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Abstract: Being overweight or obese can predispose people to chronic diseases and metabolic
disorders such as cardiovascular illnesses, diabetes, Alzheimer’s disease, and cancer, which are costly
public health problems and leading causes of mortality worldwide. Many people hope to solve this
problem by using food supplements, as they can be self-prescribed, contain molecules of natural
origin considered to be incapable of causing damage to health, and the only sacrifice they require is
economic. The market offers supplements containing food plant-derived molecules (e.g., primary and
secondary metabolites, vitamins, and fibers), microbes (probiotics), and microbial-derived fractions
(postbiotics). They can control lipid and carbohydrate metabolism, reduce appetite (interacting with
the central nervous system) and adipogenesis, influence intestinal microbiota activity, and increase
energy expenditure. Unfortunately, the copious choice of products and different legislation on food
supplements worldwide can confuse consumers. This review summarizes the activity and toxicity of
dietary supplements for weight control to clarify their potentiality and adverse reactions. A lack of
research regarding commercially available supplements has been noted. Supplements containing
postbiotic moieties are of particular interest. They are easier to store and transport and are safe even
for people with a deficient immune system.

Keywords: antiobesity; food-derived moieties; antiobesity phytochemicals; prebiotics; microbial-derived
moieties; probiotics; metabiotic; parabiotic; postbiotic

1. Introduction

The World Health Organization has estimated that 24% of the world’s population will
be obese by 2030 [1]. Obesity is a pathology due to an altered energy balance between the
intake and consumption of calories [1]. The development of obesity is linked to sociological,
psychological, evolutionary, biological, institutional, and economic aspects [2–4].

According to the latest annual statistics in the FAO (Food and Agriculture Organiza-
tion) report, people in North America and Europe consumed 3540 calories per day in 2021
instead of the 2000 calories per day necessary for women and 2500 for men [5]. Adverse so-
cial factors (e.g., poor life quality), health problems, and mortality are related to obesity [6,7].
Adults living with obesity in their 20s have a reduced life expectancy of 5.6 to 10.3 years [8].
In 2019, five million premature deaths were ascribable to being overweight or obese [9].
Cancer, type 2 diabetes, and cardiovascular and chronic kidney disease are responsible for
deaths linked to obesity [10]. Moreover, obesity impacts quality of life, mental health, and
sexual function [11]. An enhanced meal calorie intake due to the possibility of eating highly
caloric and palatable food that can produce dependences [12,13], an altered metabolite
metabolism due to fast meals, and a sedentary lifestyle are the leading causes of obesity [14].
Genetic components regulate an individual’s response to the accumulation of excessive
energy in their body’s fat stores [15]. In some people, fat collects predominantly in the
abdominal adipose tissue and infiltrates other visceral organs, promoting cardiometabolic
risk. Adipose tissue is an active endocrine and paracrine organ that secretes molecules
(e.g., adipokines, hormones, and inflammatory cytokines) [16] that can control the immune
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response, energy homeostasis, and inflammation. In obesity, adipose tissue activates the
proinflammatory cascade, systemic insulin resistance, fatty acid, and glucose dysregula-
tion. This dysregulation damages the arteries, heart, skeletal muscle, liver, and pancreas
and causes metabolic, hormonal, and target-organ alterations in the function of the body
weight’s magnitude and its distribution [17]. Restricted calorie regimens and physical exer-
cise decrease the risk of obesity, but these approaches are not rapid and require substantial
patient compliance [18]. It is possible to limit obesity pharmacologically (e.g., by using
fenfluramine, orlistat, coreaserin, cetlistat, rimonabant, sibutramine, phentermine, and
topiramate) [19,20] or by taking food supplements. The latter approach is chosen by those
who are afraid of the side effects produced by drugs, are attentive to maintaining a healthy
and eco-sustainable lifestyle, and hope that natural molecules do not cause damage to their
health. This review summarizes the weight management supplements on the market. Their
mechanisms of action, side effects, and sector perspectives are discussed.

2. Search Methodology

Scopus, SciFinder, and Google Scholar were employed to search the research papers
and reviews on body weight control dietary supplements published since 1979. Patents
were searched on Google Patents. The keywords/phrases/sentences used to search the
scientific works or patents related to body weight control dietary supplements were as
follows: obesity supplement control, dietary supplement obesity, dietary supplement
obesity patent, weight loss control supplement, and appetite suppressing supplement.
Topics, editorials, conference proceedings, and commentaries were not considered.

3. Obesity

The body mass index (BMI) values body fat based on a person’s weight and height.
A person whose BMI is over 25 is considered to be overweight, and obese if it is over 30
(Figure 1). Family genetics (a propensity to accumulate fat), psychological factors, and
lifestyle (poor exercise or dietary habits) can result in obesity [21]. In living organisms,
lipids and fatty acids are formed from glucose. Successively, fatty acids are esterified
into triglycerides and stored in adipose tissue. Amylases and glucosidases are the key
enzymes that metabolize carbohydrates into glucose [22]. Increased glucose levels deter-
mine the insulin release from pancreatic cells and induce glycogenesis, glycolysis, and
lipogenesis [23].
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Pancreatic lipase is a critical enzyme in dietary fat digestion. It reduces the fat depo-
sition into adipose tissue and controls the digestion and absorption of triglycerides [24].
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This lipase is upregulated by glucagon and epinephrine and downregulated by insulin [25].
Adipose tissue regulates obesity. Adipocytes act as energy storage, detect energy demands,
and produce paracrine factors to regulate other metabolic tissues. In obesity, adipose
tissue becomes severely dysfunctional, does not store excess energy, causes ectopic fat
deposition [26], enhances the levels of free fatty acid metabolites (e.g., ceramide, long-
chain fatty acyl Coenzyme A, and di-acyl glycerol) [27], and regulates insulin resistance by
constraining the protein-kinase B (PKB) pathway [28].

Hyperinsulinemia increases the ATP level and downregulates the AMP-activated
protein kinase (AMPK) pathway [29]. In obesity, preadipocyte differentiation into mature
adipocytes is promoted [30], as is the production of inflammatory cytokines (such as the Tu-
mor necrosis factor alpha (TNF-α) and some interleukins such as IL-6, IL-1, and IL-18) [31].
TNF-α downregulates insulin sensitivity (improving IκB kinase/NF-κB signaling), glucose
uptake (preventing the GLUT-4 transporter), the 5′ AMP-activated protein kinase (AMPK)
pathway, lipogenesis (reducing PPARγ expression), and increases lipolysis [32]. Some hor-
mones (e.g., leptin, insulin, adiponectin, and ghrelin) are involved in the etiopathogenesis
of obesity. Leptin is released by white adipose tissue (WAT) and regulates the brain–gut
axis. It controls appetite and metabolism by impeding the synthesis and release of neu-
ropeptide Y in the arcuate nucleus. The leptin isoform b (LEP-Rb) regulates the energy
balance and body mass in the ventromedial hypothalamic nucleus, arcuate nucleus, lateral
hypothalamic nuclei, and dorsomedial hypothalamic nucleus and decreases appetite [33].
Insulin (secreted from pancreatic beta cells) converts signals to the brain and decreases food
intake (over the long term) and rapid energy outflow. Brain insulin signaling regulates
systemic and organ-specific metabolism, often in a complementary manner [34] (Figure 2).
Signals from leptin and insulin communicate to reduce food and energy intake [35], the
metabolisms of carbohydrates and lipids [36], fatty acid oxidation, and glucose uptake in
the skeletal muscle and liver [37]. Adiponectin can activate the adenosine monophosphate-
activated protein kinase (AMPK) and decrease acetyl CoA carboxylase and malonyl CoA
activities [38,39].
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Adiponectin is secreted from adipose tissue and controls energy homeostasis and the
metabolisms of carbohydrates and lipids [36]. It improves the fatty acid oxidation, hepatic
insulin activity, and glucose uptake in the skeletal muscle and liver [37]. Adiponectin can
activate the adenosine monophosphate-activated protein kinase (AMPK) and decrease
acetyl CoA carboxylase and malonyl CoA activities [38,39]. The stomach secretes ghrelin
(the hunger hormone), which stimulates food intake and adiposity [40]. Finally, endoplas-
mic reticulum stress can affect insulin resistance, activating the Jun N-terminal kinase (JNK)
and inhibitory kappa B kinase (IKK) pathways [41].

4. Supplement Regulation

Urbanization and income growth worldwide have increased the demand for products
that control weight management. This segment is expected to grow significantly in the
coming period due to the prevalence of obesity among adults and children worldwide
linked to changing food habits [42]. The global dietary supplements market will probably
reach 327.4 billion USD by 2030. Dietary supplements are regulated differently around the
world. In the USA, they are regulated as food by the FDA (Food and Drug Administration)
under the DSHEA of 1994 (Dietary Supplement Health and Education Act) [43]. In the
United Kingdom, food supplements are regulated by the Department of Health and Social
Care (England), Food Standards Scotland (Scotland), Welsh Government (Wales), and Food
Standards Agency (Northern Ireland). They are defined as “food whose purpose is to
supplement the normal diet and which is a concentrated source of a vitamin or mineral or
other substance with a nutritional or physiological effect, alone or in combination and is sold
in dose form” [44]. In other jurisdictions, they are considered to be therapeutic goods, food
supplements, prescription medicines, or controlled substances [45]. In Italy, the Directive
2002/46/EC and Legislative Decree 21 May 2004 n. 169 regulate dietary supplements as
“food products that can supplement the common diet. They are a source concentrate of
nutrients, such as vitamins and minerals, or other substances having an effect nutritional
or physiological, in particular—but not exclusively—amino acids, essential fatty acids,
probiotic microorganisms, fibers, and extracts of vegetable origin, both mono-compound
and multi-compound” [46]. The uneven legislation on the marketing of these products
around the world can confuse consumers. It is hoped that convergence on this matter can
be achieved as soon as possible.

5. Weight Management Supplements

Dietary supplements can control being overweight by inhibiting the appetite [47],
lipid and carbohydrate absorption [48], adipogenesis and lipogenesis [49], regulating lipid
metabolism and the gut microbiota [50], and improving energy consumption [51] and
obesity-related inflammation (Figure 3) [52].
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5.1. Plants Extract in Supplements for Weight Control Management

Usually, weight loss supplements are multi-ingredient preparations (an average of
10 ingredients are enclosed) [53]. It is difficult to determine their effects on the body due
to the recipes’ complexity and different dosages, extract types, and administration times
used in studies. Some food or medicinal plants are employed in weight control treatments.
Their effects are mainly linked to secondary metabolites (e.g., polyphenols and saponins,
etc.) [54,55], unsaturated fatty acids, and fibers. Natural products that are in used in weight
control management include green tea, garcinia cambogia, turmeric, ginger, coffee, chili
pepper, spirulina, licorice, hibiscus sabdariffa, white bean, and yerba maté, etc.

Green tea (GT) extract decreases waist circumference (WMD: −2.06 cm) when GT of
≥800 mg/day for <12 weeks or GT of <500 mg/day for 12 weeks is consumed [56]. The
consumption of green tea extract for up 14 weeks decreases body weight (BW: 1.8 kg) and
body mass index (BMI: 0.65 kg/m2) [56]. Unfortunately, some studies have reported that
green tea extract can cause liver damage [57,58]. Dexaprine (a multi-ingredient supplement
with green tea extract) has caused some consumers emesis, anxiety, and tachycardia [59].
The Linea Detox (with green tea extract) has produced anaphylactic reactions [60].

A meta-analysis of 2011 subjects showed that garcinia cambogia supplementation can
cause BW loss (−0.88 kg) without affecting BMI [61]. Another meta-analysis of 2020 subjects
showed that Garcinia cambogia supplementation for 8–12 weeks reduced BW (−1.34 kg),
fat mass (−0.42%), BMI (0.99 kg/m2), and waist circumference (WC−4.16 cm) [62].

A meta-analysis of 876 subjects (53% women) showed that curcumin supplementation
(≥1000 mg/d) with a treatment duration of ≥8 weeks decreased BW (−1.14 kg) and BMI
(−0.48 kg/m2) [63]. Some multi-ingredient supplements with garcinia cambogia extract
have showed toxic effects. The hydroxycut produces liver damage, heart arrhythmia,
death [64–66], thermatrim, and leukoencephalopathy [67].

A meta-analysis of 470 subjects demonstrated that ginger intake (with doses ranging
from 200 to 3000 mg/day with a duration of treatment ranging between 2 and 12 weeks)
reduced BW (−0.66 Kg), waist-to-hip ratio (−0.49), hip ratio (−0.42), fasting glucose
(−0.68 mmols/L), and insulin resistance index (−1.67), and increased HDL-cholesterol
(+0.40 mg/dL) but did not affect insulin, BMI, triglycerides, and total- and LDL-cholesterol
levels [68]. A meta-analysis of 695 subjects demonstrated that green coffee intake for 4 and
8 weeks reduced BMI by −0.403 kg/m2, with no significant change in BW (−0.585 kg) and
WC (−0.847 cm). Short supplementation periods (less than 4 weeks) have no effect [69].

A meta-analysis of 191 participants demonstrated that consuming several doses of
capsaicinoids (contained in chilly pepper) daily decreased energy intake [70]. A meta-
analysis demonstrated that spirulina supplementation (with doses ranging from 1 to
4.5 g/day with a duration of treatment ranging between 6 and 12 weeks) decreased BW
(−1.56 Kg), body fat percentage, and waist circumference, but no changes in BMI and
waist-to-hip ratio were observed [71]. The French Agency for Food, Environmental, and
Occupational Health & Safety claimed that spirulina has no health risk when up to several
grams are used daily [72]. A meta-analysis that evaluated the consumption of licorice or its
derivatives (300–900 mg/day with a duration ranging from two to 16 weeks) showed that
licorice consumption reduced BW, dependent on the dose and duration of the treatment
(−0.433 kg) and the BMI of patients (−0.150 kg/m2), and increased diastolic blood pressure
(DBP: 1.737 mmHg) [73]. A study on supplementation with lippia citriodora and hibiscus
sabdariffa demonstrated that their supplementation reduced the appetite sensation in
overweight and obese populations (−3.36 calorie intake after an ad libitum meal) due to
variations in hunger-related hormones (leptin −1.07 ng/mL and incretin 1.11 ng/mL) [74].
A meta-analysis of 573 participants that evaluated a Phaseolus vulgaris supplementation
(3000 mg/day with a duration ranging from 2 to 16 weeks) showed that it reduced BW
(−1.08 kg) and body fat (from −2.35 kg to −4.163 kg) [75].
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5.2. Dietary Supplements Able to Decrease the Appetite

Appetite control can reduce weight gain [76]. Some supplements that can suppress the
appetite are reported in Table 1. They can contain grains (e.g., wheat, oats, corn, rice, rye,
or barley) [77], prebiotics (e.g., fructosan and inulin) [78], secondary metabolites such as
saponins (e.g., pregnane glycosides and stavarosides) [79], methylxanthines (e.g., caffeine,
theobromine, and theophylline) [80], and hydrolyzed yeast proteins [81].

5.3. Dietary Supplements Able to Interact with the Central Nervous System

Some supplements can promote antiobesogenic effects, interacting with the central
nervous system and determining the release of hormones, such as the neuropeptide Y
(that can delay satiety and promote food intake), norepinephrine (that can increase lipoly-
sis), the POMC/CART (that can regulate food consumption) [82], the melanocortins and
α-melanocyte-stimulating hormone (that can regulate the appetite and are affected by
leptin and insulin) [83], and serotonin (that can regulate food intake) (Table 1). The plant
secondary metabolites that can interact with the hormones released by the central ner-
vous system are ephedrine (that acts as a sympathomimetic agent) [84], the red ginseng’s
saponins (protopanaxadiol and protopanaxatriol type that act by downregulating leptin
and neuropeptide Y) [85,86], the garcinia’s hydroxy citric acids (that control the glucose and
uptake of serotonin level) [87,88], the amines in citrus with aromatic rings (that improve
serotonin levels) [89], and fucoxanthin isolated from brown seaweed (that impacts insulin
levels) [90].

5.4. Dietary Supplements That Interact with the Hormones in the Digestive System and
Adipose Tissue

Some dietary supplements suppress the appetite by regulating the secretion of hor-
mones in the digestive system (e.g., the ghrelin in the stomach) and adipose tissue (e.g.,
leptin, secreted by adipocytes [91], the AMP-activated protein kinase that controls en-
ergy metabolism [92], and the carnitine palmitoyl transferase 1A and cofactor for the
beta-oxidation of fatty acids that enhance the fatty acid oxidation) [93]. Some supple-
ments’ patents that are based on plants or secondary metabolites that can interact with the
hormones in the digestive system and adipose tissue are reported in Table 1.

5.5. Prebiotics in Weight Control Supplements

Prebiotics are non-viable food components (e.g., non-digestible carbohydrates, pep-
tides, proteins, and lipids) [94] that can positively impact beneficial bacteria’s activity
(e.g., Lactobacillus and Bifidobacterium) and/or growth in the gut microbiota [95]. They
are not hydrolyzed by gastric acidity and mammalian enzymes. Moreover, prebiotics do
not get absorbed into the gastrointestinal tract, are fermented by the gut microbiota, and
are beneficial to a host’s health [96]. The prebiotic, non-digestible carbohydrates include
resistant starch, non-starch polysaccharides, and oligosaccharides composed of three–nine
sugar units [97,98], which endogenous enzymes cannot hydrolyze [99]. By imitating in-
testinal binding sites, some prebiotics impede the pathogenic microbiota’s adhesion to
the gastrointestinal tract [100]. These prebiotics can modulate the immune system by
upregulating interleukins and immunoglobulins, downregulating proinflammatory inter-
leukins [101,102], and improving short-chain fatty acids’ (SCFAs) production [103]. The
SCFAs improve the intestinal barrier integrity, are an essential indicator of bacterial fermen-
tation in the colon [104], protect against inflammation, regulate mucus production [105],
and constrain obesity [106]. Some patents containing prebiotics are reported in Table 1.

5.6. Probiotics in Weight Control Supplements

Probiotics are live microorganisms that affect human health when consumed ade-
quately [107]. They control being overweight, enhancing the gut barrier function, decreas-
ing metabolic endotoxemia, systematic inflammation, gut permeability, energy hemostasis,
and appetite regulation. They can deconjugate the bile acids interfering with lipid absorp-
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tion, increase SCFAs, and stimulate intestinal peptide synthesis [108–110]. The probiotic
L. rhamnosus GG strain can constrain obesity via the upregulation of adiponectins [111].
A mix containing Bifidobacterium, Lactococcus, and Propionibacterium showed a significant
reduction in the total body and visceral adipose tissue [112]. Some patents containing
probiotics are reported in Table 1.

5.7. Symbiotics in Weight Control Supplements

Synbiotics are “a mixture comprising live microorganisms and substrate(s) utilized by
host microorganisms that confer a health benefit on the host” [113]. The complex mixtures
of bacterial strains and different dosages of prebiotic fibers in symbiotics can modulate the
metabolic activity in the intestine, upregulate microbiota development, short-chain fatty
acid, carbon disulfides, ketones, and methyl acetate concentrations, decrease pathogens,
and inactivate nitrosamines and other cancerogenic substances [114]. Moreover, synbiotics
can regulate weight by activating a host’s satiety pathways [115] and energy expenditure.
Synbiotics containing Lactobacillus gasseri strains galactomannan and/or inulin fibers have
shown antiobesity effects, improving the SCFA levels and upregulating the microbiota [116].
Some patents containing symbiotics are reported in Table 1.

5.8. Postbiotics in Weight Control Supplements

Postbiotics are products (microbial cells or cellular factors that have been attenuated
with or without metabolites) or metabolites produced by bacteria or liberated after bac-
terial lysis, which have a beneficial role in human health [117,118]. Gut bacteria secrete
low-molecular-weight metabolites that regulate their growth, promote cell-to-cell commu-
nication, and protect against environmental stresses [119–121]. The Lactobacillus, Bacillus,
Bifidobacterium, Faecalibacterium, and Streptococcus genera can produce postbiotics [122,123].
These postbiotics emulate probiotics’ actions and have a better shelf-life, easier packaging,
and minor transport requirements. SCFA, enzymes, peptides, vitamins, and teichoic acids
exemplify postbiotics [124]. Acetate, propionate, and butyrate are the most rapresentative
SCFAs [124,125]. Butyrate and propionate can positively downregulate the gut hormones
and decrease food intake [126]. Acetate acts as a lipogenic substrate propionate that can
moderate lipogenesis by downregulating the fatty acid synthase (in the liver). Therefore,
the acetate/propionate ratio is crucial for de novo lipogenesis [127]. Moreover, propionate
and butyrate can attenuate body weight and adiposity by improving the expression of glu-
coneogenesis genes and intestinal gluconeogenesis [128]. Acetate can enhance BAT (brown
adipose tissue) thermogenesis and the browning of WAT (white adipose tissue) [129]. Inter-
estingly, it has been found that Bacteroidetes mainly produce acetate and propionate, while
Firmicutes produce butyrate [129]. Nevertheless, different phyla or genera are unrelated
to producing a specific SCFA. Vanillic acid (a metabolite from anthocyanin metabolism)
can enhance BAT thermogenesis and WAT browning [130]. The ketoA (a metabolite from
linoleic acid metabolism) can improve energy expenditure [130]. Among the cell wall
components, muramyl dipeptide (MDP), S-layer proteins (SLPs), lipoteichoic acid (LTA),
and exopolysaccharide (EPS) have shown antiobesity activities [131]. The bacterial cell
wall components, peptidoglycans (e.g., diaminopimelic acid (meso-DAP) and muramyl
dipeptide (MDP)), can decrease adipose inflammation and glucose intolerance [132–135].
Surface-layer protein (SLP) glycoproteins [136] can decrease lipid accumulation [137] and
enhance adipogenesis, insulin resistance, and systemic inflammation [138]. Lipoteichoic
acid (LTA) has immunomodulatory, anti-inflammatory [139,140], and fat-reducing effects
(controlling the insulin-like signaling pathway) and regulates lipid metabolism, aging, and
immunity [141–143]. The glycocalyx exopolysaccharide (EPS) has antioxidant, antitumor,
anti-inflammatory, antiviral, immunological modulation, antimicrobial, and anti-biofilm
activities [144,145], reduces adipocyte function [146], and inhibits fat deposition and the up-
regulation of WAT browning by downregulating acetyl-CoA carboxylase (ACC) expression
and impeding gluconeogenesis [147]. Cell-free extracts with a high protein content (27.5%
crude protein) [148] can control lipid metabolism, increasing browning and lipolysis [149].
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Regarding their safety, postbiotics do not determine resistance and have anti-virulence
properties [150]. These features are crucial for children with developing immune systems
and immunosuppressed people.

Table 1. Examples of dietary supplements used for weight control.

Patent No Title Patent’s Country Patent’s Year Reference

Examples of dietary supplements in which plants or their metabolites are used as appetite suppressors

JP2023041885A
Bioregulator-containing wheat flour and/or rice
flour masterbatch for processed food and method

for producing the same
Japan 2023 [151]

CN116058499A
Mediterranean diet fruit and vegetable

fat-reducing meal replacement powder and
preparation method and application thereof

China 2023 [152]

WO2010054469A1 Appetite-suppressing weight
management composition

Worldwide
applications 2008 [153]

KR102041036B1
Production Method of Crocetin and Health

Supplement for Appetite Suppression
Comprising Crocetin as an Active Ingredient

Republic of Korea 2018 [154]

WO2014020344A1 Compounds and their effects on appetite control
and insulin sensitivity

Worldwide
applications 2012 [155]

CA2778381 Dietary supplements and methods of use United States 2006 [156]

US20060024388A1 Plant-derived or derivable material with
appetite-suppressing activity United States 2002 [157]

US5945107A Compositions and methods for weight reduction United States 1998 [80]

Examples of dietary supplements in which plants or their metabolites are used as hormones and/or neurotransmitters activators

KR20220026635A
Composition for preventing or treating obesity

and/or metabolic syndrome
comprising narcissoside

Republic of Korea 2020 [158]

KR102511950B1 Dietary supplements for weight loss of pill type Republic of Korea 2020 [159]

KR102461437B1
Pharmaceutical composition for preventing or
treating obesity with garcinia cambogia extract

and health functional food with the same
Republic of Korea 2022 [160]

KR102511262B1
A process for the preparation of five-grain bread
comprising cheonggukjang and five-grain bread
comprising cheonggukjang prepared therefrom

Republic of Korea 2022 [161]

US6759063B2 Methods and compositions for reducing
sympathomimetic-induced side effects United States 2002 [162]

KR102438276B1
Anti-inflammatory and antiobesity composition

comprising Sargassum horneri extract and
method for preparing the same

Republic of Korea 2022 [163]

Examples of dietary supplements in which plants or their metabolites interact with the hormones in the digestive system and
adipose tissue

WO2010053949A1 Phytochemical compositions and methods for
activating amp-kinase

Worldwide
applications 2009 [164]

WO2017064530A1
Agavaceae extract comprising steroidal saponins

to treat or prevent metabolic-disorder-
related pathologies

Worldwide
applications 2015 [165]
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Table 1. Cont.

Patent No Title Patent’s Country Patent’s Year Reference

Examples of dietary supplements in which prebiotics are used for weight control

JP2023075270A
Prebiotics for treating disorders associated with

disturbed composition or function of the
gut microbiome

Japan 2023 [166]

CN113750172A
Weight-reducing composition and application

thereof in preparation of weight-
reducing product

China 2021 [167]

CN115466687A Composition for reducing body fat content and
body weight and application thereof China 2021 [168]

Examples of dietary supplements in which probiotics are used for weight control

CN116004472A Clostridium butyricum for relieving obesity and
application thereof China 2023 [169]

CN114480228A Probiotics for relieving metabolic syndrome,
metabolite formula, and application thereof China 2022 [170]

CN115300605A Probiotic powder for resisting obesity and losing
weight and application thereof China 2022 [171]

Examples of dietary supplements in which symbiotics are used for weight control

CN114376235A
Weight-reducing probiotics and prebiotics

composition beneficial for controlling in vivo fat
and preparation method thereof

China 2022 [172]

WO2023070512A1 Composition of prebiotics and probiotics and
use thereof

Worldwide
applications 2021 [173]

6. Discussion

Bad eating habits have significantly increased the number of overweight and obese
people. The desire to have an attractive body and the awareness of the risk of incurring
chronic degenerative pathologies constrain many people to intervene and counteract
this trend. A low-calorie diet and exercise are helpful approaches to achieving this goal.
Unfortunately, they require considerable compliance from the population; therefore, many
prefer using pills (supplements or medications) to solve this problem. Supplements are
preferred by consumers who believe that products of natural origin, unlike synthetic ones,
cannot harm their health. The market offers many supplements capable of achieving this
goal through different strategies. Self-prescription and the lack of information about their
side effects make supplements risky. In Europe and the US, no safety documentation of
use is required before a dietary supplement’s introduction into the market [65]. The Food
and Drug Administration (FDA) removes a product from the market only after it has been
believed to be unsafe. Furthermore, weight management supplements generally contain
more than one bioactive compound, which can act alone or in synergy, making it even more
difficult to predict the potential risks related to their intake. Another problem is related to
self-prescription, which makes it impossible to establish whether side effects depend on
improper dosage and/or on the duration of the administration time.

7. Conclusions

Obesity is a noteworthy health issue in industrialized countries. Dietary supplements
are an alternative to traditional therapies for weight loss control. This review examined
the ability to regulate the appetite, nutrient absorption, lipogenesis, energy expenditure,
and lipolysis of the principal bioactive compounds employed in dietary supplements
(plant extracts, phytochemicals, prebiotics, probiotics, symbiotics, and postbiotics). Little
is reported in the literature regarding the toxicity of the bioactive compounds used for
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these formulations and almost nothing regarding the toxicity of the supplements for weight
control on the market.

8. Future Directions

To protect consumers, it would be desirable for common legislation to be drafted
worldwide, requiring toxicity studies from manufacturers before authorizing the marketing
of supplements. It is hoped that more and more supplements containing postbiotics will be
brought to market, as they are easily manageable bioactive compounds for marketing (they
are easily stored and transportable) and the safest among those reviewed.
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