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Abstract: Perception and expression of pain in cancer patients are influenced by distress levels, tumor
type and progression, and the underlying pathophysiology of pain. Relying on traditional pain
assessment tools can present limitations due to the highly subjective and multifaceted nature of the
symptoms. In this scenario, objective pain assessment is an open research challenge. This work
introduces a framework for automatic pain assessment. The proposed method is based on a wearable
biosignal platform to extract quantitative indicators of the patient pain experience, evaluated through
a self-assessment report. Two preliminary case studies focused on the simultaneous acquisition of
electrocardiography (ECG), electrodermal activity (EDA), and accelerometer signals are illustrated
and discussed. The results demonstrate the feasibility of the approach, highlighting the potential of
EDA in capturing skin conductance responses (SCR) related to pain events in chronic cancer pain.
A weak correlation (R = 0.2) is found between SCR parameters and the standard deviation of the
interbeat interval series (SDRR), selected as the Heart Rate Variability index. A statistically significant
(p < 0.001) increase in both EDA signal and SDRR is detected in movement with respect to rest
conditions (assessed by means of the accelerometer signals) in the case of motion-associated cancer
pain, thus reflecting the relationship between motor dynamics, which trigger painful responses,
and the subsequent activation of the autonomous nervous system. With the objective of integrating
parameters obtained from biosignals to establish pain signatures within different clinical scenarios,
the proposed framework proves to be a promising research approach to define pain signatures in
different clinical contexts.

Keywords: biosignals; electrodermal activity; heart rate variability; cancer pain; automatic
pain assessment

1. Introduction

The World Cancer Research Fund reported that approximately 18 million new cancer
cases were estimated globally in 2020 [1]. Cancer pain is a common issue among cancer
patients, with its prevalence varying depending on the cancer type, stage, and pain man-
agement strategies. The World Health Organization (WHO) reported that approximately
30–50% of cancer patients experience moderate to severe pain [2], whereas 70–90% of
individuals with advanced cancer experience pain [3]. According to the International Asso-
ciation for the Study of Pain (IASP), chronic pain refers to persistent or recurring pain that
lasts for an extended period, typically three months or more [4]. It is a complex and multi-
dimensional experience that significantly affects physical, emotional, and social well-being.
This condition often hampers daily activities, sleep, work, and social interactions [5].

An effective pain treatment approach typically involves a combination of pharmaco-
logical and non-pharmacological interventions tailored to individual patient needs [6]. In
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this complex scenario, accurate pain assessment plays a critical role in guiding treatment
decisions [7]. However, widely used self-report quantitative methods like the Numeric
Rating Scale (NRS) and Visual Analog Scale (VAS) are susceptible to reporting bias in-
fluenced by psychosocial factors, including tendencies to catastrophize or underreport
pain [8,9]. In cancer patients, indeed, pain perception and expression are often influenced
by various variables such as psychosocial issues, distress, tumor type and progression,
and pain pathophysiology [10]. Additionally, individual factors like pain tolerance, com-
munication abilities, coping strategies, and emotional state further complicate the clinical
evaluation [11]. These challenges underscore the need to develop models and meth-
ods to identify measurable, reliable, and appropriate indicators to support the objective
and automatic assessment of cancer pain and to carefully guide pain management in
cancer patients.

Automatic pain assessment (APA) aims to use objective measures to evaluate pain
intensity, providing a more objective alternative to subjective pain scales. APA strategies
are particularly valuable in situations where reliable self-report data are difficult to obtain,
such as in children with cognitive disabilities or individuals with communication chal-
lenges, including those with dementia or those who are non-verbal or intubated [12–15].
APA encompasses different approaches, including behavioral and physiological indica-
tors. Behavioral strategies involve analyzing facial expressions, linguistic analysis using
qualitative and quantitative methods, and observing non-verbal physical indicators like
body movements and gestures. Physiological indicators include biosignals such as elec-
trocardiogram (ECG), electrodermal activity (EDA), and brain imaging techniques such
as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) to
measure pain-related brain activity [16,17]. In particular, EDA and ECG signals were cho-
sen for this research due to their novelty and importance in pain evaluation. Concerning
EDA signals, some preliminary results already show rapid responses caused by specific
stimuli (sensorial and/or emotional) [18]. On the other hand, RR series were assessed based
on ECG signals, since the relationship between HRV and pain and/or stress is known in
the literature [19,20]. However, only recently is a more direct relationship between HRV
parameters and tumors being studied [21].

On these premises, this work aims at presenting a general framework for the objective
pain assessment of cancer patients, leveraging the power of a combination of biosignals.
The framework is introduced, and two preliminary case studies are presented.

2. Materials and Methods
2.1. Framework for Quantitative Cancer Pain Assessment

The framework, illustrated in Figure 1, enables the simultaneous acquisition of various
physiological signals through a biosignal acquisition and processing platform. These signals
are then processed to extract the most significant features that correlate with the patient’s
pain experience. The evaluation of this experience is based on a self-assessment report
provided by the patient.
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The features extracted from the biosignals may include both time-domain and frequency-
domain parameters characterizing the acquired signals and could then be used to train
artificial intelligence (AI) algorithms to achieve fast prediction of the patient pain experience,
thereby providing a reliable route for an automatic objective pain assessment.

2.2. Context and Data Collection

The study was carried out at the National Institute for Tumors Pascale Foundation, a
Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) in Naples, Italy.
The study is a crucial component of an investigation aimed at gathering comprehensive
data that encompasses both behavioral data and the collection of biosignals in the context
of the APA (Pain ASsessment in CAncer Patients by Machine LEarning, PASCALE study)
(ClinicalTrials.gov Identifier: NCT04726228).

The research received approval from the local Medical Ethics Committee under the
protocol code 41/20 Oss on 26 November 2020. Written informed consent was obtained
from all participating patients, and the investigation strictly followed the principles outlined
in the Declaration of Helsinki.

We offer a comprehensive presentation of the framework through the analysis of two
preliminary case studies.

2.3. Approach for Qualitative Pain Assessment

Qualitative pain ratings were assessed on a reference numerical scale. The adopted
NRS scale ranges from 0 to 10, with 0 corresponding to the absence of pain and 10 to
high-intensity pain.

Regarding the process of educating patients on pain assessment, they were guided
to employ the numeric 0–10 scale. Moreover, patients were explicitly informed that the
underlying oncologic pain (background pain) might intensify due to movements or proce-
dures, or arise spontaneously, even when effectively managing the background pain. The
phenomenon of pain re-exacerbation is widely acknowledged in clinical practice and is
referred to as breakthrough cancer pain (BTCP). It can occur spontaneously (spontaneous
or unpredictable BTCP) or in response to movement or medical procedures (incident or
predictable BTCP) [22]. Consequently, patients were instructed to provide verbal feedback
in case of pain exacerbation, enabling us to establish a correlation between their pain
perception and signal variations (pain-related events).

2.4. Approach for Quantitative Pain Assessment

To extract quantitative pain metrics, the simultaneous acquisition of the following
three signals was carried out:

- EDA signal. This reflects the sympathetic nervous system activity and has already
been used in pain recognition tasks [23]. This approach serves as a valuable indicator
for assessing pain-induced neurocognitive stress by detecting changes in the electrical
properties of the skin with the activation of sweat glands and ultimately an increase
in skin conductance. The continuous changes in skin conductance are referred to as
the skin conductance level (SCL), whereas the transient responses that occur within
seconds are known as the galvanic skin response (GSR). Both the SCL and GSR
contribute to the tonic and phasic components. The former represents a basic level
of conductance (i.e., the SCL) and exhibits slow variations. On the other hand, the
phasic component reflects the short-duration changes in the EDA signal (i.e., the skin
conductance responses, SCRs) aroused by the presentation of a stimulus. Usually, the
EDA signal is quantified in microsiemens (µS). Notably, this component can be used
for providing insights into the overall automatic pain response [18].

- ECG signal. This is the superficial recording of the heart’s electrical activity. Temporal
fluctuations in inter-beat intervals can provide a measure of heart rate variability
(HRV). This variability is closely linked to the activity of the autonomic nervous
system (ANS) [24]. Indeed, HRV is influenced by the dynamic interplay between
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the sympathetic and parasympathetic branches of ANS (sympathovagal balance).
These branches work in opposite directions, regulating heart rate to accommodate the
body’s changing demands. Shifts in this equilibrium, reflected in HRV changes, are
due to physiological factors (such as circadian rhythm) and pathological conditions
(like diabetes and post-infarction situations) [25]. These variations can also indicate
physiological responses to stressful and painful circumstances [16]. The RR series
of interbeat intervals (i.e., the time between successive R waves of the QRS complex
on the ECG waveform) has been computed to extract time-domain parameters of
the HRV.

- Accelerometer signals. These can provide measurements of the motor activity along the
three main directions of an orthogonal cartesian plane. Chen et al. [26] demonstrated
that accelerometer signals correlate to the patient’s stress-induced pain. Within the
proposed framework, they are used for obtaining a quantitative measure of motion-
associated pain.

EDA and ECG signals were acquired by using a BITalino device equipped with sensors
for the recording of ECG and EDA signals. The BITalino platform is a hardware-affordable
and open-source biosignal platform developed for physiological computing. As reported
in the literature, data acquired with this device demonstrate reliability for quantitative
analysis [27]. Signals were measured at a 1000 Hz sampling rate (Figure 2).
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Figure 2. BITalino anatomy. Board and plugged channel mapping, 3D printed casing, and application;
data and signals were acquired from 2 sensors, namely electrocardiography (ECG) and electrodermal
activity (EDA).

Accelerometer data were extracted from smartphone built-in sensors at a 100 Hz
sampling rate, as suggested in other studies [28,29]. The simultaneous recording of both
BITalino and smartphone sensor data was carried out using the BITalino OpenSignal appli-
cation for Android devices. The synchronization between the two devices is automatically
provided by the OpenSignal application.

These devices were chosen for their use simplicity, versatility (more signals can be
acquired simultaneously), and size, which allow them to be worn, as shown in Figure 2.

2.5. Biosignal Processing and Statistical Analysis

Before detailing the biosignal processing, it is worth recalling some EDA characteristics.
First, as mentioned in Section 2.4, EDA signals were chosen for this study since they are
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among the most useful in identifying changes in sympathetic arousal due to emotional,
pain, and cognition states. EDA signals show two main components, the tonic level,
which represents the basal (or tonic) skin conductance level, and the phasic level, which
corresponds to variations in sweat release and therefore in skin conductance. The tonic
component varies more slowly than the phasic one, which shows rapid variations of a few
seconds. Obviously, this different time trend corresponds to different frequency ranges
(lower for the tonic component), so the two components can be separated by filtering the
raw EDA signals [18].

Indeed, for the processing and analysis of EDA signals, a fifth-order Butterworth
low-pass filter with a cutoff frequency of 1 Hz was applied, following the methodology
described elsewhere [14,30]. The signals were further analyzed using a deconvolution
approach, as suggested in previous studies [31,32], to separate the tonic (basic level of
conductance [18]) and phasic components (short-duration changes in the presentation of
a stimulus [18]) after downsampling the signal by a factor equal to 100 for reducing the
computational burden of the analysis, as suggested in [33]. The onset of pain episodes
during registration was temporally marked as reported by the patient during the session
(NRS ≥ 4) and was considered for the following analysis and extraction of EDA features.

Regarding the ECG signal, an R peak detection was carried out by adopting a modified
version of the Pan–Tompkins algorithm [34] as suggested in [35,36], and the corresponding
RR series of interbeat intervals were derived as the difference between successive R peaks.
The ECG-derived RR time series was then filtered by means of a recursive procedure, as
described in [37], to remove the intervals differing most from the mean of the surrounding
RR intervals. Both the mean and the standard deviation (SD) of the resulting RR series
were calculated afterward, with the latter being a time-domain indicator of the variability
of the heart rhythm (i.e., HRV). Features extracted from EDA and ECG data were used to
obtain quantitative metrics of the overall patient pain experience.

Finally, concerning the accelerometer data analysis, the magnitude of the acceleration
(hereinafter also referred to as the Acc magnitude) was calculated from the acquired raw
XYZ acceleration signals and used as a unified acceleration metric reflecting large changes
in the overall acceleration regardless of the device orientation. In particular, the acceleration
vector magnitude was calculated as reported in the following equation [38]:

Acc magnitude =
√

a2
x + a2

y + a2
z (1)

where, ax, ay, and az represent the acceleration on the x-, y-, and z-axis, respectively. The
final vector magnitude of the acceleration was obtained by subtracting the mean to discard
any constant effect, such as gravity [38]. The resultant acceleration signal was then filtered
using a third-order Butterworth bandpass filter with 0.25 Hz and 2.5 Hz cut-off frequencies,
as suggested in [38], aiming at removing extraneous accelerations that were not due to
human movement and high-frequency noise [39], as it has been proven to be a simpler and
less operation-intensive procedure to achieve a filtered signal.

Statistical analysis was carried out to assess the EDA response associated with the
patient’s motion during the experimental acquisition. Before applying any statistical tests
to compare the results, the data distribution shape must be assessed. Specific tests, often
referred to as parametric, are well suited only for Gaussian distributions. The Shapiro–Wilk
test is generally employed with this aim. After checking the kind of distribution, it is
possible to choose the most adequate test. Our data were non-normally distributed; hence,
a Wilcoxon signed-rank test (the most used non-parametric test) was chosen. This is used
to check whether there are any significant differences between representative parameters of
two situations (e.g., before and after treatment). In our case, it was carried out to compare
the median values of the EDA signals during motion and rest phases, with a significance
level equal to 0.05. Furthermore, in order to examine the temporal trends in EDA and
HRV parameters and their relationships, a bivariate regression and correlation analysis
was carried. The Pearson correlation coefficient and the determination coefficient (R2)
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was calculated to characterize the relationship between EDA and HRV parameters, and
a non-parametric Spearman correlation coefficient [40] was calculated to characterize the
association between the discrete pain event onsets (marked by the patients during the
experimental acquisition) and the calculated biosignal parameters.

Biosignal processing and analysis were carried out in MatLab v. R2021b (The Math-
Works Inc., Natick, MA, USA) for EDA, ECG, and accelerometer signals. Normality tests
(Shapiro–Wilk) and hypothesis tests (Wilcoxon rank sum) were performed and correlation
coefficients (Pearson and Spearman correlation) were determined using SPSS Statistics v.
28 (IBM Corp., Armonk, NY, USA). To compare the EDA values during rest and motion, a
Wilcoxon signed-rank test, chosen as a non-parametric alternative to the Student’s t-test
(due to the non-normal data distributions), was carried out.

2.6. Case Studies

The first case study regards the measurement of EDA signals on a patient affected
by lung cancer and suffering from post-thoracotomy pain. The EDA signal recording
was carried out for a 13 min duration in static conditions (i.e., patient at rest). Pain-
related events were reported by the patient, who indicated the occurrence time of the pain
episode (signatures).

A second case study focuses on the simultaneous measurement of both EDA and
accelerometer signals on a patient with prostate cancer and cancer-related pain. In this
case, the objective was to assess the motion-associated pain. To this aim, a 13 min EDA and
accelerometer signal acquisition was carried out during both the motion and the rest phase.

3. Results

Clinical descriptions and the corresponding preliminary findings in terms of biosignals
are reported for each case study.

3.1. Case Study No. 1: Clinical Presentation

A 66-year-old female was referred to the Department of Anesthesia, Pain Medicine,
and Supportive Care due to post-thoracotomy thoracic pain. In 2020, the patient underwent
lung resection for carcinoma and is currently undergoing regular follow-up appointments.
Despite the successful resolution of the oncological condition and the absence of any
signs of disease recurrence according to the diagnostic tests, the patient continued to
experience a significant impact on her quality of life. The primary factor contributing
to this impairment was the presence of pain (NRS 6), which manifested as a persistent
and distressing sensation along the T4–T5 right dermatome, projecting in a posterior-to-
anterior direction. The pain experienced by the patient was accompanied by a range of
debilitating sensory abnormalities, including dysesthesias (a constant perception of heat in
the affected area), allodynia (wherein normally innocuous stimuli evoke pain responses),
and hyperesthesia, as even the mildest touch or minimal pressure could provoke an
amplified and overwhelming pain response.

Pain management therapy was based on opioids (oxycodone 10 mg orally twice
a day and pregabalin 150 mg twice a day). The patient underwent several peripheral
neuromodulation treatments, including percutaneous electrical nerve stimulation (PENS)
and high-frequency neurostimulation (Biowave®).

3.2. Case Study No. 1: Pain Assessment by Means of EDA Signal

In Figure 3, the unprocessed EDA signal (in microsiemens, µS), and the RR time series
(in milliseconds, ms) are presented. The RR time series was obtained by analyzing the
recorded ECG signal after detecting the R peaks.
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Figure 3. Acquired EDA signal (top) and RR interbeat interval time series (bottom); EDA was
quantified in microsiemens (µS).

To highlight signal changes due to a pain increase, time intervals that included this
occurrence are shown. In particular, they illustrate a first tract, up to about 160 s, where
the tonic component of the EDA signal was stable, and the following, up to the end, where
it was increased by pain. At the same time interval, the changes that occurred in the RR
series were observed. As is elucidated further below, a temporal gap existed between the
occurrence of the pain event and the onset of the EDA increase.

The EDA signal was decomposed into its tonic and phasic components. Subsequently,
both the EDA and ECG (i.e., RR intervals) signals were paired and analyzed based on the
pain events reported by the patient (NRS ≥ 4).

Figure 4 displays the original and decomposed EDA signals with marked pain
event onsets.
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The following SCR features were calculated for each pain event within a preset time
window of 40 s after the event onset: (i) the SCR latency, which represents the latency of the
first detected SCR above 0.01 µS amplitude threshold; (ii) the SCR sum, which represents
the sum of the detected SCR amplitudes within the predefined time window; (iii) the SCR
average, which represents the mean value of the phasic activity in the EDA signal within
the predefined time window; and (iv) the integrated SCR (ISCR), which indicates the area
of the detected phasic activity in the EDA signal under the predefined time window.

Regarding HRV signals, although a wide range of approaches and metrics that concern
HRV analysis as well as the different conditions (e.g., age, gender, circadian cycle) can affect
them [41], the following time-domain HRV features were calculated: (i) mean RR, which
is the average value of the RR intervals, and (ii) SD RR, which represents the standard
deviation of the RR intervals and is used as a measure of short-term HRV [42]. Among
all possible parameters, for this pilot study, mean and SD were chosen because both are
reliable markers of health, and they can quickly change in the case of an imbalance of the
ANS. Moreover, HRV mean (in turn, RR mean) is a simple, fast impact parameter, even
for visual analysis, and SD is affected both by the sympathetic and the parasympathetic
nervous system.

Table 1 reports the parameters for the three most relevant peaks detected in the phasic
component of the EDA signal.

Table 1. Features extracted from EDA and ECG signals.

Event ID * SCR Latency
(s)

SCR Sum
(µS)

SCR Average
(µS)

ISCR
(µSs)

Mean RR
(ms)

SD RR
(ms)

1 1.25 0.28 0.03 1.25 814.55 15.35
2 7.35 0.53 0.07 2.61 824.31 27.33
3 1.95 1.68 0.22 8.56 855.53 18.83
4 2.05 1.54 0.17 6.55 868.57 40.88
5 1.05 0.99 0.12 4.68 857.78 34.31
6 2.35 3.38 0.59 22.86 861.51 36.05
7 1.75 1.35 0.15 5.98 883.94 28.64
8 7.75 1.30 0.18 7.16 888.09 35.62
9 5.65 0.27 0.04 1.61 891.18 43.80

Abbreviations: SCR, skin conductance responses; ISCR, integrated SCR; SD RR, standard deviation of the RR
intervals. * Event No. 1 is the start of the signal acquisition, and the IDs correspond to pain onsets reported by the
patient, as reported in Figure 4 (red vertical lines).

Remarkably, both Table 1 and the subsequent Figure 5 clearly illustrate an ascending
trend in the SD RR as the data acquisition progressed and the EDA signal intensified. This
observation indicates an increase in the HRV concurrent with the onset of pain (Spearman
correlation coefficient between SD RR and pain event onset was equal to 0.733 and was
statistically significant, p-value = 0.025) despite a less marked variation observed for the
ISCR parameter (Spearman correlation coefficient between SD RR and pain event onset was
equal to 0.217 but without statistical significance, p-value = 0.576). However, despite the
increasing trends observed, the statistical analysis showed only a weak correlation between
EDA and HRV parameters (Pearson correlation coefficient between SD RR and ISCR was
equal to 0.179), and no statistical significance was found (p-value = 0.644).

An in-depth analysis of the physiological mechanisms underlying the obtained results
is not simple. Even if an oscillation at each frequency represents a specific HR control
mechanism, they interact in a non-linear way; hence, only a very complex oscillatory pattern
reflects the capacity for regulation [43]. Nevertheless, the mechanism likely responsible
for the increase in HRV could be due to the change in peripheral vascular resistance
associated with the baroreflex-mediated circulatory redistribution occurring under stressful
conditions [44]. Besides, in analogy with other painful and stressful conditions [45,46], as
the acquisition progresses, the increase in the HRV and decrease in mean rhythm, which
reflects vagal dominance, indicates a healthier ANS. Again, even in newborns, whose
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ANS is still finishing its evolution, the short-term HRV, mediated by the vagal tone, which
decreases the mean rhythm, reflects a healthy, dynamic cardiac regulation [47]. Mean HR
and HRV are indicators so meaningful that they are capable of discriminating between
healthy and at-risk newborns [48]. Therefore, it is possible to hypothesize that in cancer
pain the increase in the HRV and decrease in mean rhythm could also indicate a healthy
ANS, i.e., the physiological system has greater flexibility to respond to successive pain
stimuli (regardless of the feedback of the patient’s conscious response).
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3.3. Case Study No. 2: Clinical Presentation

A 74-year-old male patient was referred to the Department of Anesthesia, Pain
Medicine, and Supportive Care due to pain induced by prostate cancer. The patient’s
clinical history revealed an advanced-stage (stage IV) oncological disease characterized
by extensive metastasis involving both sessile and appendicular bony structures. This
indicates a progressive and aggressive nature of the cancer, affecting multiple skeletal sites.
The primary source of pain was nociceptive in nature and originated from the involvement
of the vertebral column, significantly impacting the patient’s overall quality of life.

The patient’s baseline pain was effectively managed with the current therapy, which
consisted of a daily oral dose of 20 mg of oxycodone. However, the pain became more
pronounced during movement, leading to increased discomfort. Therefore, the patient
experienced episodes of severe cancer-induced incident pain with intensity levels ranging
from 7 to 8 on the NRS. To address these episodes, an additional pharmacological treatment
based on opioids was administered, specifically 100 mcg of transmucosal fentanyl.

3.4. Case Study No. 2: Motion-Associated Pain Assessment by Means of EDA Signal and
Accelerometer Data

Figure 6 depicts the visual representation of the recorded and processed EDA signals
and its integration with the accelerometer data. It can be observed that movement served as
a pain trigger, as indicated by higher EDA values, corresponding to increased acceleration
magnitudes. Nonetheless, the EDA signal required some time to gradually revert back to
its baseline values.

The simultaneous registration of EDA and acceleration magnitude with the indication
of motion and rest phases during the acquisition is presented in Figure 7.
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Figure 7. Simultaneous registration of electrodermal activity (EDA) and acceleration magnitude
with an indication of motion and rest phases during the acquisition; the EDA signal demonstrates a
gradual return to its baseline values, requiring a certain amount of time for recovery.

In addition, Figure 8 shows the boxplots of the EDA- and ECG-derived RR val-
ues in both the motion and rest phases. The time-domain parameters of the HRV are
also provided.

The EDA signal was considerably higher in the motion phase compared to the rest
phase of the experimental acquisition. The statistical significance was confirmed by the
p-value < 0.001 of the Wilcoxon signed-rank test. Similarly, heart rate values significantly
differed between the motion and rest phases (p-value < 0.001 for the Wilcoxon signed-rank
test), with higher mean rhythm and higher variability during the motion phase compared
to the rest phase.
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4. Discussion

To introduce the framework, we selected two patients with distinct manifestations
of oncologic pain. The first case involved a patient with a well-defined baseline pain
profile. Nevertheless, the patient experienced spontaneous pain spikes (spontaneous or
non-predictable BTCP). In the second case, the patient’s pain intensified upon movement,
indicating the presence of incident BTCP episodes [22].

Quantitative and objective pain assessment is an ongoing research challenge, par-
ticularly for cancer pain, which is complex in nature and can be caused by a variety of
factors [49]. Regrettably, there is compelling evidence highlighting the inadequacy of
pain management leading to detrimental effects on various aspects of well-being. The
consequences of this insufficiency encompass a diminished quality of life, suboptimal
adherence to therapy, potential adverse effects, and a subsequent rise in healthcare expen-
ditures [2,5,49,50]. Therefore, there is an urgent need for new methods and approaches to
identify standardized, measurable, reliable, and appropriate indicators for the quantita-
tive assessment and proper management of cancer pain. Recent studies have suggested
that biosignals could be used to objectively quantify cancer pain [51]. However, there is
currently no standardized approach for quantitative pain assessment [52].

The novelty of our framework lies in the processing of the EDA signal into tonic and
phasic components and its subsequent integration with data obtained from motion activity
using a three-axis accelerometer and elements achieved from the ECG analysis. The goal
is to combine parameters derived from multiple biosignals to define pain signatures in
different clinical contexts, such as at rest (Case 1) and during movement (incident pain,
Case 2). For this aim, a commercial low-cost multisensory wearable platform was used to
simultaneously acquire different types of physiological signals during a pain-monitoring
session. The EDA signal is processed and decomposed into tonic and phasic components
and finally integrated with data from motion activity (accelerometer) to assess incident pain.
By analyzing the raw ECG data, the RR series of interbeat intervals (i.e., the time between
successive R waves of the QRS complex) is calculated to derive a time-domain parameter
related to the HRV, which has been extensively explored in different physiological and
pathological conditions but, to the best of our knowledge, has not yet been investigated in
depth in the management of cancer pain in combination with other biosignals such as EDA
and accelerometer data. The features extracted from the acquired biosignals could serve
as indicators of the patient’s pain experience and could be further investigated, selected,
and implemented to train AI algorithms to quantitatively assess the pain experience, thus
potentially providing standardized automatic objective pain assessment methods.

Although this study is preliminary and experimental in nature, the obtained results are
highly promising. They not only demonstrate the feasibility of the proposed approach but
also highlight its potential impact. For example, referring to Table 1, it becomes apparent
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that the registration and analysis of EDA signals can effectively identify and characterize
notable skin conductance responses. It is important to note that, although the results
were not statistically significant, the potential of EDA for capturing and evaluating these
responses is evident. Consequently, these findings can serve as indicators of the patient’s
pain experience. The inclusion of data from multiple samples will provide us with more
accurate estimates.

Moreover, from Figures 7 and 8, it can be observed that an increase in the EDA signal
could be detected in the presence of higher acceleration magnitude (motion phase), whereas
during the rest (or static) phase of the experimental acquisition, the lowest acceleration
magnitude was accompanied by lower EDA responses. These data provide compelling
evidence of the dynamic relationship between the activity of the ANS and motor dynamics
in response to painful stimuli [53]. The intricate interplay between the sensory percep-
tion of pain and motor responses is reflected in the variations observed in the ANS [54].
When exposed to a painful stimulus, this complex system undergoes adaptive changes to
modulate the body’s response [55]. These phenomena also highlight the complex nature
of pain processing. In particular, different motor activities, such as voluntary movements,
reflexes, or postural adjustments, can influence the autonomic response to pain. These
motor dynamics can either amplify or suppress the autonomic response, leading to distinct
patterns of autonomic modulation. For example, during certain motor tasks or movements
such as strenuous exercise or intense physical exertion, the autonomic response to pain
may be heightened, reflecting increased sympathetic arousal and potentially altering pain
perception. Conversely, in other motor scenarios, the autonomic response may be damp-
ened, suggesting a regulatory mechanism that minimizes the impact of pain on motor
performance. This occurs, for instance, during highly focused tasks or movements that
require precise motor control, such as fine motor skills or delicate manipulations [56].
Therefore, by incorporating both autonomic and motor assessments, a more comprehensive
understanding of pain mechanisms and the development of targeted interventions can
be achieved.

The decomposition of the EDA signal into its tonic and phasic components, along
with the analysis of the HRV using the data provided by the patient as signatures, serves
as a vital foundation for validating the model. By separating the EDA signal into its tonic
component, which represents the baseline sympathetic activity, and its phasic component,
which reflects rapid changes associated with emotional arousal or stress, researchers can
gain valuable insights into the physiological responses of the patient. Additionally, ana-
lyzing HRV can provide valuable information about pain-related ANS functioning. By
examining HRV patterns, it is possible to assess the balance between the sympathetic and
parasympathetic branches of the ANS and infer the overall physiological state of the patient,
such as stress levels, emotional regulation, and cardiovascular health. These analytical
approaches, combined with the utilization of patient-specific data (e.g., NRS), can play a
critical role in validating the accuracy and effectiveness of the model. By comparing the
model’s predictions with the measured EDA components and HRV parameters derived
from the patient’s data, it could be possible to evaluate the model’s performance, refine its
algorithms, and ensure its reliability for future applications in understanding physiologi-
cal responses and assessing health conditions. Furthermore, the extracted features could
support the investigation of the pain events (e.g., incident pain) occurring during the acqui-
sition, providing a more accurate quantitative indication of the extent of the pain felt by
the subject.

Future studies will aim at building a large dataset containing both clinical parameters
and biosignal features for different types of cancer patients participating in the study. The
dataset will serve as a basis to validate the proposed approach by carrying out correlation
studies and statistical analyses to investigate the relationships between clinical and biosig-
nal features. This approach can be also used to train AI algorithms for predicting the scores
obtained by administering qualitative pain assessment questionnaires and for defining
automatic and reliable quantitative pain assessment metrics.
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Limitations of the Study

The study is subject to several limitations. These constraints often pose challenges
to the analysis and validation of APA systems. For instance, the equilibrium of the au-
tonomic nervous system is recognized to be influenced by a wide array of physiological,
pathophysiological, and pharmacological factors. HRV exhibits distinct variations be-
tween pediatric and adult populations [57], and it also diminishes with advancing age
in adults [58]. Notably, our investigation exclusively involved older adults, potentially
introducing a limitation related to age thresholds. Furthermore, the effectiveness of the
approach could be curtailed by specific medications, such as beta-adrenergic blockers [59].
Moreover, concerning HRV (or, equivalently, RR) signals, an in-depth study concern-
ing their correlation with tumor pain and, therefore, a wider analysis of parameters
(e.g., involving frequency parameters) will be necessary. Additionally, specific scenar-
ios, like concurrent nausea, might induce such significant alterations in the autonomic
system that pain signals could become obscured within the surrounding noise [60]. Al-
though the two patients enrolled in the study were not taking any medication that could
have potentially impacted the biosignal analysis, it is crucial to carefully verify potential
drug agents or clinical conditions that might alter the signal during the course of clinical
investigation. These aspects are of paramount importance for researching and evaluating
the potential implementation of these techniques in clinical practice.

5. Conclusions

In conclusion, since quantitative and objective pain monitoring is still an unsolved
research problem, the identification of quantifiable, trustworthy, and relevant markers is
therefore urgently needed to facilitate quantitative assessment and effective management of
cancer pain. Using multiple analyses of ECG and EDA biosignals, this study introduced a
paradigm for the quantitative and objective assessment and treatment of pain and presented
two experimental case studies to demonstrate the viability of the proposed approach. The
obtained results, although preliminary, are promising and suggest the potential application
of the suggested route to build a more robust and reliable quantitative approach for cancer
pain assessment.
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