ Ei ⊆
esc(µi,Qi). Now, the equality ι(w) = i − 1 implies w ∈
Ei− and, so, w 6∈ Qi. Moreover, µi(w) = µi−(w) + φi−,

again due to Observation (∗). At this point, the following

holds:

φi− ≤ ((µi−(w) + v)− µi(v)) + φi−

= ((µi−(w) + φi−) + v)− µi(v)

= (µi(w) + v)− µi(v)

≤ max{µi(u) + v : u ∈ Mv(v) \Qi} − µi(v)

= lift(µi,Ei,Qi)(v)− µi(v)

= µi+(v)− µi(v)

= φi.

Notice that the first two derivation steps follow from the

Abelian group properties of the evaluation structure stated

in Proposition 5.1 and from Item iii of Proposition 5.3.

Moreover, from the last inequality onward, we applied the

definitions of the lift operator and forfeit values.

∗ [v ∈ Ps1]. Since v ∈ Ei, it holds that v ∈ ‖µ‖+ \ Qi+.

By the Inductive Hypothesis b, there exists an adjacent

w ∈ Mv(v) \ Qi, such that µi+(v) = µi(w) + v, which

implies φi = (µi(w) + v)−µi(v). Now, consider the nested

case analysis on the membership of the position w w.r.t.

Ei−.

· [w 6∈ Ei−]. Since w 6∈ Ei− and w 6∈ Qi, it holds

that w 6∈ Qi−. This means that w ∈ Mv(v) \Qi− 6=
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∅, which in turn implies that v ∈ esc(µi−,Qi−),

since v ∈ Ps1. Moreover, v 6∈ Ei−, as v ∈ Ei. Thus,

φi− < bef(µi−,Qi−, v). At this point, the following

inequalities hold:

φi−<bef(µi−,Qi−, v)

=min{(µi−(u) + v)−µi−(v) :u ∈ Mv(v)\Qi−}
≤(µi−(w) + v)− µi−(v)

=(µi(w) + v)− µi(v)

=φi.

Notice that the first equality follows from the definition

of the best escape forfeit function, while the second

one is due to Observation (∗). Indeed, µi−(v) = µi(v)

and µi−(w) = µi(w), since ι(v) = i and ι(w) < i− 1.

· [w ∈ Ei−]. Since w ∈ Ei−, by Observation (∗), it fol-

lows that µi(w) = µi−(w)+φi−, as ι(w) = i−1. Simi-

larly, µi(v) = µ(v), as ι(v) = i. Now, by Condition 2 of

Definition 4.4, µi(v) = µ(v) ≤ µ(u) + v ≤ µi−(u) + v,

for all adjacents u ∈ Mv(v), thanks to the Inductive

Hypothesis a and Item 3ii of Definition 3.1. As an

immediate consequence, µi(v) ≤ µi−(w) + v, i.e.,

(µi−(w) + v)−µi(v) ≥ 0. At this point, the following

holds:

φi− ≤ ((µi−(w) + v)− µi(v)) + φi−

= ((µi−(w) + φi−) + v)− µi(v)

= (µi(w) + v)− µi(v)

= φi.

Notice that the first two derivation steps follow from

the Abelian group properties of the evaluation struc-

ture stated in Proposition 5.1 and from Item iii of

Proposition 5.3.

Summing up, in all cases we have φi− ≤ φi.
– [d]. If i > 0, by the Inductive Hypotheses d and c, it holds

that 0 ≤ φi− and φi− ≤ φi. Hence, 0 ≤ φi. If i = 0,

instead, let v ∈ E. Thanks to Observation (∗), one has that

µ(v) = µ(v) + φ and, so, φ = µ(v) − µ(v), due to
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Proposition 5.1. To continue, we need to consider the following

case analysis on the ownership of the position v.

∗ [v ∈ Ps0]. By Condition 1 of Definition 4.4, there exists

an adjacent w ∈ Mv(v), such that µ(v) ≤ µ(w) + v,

as µ = µ. Since v ∈ E, thanks to the definitions of

both the best escape forfeit and escape functions, it holds

that µ(u) + v < µ(v), for all adjacents u ∈ Mv(v) ∩Q.

Hence, as an immediate consequence, w 6∈ Q. Now, by

definition of the lift operator, µ(v) = max{µ(u) + v :

u ∈ Mv(v)\Q} ≥ µ(w)+v ≥ µ(v), from which it follows

that φ = µ(v)− µ(v) ≥ 0, due to Proposition 5.1.

∗ [v ∈ Ps1]. By the Inductive Hypothesis b, there exists an

adjacent w ∈ Mv(v) \ Q, such that µ(v) = µ(w) + v,

which implies φ = (µ(w) + v) − µ(v). Moreover, by

Condition 2 of Definition 4.4, µ(v) ≤ µ(u) + v, for all

adjacents u ∈ Mv(v), since µ = µ. Thus, as an obvious

consequence, µ(w) + v ≥ µ(v), which immediately im-

plies φ = (µ(w) + v)−µ(v) ≥ 0, as required, again due

to Proposition 5.1.

Summing up, in both cases we have 0 ≤ φ.

We now have the necessary tool to show that the progress operator

is inflationary. Indeed, by Property a, µ v µk. Moreover, µ? and

µk differ only on positions v ∈ ‖µ?‖+, such that µ?(v) = >. Hence,

it easily follows that µ v µ?, thanks to Item 1 of Definition 3.1.

Observe also that ‖µ‖+ ⊆ ‖µk‖+ ⊆ ‖µ?‖+ and ‖µ‖0 ⊆ ‖µk‖0 ⊆
‖µ?‖0, due to Item 2ii of the same definition.

It remains to prove that µ? is a qdm. First notice that, for

any position v ∈ Ps, if µk(v) 6= µ(v) then v ∈ ‖µ‖+ \ Qk, due

to Observation (∗). Thus, by Property b, for such a position v,

there exists an adjacent w ∈ Mv(v) \ Qk− ⊆ Mv(v) \ Qk, such

that µk(v) = µk−(w) + v 6= >. Since w 6∈ Qk−, it holds that

ι(w) < k − 1, so, µk(w) = µk−(w), again due to Observation (∗).
Hence, for all positions v ∈ Ps, either one of the following two

possibilities holds:

v 6∈‖µ‖+\Qk and µk(v)=µ(v);

v∈‖µ‖+\Qk and there exists an adjacent w∈Mv(v)\Qk

such that µk(v)=µk(w)+v 6=>.

 (])
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From this, we easily derive that ‖µ‖+ = ‖µk‖+ = ‖µ?‖+ and

‖µ‖0 = ‖µk‖0 ⊆ ‖µ?‖0 = Qk. Indeed, the only positions that

can change their measure are those in ‖µ‖+ and they are not set

to > in µk. Moreover, ‖µ‖0 ⊆ ‖µ‖+, so, ‖µk‖0 ⊆ ‖µ‖+. Now,

(‖µ‖+ \Qk) ∩ ‖µk‖0 = ∅, hence, ‖µk‖0 ⊆ Qk. Finally, ‖µ?‖0 = Qk,

since, by construction, ‖µ?‖0 = ‖µk‖0 ∪Qk.

We can now show that µ? is a regress measure, i.e., that ev-

ery position v ∈ ‖µ?‖+ \ ‖µ?‖0 satisfies the suitable condition of

Definition 4.4. We do this, via a case analysis on the ownership of

v.

– [v ∈ Ps0]. Since ‖µ?‖+\‖µ?‖0 = ‖µ‖+\Qk, by Observation (]),

there exists an adjacent w ∈ Mv(v) \ Qk, such that µk(v) =

µk(w) + v. Obviously, µ?(v) = µk(v) and µ?(w) = µk(w),

since v, w 6∈ Qk. Thus, µ?(v) = µ?(w) + v, as required by

Condition 1.

– [v ∈ Ps1]. Suppose by contradiction that µ? does not satisfy

Condition 2 on v. Then, there exists one of its adjacents w ∈
Mv(v), such that µ?(w)+v < µ?(v). Obviously, µ?(w)+v 6= >,

so, µ?(w) 6= >, due to Item 3i of Definition 3.1, which in turn

implies that w 6∈ Qk. As a consequence, v 6∈ Qk too, since we

would have had, otherwise, Mv(v) ⊆ Qk, as esc(µk,Qk) = ∅.
Thus, v ∈ ‖µ‖+ \ Qk, from which it follows that µ?(v) =

µk(v) = µι(v)+(v) = µι(v)(v) + φι(v) = µ(v) + φι(v), due

to Observation (∗). To proceed, we now need the following

nested case analysis, which allows to prove that w 6∈ Qι(v) and

µ?(w) = µι(v)(w).

∗ [w ∈ ‖µ?‖⊥]. Notice that w 6∈ Q = ‖µ‖+ = ‖µ?‖+ and,

so, w 6∈ Qι(v), as Qι(v) ⊆ Q. Moreover, µ?(w) = µk(w) =

µι(v)(w), due to Observations (∗).
∗ [w ∈ ‖µ?‖+]. By Observations (∗), it holds that µ?(w) =

µk(w) = µι(w)(w) + φι(w) = µ(w) + φι(w). Now, by substi-

tuting in µ?(w) + v < µ?(v) both µ?(w) and µ?(v) with

µ(w) + φι(w) and µ(v) + φι(v), respectively, and exploiting

Proposition 5.1 and Item iii of Proposition 5.3, one can

obtain (µ(w) + v) − µ(v) < φι(v) − φι(w). Since µ is a

qdm and, so, a regress measure, we have that it satisfies

Condition 2 on v, i.e., µ(v) ≤ µ(w) + v, which implies

(µ(w) + v) − µ(v) ≥ 0. Hence, φι(v) − φι(w) > 0 and, so,
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ι(v) > ι(w), thanks to Property c. From this we can derive

that w 6∈ Qι(v) and µ?(w) = µk(w) = µι(v)(w), due to

Observations (∗).
At this point, the following impossible inequality chain should

hold:

µ?(v) = µι(v)+(v)

= lift(µι(v),Eι(v),Qι(v))(v)

= min{µι(v)(u) + v : u ∈ Mv(v) \Qι(v)}
≤ µι(v)(w) + v

= µ?(w) + v

< µ?(v).

Finally, we can conclude the proof of this item by showing that

‖µ?‖0, which we now know to be equal to Qk, is a 0-dominion.

Let σ0 ∈ Str0 be a µ-coherent 0-strategy winning on ‖µ‖0, such

that σ0(v) ∈ Qk, for all 0-positions v ∈ Qk ∩ Ps0. Such a strategy

surely exists, since µ is, by hypothesis, a qdm and Qk is closed,

i.e., esc(µ,Qk) = esc(µk,Qk) = ∅. To state the first equality we

exploited the fact that µk(v) = µ(v), for all positions v ∈ Qk, due

to Observation (]). Now, by Theorem 4.7, ‖µ‖+ is a weak quasi 0-

dominion, for which σ0 ↓ ‖µ‖+ ∈ Str0(‖µ‖+) is a 0-witness. Hence,

Qk and, so, ‖µ?‖0, is a 0-dominion, thanks to Corollary 4.2.

• [iii]. To show that µ? is a sm, whenever µ is a sm, we first prove

the following statement: µi(v) ∈ SMs(v, ‖µ‖+ \ Qi) \ {>}, for all

indexes i ∈ [0, k] and positions v ∈ Ps \Qi.

The proof proceeds by induction on i. The base case i = 0

trivially follows from the hypothesis, since µ = µ. Indeed, it holds

that Ps \Q = ‖µ‖⊥ and µi(v) = ⊥, for all positions v ∈ ‖µ‖⊥, due

to Proposition 4.10. For the inductive case i > 0, let v ∈ Ps\Qi and

assume that µi−(w) ∈ SMs(w, ‖µ‖+ \Qi−) \{>}, for all positions

w ∈ Ps \ Qi−. If v ∈ Ps \ Qi−, there is nothing more to prove,

since µi(v) = µi−(v) and, by inductive hypothesis, µi−(v) ∈
SMs(v, ‖µ‖+ \Qi−)\{>} ⊆ SMs(v, ‖µ‖+ \Qi)\{>}, being ‖µ‖+ \
Qi− ⊆ ‖µ‖+ \Qi. Therefore, consider the case v 6∈ Ps\Qi−, which

implies that v ∈ Ei− ⊆ Qi−. By definition of the lift operator,

there exists an adjacent w ∈ Mv(v) \Qi− ⊆ Ps \Qi−, such that

µi(v) = µi−(w) + v. By the inductive hypothesis, µi−(w) 6= >.

Thus, by Item 3i of Definition 3.1, it holds that µi(v) 6= >. Moreover,
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there exists a simple path π ∈ SPth(w, ‖µ‖+ \ Qi−) such that

µi−(w) = η(π). Obviously, µi(v) = µi−(w) + v = η(π) + v =

η(v ·π) 6= >. Now, it is quite clear that v ·π is a simple path passing

through positions in {v}∪‖µ‖+\Qi−, i.e., v·π ∈ SPth(v, ‖µ‖+\Qi),

since v ∈ Qi−. Hence, µi(v) ∈ SMs(v, ‖µ‖+ \ Qi) \ {>}. This

concludes the inductive proof.

At this point, it immediately follows, from what we have just

proved, that µk is sm. In addition, µ? potentially differs from µk
only on positions v ∈ ‖µ?‖+ such that µ?(v) = >. Consequently,

µ? is a sm as well.

• [iv]. By hypothesis, µ? = µ, which implies that µi = µ, for all i ∈ N,

due to the way the sequence µ, µ, . . . is constructed. Now, let us

consider an arbitrary position v ∈ ‖µ‖+. Due to the definition of

the sequence Q,Q, . . ., it obviously holds that either v ∈ Qk or

there is a unique index i ∈ [0, k), such that v ∈ Qi \ Qi+, i.e.,

v ∈ Ei. In the first case, we have µ(v) = >, due to the assignment

µ? = µk[Qk 7→ >]. Therefore, v is a progress position, i.e., it

satisfies both conditions of Definition 3.6. In the other case, the

proof proceeds by a case analysis on the ownership of the position

v itself.

– [v ∈ Ps0]. First recall that Ei = bep(µ,Qi) ⊆ esc(µ,Qi). Thus,

due to the definition of the escape function, we have that

µ(w) + v < µ(v), for all positions w ∈ Mv(v) ∩ Qi. Now,

by definition of the lift operator, we have that µ(w) + v ≤
max{µ(w) + v : w ∈ Mv(v) ∩ Qi} = µ(v), for all adjacents

w ∈ Mv(v) ∩Qi of v. Thus, µ(w) + v ≤ µ(v), for all positions

w ∈ Mv(v), as required by Condition 1 of Definition 3.6 on

‖µ‖+.

– [v ∈ Ps1]. Again by definition of the lift operator, we have that

µ(w) + v ≤ min{µ(w) + v : w ∈ Mv(v) ∩Qi} = µ(v), for some

adjacent w ∈ Mv(v)∩Qi ⊆ Mv(v) of v. Hence, Condition 2 of

Definition 3.6 is satisfied on ‖µ‖+ as well.

As an example, consider the simple game a in Fig. 1. Starting from

the minimal measure function µ⊥, the solution algorithm first computes

µ = prg⊥(µ⊥), by lifting the four even-priority positions a, b, c, and h to

their respective measures ηa = ηh , (0, 0, 0, 0, 1, 0, 0), ηb , (1, 0, 0, 0, 0, 0, 0),

and ηc , (0, 0, 1, 0, 0, 0, 0). Fig. 1.1 reports the situation after this initial

phase, where the blue (resp., dashed red) edges indicate the moves satis-
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a/2 b/6 c/4 d/1

e/1 f/1 g/3 h/2

A parity game a.

ηa ηb ηc ⊥

⊥ ⊥ ⊥ ηh

(1) : µ = prg⊥(µ⊥) = prg+(µ)

ηa ηb ηc ηd

ηe ⊥ ηg ηh

(2) : µ = prg⊥(µ)

ηa
′ ηb ηc

′ ηd
′

ηe ⊥ ηg
′ ηh

′

(3) : µ = prg+(µ)

Figure 1. Simulating the first steps of the concrete algorithm on a simple game. Positions
of player 0 are circles and positions of player 1 are squares. The label inside each position
indicates its name and priority.

fying (resp., not satisfying) the progress condition. Since inside the quasi

0-dominion ‖µ‖+ = {a, b, c, h}, identified by the grey area, all positions

are in progress, the prg+ operator does not change their measures, i.e.,

µ = prg+(µ). The three odd-priority positions d, e, and g outside ‖µ‖+
do not satisfy the progress condition, so the prg⊥ operator lifts their measure

to ηd , (0, 0, 0, 0, 1, 1, 0), ηe , (1, 0, 0, 0, 0, 1, 0), and ηg , (0, 0, 1, 1, 0, 0, 0),

as reported in Fig. 1.2. Now, positions a and h inside the quasi 0-dominion

do not satisfy the progress condition anymore. Therefore, the prg+ operator

tries to recover the condition as follows. It starts by identifying the escape

positions esc(µ,Q) = {b} of Q , ‖µ‖+ = {a, b, c, d, e, g, h}. Since b has

a progress move exiting from Q, its measure remains unchanged. Now,

esc(µ,Q) = {c, e}, where Q , Q \ {b}. Since e has a progress move

exiting from Q, while c can escape from Q only by increasing its measure,

we have bep(µ,Q) = {e} and Q , Q \ {e}. Also in this case, e does

not change its measure. The process continues by extracting and lifting

the measures of all the remaining positions in Q in the following order:

(i) c with ηc
′ , (1, 0, 1, 0, 0, 0, 0); (ii) g with ηg

′ , (1, 0, 1, 1, 0, 0, 0); (iii) h

with ηh
′ , (1, 0, 1, 1, 1, 0, 0); (iv) d with ηd

′ , (1, 0, 1, 1, 1, 1, 0); (v) a with
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ηa
′ , (1, 0, 1, 1, 2, 1, 0). Note that player 0 positions g and d are forced to exit

the quasi 0-dominion, since their internal moves (g, d) and (d, d) do not satisfy

the regress condition, as ηd +g = ⊥ < ηg and ηd +d = (0, 0, 0, 0, 1, 2, 0) < ηd;

these moves would form, indeed, odd cycles. Fig. 1.3 reports the situation

after the complete execution of prg+, where position e has the non-progress

move (e, a). Another application of prg+ modifies the measure of e to

ηe
′ , (1, 0, 1, 1, 2, 2, 0), triggering the non-progress move (a, e). After a final

application of prg+, positions a and e are lifted to > and the algorithm

reaches its fixpoint. All positions, except a and e, satisfy the progress con-

ditions and are, thus, winning for player 1; a and e are won by player

0.

We can prove that the solver operator is well-defined and that, when it

is applied to a simple measure, it converges in a finite number of iterations,

at most equal to the depth of the finite partial order 〈SM,v〉. A very coarse

upper bound on this depth, for a game with n positions, is given by (n+ 1)!,

since every non-> position is associated with the measure of a simple path

of length less than n and there are at most n! such paths. In the following,

we use SQDM , QDM ∩ SM.

Theorem 5.6: (Termination) The solver operator sol : SQDM → SQDM

is a well-defined function. Moreover, for every µ ∈ SQDM, there exists an

index k ≤ d, such that sol(µ) = (ifpk ν . prg+(prg⊥(ν)))(µ), where d ∈ N is

the depth of the finite partial order 〈SM,v〉.

Proof: By Items i-iii of Lemma 5.4 and Items i-iii of Lemma 5.5, we

have that prg⊥ and prg+ are inflationary total functions on SQDM, which

implies that their composition prg+ ◦ prg⊥ is both inflationary and to-

tal on SQDM as well. Consider now the infinite sequence µ, µ, . . . of

measure functions recursively derived from an arbitrary input element

µ ∈ SQDM as follows: µ , (ifp ν . prg+(prg⊥(ν)))(µ) = µ and µi+ ,
(ifpi+ ν . prg+(prg⊥(ν)))(µ) = prg+(prg⊥(µi)), for all i ∈ N. Obviously,

µi v µi+. Moreover, each element µi is a sm. Since every strict chain in

〈SM,v〉 can be composed of at most d elements, there necessarily exists an

index k ≤ d such that µk+ = µk, as required by the theorem statement.

The next theorem stating the soundness and completeness of the solution

algorithm is a simple consequence of the properties of the prg⊥ and prg+
operators, combined with the general results about the measure-function
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spaces discussed in the previous sections.

Theorem 5.7: (Solution) Win0 = ‖sol(µ⊥)‖0 and Win1 = ‖sol(µ⊥)‖1.

Proof: Let µ? , sol(µ⊥) be the result of the application of the solver

operator to the minimal measure function µ⊥ ∈ SQDM. By the notion of

inflationary fixpoint, µ? is a fixpoint of the composition of the two progress

operators, i.e., µ? = prg+(prg⊥(µ?)), which are inflationary functions on

SQDM, due to Items i and ii of Lemma 5.4 and Items i and ii of Lemma 5.5.

Therefore, it holds that µ? v prg⊥(µ?) v prg+(prg⊥(µ?)) = µ?, which

implies that prg⊥(µ?) = µ? and, so, prg+(µ?) = µ?. As a consequence

of Item iv of Lemma 5.4 and Item iv of Lemma 5.5, it holds that µ? is

a progress measure. Hence, ‖µ?‖1 ⊆ Win1 follows from Theorem 3.7. By

Theorem 5.6, it holds that µ? ∈ SQDM, which implies that ‖µ?‖0 ⊆Win0,

due to Definition 4.6. Hence, the thesis follows, since ‖µ?‖0 and ‖µ?‖1
partition the set of positions.

6. Experimental Evaluation

The algorithm proposed in this chapter has been implemented in OINK [36],

a C++ framework supporting different parity game solversb and providing

tools to compare their performance on various worst-case families. The

solvers considered in the experiments include the original priority promotion

algorithm PP [26] and the progress measure version presented in this chapter

QDPM, the optimised version [37] of the Recursive algorithm Rec [16], the

optimised version of the Small Progress Measure algorithm SPM [21] and

its quasi-polynomial version SSPM [23], the quasi-polynomial algorithm

QPT [24], the Tangle Learning algorithm TL [20], and the Distraction-based

Fixpoint Iteration algorithm with justifications FPJ [38]. The benchmarks

include worst-case games for the considered solvers and clustered random

games generated with the PGSolver framework [39]. The latter are games

that exhibit a complex structure w.r.t. the class of randomly generated

games. Indeed, while most of the random games consist in a single strongly

connected component (SCC) and are easily solved by any attractor-based

approach, clustered games rely, instead, on a tree-like structure with multiple

SCCs.

bExperiments were carried out on a 64-bit 1.6GHz Intel quad-core machine, with i5-8250U
processor and 8GB of RAM, running Ubuntu 18.04.5 with Linux kernel version 3.28.2.
OINK was compiled with gcc version 7.4.
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Exponential Quasi Polynomial

Benchmarks Rec PP TL FPJ SPM QDPM SSPM QPT

Two Counters [40] 20 107 11 26 7 85 4 5

QPT [24] [0s] [0s] [0s] [0s] [0s] [0s] [0.41s] 30
Gazda’s wc [41] 35 35 [0.01s] 37 380 [0.67s] 22 29

DP [18] 36 23 [0.19s] 38 20 [0s] [0.17s] 28

Divide&Impera [42] 17 91 [27.75s] 16 7 [7.45s] 173 4

Figure 2. Biggest (index of the) instance of the worst-case families solved within
30s. If the 1000th instance is solved, its approximated solution time is reported in
brackets.

The table in Fig. 2 displays the results on the following worst-case

familiesc: the family for TL “Two Counters” [40], the one for QPT algorithm

“QPT ” [24], the family for Zielonka’s Optimised algorithm “Gazda’s wc” [41],

the family for the Delayed Priority Promotion algorithm “DP” [18], and the

Robust Worst Case for Divide-et-Impera Algorithms “Divide&Impera” [42].

Each row reports the biggest instance each solver could solve within the

time limit of 30 seconds. The “Two Counters” family proved to be very

demanding for all the solvers, as none of them could solve the 108th instance

within the time limit. On the contrary, the “QPT” family can easily be

solved by all the solvers except QPT. The proposed solver QDPM performs

extremely well on all the families, being able to solve the 1000th instance

faster than the competitors, except for the “Two Counters”, on which it is

outperformed only by PP, and Gazda’s family, where TL is slightly better.

102 103 104 105
0

50

100

Number of positions

T
im

e
(s

)

FPJ

TL

QDPM

SSPM

SPM

QPT

PP

Rec

Figure 3. Time on clustered random games with 2 moves per position.

cThe instances were generated by issuing the following OINK commands: tc+ n;
counter qpt n; counter m n; counter dp n. The Robust Worst Case has been imple-
mented according to [42].
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Fig. 3 compares the running times on 1300 random clustered games of

size ranging from 50 to 5 · 105 positions and 2 outgoing moves per positiond.

We set the time-out at 120 seconds. Each point in the graph shows the

average time over a cluster of 100 different games of the same size shown on

a logarithmic scale. For a game of size n, we set the number of priorities

to k = n/10. The performance of the quasi-polynomial solvers (QPT and

SSPM) reaches the time-out already for the smaller instances: for games

with 250 positions they could solve less than 20% of the instances. Almost

all of the quasi-dominion-based algorithms, namely TL, FPJ, and QDPM,

instead, scale quite well. Their behaviour start to differentiate for games

with at least 105 positions. On the biggest instances (5 · 105), QDPM is the

only algorithm to terminate within 2 minutes, with an average solution time

of 76 seconds and only 14% of time-outs.

7. Discussion

We propose a revisited progress measures-based algorithm for parity games

that integrates progress measures and quasi-dominions. This integration

requires a novel notion of measure to encode the additional information

needed to identify quasi-dominions and a new update policy that takes

advantage of quasi-dominions and often allows to skip intermediate mea-

sures and reach a progress measure much more quickly than the classic

progress measure algorithms. This motivates the conjecture that the in-

tegration significantly accelerates the convergence to a progress measure.

The experiments show that the proposed approach scales better than any

known algorithm on games with a complex structure, such as clustered

random games and the worst-case families. In particular, the speed-up can

be of several orders of magnitude when compared to other algorithms based

on progress measures. We believe that this integration approach may also

lead to practically efficient quasi-polynomial algorithms based on succinct

progress measures.
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