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Simple Summary: Gastro-entero-pancreatic neuroendocrine neoplasms (GEP-NENs) are the most
common neuroendocrine tumors, with the ability of overexpressing somatostatin receptors (SSTRs)
on the cells’ surface. The prevalence and the incidence of GEP-NENs have been constantly increasing
over the last years, reflecting the improved sensitivity of imaging modalities and effectiveness of new
therapeutic options. The theragnostic approach, which is able to combine diagnosis and therapy, is
widely applied in GEP-NENs patients through the administration of radiolabeled SSTR analogs. In
the era of personalized medicine, this combined approach represents an opportunity to plan a real
tailored treatment in patients with GEP-NENs.

Abstract: Gastro-entero-pancreatic neuroendocrine neoplasms (GEP-NENs) constitute an ideal target
for radiolabeled somatostatin analogs. The theragnostic approach is able to combine diagnosis and
therapy by the identification of a molecular target that can be diagnosed and treated with the same
radiolabeled compound. During the last years, advances in functional imaging with the introduction
of somatostatin analogs and peptide receptor radionuclide therapy, have improved the diagnosis and
treatment of GEP-NENs. Moreover, PET/CT imaging with 18F-FDG represents a complementary
tool for prognostic evaluation of patients with GEP-NENs. In the field of personalized medicine, the
theragnostic approach has emerged as a promising tool in diagnosis and management of patients
with GEP-NENs. The aim of this review is to summarize the current evidence on diagnosis and
management of patients with GEP-NENs, focusing on the theragnostic approach.

Keywords: neuroendocrine neoplasms; somatostatin receptors; Gallium68; 18F-FDG; SPECT; PET/CT;
peptide receptor radionuclide therapy; theragnosis

1. Introduction

Neuroendocrine neoplasms (NENs) constitute a heterogeneous group of malignan-
cies arising from the diffuse neuroendocrine cell system. Gastro-entero-pancreatic (GEP)
NENs account for more than 70% of neuroendocrine neoplasms [1,2]. They share the
ability of overexpressing somatostatin receptors (SSTRs) on the cells’ surface, in partic-
ular subtypes 2 and 5 [3,4]. The GEP-NENs may occur as asymptomatic or associated
with specific syndromes of uncontrolled hormone hypersecretion, showing a very com-
plex and heterogeneous clinical behavior. The GEP-NENs range from well-differentiated
neuroendocrine tumors (NETs) to neuroendocrine carcinomas (NECs), and tumor aggres-
siveness and prognosis are strongly related to the degree of tumor differentiation [2,5].
The 2022 WHO Classification stratifies GEP-NENs into a 3-tiered grading system, based
on mitotic rate and Ki-67 labeling index; low-grade tumors are classified as grade 1 (G1),
intermediate-grades as grade 2 (G2) and high-grades as grade 3 (G3), respectively [6].
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Among G3 tumors, those presenting a number of mitoses or a Ki-67 index higher than 20%
and a more well-differentiated morphology than NET carcinomas have been identified as
well-differentiated G3 NET [6]. The GEP-NENs show a low proliferation rate and a low
tendency to metastasize. However, the vast majority of patients show distant metastases at
diagnosis, due to the absence of hormone-associated symptoms, leading to late diagnosis
and subsequent delays in treatment that can result in a tumor’s metastatic progression [7].
In contrast, GEP neuroendocrine carcinomas (NECs) are inevitably and uniformly poorly
differentiated; they often progress rapidly and are accompanied by multiple synchronous
distant metastases upon diagnosis, leading to a poor prognosis [7]. Although GEP-NENs
are considered relatively rare tumors, both prevalence (1.0–1.5% of all GEP neoplasms)
and incidence rates (6.98 and 0.4 new cases per year per 100,000 individuals in the United
States for GEP-NETs and GEP-NECs, respectively) have been constantly increasing over the
last three decades [8]. This evidence reflects the improved sensitivity of available imaging
modalities and the effectiveness of the new therapeutic options. The SSTRs overexpression
in GEP-NENs constitutes an ideal target for diagnosis and therapy with radiolabeled so-
matostatin analogs. In this context, nuclear medicine techniques, such as Positron Emission
Tomography (PET) and Single Photon Emission Computed Tomography (SPECT), have
been proposed as crucial tools in the management of GEP-NENs.

The theragnostic approach is able to combine diagnosis and therapy by using the
same molecule for the identification of a therapeutic target that can be treated with the
same compound [9]. Peptide receptor radionuclide therapy (PRRT) has been validated
as an effective systemic treatment of patients with NENs and high somatostatin receptor
expression. In the field of personalized medicine, the theragnostic has emerged as a
promising tool in diagnosis and management of GEP-NENs. The aim of this review is to
summarize the current evidence on diagnosis and management of patients with GEP-NENs,
focusing on the theragnostic approach and elucidating some points still worthy of debate.

2. Nuclear Theragnostic

Nuclear medicine is based on the ability of different radiotracers to reproduce bi-
ological, cellular or metabolic pathways, in order to evaluate specific mechanisms of
disease [10]. For this purpose, radioactive isotopes can be used alone or combined with
different molecules.

Radioisotopes may have both diagnostic and therapeutic potential, and each applica-
tion is related to their decay properties. In particular, γ-emitters are used for diagnostic
imaging by using SPECT or PET. Moreover, the radionuclides emitting low-range highly
ionizing radiation, such as α- and β-emitters, are widely used for therapeutic purposes.
The theragnostic approach has emerged as a fundamental and interdisciplinary junction
between diagnostic and therapeutic applications of nuclear imaging (Figure 1) [11,12]. Ther-
agnostic agents are based on the administration of disease-related biomarkers labeled with
radioisotopes that can be visualized by molecular imaging techniques, allowing characteri-
zation of the diseased target tissue and providing imaging readouts of therapy response.
According to emission properties of different radioisotopes, the same compound can be
used for therapeutic purposes, leading to a real personalized beneficial approach. The
applications of a specific isotope depend on its particle emission: Radioisotopes able to
emit both γ and β radiation are able to provide both diagnostic and therapeutic effects. In
this context, the more widely used theragnostic agent is Iodine-131 (131I), which is used for
diagnosis and treatment of patients with differentiated thyroid cancer [13–15]. Radioiodine-
based diagnosis, evaluation and therapy for differentiated thyroid cancer was the first
successful theragnostic system, and it is the best example of a classical procedure that
has maintained high clinical relevance in modern medicine [16]. However, in the clinical
practice, the use of double emitters may lead to unnecessarily high radiation exposure and
poor image quality when they are administered for diagnostic purposes only. Therefore,
theragnostic pairs, with similar structures and a matching pair of radionuclides, had better
serve diagnostic purposes by lowering radiation burden and achieving better image quality,
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differentiating the purely diagnostic from the therapy-tracking radioisotope. Continuous
innovations in molecular biology, radiochemistry and hybrid imaging methods have led to
major developments and improvements in diagnostic accuracy and to the availability of
cutting-edge theragnostic procedures.
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3. The Somatostatin Signaling

Somatostatin is a cyclic peptide that exerts inhibitory effects on both the secretion of
endocrine and exocrine hormones [17,18]. The greater amount of the circulating somato-
statin is produced by gastrointestinal system; in particular, more than 65% is secreted by
delta cells of the islets of Langerhans, where it regulates both insulins and glucagon release
from adjacent cells and the 5% by pancreatic beta cells [19,20].

The somatostatin activity is mediated by its binding to five subtypes of SSTR that
belong to the superfamily of G protein-coupled receptors (GPCRs), characterized by a core
of seven transmembrane helices [21]. The SSTRs inhibit cell proliferation and signaling
molecules by inhibition of adenylate cyclase and reduction of intracellular calcium [22].

The SSTRs are expressed in many tissues, and their effects under physiological con-
ditions are partially determined by the subtypes expressed on the tissue surface [23].
However, the SSTRs’ expression has also been reported in several tumors; in particular,
SSTR2 is common in gliomas, medulloblastomas, paragangliomas and neuroblastomas [24].
The SSTR expression levels have been reported in most GEP-NENs [25,26]. Since SSTRs are



Cancers 2023, 15, 3483 4 of 19

found on the surface of tumor cells, they have the potential to serve as diagnostic markers
and be used for receptor treatment.

4. Functional Imaging by SST Analogs

In 1989 Krenning and Co. [27] first introduced in vivo imaging of STRRs expression by
using 111In-pentetreotide, a radiolabeled compound commercially available as OctreoScan®.
The 111In-pentetreotide is an 111In-DTPA conjugate of octreotide that specifically binds
somatostatin receptors, able to provide information regarding the presence and the amount
of STRR on cell’s surface in patients with GEP-NENs. Scintigraphic imaging with 111In-
pentetreotide shows a wide range of sensitivity (from 15 to 100%) in detecting GEP-NENs,
according to tumor type, lesion size and acquisition modality [28–32]. Somatostatin receptor
scintigraphy is limited in organs with higher physiological uptake and for detection of small
lesions due to suboptimal physical resolution of the isotopes used for SPECT imaging [33].
It should be considered that SPECT/CT imaging may help localize foci of abnormal tracer
uptake more accurately than planar or SPECT alone and should be considered whenever
indicated and available [33,34].

During past years, PET/CT imaging after administration of somatostatin analog
has been introduced for the evaluation of patients with GEP-NENs [35,36]. Integrated
PET with CT in a single unit (PET/CT) provides several advantages, including a more
accurate localization and characterization of detected lesions and improved imaging quality
thanks to attenuation correction. Therefore, PET/CT has largely supplanted traditional
SPECT imaging thanks to a higher spatial resolution, shorter acquisition times and tracer
uptake quantitation.

For this purpose, somatostatin analogs are labeled with Gallium-68 [68Ga]. A
germanium-68/gallium-68 generator system is used to produce 68Ga using solid and
liquid targets. The commercial generators are characterized by a 10–100 mCi capac-
ity and are eluted with HCl with low metal/chemical impurities. The availability of
generators system allow to produce 68Ga also in nuclear medicine laboratories without
available cyclotrons [37]. The somatostatin analogs are short peptides linked to the 68Ga
by a bifunctional chelate (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-DOTA).
68Ga-DOTA-peptides bind to the SSTRs over-expressed on NET cells’ membrane, and
the complex is then internalized. Three different 68Ga-DOTA- peptides are utilized:
68Ga-DOTA-Tyr(3)-octreotate (68Ga-DOTATOC), 68Ga-DOTA,1-Nal(3)-octreotide (68Ga-
DOTANOC) and 68Ga-DOTA, D-Phe1,Tyr (3)-octreotide (68Ga-DOTATATE). All these
agents are comparable in terms of sensitivity and specificity. 68Ga-DOTANOC binds SST
receptors 2, 3 and 5. 68Ga-DOTATOC shows a good affinity for SSTR 2 and 5 and a lower
affinity for SSTR3, as compared to 68Ga-DOTANOC. 68Ga-DOTATATE has a predominant
high affinity for SSTR2 and low affinity for SSTR5 and SSTR3 [38,39]. It has been observed
that PET/CT imaging that uses 68Ga-DOTA-peptides has a high sensitivity (90%, range
64–100%) and specificity (95%, range 83% to 100%) in detecting disease in patients with
GEP-NENs, allowing earlier diagnosis than conventional morphological imaging modali-
ties [35,36]. Sensitivity varies according to tumor types and grades, reflecting the density
of SSTR expression on cells’ membrane. Gabriel et al. [40] described a higher detection
rate performance of 68Ga-DOTATOC in 84 patients with NETs, as compared to traditional
SPECT and CT imaging. Frilling et al. [41] demonstrated that 68Ga-DOTATOC PET/CT
imaging showed pathologically increased uptake for at least one tumor site in 52 patients
with GEP-NETs. Moreover, 68Ga-DOTATOC visualized the primary tumor region in 3 of
4 patients and additional hepatic and or extrahepatic metastases in 22 of 33 subjects in
which disease was not identified on CT and/or MR, changing initial treatment decision
in 31 (59.6%) patients. This study suggested that 68Ga-DOTATOC PET/CT is superior to
CT and or MRI for detection and staging of NET. Prasad et al. [42] also confirmed that the
68Ga-DOTANOC was more helpful than CT and SPECT imaging with somatostatin analogs
for the detection of unknown primary tumors in patients with confirmed NET secondary
lesions. Moreover, Ambrosini et al. [43] reported a good sensitivity of 68Ga-DOTANOC
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in also detecting small lesions, in particular nodal and bone disease. These data were
also confirmed by Putzer et al. [44] in 51 patients with well differentiated NET, where
68Ga-DOTATOC PET/CT performed better than CT and SPECT imaging with somatostatin
analogs for the early detection of bone NET secondary lesions (sensitivity of 97%, specificity
of 92%). The main studies exploring the diagnostic ability of 68Ga-DOTA-peptides PET/CT
imaging in identifying GEP-NENs are reported in Table 1.

Table 1. Diagnostic ability of PET/CT with 68Ga-DOTA-peptides in identifying GEP-NENs.

Authors Patients (n) Primary Tumor Location Endpoints Sensitivity

Gabriel et al. [40] 84
20 (24%) pancreas
30 (36%) GI tract

34 (41%) other sites

Identification of primary tumor and
metastatic disease

Comparison with SPECT and CT
97%

Ambrosini et al. [43] 223
64 (29%) pancreas
55 (25%) GI tract

104 (47%) other sites

Identification of bone metastases
Comparison with CT 100%

Frilling et al. [41] 52
27 (52%) pancreas
19 (37%) GI tract

5 (10%) other sites

Identification of primary tumor and
metastatic disease

Comparison with CT and MRI
100%

Prasad et al. [42] 59
16 (27%) pancreas
16 (27%) GI tract

27 (46%) other sites

Identification of undiagnosed primary
tumor 59%

Putzer et al. [44] 51
11 (22%) pancreas
24 (47%) GI tract

16 (31%) other sites

Identification of bone metastases
Comparison with CT and bone

scintigraphy
97%

GI, gastrointestinal tract.

Current guidelines recommend functional imaging by using radiolabeled somatostatin
analogs in order to localize primary tumors and detect sites of metastatic disease, for re-
staging of patients with known disease, to monitor the effects of therapy, including surgery,
radiotherapy, chemotherapy or somatostatin analog therapy [45]. Moreover, the main
opportunity for 68Ga-DOTA-peptides imaging is the selection of patients for PRRT to
obtain a prognostic parameter for response of subsequent therapy.

5. Imaging Analysis

Nuclear imaging by radiolabeled somatostatin analogs is able to estimate the amount
of SSTR on tumor cells. In patients with GEP-NENs, the expression of SSTR might pre-
dict the efficacy for treatment with somatostatin analogs, with a significant impact on
outcome. [46]. However, several pitfalls in interpreting nuclear imaging by somatostatin
analogs may occur: the physiologic distribution of the tracer that includes healthy tissues
and inflammatory processes that might lead to a potential false positive [47]. In particu-
lar, physiological uptake of 68Ga-DOTA-peptides is reported in several tissues, including
spleen, adrenal glands, pituitary gland, liver, thyroid and salivary glands. Moreover, the
uncinate process of the pancreas has a high density of SSTR, leading to increased activity
also in absence of disease. Moreover, the tracer undergoes renal excretion where it is
filtrated and partially reabsorbed in the proximal tubule. Other foci of potential pitfalls
include sites of osteoblastic activity and active inflammatory processes that express SSTR2
receptors. It should also be taken into account that non-neuroendocrine tumors, including
renal cells carcinoma, may express SSTR [48]

Moreover, individual tumors can have heterogeneous levels of SSTR expression related
to their degree of differentiation. Therefore, several imaging biomarkers have been pro-
posed to standardize imaging assessment and improve diagnostic accuracy, reproducibility
and prognostic impact in patients with GEP-NENs.
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The Krenning score was first introduced for the analysis of 111In-pentetreotide planar
images and then was identically adapted to 68Ga-DOTA-peptides PET/CT imaging. It is a
4-point visual score, based on the analysis of the lesion with the highest SSTR ligand uptake
at functional imaging (H-lesion): 0 no uptake; 1, very low uptake; 2, uptake less than or
equal to that of the liver; 3, uptake greater than the liver; and 4, uptake greater than that of
the spleen [49–51]. Hope et al. [51] compared the Krenning scores obtained in 150 patients
with NET, who underwent both SPECT and PET/CT imaging by somatostatin analogs.
They concluded that 68Ga-DOTA-peptides PET/CT results in higher Krenning scores than
111In-pentetreotide, in particular for lesions < 2 cm. Therefore, in the evaluation of SSTR
density, PET/CT imaging should be preferred in patients with small lesions even if negative
at traditional SPECT imaging. The Krenning score has been related to histopathological
tumor grade and prognosis [50,51]. In order to standardize imaging analysis and overcome
potential pitfalls in PET/CT interpretation, Werner et al. [52] proposed the SSTR-RADS, a
structured 5-point score system for [68Ga] Ga-DOTA-peptides PET imaging adapted from
the PSMA-RADS score already proposed for prostate imaging [53]. The main application
seems to be the selection of patients’ candidates to PRRT.

Therapy with radiolabeled somatostatin analog should be considered in patients
with an overall SSTR-RADS score of 4 (“positive uptake in site typical for NET lesions
without corresponding anatomic finding”) or 5 (“intense uptake in site typical for NET
with corresponding findings on conventional imaging”). Lately, volumetric parameters
for functional imaging have also been evaluated. Abdulrezzak et al. [54] introduced two
new volumetric parameters: the somatostatin receptor expressing tumor volume (SRETV)
and the total lesion somatostatin receptor expression (TLSRE). There is still little scientific
evidence about these parameters, and cut-off values related to functional volume burden
and outcome have not yet been addressed.

6. Functional Imaging by 18F-FDG PET/CT

The glucose analog 18F-FDG is the most commonly used oncological radiotracer, for
staging, re-staging and evaluation of response to therapy in several tumors [55–57]. Cancer
cells typically show an increased glucose metabolism that facilitates rapid tumor growth,
and it is related to a higher degree of malignancy [58,59]. Therefore, lesions with high
18F-FDG uptake are more clinically aggressive [60–63]. The 18F-FDG uptake might be
influenced by phenotype, mitotic index and grade of the primary tumor [64]. Hybrid
imaging by 18F-FDG PET-CT is generally recommended for evaluation of patients with
GEP-NENs with high proliferation index (G3) and poorly differentiated neuroendocrine
carcinomas [65,66]. In a large prospective study on 166 patients with GEP-NENs, Binderup
et al. [67] reported that overall survival (OS) and progression-free survival (PFS) were
significantly better for 18F-FDG–negative when compared with 18F-FDG–positive patients,
reflecting tumor aggressiveness. It should also be considered that, differently from histo-
logical assessment of selected lesions, 18F-FDG PET/CT takes the advantage of allowing
a whole-body evaluation of the entire disease burden. The loss of SSTR expression was
found to coincide with an increase in glucose utilization in cells [66].

Therefore, the combined evaluation of PET/CT imaging by 68Ga-DOTA -peptides and
18F-FDG in patients with GEP-NENs has been largely investigated. Cingarlini et al. [68]
evaluated 35 patients with surgically resected G1 and G2 pancreatic NETs, who under-
went 68Ga-DOTATOC and 18F-FDG PET/CT imaging. In these patients, 68Ga-DOTATOC
PET/CT showed a high sensitivity in detecting G1 (100%) and G2 (92%) pancreatic NETs
while 18F-FDG PET/CT showed a lower sensitivity for both G1 (20%) and G2 (76%) tu-
mors, respectively.

The combined approach helped better define the phenotype of disease, suggesting
its potential role in prognostication and risk stratification of patients with pancreatic GEP-
NENs. Sansovini et al. [69], in a retrospective cohort of 60 patients with pancreatic NETs
treated with PRRT, reported a median PFS of 21.1 months for patients with a positive
18F-FDG PET/CT and a significantly longer PFS of 68.7 months for patients with negative
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baseline 18F-FDG PET/CT. Similarly, Severi et al. [70] evaluated 52 patients with progressive
advanced G1 and G2 NETs treated with 177Lu-DOTATATE; of those, 33 had positive and
19 negative 18F-FDG PET/CT imaging. The disease control rate was 100% in patients
with negative 18F-FDG and 76% in patients with positive imaging, with a PFS of 32 and
20 months, respectively. Those data confirm that 18F-FDG PET/CT has a high prognostic
value. In well differentiated G1 and G2 NETs, negative 18F-FDG scans were linked to a
significantly better PFS after PRRT regardless of the Ki67 grading score. On the contrary,
tumors with a positive 18F-FDG uptake led to a shorter PFS and OS, independently from
other markers of aggressiveness, such as grading and Ki67 index [61,67]. Nilica et al. [71]
evaluated 66 patients with histologically proven NET, who underwent PRRT and three
combined 68Ga-DOTATOC and 18F-FDG PET/CT studies. In these patients, the presence
of 18F-FDG uptake correlated with a higher risk of progression of disease. However, the
absence of 18F-FDG uptake at baseline evaluation does not exclude the occurrence of
positive scans during follow-up. Therefore, the patients with a negative 18F-FDG PET/CT
imaging may show positive scans during the follow-up, also in the presence of lower grades
of disease.

Recently, Chan and coworkers proposed the NET-PET grade, a new score incorporating
both 68Ga-DOTA-peptides and 18F-FDG PET/CT imaging findings, that well correlates
with outcome [72,73].

The 18F-FDG PET/CT has been shown to be useful in GEP-NENs patients with G2 G3
proliferation index, in particular in those with rapidly progressive disease and in patients
positive to CT and/or MRI and negative to imaging with DOTA-peptides. However,
18F-FDG PET/CT should be considered not as a competitor but as a complementary tool
to 68Ga-DOTA-peptides imaging. The identification of lesions showing areas of match or
mismatch at metabolic and receptorial imaging (flip-flop phenomenon) [66] is a powerful
tool in prognostic stratification of GEP-NENs patients.

Two representative cases of patients who performed both 68Ga-DOTATOC PET/CT
and 18F-FDG PET/CT scans are depicted in Figures 2 and 3, respectively.
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Figure 2. MIP views and transaxial fusion images of 68Ga-DOTATOC PET/CT (a,b) and of 18F-
FDG PET/CT (c,d) scans performed on the same patient with metastatic mesenterial lymph nodes
from ileal NET previously removed. Focal uptake is clearly visible on 68Ga-DOTATOC PET/CT
images (a,b) while it is absent on 18F-FDG PET/CT images (c,d).
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7. PRRT by Radiolabeled Somatostatin Analogs

In GEP-NENs patients with high SSTR expression and advanced disease, PRRT has
been demonstrated to be an effective systemic treatment.

The PRRT protocols consist on the systemic administration of a radiopharmaceutical
composed of a β-emitting radionuclide, chelated to a specific somatostatin analog. The
two most used radionuclides are Yttrium-90 (90Y) and Lutetium-177 (177Lu), which show
substantial differences in terms of decay energy and penetration depth. In particular, 90Y is
a pure β-emitting isotope; it decays with an energy of 2.27 MeV and an average penetration
depth of 11 m. Differently, 177Lu emits β-particles with a lower energy (0.49 MeV) and
a shorter penetration range (2 mm). In addition, 177Lu allows the performance of post-
treatment imaging thanks to its ability of emitting γ photons, with an energy of 113 keV
and 208 keV. Despite multiple therapeutic protocols that have been proposed during
the last years, the recommended activities range from 1.8 to 2.5 GBq for 90Y-DOTATOC
(time interval of 8–10 weeks, for 4 cycles) and from 3.7 to 7.4 for 177Lu-DOTATATE (time
interval of 6–12 weeks, for 4 to 5 cycles) [68]. The clinical effect of 90Y-DOTATOC has
been previously evaluated in 90 symptomatic patients with carcinoid tumors with at
least one symptom refractory to octreotide and one measurable lesion [74]. The patients
were treated with 3 cycles at 6-week intervals. According to Southwest Oncology Group
(SWOG) criteria [75], defined to assess tumor response to treatment and standardized
grades for evaluation of treatment toxicity, 67 patients (74%) showed stable disease or
response to therapy, with a significant trend in improvement of symptoms. Mean PFS
was significantly longer for the 38 patients who showed improvement of symptoms as
compared to 18 patients who did not (18.2 vs. 7.9 months). The treatment resulted in being
well tolerated; only two cases of severe but reversible renal toxicity were registered. It
should be noted that 90Y-DOTATOC takes advantage of a higher β particle emission as
compared to 177Lu-DOTATATE; however, 177Lu-DOTATATE shows higher SSTR2 affinity,
a longer residence time in tumor and a lower kidney exposure. Moreover, i 177Lu has
a double emission that allows performing a post-therapy scan in order to assess tracer
distribution and to perform dosimetry evaluations.

The post-therapy whole body and 68Ga-DOTATOC PET/CT scans performed before
(a) and after (b) PRRT in the same patient affected by pancreatic NET with liver and nodal
metastases are shown in Figures 4 and 5. In both imaging methods, areas of focal uptake
on liver and lymph node are reduced on the post-therapy images.
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The efficacy and safety of 177Lu-DOTATATE were first evaluated by Kwekkeboom
et al. [76] in 310 and 504 patients, respectively. All patients were treated with a cumulative
activity of 27.8–29.6 GBq, administered at intervals of 6–10 weeks for 4 cycles. Complete
response (CR) and partial response (PR) were observed in 2% and 28% of 310 patients
with GEP-NET, respectively. Moreover, PFS was 40 months, with a survival benefit of
40 to 72 months from diagnosis. The treatment resulted as safe and well tolerated, with
a low incidence of grade 3 or 4 subacute hematologic toxicity (3.6% of administrations);
myelodysplastic syndrome occurred in only 3 patients and temporary liver toxicity in
2 patients. Subsequent evidence [77–80] confirmed that 177Lu-DOTATATE shows a very
good tolerability, with minimal toxicity to kidney and bone marrow.

The NETTER-1 is a pivotal phase III randomized trial, where the safety and efficacy of
177Lu-DOTATATE has been tested in 229 patients with GEP-NET in disease progression
during and after SSA therapy [81]. According to the study protocol, patients were random-
ized and assigned to receive high doses of octreotide alone every 28 days, or 4 cycles of
7.4 GB of 177Lu-DOTATATE at 8-week intervals, associated with octreotide. In the first
interim analyses, the investigators observed that PFS resulted in being significantly higher
in patients treated with PRRT (65.2%) as compared to those who received octreotide alone
(10.8%). Moreover, the 177Lu-DOTATATE group had a higher rate of positive response to
therapy versus the control group (18% vs. 3%). The OS, evaluated at the time of interim
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analysis, registered 14 deaths in the 177Lu-DOTATATE group versus 26 in the control group.
The NETTER-1 trial confirmed the good tolerability of the treatment; grade 3 or 4 neutrope-
nia, thrombocytopenia and lymphopenia occurred in 1%, 2% and 9% of the PRRT patients,
respectively. According to these preliminary results, 177Lu-DOTATATE has been approved
as a therapeutic option for patients with progressive, advanced, well-differentiated G1
and G2 GEP-NETs. Final OS overall survival and long-term safety results from NETTER-1
have been recently published [82]. In this important study, the final analysis occurred
5 years after the last patient of 231 subjects was randomly assigned. The median OS of
the 177Lu-DOTATATE group (48.0 months) did not result in significant improvement as
compared to the control group (36.3 months), but the difference in OS between the two
study groups of 11.7 months should still be considered in practical and clinical terms.
Moreover, it should be highlighted that 33% of patients in the high dose octreotide group
crossed over the PRRT group.

In a subsequent prospective phase II study by Sansovini et al. [83], 52 consecutive
patients with advanced G1-G2 pancreatic NETs were treated with 5 cycles every 6–8 weeks.
According to kidney and bone marrow parameters, two different cumulative activities
were administered; in particular, 26 patients received a mean full activity (FA) of 25.5 GBq,
and 26 received a mean reduced activity (RA) of 17.8 GBq. The disease control rate,
defined as the sum of CR + partial response (PR) + stable disease (SD), was considered as
endpoint, and it was observed in 85% of the FA patients and in 77% of the RA group. The
median PFS was not reached in the FA group and was 20 months in the RA group, without
significant differences in OS s between the two groups. In conclusion, 177Lu-DOTATATE
therapy showed antitumor activity even in patients with RA dose. However, PFS was
significantly longer after a total activity of 27.8 GBq, suggesting the use of this assay in well
selected patients.

In a more recent paper, the same group [84] published the results of a 10-year follow-
up of a phase II trial conducted in 43 patients with progressive metastatic GEP-NETs. All
patients had positive PET or SPECT imaging with somatostatin analogs in known lesions,
and they were monitored for a median period of 118 months (range 12.6–139.6). Median
PFS in patients receiving a lower activity of 18.5 GBq was identical to that of patients
treated with 27.5 GBq. The median OS was 71.0 months in the group who received a lower
activity and 97.6 months in the other group. Age over 65 years at the time of PRRT was
also significant for OS, and of note, no late hematological or renal toxicity was observed in
either group. In conclusion, 177Lu-DOTATATE became “de facto” the more widely used
agent for PRRT thanks to its tolerability and efficacy.

The more relevant studies exploring the efficacy of 177Lu-DOTATATE PRRT are sum-
marized in Table 2. The results of these studies could be a starting point in the future to
be able to conduct any studies focused on a greater dose fractionation linked to a lower
dose toxicity.

In order to optimize treatment protocols, a personalized dosimetric approach has been
proposed in patients with GEP-NENs candidates to PRRT administration.

The personalized dosimetry aims to provide a sufficient absorbed dose to the target
lesions, with a concomitant reduction in the absorbed dose to vulnerable organs [85–87].
It should be considered that the kidneys and bone marrow are organs at risk, where
the maximum tolerated doses are 23 Gy and 2 Gy, respectively [85–87]. Ilan et al. [88]
calculated the tumor-absorbed dose for 24 metastases in 24 patients with NETs, using
sequential SPECT/CT post-therapy acquisitions, 24, 96 and 168 h after 177Lu-DOTATATE
PRRT infusion. The metastatic lesions receiving higher absorbed doses appeared more
likely to respond to PRRT in terms of tumor size reduction [88]. Del Prete et al. [89]
estimated a lesion absorbed dose > 130 Gy as a cut-off to obtain a significant reduction in
tumor size [89].
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Table 2. Safety and efficacy of 177Lu-DOTATATE PRRT.

Authors Patients
(n) Study Population Cycles/Intervals

(n/weeks) Activity (GBq) Endpoints Median Follow-Up
(Months)

PFS
(Months)

Kwekkeboom
et al. [71] 504

Suspected or
histologically proven

GEP-NETs
4/6–10 27.8–29.6

(Cumulative)
Safety, OR,

OS 19 32

Strosberg
et al. [76] 229 Histologically proven

advanced midgut-NETs 4/8 7.4 Safety, OR,
PFS 14 30

Strosberg
et al. [77] 231 Histologically proven

advanced midgut-NETs 4/8 7.4 OS 76 30

Sansovini
et al. [78] 52 Histologically proven

pancreatic NETs 5/6–8 17.8 or 25.5
(Cumulative)

Safety, OR,
OS 29 29

Paganelli
et al. [79] 43 Histologically proven

GI-NETs 6–8 18.4 or 25.7
(Cumulative)

Safety, OR,
PFS 118 59.8

NET, neuroendocrine tumors; GI, gastrointestinal tract; OR objective response; OS, overall survival; PFS,
progression-free survival.

Several authors focused their attentions on the optimal timing for SPECT/CT scans:
Simplified protocols have been proposed in order to reduce the number of acquisitions and
have made dosimetry more accessible [85,87,90].

Following the tendencies of combined treatments in oncology, the possibility of associ-
ating PRRT to chemotherapeutic agents has been investigated, to increase the therapeutic
response and to prolong the PFS. Capecitabine, the oral prodrug of 5-fluorouracile (5-FU
may act as a radiosensitizer in synergy with radionuclide therapy, and this could be partic-
ularly useful in aggressive or radioresistant disease. Several single-arm phase II trials have
investigated the tolerability and efficacy of combining 177Lu-DOTATATE with capecitabine
using various administration schedules [91–93]. In a prospective phase II study, Nicol-
ini et al. [94] aimed to test the efficacy and toxicity of 177Lu-DOTATATE associated with
metronomic capecitabine in 37 GEP-NETs patients with previous positive 18F-FDG PET/CT
imaging. The occurrence of grade 3 or 4 hematological toxicity was observed in 16.2% of
patients, while no patients had renal toxicity for the entire follow-up. Moreover, response to
therapy was assessed in 33 patients; of those, 10 (30%) had PR, and 18 (55%) had SD, during
a median follow-up of 38 months. The authors concluded that combining 177Lu-DOTATATE
and capecitabine is active and well tolerated, and this could be useful in patients with
18F-FDG positive GEP-NETs. Although these preliminary results are encouraging, available
data are limited to propose this combined protocol in the treatment of GEP-NENs patients;
for this purpose, robust randomized phase III studies are needed.

8. Response to Therapy: Which Criteria?

In order to evaluate the response to therapy in patients with oncological disease,
reproducible and standardized quantitative response criteria are needed. For this purpose,
the World Health Organization first introduced the concept of “objective response criteria”,
followed in 1992 by the new SWOG response criteria [6,75,84].

In order to simplify the evaluation of response to therapy and reduce error associated
with WHO and SWOG criteria, the RECIST criteria were first introduced and then modified
as RECIST version 1.1 to improve their use in clinical practice [6,75,95,96]. RECIST are
based on the identification of target lesions on conventional imaging, such as CT or MR, and
evaluation of the longest diameter of each target lesion. Although the RECIST 1.1 criteria are
considered the gold standard in the assessment of response to treatment, some limitations
have been observed, in particular regarding irregular lesions, peritoneal carcinomatosis
and small lesions less than 1 cm that are particularly relevant in GEP-NENs patients. Van
Vliet et al. [97] examined OS and PFS in a cohort of 268 patients with GEP and thoracic
NENs treated with PRRT, according to different criteria including RECIST 1.1, SWOG
and modified RECIST, where a minor response is defined by a decrease by 13–30%, and
modified SWOG, where a minor response is defined by a decrease by 25–50%. No significant
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differences were found in both median PFS and OS between the four groups. Therefore,
they concluded that both modified RECIST and SWOG criteria do not improve the accuracy
of PRRT response in NETs while RECIST 1.1 and SWOG criteria seem to be comparable.

In a recent retrospective study by Huizing et al. [98] including 44 patients with NETs,
images acquired prior, 3 and 9 months after PRRT were evaluated using RECIST 1.1 and
Choi criteria. Choi criteria have been first proposed for gastrointestinal stromal tumors
(GIST) to consider variations of density of target lesions [99]. Among a total of 110 lesions,
the evaluation of PRRT response by Choi criteria, as compared to RECIST 1.1, led to a
longer mean OS analysis in patients who had response to therapy but similar results in both
stable disease and progressive disease group. These findings indicate that Choi criteria
may identify responders more accurately.

In order to identify lesion properties more predictive of PRRT outcome, rating scales
have also been proposed for metabolic imaging. In 1999, the European Organization for
Research and Treatment of Cancer (EORTC) introduced the first PET scoring system, based
on the evaluation of semiquantitative PET parameters, such as SUV. The PET Response
Criteria in Solid Tumors (PERCIST) were further introduced based on several quantitative
parameters, such as metabolic tumor volume (MTV), a measurement of tumor volume
burden and total lesion glycolysis (TLG), that is the product of MTV and the SUV mean
parameter [100].

Several authors focused their attention on the identification of SUV max cut-off values
able to predict PRRT outcome [101,102]. Öksüz et al. [101] identified a SUV max > 17.9 on
68Ga-DOTATOC PET/CT as a favorable cut-off for predicting prognosis in patients who
underwent PRRT. On the contrary, Gabriel et al. [102] did not find any benefit of SUV max
analysis on 68Ga-DOTATOC PET/CT for the prediction of individual therapy response.

Sharma et al. [103] aimed to evaluate response to therapy in 55 patients with metastatic
NETs treated with PRRT, according to the following parameters: single lesion SUV max,
the tumor to spleen uptake (T/S) and tumor to liver uptake (T/L) ratios and average SUV
max, defined as the average SUV max of up to five target lesions in multiple organs sites.
All these parameters were evaluated at baseline, follow-up and end-treatment PET/CT
scan. The authors observed that only a baseline single lesion SUV max > 13.0 and an
average SUV max > 10.2 were predicted of both response to therapy and PFS. It should be
considered that several factors, including camera and acquisition times, may affect SUV
max quantification; therefore, a common threshold value should be carefully interpreted.

Tumor heterogeneity of SSTR2 expression can be observed within a lesion or among
different lesions in the same patients. It has been hypothesized that SSTR2 heterogeneity
may affect clinical outcome and play an important role in predicting tumor response to
therapy. Fonti et al. [104] investigated the ability of coefficient of variation (CoV), derived
from PET/CT with 68Ga-peptides, in evaluating the heterogeneity of SSTR2 expression
in 38 patients with NETs. They found that CoV values, reflecting tumor heterogeneity,
vary with the type and site of malignant lesions. In particular, the higher CoV values
were observed for bone lesions as compared to primary tumor and liver metastases. Some
authors [54,105,106] have considered new parameters, such as the somatostatin receptor
expressing tumor volume (SRETV) and the total lesion somatostatin receptor expression
(TLSRE), as an expression of volumetric tumor burden of GEP NENs, but we are still far
from using these parameters in daily clinical practice.

Radiomics techniques have been also proposed as a promising tool for the evaluation
of SSTR2 heterogeneity. Radiomics is an emerging method able to extract innumerable
features from medical images by the relationship between the intensity and position of
each voxel. The potential applications of radiomics features in patients with GEP-NENs
have been investigated for several purposes, including diagnosis, response assessment
and prediction of long-term outcome [107]. Blazevic et al. [108] identified 68 patients with
GEP-NENs at high risk to develop metastatic mesenteric masses. Through the extraction
of particular CT features, the same predictive value of a multidisciplinary tumor board
has been reached. Werner et al. [109] evaluated the prognostic ability of different textural
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features derived by PET/CT images in patients with GEP-NENS, and they found that the
entropy predicted both PFS and OS.

Despite promising results, radiomics is a still emerging method that needs far more
robust and accurate data before being introduced into clinical practice.

9. New Advances and Future Prospectives

The current evidence confirms that available diagnostic and therapeutic radiotracers
play an important role in the management of patients with GEP-NENs. However, to
overcome some limitation related to tracer distribution and to improve diagnostic and
therapeutic applications, new radiotracers have been proposed.

For PET/CT imaging, the availability of SST analogs labeled with 18F may help in
overcoming several practical and economic challenges. Pauwels et al. [110] evaluated
safety, dosimetry, biodistribution, pharmacokinetics and lesion targeting of 18F-AlF-NOTA-
octreotide in comparison to 68Ga-DOTATATE in six healthy volunteers and six NET patients.
The physiological uptake pattern was similar for both tracers; however, 18F-AlF-NOTA-
octreotide showed a lower uptake in tumor lesions but increasing over time. Moreover,
18F-AlF-NOTA-octreotide takes the advantage of a lower liver/background uptake as
compared to 68GaDOTATATE PET/CT, which allowed it to more accurately identify liver
lesions. However, in patients with a high number of metastases, 18F-AlF-NOTA-octreotide
missed more bone lesion than 68GaDOTATATE PET/CT. Overall, these preliminary data
indicate 18F-AlF-NOTA-octreotide as a promising tracer for NET imaging.

In another retrospective study, Ilhan et al. [111] compared 18F-SiFAlin-TATE with
68Ga-DOTATOC in 13 NENs patients. A significantly higher 18F-SiFAlin-TATE uptake
was described in kidneys. Moreover, among 109 lesions, tumor uptake was found to be
significantly higher for 18F-SiFAlin-TATE in all tumor sites, with the exception of lung
lesions. These preliminary results were affected by the high heterogeneity of enrolled
patients; they suggest the potential utility of 18F-SiFAlin-TATE.

The safety and diagnostic ability of Copper-64 (64CU) MeCOSar-Tyr3-octreotate (SAR-
TATE) were first tested by Hicks et al. [112] in 10 G1 or G2 NENs patients with positive
68Ga-DOTATATE-PET/CT imaging. It should be highlighted that 64Cu may provide sev-
eral advantages in terms of improved imaging quality thanks to its attractive physical
characteristics, and in the field of theragnostic, it can be used as a diagnostic partner for
the therapeutic radionuclide 67Cu. The images acquired 1 h after 64Cu-SARTATE injection
resulted in being comparable to those obtained by 68Ga-DOTATATE. Interestingly, lesion-
to-liver ratio increased progressively between 4 and 24 h, improving the identification of
livers metastases. All these evidences make 64Cu-SARTATE a safe PET/CT radiotracer,
with good qualities for diagnostic studies and for prospective dosimetry for 67Cu-PRRT.

The fibroblast activation protein inhibitor (FAPI) is overexpressed by fibroblasts and
associated with cancer and poor prognosis. It has been observed that FAPI is overex-
pressed by different tumors, in particular epithelial carcinomas [113]. Recently, 68Ga-FAPI
emerged as a promising radiotracer for PET/CT imaging, and several case reports indicated
substantial uptake in NENs [112].

During the last years, simultaneous PET/MRI has been introduced as a promis-
ing imaging method in the evaluation of several tumors, including GEP-NENs. Beider-
wellen et al. [114] investigated the potential role of 68Ga-DOTA-peptide PET/MRI in eight
patients with GEP-NET. In this case, PET/MRI has proved to be a promising method as
regards abdominal lesions, which represent the most frequent location of the disease in
GEP-NETs. Some limitations related to the use of MRI include lung and hypersclerotic bone
lesions. Hope et al. [115] also showed that the simultaneous use of both 68Ga-DOTA-TOC
and gadoxetate disodium in PET/MRI had an higher diagnostic accuracy in detecting
hepatic lesions, and it was successful in whole body staging However, it should be consid-
ered that high costs and long-time acquisition may limit the wide spread of PET/MRI into
clinical practice.
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For therapeutic purposes, new tracers able to emit α particle have been proposed.
Differently from β-emitters, α particles are able to release a higher energy in a shorter space,
leading to a more accurate and localized therapeutic effect and a relative preservation
of healthy tissues. Previously, α emitters have been already proposed for the treatment
of patients with castration-resistant prostate cancer and bone metastatic lesions [116]. In
patients with NENs, SST analogs labeled with actinium-225 (225Ac) or bismuth-213 (213Bi)
have been also applied in clinical trials; however, more data are needed, and we are still
clearly far from including them in clinical practice [117,118]. We hope in the progress!

10. Conclusions

Recent advances in functional imaging and radiometabolic therapy improved diag-
nosis and management of patients with GEP-NENs. The theragnostic approach, able to
combine diagnosis and therapy, represent an emerging opportunity for the management of
patients with GEP-NENs.
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