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a b s t r a c t 

Background and objective: Mechanistic-based Model simulations (MM) are an effective approach com- 

monly employed, for research and learning purposes, to better investigate and understand the inherent 

behavior of biological systems. Recent advancements in modern technologies and the large availability 

of omics data allowed the application of Machine Learning (ML) techniques to different research fields, 

including systems biology. However, the availability of information regarding the analyzed biological con- 

text, sufficient experimental data, as well as the degree of computational complexity, represent some 

of the issues that both MMs and ML techniques could present individually. For this reason, recently, 

several studies suggest overcoming or significantly reducing these drawbacks by combining the above- 

mentioned two methods. In the wake of the growing interest in this hybrid analysis approach, with the 

present review, we want to systematically investigate the studies available in the scientific literature in 

which both MMs and ML have been combined to explain biological processes at genomics, proteomics, 

and metabolomics levels, or the behavior of entire cellular populations. 

Methods: Elsevier Scopus®, Clarivate Web of Science TM and National Library of Medicine PubMed®

databases were enquired using the queries reported in Table 1, resulting in 350 scientific articles. 

Results: Only 14 of the 350 documents returned by the comprehensive search conducted on the three 

major online databases met our search criteria, i.e. present a hybrid approach consisting of the synergistic 

combination of MMs and ML to treat a particular aspect of systems biology. 

Conclusions: Despite the recent interest in this methodology, from a careful analysis of the selected pa- 

pers, it emerged how examples of integration between MMs and ML are already present in systems biol- 

ogy, highlighting the great potential of this hybrid approach to both at micro and macro biological scales. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Systems biology (SB) is a multidisciplinary field that aims to 

nderstand the behavior of biological systems through the compu- 

ational analysis of biological mechanisms. In this context, math- 

matical modeling represents a crucial aspect of SB, as it allows 

esearchers to make predictions about how biological systems will 
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ehave under different conditions, and to test these predictions 

sing experimental data. Models can range from simple mathe- 

atical equations to more complex systems, often based on dif- 

erential equations or logical models, obtained by incorporating 

nformation provided by multiple sources. By creating and refin- 

ng models of biological systems, researchers can gain a deeper 

nderstanding of how these systems function, and how they can 

e manipulated for a variety of applications, including drug dis- 

overy and biotechnology. Significant advances in fields such as 

enome sequencing and high-throughput measurements have en- 

bled the collection of exhaustive datasets on the function of bi- 

logical systems and their constituent molecules. In this context, 

B, in combination with bioinformatics analysis tools, aims to pro- 
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ide appropriate tools for the analysis, interpretation, and integra- 

ion of all omics data, as well as for the investigation and for- 

ulation of new theoretical hypotheses, [1,2] . Different modeling 

pproaches, more specialized towards genomics and metabolomics 

3–5] to proteomics [6,7] , have been proposed to describe the bio- 

ogical systems from different perspectives, [8] . However, although 

hese mechanistic models provide detailed information on the ob- 

erved process, their complexity increases exponentially with the 

egree of detail, i.e. with the number of species and unknown pa- 

ameters to be estimated, [9] . 

At the same time, in recent years artificial intelligence (AI) 

trategies, particularly machine learning (ML) techniques, have 

een increasingly applied in the biological and biotechnological 

elds, thanks to their ability to introduce more automated analy- 

is and decision-making, [10] . However, also ML techniques present 

everal limitations, such as their inability to deal with sparse or bi- 

sed data, leading to ill-posed problems and non-physical predic- 

ions. Additionally, since ML techniques are solely dependent on 

ata, they are unable to provide a mechanistic basis for explaining 

omplex behaviors and making reliable predictions, [4] . 

The limitations of mechanistic models (MMs) and ML meth- 

ds have prompted the scientific community to investigate novel 

pproaches based, for example, on the combination of these two 

ethodologies, as documented in [9–11] . In support of these hy- 

rid approaches, Yeo and Selvarajoo [4] proposed instead a combi- 

ation of modeling/simulation and ML to address several biological 

ssues, not explainable by only ML. Furthermore, examples of the 

pplication of these hybrid approaches are documented in clini- 

al, [12,13] , and industrial sectors, [14–16] . Recently, in healthcare, 

harafutdinov e al. proposed a hybrid pipeline in which mecha- 

istic models are used to generate virtual patients’ synthetic data, 

hich are exploited to improve the performance of unsupervised 

achine learning methods for the identification of patients with 

uspected acute respiratory distress syndrome, [17] . 

Since the combination of MMs with ML represents a relatively 

ew area of interest in healthcare, to date, no systematic reviews 

ave been proposed about the combined applications of this hy- 

rid approach in SB. To this end, in this article, we shall review 

he contributions related to the SB field where the hybrid use of 

Ms (especially the deterministic models) and ML has been ap- 

lied. To this aim, we follow the 2020 update of the “Preferred Re- 

orting Items for Systematic Reviews and Meta-Analyses” (PRISMA) 

18] guidelines, that have been shown to overcome many of the 

rawbacks of traditional [19] critical reviews. 

This systematic review is articulated as follows: in Section 2 the 

election and exclusion criteria of the articles coming from the on- 

ine databases are reported, as well as the main methodologies for 

oth MMs and ML. Section 3 introduces the hybrid approach and 

ts application at the genomics, proteomics, metabolomics, and cel- 

ular dynamics level, while Section 4 focuses on the main conclu- 

ions. 

. Materials and methods 

.1. Systematic literature review 

As previously anticipated in the Introduction section, the re- 

orting of this systematic review is guided by the PRISMA guide- 

ines, [20] . A literature search was carried out seeking documents 

n three academic search engines: Elsevier Scopus®, Clarivate 

eb of Science TM and National Library of Medicine PubMed®. The 

ueries employed to enquire the three above-mentioned databases 

re reported in Table 1 . Especially, these queries allow to search 

ocuments that showed the following specific features: firstly, doc- 

ments had to be focused on the SB field and/or on SB specific 

pplications; secondly, documents should have presented data pro- 
2 
essing workflows based on the combining use of both MMs and 

L. 

As depicted in Fig. 1 , the identification stage was based on a) 

etting up the research on the engines, b) exporting the results 

date of the last check: 10/05/2023), and c) eliminating the du- 

licated records. The next screening stage is carried out in three 

teps; firstly i) the documents that are neither original/research ar- 

icles nor conference papers are excluded; then ii) the remaining 

ocuments are screened initially by title and Abstract and, finally, 

ii) by the screening of the full text, to check for coherence with 

he review objective/s. As Fig. 1 reports, only 14 out of the initial 

50 documents found met the criteria established for this system- 

tic review. 

.2. Simulation in systems biology 

Mathematical models are the cornerstone of the ever-growing 

eld of SB. In this context, the mechanistic models, based on the 

undamental rules of physics and biochemistry, represent the most 

ppealing approach to provide an accurate and comprehensive de- 

cription of the researched biological process, [21] . This peculiarity 

akes mathematical models effective tools for analyzing and in- 

estigating the reality of interest: a mathematical model may be 

sed to replicate alternative experimental scenarios, hence direct- 

ng the development of novel biological hypotheses [22,23] . 

The complexity of mathematical models and their simulations 

ncreases linearly with the level of detail chosen to represent the 

bserved reality: each model consists of i) dependent and inde- 

endent variables, i.e., state variables and variables with respect to 

hich the dependent variables vary, respectively, and ii) a certain 

umber of parameters. In particular, the parameters need a cali- 

ration phase, during which their value is determined experimen- 

ally or estimated from experimental data. The process of identify- 

ng such values for model parameters represents one of the main 

rawbacks of mathematical models: due to the microscopic nature 

f the biological processes and the limited capability of direct mea- 

urements of the physicochemical quantities, parameter estimation 

s usually based on the fitting of limited data. 

These models could be either static or dynamic. Specifically, dy- 

amical models account for time, allowing them to replicate the 

volution of the entire system across time. They are frequently 

eferred to as simulation models precisely for this reason. Fig. 2 

hows a schematic representation of the types of mechanistic mod- 

ls investigated in this review, from the most complex, detailed, 

nd accurate, i.e., dynamical models based on ordinary differential 

quations, to the simplest algebraic ones, [9] . 

.2.1. Ordinary differential equations 

Ordinary Differential Equations (ODEs) allow modeling the vari- 

tion over time of a variable of interest, which generally in SB co- 

ncides with the concentration of particular biochemical species. 

or research purposes, the models based on ODEs are primarily 

xploited as tools for simulation and analysis to investigate the 

ynamical systems in several biological contexts, ranging from the 

tudy of specific cellular pathways, [24–26] , to the study of the dy- 

amics underlying specific diseases, [27–31] . In the development 

f drug delivery systems, the Food and Drug Administration (FDA) 

ncourages the standardization of nanoparticle design and devel- 

pment processes through the use of tools based on mathemati- 

al models, such as ODE systems, which enables an understanding 

f how formulation variables might affect the quality of the final 

roduct, [32] . 

.2.2. Constraint-based models 

Constraint-based models (CBMs) are mainly employed to rep- 

esent metabolic interaction networks. Starting from the hypothe- 
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Fig. 1. PRISMA flowchart for the present systematic literature review. The three major search engines, Elsevier Scopus®, Clarivate Web of Science TM and National Library of 

Medicine PubMed®, were enquired by using the queries reported in Table 1 . 

Table 1 

Research queries for each of the three search engines enquired in the present systematic literature review. 

Before duplicates count, the queries were subsequently refined to exclude from the results the records la- 

beled as published in the current year. ∗ In Clarivate Web of Science TM , the query was performed by check- 

ing on all the databases. 

Database Query 

Elsevier Scopus® TITLE-ABS-KEY-AUTH (((“Machine Learning” OR 

“ReinforcementLearning”) AND (“Simulation” OR 

“Mechanistic Model”)) AND “Systems Biology”) 

Clarivate Web of Science TM ((((TS = (“Machine Learning”) OR TS = (“Reinforcement 

Learning”)) AND (TS = (“Simulation”) OR TS = (“Mechanistic 

Model”)))) AND TS = (“Systems Biology”)) 

National Library of Medicine 

PubMed®

(((“Machine Learning”[Text Word]) OR (“Reinforcement 

Learning”[Text Word])) AND (“Simulation”[Text Word] OR 

(“Mechanistic Model”[Text Word]))) AND (“Systems 

Biology”[Text Word]) 

3 
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Fig. 2. Schematic representation of the main types of mechanistic models, ordered by complexity, degree of detail, and accuracy of the produced results. 
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is that cellular systems can reach their steady-state very quickly, 

hese models allow overcoming the problem due to the need to es- 

imate the parameter values of complex ODE models, [8] , as well as 

he complexity of the systems. Indeed, constraint-based models are 

ased on the analysis of only metabolic fluxes involved in a specific 

rocess or cellular context. Their solution requires the definition 

f a series of constraints on flows, which determine not a single 

olution, but a set of possible ones. The benefits of these mod- 

ls include the ability to forecast growth rates, dynamical changes, 

nd metabolite fluxes over the entire metabolic network, as well 

s the possibility to analyze and investigate the metabolic phe- 

otypes induced by genetic changes. Constraint-based models are 

uccessfully applied to reconstruct and model the human micro- 

iome, [33] , to study the metabolic differences between several 

trains of bifidobacteria colonizing the gut of infants, [34] , or to 

nvestigate the metabolic causes of treatment resistance in some 

rological cancers, [35] . 

.2.3. Agent-based models 

Agent-based models (ABMs) are particular classes of models 

ased on agents. In these models, each agent is designed with spe- 

ific characteristics, i.e., physical or biochemical laws, that allow 

he simulation of the interaction with the other agents and with 

he environment and to respond by generating specific output sig- 

als, [36,37] . The agents are particles or entities characterized by i) 

utonomy, ii) modularity, and iii) ability to interact with surround- 

ng agents, [38] . They are mainly employed to model processes 

uch as, e.g., the tumor growth, [39–41] , or the vascular adapta- 

ion, [42] . 

.2.4. Logical models 

Logic-based models (LMs), which strike a reasonable balance 

etween accuracy and complexity, enable the depiction of exten- 

ive biochemical networks without the need for in-depth knowl- 

dge of the mechanisms driving the interactions between the mod- 

led species, [43] . Each specie has two states to represent it: ON 

nd OFF. In particular, this state evolves dynamically until a stable 

ondition of the global network is achieved. Logic-based models 

re successfully applied to model several cellular contexts: e.g., in 
4

44] , an ad-hoc logical model was employed to investigate the c- 

et signal transduction network and its implication in tumor de- 

elopment. Flobak et al., in [45] , proposed an approach based on 

Ms to represent a cell fate decision network in human gastric 

denocarcinoma cells, predicting the synergistic inhibitory action 

f five combinations of anti-cancer drug treatments. 

.2.5. Algebraic models 

Several cellular processes, in a particular biological setting, 

volve on varying temporal scales: especially, some processes 

rogress slowly over time, while others quickly find a new equi- 

ibrium condition following a perturbation. Specifically, these last- 

entioned evolutions may be modeled using simple and static al- 

ebraic models (AMs). The primary benefit of these models is their 

implicity, making them particularly suitable in those cases where 

he system complexity requires modeling approaches entailing a 

imited computational effort. Several zero-orders models are ex- 

loited, e.g., to describe the constant dynamics underline the drug 

elease from nanoparticles in the pharmacokinetics field, as in [46–

8] , or other biological processes such as ultrasensitivity [49,50] . 

.3. Machine learning in systems biology 

The recent success of ML techniques for large-scale biological 

ata analysis has provided a complementary and, in some cases, 

ompeting alternative to more traditional model-based approaches, 

51,52] . The use of ML in this area comes from the incomplete- 

ess of detailed knowledge concerning the effects of inhibitors or 

nown biochemical reactions [53] . ML algorithms are well-suited 

or managing and processing large amounts of data, as well as 

dentifying complex, multi-dimensional correlations that may not 

e easily discernible by humans. These algorithms can also han- 

le noisy or incomplete data and are often able to generalize pat- 

erns they learn to new, unseen data, perfectly adapting to the 

ain problems of systems biology. In addition, many ML algo- 

ithms are designed to handle ill-conditioned problems, in which 

mall changes in the input data can lead to large changes in the 

utput, [9] . Indeed, several optimization algorithms can be sensi- 

ive to the initial starting point, but ML algorithms are often able 
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Fig. 3. A) Main characteristics of the different types of ML treated in this work; B) Schematic representation of the ML classes and the related algorithms covered in the 

selected paper. ML is the term chosen to indicate Machine Learning, RL represents Reinforcement Learning, while SL and UL mean Supervised and Unsupervised Learning, 

respectively. 
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o find good solutions even when starting from random initial con- 

itions. Furthermore, recent trends involved in the integration of 

hysics-based models with ML algorithms, to improve predictions 

nd reduce errors in complex systems, as reported in [54] . In par- 

icular, Physic-informed Neural Networks (PINNs), [55] , combines 

he strengths of physics-based models, which capture the underly- 

ng physical principles of a system, with the flexibility and adapt- 

bility of ML algorithms, which can learn from data and make pre- 

ictions. 

For all these reasons, ML and related techniques, such as Sup- 

ort Vector Machine (SVM), [56] , Hidden Markov Model (HMM), 

57] , Decision Tree (DT), [58] , and Neural Network (NN), [59] , have

een increasingly used to solve problems in several fields of SB. ML 

an be divided into three macro-areas, namely i) supervised learn- 

ng (SL), ii) unsupervised learning (UL), depending on whether the 

lass of an object to be classified is considered as a known value 

uring the training of the ML algorithm, and iii) reinforcement 

earning (RL). While SL works with labeled data and is primarily 

mployed for the classification of data and regression, UL works on 

nlabeled data, and it is mainly used for clustering and for inves- 

igating data and discovering hidden relationships between them, 

 Fig. 3 - A). Instead, concerning the RL, this kind of ML aims at fully

utomatic learning of decisions to be made through continuous in- 

eraction with the surrounding environment. Fig. 3 - B shows the 

ain ML algorithms covered in this paper (grouped into the previ- 

usly mentioned classes) which will be discussed below. 

.3.1. Supervised learning 

Support Vector Machines Support Vector Machines (SVMs) are 

onsidered to be robust algorithms that exhibit a lower suscep- 

ibility to overfitting. Through the selection of a suitable kernel, 

VMs can effectively handle non-linearly separable data in the fea- 

ure space. Furthermore, the SVM algorithm aims to identify the 

yperplane with the largest margin, which enhances its predic- 

ive capacity for accurately classifying novel instances, [60] . They 

re robust to high dimensional data since the complexity remains 

naffected by the number of features [61] . Moreover, they have 

ood generalization ability, even if training speed is low, and their 

erformances depend strongly on the choice of model parameters 

62] . SVMs are extensively used in the field of computational bi- 

logy and SB [63–65] . For example, Liao et al. combined pairwise 

equence similarity and SVMs for detecting remote protein evolu- 

ionary and structural relationships [66] . Tree-based Machine Learn- 

ng Algorithms The simplest algorithm on which tree-based algo- 

ithms are based is the Decision Tree (DT). DT is easy to inter- 

ret and explain and can easily handle interactions between fea- 
5 
ures. Moreover, being a non-parametric model, outliers do not 

ffect the model in an important way and it can deal with not- 

inearly separable data. Among DTs, the most famous algorithms 

re ID3, [67] , C4.5, [68] , and CART, [69] ; they differ in splitting cri-

eria, namely Gini Coefficient, Gain Ratio, and Info Gain [70] . DT 

an handle a variety of data (nominal, numeric, textual), missing 

alues, and redundant features. Moreover, they have good general- 

zation ability, are robust to noise, and provide high performance 

or relatively small computational effort; on the contrary, DTs find 

t difficult to handle high dimensional data. DT uses the divide et 

mpera approach which performs well if few highly relevant fea- 

ures are present but not very well if many complex interactions 

re present. Errors propagate through trees and become a serious 

roblem as the number of classes increases [71,72] . Finally, DTs are 

usceptible to overfitting without an effective pruning strategy. To 

vercome this issue, Random Forest (RF) operates by training mul- 

iple DTs and returning the most recurring class among the results 

f all the trees in the ensemble, [73] . Tree-based ML algorithms are 

idely used in SB, [74] , for instance, to integrate gene expression, 

emographic and clinical data to determine disease endotypes and 

o better understand complex diseases, [75] , or to predict the ef- 

ects of inhibiting contractility signaling on cell motility, [76] , or 

or efficient identification of parameter relations leading to differ- 

nt signaling states, [77] . Logistic Regression Logistic regression (LR) 

s a statistical method in which a logistic curve is fitted to the 

ataset. This technique is applied when the dependent variable 

r target variable is dichotomous. Since it is a statistical learning 

lgorithm, it has a probabilistic interpretation and the model can 

e updated to take new data easily by means of the gradient de- 

cent method [61] . Anyway, in order to have a reliable and robust 

odel, it needs that the following assumptions has to be verified 

78,79] : absence of multicollinearity, absence of outliers, the ratio 

etween the sample size of the smallest class and the number of 

ndependent variables greater than 10 [80,81] . In SB, LR was used 

or biomarker identification, [82] , in particular applications where 

R was applied to identify blood-based multi-omics biomarkers for 

lzheimer’s disease, as in [83] , or to predict lysine acetylation site, 

84] . 

.3.2. Unsupervised learning 

K-means The K-means algorithm is generally the most known 

nd used clustering method. Clustering is a very useful tool in data 

cience when the labels of instances are not known a priori, and 

or this reason, it is an unsupervised machine-learning approach. 

t is a method for finding cluster structure in a data set charac- 

erized by the greatest similarity within the same cluster and the 
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Table 2 

Evaluation metrics. 

Evaluation Metrics MathF ormula 

Accuracy 
t p + t n 

t p + t n + f p + f n 

Error Rate 
f p + f n 

t p + t n + f p + f n 
Sensitivity 

t p 
t p + f n 

Specificity t n 
t n + f p 

Precision 
t p 

t p + f p 
Recall 

t p 
t p + t n 

F-measure 2 ∗Precision ∗Recall 
Precison + Recall 

Geometric-mean 
√ 

t p ∗ t n 

Table 3 

Confusion matrix. 

Actual Positive Actual Negative Class 

Predicted Positive Class t p f n 
Predicted Negative Class f p t n 

T  

a

t

C

t

l

A

W

a

s

t

f

a

t

c

R

w

f

s

3

b

t

n

l

s

reatest dissimilarity between different clusters. The k-means al- 

orithm takes the input parameter, k, and partitions a set of n in- 

tances into k clusters so that the resulting intra-cluster similarity 

s high, while inter-cluster similarity is low (or, similarly, minimiz- 

ng the squared-error function). Cluster similarity is measured in 

egard to the mean value of the objects in a cluster, which can 

e viewed as the cluster centroid or “center of gravity” [85] . How- 

ver, K-means algorithms can be applied only when the clusters 

re known, therefore it cannot be applied when data with categor- 

cal attributes are involved. In the context of SB, K-means was used 

o improve the biological features of Weighted Gene Co-expression 

etwork Analysis (WGCNA), [86] . Hidden Markov Model Hidden 

arkov modeling is a powerful statistical ML technique. Hidden 

arkov Models (HMMs) offer the advantage of having strong sta- 

istical foundations that are well-suited to several scenarios. More- 

ver, HMMs are computationally efficient to develop and evalu- 

te thanks to the existence of established training algorithms [87] . 

MMs are a formal foundation for making probabilistic models of 

inear sequence ’labeling’ problems since they provide a concep- 

ual toolkit for building complex models just by drawing an in- 

uitive picture [88] . HMMs are recurring themes in computational 

iology since often biological sequence analysis is just a matter of 

utting the right label on each residue. For example, in genomics, 

t is possible to use HMMs to label nucleotides as exons, introns, or 

ntergenic sequences, as reported in [89–91] , while, in proteomics, 

MMs applications are available, for example, in protein modeling 

92] . 

.3.3. Artificial neural network 

Artificial Neural Networks (ANNs) are computational structures 

ased on neural architectures similar to the human brain. An ANN 

onsists of an input layer of neurons (or node, units), one or more 

idden layers, and a final layer of output neurons, [93] . ANNs pro- 

ide a powerful alternative to conventional techniques (i.e. statisti- 

al learning) which are often limited by strong assumptions of nor- 

ality, linearity, variable dependence, absence of multicollinearity, 

bsence of outliers, the precise ratio between the number of in- 

tances and features also in relation to the number of classes to 

redict. In the field of SB and bioinformatics, several studies ap- 

eared in the scientific literature using ANNs to develop models of 

he dynamics of gene expression, [94] . ANNs are widely used in 

etabolomics, [95] , and in genomics where they are exploited, for 

xample, to model omics data, [96] . 

.3.4. Reinforcement learning 

Reinforcement Learning (RL) is a distinct form of Machine 

earning (ML) characterized by its capacity to acquire knowledge 

rom the environment and to generate actions in a nearly au- 

onomous way, without the use of prior knowledge, [97,98] . Sev- 

ral applications of RL are presented in SB, [99] : e.g., in [100] , the

uthors proposed a new methodology based on RL, to improve the 

rug design. In [101] , the authors introduced a novel framework 

ased on both RL and anticancer drug sensitivity prediction model, 

amed PaccMann 

RL , able to generate molecules that are tailored 

or a given target. In proteomics, Zhu et al., [102] , proposed an RL- 

ased methodology to establish a protein interaction network. 

.4. Main evaluation metrics 

In a typical data classification problem, several appropriate 

valuation metrics are used to optimize the classifier, during the 

raining step, and to measure the effectiveness of the trained clas- 

ifier in the testing stage. Accuracy is the most used evaluation 

etric either for binary or multi-class classification problems, even 

f also other metrics are used to assess the effectiveness of ML 

odels [103] . The most used evaluation metrics are reported in 
6

able 2 , where t p , t n , f p , and f n denote the true positive, true neg-

tive, false positive, and false negative, respectively and they allow 

o create the confusion matrix as reported in Table 3 . 

The Area Under the ROC (Receiver Operating Characteristic) 

urve (AUC) is one of the popular ranking-type metrics reflecting 

he overall ranking performance of a classifier. For two-class prob- 

ems, the AUC value can be calculated as reported in (1) . 

UC = 

S p − n p (n n + 1) / 2 

n p n n 
(1) 

here S p is the sum of all positive examples ranked, while n p 
nd n n denote the number of positive and negative examples re- 

pectively. The AUC was proven theoretically and empirically better 

han the accuracy metric, [104] , for evaluating the classifier per- 

ormance. The R 2 index is calculated starting from the regression 

nalysis. The R 2 value of a regression reported in (2) is usually 

aken as the portion of the variance of the dependent variable ac- 

ounted for by the explanatory variables. 

 

2 = 

RSS 

T SS 
(2) 

here RSS is the regression sum of squares (namely the deviations 

rom the mean explained by the regression), while TSS is the total 

um of squares, [104] . 

. Hybrid approach based on MMs-ML 

The hybrid approach arises from the fusion of both mechanistic- 

ased model simulations (MMs) and ML techniques: this integra- 

ion strategy allows to merge of the advantages of the two tech- 

iques, and, at the same time, overcoming their single application 

imits. 

The investigate protocols (IPs) of the main hybrid models are 

hown in Fig. 4 : 

IP-1 - starting from a well-defined mathematical model, this ar- 

chitecture is generally exploited to generate synthetic data 

capable of simulating the behavior of the system under dif- 

ferent experimental conditions. This large amount of syn- 

thetic data, generated by the models in a fairly simple way, 

represents the input of ML algorithms, as in [105,106] ; 

IP-2 - in this architecture, structurally complementary to the IP-1, 

ML techniques are used to act as an input to classic simula- 

tion models, [107,108] ; 
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Fig. 5. Summary of the main applications of the hybrid approaches, implemented with the protocols shown in the Fig. 4 , in the 4 biological fields found: Genomics, 

Proteomics, Metabolomics, and Cellular Dynamics. 

Table 4 

Selected papers grouped by biological application fields, with relative MMs, ML, 

and implementation protocol reported in Fig. 4 . Genomics: ; Proteomics: ; 

Metabolomics: ; Cellular Dynamics: . 

Authors MMs ML IP 

Carrè et al. [111] AMs SVM IP-1 

Miagoux et al. [111] LMs UL–not specified IP-2 

Moore et al. [112] LMs DT/RF IP-1 

Hua et al. [113] ODEs K-means/DT IP-1 

Chua et al. [52] ODEs SVM IP-4 

Oguz et al. [114] ODEs RF IP-2 

Matsunaga & Sugita ( [115] AMs/ODEs HMM IP-1 

Derbalah et al. [116] ODEs ANNs IP-4 

Biba et al. [117] LMs HMM IP-1 

Szappanos et al. [118] CBMs RF/LR IP-1 

Medlock & Papin [119] CBMs K-means/RF IP-1 

Maeda et al. [120] ODEs RF IP-2 

Sieburg et al. [121] AMs NN/RL IP-3 

Zangooei et al. [122] ABMs RL IP-3 
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IP-3 - similar to IP-2 but based on Reinforcement Learning (RL) 

techniques, which basically act as a controller, guiding the 

model towards the right representation of reality, [109] ; 

IP-4 - represents a juxtaposition of the first two techniques, con- 

sisting of a first module determined by IP-1, and a second 

module coinciding with IP-2. It is mainly used to improve 

the models available with the information obtained from ML 

algorithms, [110] . 

From the systematic research carried out, 14 original articles 

nd conference proceedings were found. Especially, Table 4 reports 

he 14 articles grouped by biological application fields, Genomics, 

roteomics, Metabolomics , and Cellular Dynamics , with relative MMs, 

L, and implementation protocol. 

From the in-deep analysis of the 14 selected papers, we identi- 

ed the most frequent applications of this hybrid approach in the 

our main branches of SB, as shown in Fig. 5 . Specifically, the main

pplications of the hybrid approach range from the discovery of 

ene interaction networks and the generation of synthetic data, in 

enomics, the study of protein folding and the analysis of potential 
7 
rotein targets of specific drug therapies in proteomics, up to the 

econstruction of the metabolic network, in metabolomics. Finally, 

ybrid approaches can be employed to describe cellular dynamics 

nd the behavior of tumor cells. 

.1. Genomics 

The regulation of genes is a cellular control mechanism that 

romotes the management and coordination of essential cellular 

unctions. Understanding the intricate network of gene interac- 

ions underlying a biological process holds considerable implica- 

ions in several fields of biology, pharmaceuticals, clinical research, 

nd industry. SB model and reconstruct these interaction networks, 

hereby identifying all the connections between every single gene 

nd any potential cross-talk between various pathways. DREAM is 

he most famous challenge in SB oriented to the inference of gene 

egulatory networks (GRNs). All participants propose new method- 

logies or strategies for network inference, exploiting and integrat- 

ng all known knowledge in this field [123–126] . The first contribu- 

ion presented by Carrè, [111] , in which the authors proposed the 

asting Randomizing Algorithm for Network Knowledge (FRANK) to 

econstruct large gene interaction networks, is aimed in this direc- 

ion. GRNs thus produced contain all the characteristics supported 

y the literature, useful to generate synthetic gene expression data. 

he representation of the network via a direct graph is the starting 

oint of FRANK. Specifically, each network encoded in a sparse ma- 

rix N consisting of two submatrixes i) the squared matrix A, with 

ll the interactions of the type TF → TF, and ii) the non-squared ma- 

rix B, containing all the interactions of the type TF → TA. The in-

eraction between two genes is represented in both the matrices 

hrough positive and negative values, i.e., representing the activa- 

ion or inhibition action of a specific gene on another one. Given 

hat the quantity of interactions is typically lower with respect to 

he genes, only a restricted set of positions in A exhibit non-zero 

alues. These values are derived from N (β, 1) , with β a given pa-

ameter. Finally, the eigenvalues of matrix A are analyzed in order 

o assess the stability of the system, and matrix B is computed. 

fter the definition of matrices A and B, the mathematical terms 
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Fig. 4. Investigate Protocols (IPs) of the hybrid approaches present in the 14 selected papers. Especially, MMs are the acronym for Mechanistic Models (the subscript is 

indicative of two different types of MMs), while ML and RL mean Machine Learning and Reinforcement Learning, respectively. 
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escribing the gene expression levels are generated. In particular, 

he vector X relative to the expression of genes related to TF and 

o TG target genes is determined as follows: 

 T F (t) = exp(V (t)) + εT F (t) 

 T G (t) = exp(W (t)) + εT G (t) 

here both V(t) and W(t) represent the logarithmic expression of 

F and TG respectively. 

Based on the results produced by FRANK, SVM is applied to the 

reviously simulated transcriptomic data and a set of connections 

n the network, known as “prior knowledge”, to benchmark the re- 

onstructed GRN. Among the obtained results, the authors found 

hat targets-oriented prior knowledge proved decisive for training 

VM compared to TFs-oriented prior knowledge, and that SVM is 

esilient to typical errors that are often unavoidable in wet-lab ex- 

eriments. 
8 
Still in the context of the modulation of gene expression by TFs, 

n [127] , Miagoux et al. looked at the unidentified mechanism con- 

rolling the regulation of the primary TFs in rheumatoid arthritis 

RA). Several genetic, epigenetic, and environmental factors are in- 

olved in this extremely complicated chronic inflammatory disease 

f the joints. The main goal was to offer a hybrid tool for the anal-

sis of the success of therapy for each specific RA patient. The ap- 

roach proposed by the authors consists of a first step in which 

n unsupervised ML technique was exploited to infer co-regulatory 

etworks of TFs and target genes. Specifically, this step was per- 

ormed by applying the CoRegNet R/Bioconductor package on the 

ranscriptomics data and the TFs activity profile. This inferred co- 

egulatory network was enriched by information provided by a 

tate-of-the-art disease map for RA. Then, genomic and transcrip- 

omics data of treated RA patients were investigated to identify the 

ey mutations associated with the response to anti-TNF treatment. 
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inally, all this information was condensed into a mathematical 

ystem describing the dynamical behavior using Boolean formal- 

sm. As results, the authors found the implication of the IL6 and 

GFB1 cascades as positive regulators of the expression of the TFs 

dentified as master regulators. 

On the other hand, Moore et al. present in their works 

112,128] the Heuristic Identification of Biological Architectures for 

imulating Complex Hierarchical Interactions (HIBACHI) software 

olution, to generate synthetic data by emulating complex biolog- 

cal systems. This software combines a logical modeling approach 

ith new and flexible ML techniques to achieve improved results. 

irst of all, HIBACHI emulates all possible events, including post- 

ranslational changes and environmental factors, that may cause 

ariations during the transcription and translation processes of a 

rotein. In the second step, a logical model is used to describe how 

nformation is transferred from the genetic to the phenotypic level, 

aking into account all the variations defined in the first step. Then, 

IBACHI allows for the definition of disease thresholds, based on 

he phenotype values generated in the previous step. Finally, the 

enetic programming (GP) module, mainly consists of binary trees 

DT and RF), which provide a relatively simple way to generate 

ariability in the solutions. As a proof-of-concept, the authors pre- 

ented a study involving 20 0 0 subjects split equally between sam- 

les and controls, as detailed in [128] . For each sample, 10 features, 

epresented by an integer ranging from 0 to 2, to encode genetic 

ariants, were collected. These data were subsequently exploited to 

etect and characterize high-order gene-gene interactions by ana- 

yzing the results of the multifactor dimensionality reduction tech- 

ique, specifically looking at accuracy and information gain. Ad- 

itionally, the authors ran several ML algorithms to demonstrate 

he utility of HIBACHI simulations for comparing 8 different mod- 

ls of epistatic interactions, achieving accuracies of about 85 % for 

 out of 8 models. In [112] , the work was extended to implement

 three-objective fitness function aimed at optimizing the perfor- 

ance of one ML method with respect to another, while also re- 

ucing the complexity of the mathematical function that generates 

ataset labels. The simulations used in this work were different 

rom those reported in the previous study. The results showed that 

t is possible to use HIBACHI to discover mathematical models that 

enerate data for which LR, DTs, and RF perform differently. 

In two of the three works, the hybrid approaches presented as 

pplications in the genomics field result to adapt to the implemen- 

ation scheme IP-1, while the other one fits the implementation 

cheme IP-2, as reported in Fig. 4 . 

.2. Proteomics 

In general, the analysis of a genome network alone is insuffi- 

ient to explain pathophysiological phenotypes, since the knowl- 

dge of the transcription level of a certain gene is not sufficient 

o derive the concentration level of the associated protein, due 

o post-transcriptional regulation and alternative splicing mecha- 

isms. Therefore, SB approaches are often applied to investigate 

he structure and dynamics of protein interaction networks using 

omputational and statistical approaches. From the twelve works 

ncluded in the study, we identified 4 contributions focusing on the 

pplication of hybrid techniques to protein interaction networks, 

ighlighting the importance of integrating different computational 

nd experimental methods. 

For instance, Hua et al. proposed a data-driven modeling frame- 

ork in [113] for the analysis of synthetic data generated from a 

echanistic model, enabling a more comprehensive study of path- 

ay behavior and identification of combinatorial targets for new 

herapies. In their work, the authors focused on the apoptotic path- 

ay induced by Fas, which plays a critical role in various cellular 

rocesses and is implicated in the development of cancer or au- 
9 
oimmune diseases. Upon activation by the Fas ligand (FasL), this 

athway triggers the apoptotic process by activating Casp3. How- 

ver, the pathway is regulated by various proteins, such as XIAP 

r FLIP, which serve as inactivators of the apoptotic process by se- 

uestering Casp3 or inhibiting its production. The proposed frame- 

ork encompasses two main steps: i) the creation of a synthetic 

ataset by exploiting the mechanistic model describing the dy- 

amics underpinning the activation of the apoptotic pathway, and 

i) the application of ML techniques to investigate the relationship 

etween the different concentrations of intermediate proteins and 

ifferent phenotypes (healthy and sick). The mathematical model 

sed in this framework comprises 22 biochemical reactions involv- 

ng 11 different species. One species is kept constant at its initial 

alue since it represents the input to the model (FasL), while one 

pecies represents the output (Casp3). The remaining nine species 

epresent the intermediate proteins whose effects are to be in- 

estigated. The reactions are represented using simple mass-action 

eq (3) ) and transport (eq (4) ) equations: 

 + B ←→ C (3) 

 

k f B → A 

∗ (4) 

he mechanistic model, which consists of 22 biochemical reactions 

nvolving 11 different species, is described by ODEs that track the 

ariations in the concentrations of species and complexes. To sim- 

lify the parameter estimation process, the original model was 

implified and then used to generate synthetic data by running 

onte Carlo simulations with different initial conditions for sets 

f species. The large amount of synthetic data obtained (about one 

illion simulations) was clustered using k-means algorithms into 

hree distinct classes based on the sensitivity of free-cleaved Casp3 

roduction (insensitivity, medium sensitivity, and sensitivity). The 

uthors then applied DT to the clustered dataset to identify po- 

ential links between the molecules inside the pathway that could 

xplain the classifications. DT predicts XIAP and Fas as key compo- 

ents for the insensitive response on the production of Casp3 and 

as validated on a new simulated Monte Carlo dataset, achieving 

1 % prediction accuracy. 

Chua et al. presented MASCOT (Machine Learning-based Predic- 

ion of Synergistic COmbinations of Targets) in [52] , a technique 

hat is capable of discovering any combination of targets from cu- 

ated signaling networks and a desired therapeutic effect. The ap- 

roach consists of two phases: first, MASCOT generates the candi- 

ate targets combination, and second, this combination is tested to 

imulate the related effects. The effectiveness of this approach was 

ested on the HRG-induced MAPK-PI3K signaling network, which is 

nvolved in several types of cancer, especially in proliferation and 

umorigenesis. The signaling network is represented as an oriented 

ypergraph G = (V, E), which is then converted into a bipartite 

raph. Each species (node) is modeled through an ODE, and each 

eaction (edge) involving the species represents a contribution to 

he current ODE. This matrix is the input to MASCOT. Here, an ML- 

ased step was designed to prioritize targets in signaling networks 

ith respect to a disease node. To achieve this, a network-centric, 

L-based approach called TAPESTRY, [129] , was used. TAPESTRY 

eploys Tenet, [130] , a recently proposed target characterization 

echnique, which operates by using an SVM-based strategy aimed 

t (a) learning offline the optimal set of predictive topological fea- 

ures for characterizing known curated targets in a set of publicly- 

vailable signaling networks (such as the MAPK-PI3K signaling net- 

ork), and (b) generating a set of characterization models based on 

hese features. Once the characterization models and the disease- 

elated signaling network with unknown targets of interest (“un- 

een network”) have been obtained, TAPESTRY selects the “best”

haracterization model - which it should be adopted as its pri- 

ritization model - from the collection of characterization mod- 
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ls of the candidate networks. TAPESTRY then calculates a prior- 

tization score derived from the selected model and the dynam- 

cs of the unseen network, which is used to prioritize candidate 

argets. The simulation step utilizes the ODE model of the bio- 

ogical network, which is based on mass-action kinetics to model 

he production and consumption of the species. In this step, MAS- 

OT modifies the matrix G to define a new derived-ODE system 

hat simulates the effects of the target combination proposed by 

ASCOT. Later, given a signaling network G, a set of prioritized 

ode rank W generated by TAPESTRY, a desired therapeutic effect 

th and the required combination size S , MASCOT identifies a set 

f synergistic target combinations R which satisfies ζth and has 

inimal off-target effects ζof f . The inputs G and W are used to 

odify the drug targets and target activities. In addition, G is also 

sed to simulate the target combination effects. Com paring the 

ffects of heuristics with other implemented approaches, the Au- 

hors found that the triplet MASCOT-TAPESTRY-LOEWE (where the 

ast one is a strategy/theory to seek for a combination index as a 

easure of the interaction effect between drugs in a combination) 

btained the lowest off-target values and the best solutions set 

ombinations, indicating the triplet could be useful as a guide for 

he discovery of potential targets and the evaluation of new target 

ombinations. 

In line with the previous studies, Oguz et al., [114] , proposed 

 framework to investigate the implication of the network topol- 

gy on the prediction of the protein abundance in the yeast. To 

his aim, a metaheuristic method based on differential evolution 

as used to explore a widening range of parameter vectors, finding 

wo top-performing schemes. Specifically, one of these two models 

as more robust following parametric perturbations, and it was 

xploited to predict the phenotypes of 129 mutants, 86 of which 

ere viable. The authors ranked the cell cycle proteins based on 

heir contributions to the cumulative variability of relative protein 

bundance predictions: they found significant differences in con- 

ribution to the predictive variability of both proteins and modules 

f the cell cycle. Finally, they investigated the patterns generated 

rom these predictions, and they assessed them through ML algo- 

ithms, such as RF, obtaining AucRoc values ranging from 0.82 to 

.88. 

While in the previous three articles the authors investigated 

he protein interaction networks through hybrid approaches, Mat- 

unaga & Sugita, in [115] , studied the protein conformational dy- 

amics to understand the incidence of the folding on the develop- 

ent of specific diseases. The main challenge in studying folding 

ynamics is represented by the gap between simulated and ex- 

erimental data, due to the problematic repeatability of the en- 

rgy balance between folded and unfolded states. To this aim, the 

uthors proposed a new approach based on Markov State Model 

MSM) to statistically approximate the long-time dynamics beyond 

he transitions between different discrete conformation states. The 

tarting point is represented by the generation of a modular pro- 

ein domain, WW domain, or WWP repeating motif, from nuclear 

agnetic resonance (NMR). These domains play a crucial role in 

olding since they mediate specific interactions with protein lig- 

nds. Using molecular dynamics (MD) simulations, they performed 

ifferent simulations at different temporal intervals in order to 

enerate the initial input of MSM as low-dimensional time-series 

ata, by sampling regions between the two states. The transition 

robability between folded and unfolded states at τ is reported in 

he transition-probability matrix, T (τ ) , obtained by the results of 

D simulations. Since this matrix could be affected by uncertain- 

ies or biases, two-step of ML is performed to refine the matrix 

 (τ ) , linking simulations and experimental data of photon trajec- 

ories. The two-step consists of: i) Supervised-learning step , where 

he T (τ ) is estimated by counting transitions between the states; 

nd ii) Unsupervised-learning step , where T (τ ) is refined in order to 
10 
eproduce the time-series data. The authors found that both steps 

ere helpful in achieving novel insights into the folding mecha- 

isms of the formin-binding protein WW domain. Specifically, the 

upervised learning step allowed them to tune the optimal number 

f states and the lag time of the transition-probability matrix for 

his specific problem, while the unsupervised learning step helped 

o improve T (τ ) by incorporating previous knowledge acquired 

rom single-molecule Forster resonance energy transfer data. Fol- 

owing the final step, the authors evaluated the data-assimilated 

SM and obtained results consistent with independent experi- 

ental mutagenesis data. Additionally, they demonstrated that the 

trategy was robust to variations in the model of single-molecule 

xperiments, particularly the Forster radius R o . Based on the out- 

ome of the investigation, the authors suggested that the data- 

ssimilated MSM pathway could be used to improve force-field pa- 

ameters and to understand the conformational transitions in pro- 

eins, nucleic acids, and other biomolecules. 

Finally, Derbalah et al., in [116] , propose a hybrid pipeline com- 

ining ODEs and ANNs to approximate and reduce the complex- 

ty of high-dimensional systems models. The authors tested their 

ybrid pipeline on the coagulation processes, describing both the 

n-vivo and in-vitro characteristics of this process. Concerning the 

ype of mechanistic model employed in this work, the proposed 

ipeline is based on the so-called quantitative systems pharmacol- 

gy (QSP) model describing a particular biological process through 

DEs, with 62 state variables, and as many ODEs, and 184 and 188 

arameters, respectively for in-vivo and in-vitro models. Given the 

elevant size of the model, ANNs have been employed in order to 

ropose the right order reduction to be applied to the model. In 

articular, the original QSP was exploited to generate a conspicu- 

us set of synthetic data, employed to train the tested ANNs. All 

he results, as well as the performances of several ANNs, were val- 

dated by computing the mean square error (MSE). 

Concerning the implementation protocols, 2 of the 5 selected 

apers for proteomics follow the scheme IP-1, 2 follow the IP-4, 

hile the last one follows the IP-2, as reported in Table 4 and 

hown in Fig. 4 . 

.3. Metabolomics 

Metabolism plays a crucial role in cellular life since it ensures 

he production of all the components required for the biosynthe- 

is of vital building blocks such as amino acids, fatty acids, and 

ucleotides needed for cellular growth, as well as cellular-specific 

etabolism, [131] . Consequently, the study of metabolism is an ad- 

itional application field for SB: MMs and ML are frequently used 

o simulate and investigate the metabolic behavior of complex bi- 

logical systems. The combined effort between ML and MMs could 

e advantageous, for instance, in identifying latent phenomena in 

he metabolic network. In this regard, Biba et al., in [117] , pro- 

osed a hybrid framework PRogramming In Statistical Modelling 

PRISM), to model the aromatic amino acid metabolic pathway of 

he yeast. The authors chose to depict the analyzed metabolic net- 

ork as a graph, where the nodes represent the enzyme-catalyzed 

eactions. In particular, each reaction, capable to convert two or 

ore reacting metabolites into one or more products, was eas- 

ly described through first-order logic representation. However, the 

bove-mentioned representation is not enough to provide useful 

nformation on which of the reactions is the most likely, in a com- 

lex metabolic network. Furthermore, the probabilities of the reac- 

ions depend on several factors, such as e.g., environmental, chem- 

cal, and/or physical factors, and on the availability of metabolites, 

hich in turn outline different metabolic scenarios. To address 

his limitation, the authors integrated ML methods into the PRISM 

ramework to learn the probability distribution from observations, 

hich were interpreted as model parameters. The accuracy of the 
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stimated probabilities was evaluated using the Root Mean Square 

rror (RMSE). The approach was tested on two different networks, 

 first Network which had no alternative branches in the pathways 

eading from node one, and a second one, which included an alter- 

ative path. In both cases, the results showed good accuracy and 

calability. 

Szappanos et al., in [118] , proposed a new approach that sys- 

ematically integrates measurements of genetic interactions be- 

ween pairs of metabolic genes and simulated data to bridge the 

ap between theoretical models and experimental results. The pro- 

osed pipeline was tested and validated on the metabolic net- 

ork of the yeast. Firstly, the genetic interaction map of the yeast 

etabolism was reconstructed from the large-scale synthetic ge- 

etic array (SGA). An interaction score, computed as ε = f 12 − f 1 ∗
f 2 ( f 12 , and f 1 ∗ f 2 represent double, and the single-mutant fitness, 

espectively), was assigned to each tested pair of genes, while a 

ignificant threshold was chosen to identify the type of interaction 

etween pairs of genes (positive or negative). All the information 

reviously obtained was employed to create a constraint-based 

odel of the analyzed metabolic network, and a Flux Balance Anal- 

sis (FBA) was performed to simulate and make predictions on the 

nteraction between pairs of genes. Finally, an ML method (based 

n RF) was developed to automatically generate hypotheses to ex- 

lain the in-vivo compensation between genes. In this step, sev- 

ral changes were suggested to improve the fit of the model, in- 

luding i) modifying the reversibility of reactions, ii) removing re- 

ctions, and iii) modifying the metabolic compounds involved in 

iomass production. As a result, they achieved an increase in Recall 

f 267 % and an increase in Precision of 59 % . Concerning the ana-

yzed case study, an example of the proposed modification consist 

f the omission of glycogen from the compounds of biomass pro- 

uction, in accordance with the role of glycogen as an important 

nergetic reserve in case of nutrient deficiency or cellular stress. 

lycogen omission allowed the correction of two falsely predicted 

enetic interactions. Similarly, the suggestion of the removal of the 

wo-step aspartate in the quinolinate pathway implicated in the 

AD production allowed the correction of the prediction of four 

egative interactions between alternative NAD biosynthetic path- 

ays in yeast. 

Still, in the context of metabolic networks, Medlock & Papin, 

n [119] , presented Automated Metabolic Model Ensemble-Driven 

limination of Uncertainty with Statistical learning (AMMEDEUS), 

o improve the quality of the reconstructed genome-scale 

etabolic models (GEMs). The proposed software drives the ef- 

ective and targeted phase of curation of the GEMs, through dif- 

erent phases ranging from the creation of the model to its sim- 

lation, up to the application of supervised and unsupervised ML 

echniques. AMMEDEUS was tested on the reconstructed GEMs of 

9 bacterial species. As in the previously presented works, the first 

tep involves the creation of consistent GEMs from experimental 

ata, generating an ensemble of models. These models were then 

sed to simulate several biological scenarios and produce data. A 

ollowing unsupervised learning step was performed on the simu- 

ated data to define the phenotypic clusters of the ensemble mod- 

ls, based on the similarity between simulated profiles. A subse- 

uent supervised learning step was performed to predict cluster 

embership for a specific model, by using the variable parameters 

s input in the model. These two steps of ML (supervised and un- 

upervised) allow us to identify the structural variations that most 

nfluence the simulations; consequently, the authors propose these 

wo steps of ML as crucial in the phase of curation of the GEMs. 

ased on their research, the authors emphasized the potential of 

he proposed framework, as well as the possibility of optimizing it 

o investigate how different supervised ML models affect the ex- 

lainability of feature importance. This could lead to differences in 

he curation of GEMs. 
t

11 
Maeda et al., in [120] proposed a new method for estimat- 

ng the Michaelis constant ( K M 

) in kinetic models. The devised 

ethod, called MLAGO (Machine Learning-Aided Global Optimiza- 

ion), combines ML and global optimization techniques to im- 

rove the accuracy and efficiency of K M 

estimation. In particular, 

L was exploited to predict valid values for kinetic parameters 

rom a curated dataset derived from the BRENDA database, [132] . 

ive different ML methods were tested and their performance was 

valuated in terms of RMSE, getting the best result with the RF 

RMSE = 0.795), and testing it on the ODE models describing the 

etabolism of the carbon and nitrogen. The authors demonstrated 

he effectiveness of MLAGO by comparing its performance to other 

ommonly used methods, showing that it outperforms them in 

erms of both accuracy and speed. The obtained results underline 

he efficiency of MLAGO as a potential tool to significantly improve 

he accuracy and reliability of kinetic modeling in biochemical re- 

earch. 

In the context of metabolomics applications, 3 papers, of the 

 selected, follow the implementation protocol IP-1, while the re- 

aining one follows the IP-2, as reported in Table 4 and shown in 

ig. 4 . 

.4. Cellular dynamics 

Models and simulations are also powerful tools for understand- 

ng the complex and dynamic functions of cells. Several modeling 

pproaches have been exploited to investigate cellular biophysical 

haracteristics and functions. 

In this context, Sieburg et al. [121] addressed the challenge of 

stimating the life span of clones derived from hematopoietic stem 

ells (HSCs) and predicting their long-term performance using a 

odel-based ML algorithm. HSCs generate a clone that maintains 

temness and differentiates into the progeny, and the life span 

f the clone depends on the self-renewal capacity of the HSCs. 

o evaluate this capacity, the authors identified the percentage of 

onor-type cells ( % DT) in the blood as the crucial predictor. Based 

n the shape of the experimental curve, the authors proposed the 

ollowing Weibull model to predict the clonal life span: 

 (t) = bt − at α (5) 

n eq. (5) , b and a represent the average rate of cellular growth and

oss, respectively, whereas α is the slope rate of the curve. Enforc- 

ng D (T ) = 0 , this equation can be exploited to directly evaluate

he life span, T, as follows: 

 = 

b 

a 1 / (α−1) 
(6) 

 total of 10 7 different combinations of parameters were tested 

nd used to compute a specific life-span curve. Then, each sim- 

lated curve was compared with experimental data using the χ2 

istance metric. Reinforcement learning (RL) was employed to train 

he search for high-quality configurations in a large Monte Carlo 

atabase of allowable combinations, resulting in an increase in the 

ate of correct predictors from 65% to 83%. Subsequently, the au- 

hors investigated the parameters that affect the life span of HSCs 

y exploiting a cellular model previously developed [133] : each 

imulated cell was characterized by the following set of parame- 

ers ( c, w , τ , θ ), where c represents the type of cell (1 for HSC, and

 for the differentiated ones, DIF), w and τ , its proliferative capac- 

ty and resistance to the differentiation, respectively. In contrast, θ
onsidered the previous cellular divisions: these parameters were 

sed to define proliferation , and differentiation rules. Several func- 

ions were tested to model and assess the decay motif related to 

he fate decision. The results allowed the authors to confirm the 

mplication of self-renewal as a crucial parameter in determining 

he life span of the HSCs clones. Furthermore, the authors assessed 
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he intrinsic nonlinear synchronicity of the decay of the HSCs, ex- 

luding any random mechanism underlying this process. 

The approach proposed by Sieburg et al. is just one example 

f the application of the hybrid approach to investigate partic- 

lar aspects of cellular life. On the other hand, Zangooei et al., 

n [122] , proposed a multiscale approach to investigate and pre- 

ict the microvascular growth of tumor masses. Tumor growth 

onsists of i) an initial avascular phase, and ii) a belated ma- 

ignant vascular phase. The transition between these two phases 

as guided by the angiogenesis process, responsible for generat- 

ng new blood vessels to meet the demand for nutrients necessary 

or tumor growth. The proposed computational model uses fea- 

ures extracted from contrast-enhanced micro-computed tomogra- 

hy images to simulate several phenomena related to breast cancer 

rowth. The core of the approach consists of an ABM describing 

oth cells and vessels as separate agents, which together form the 

umor environment. The interaction between cells and vessels is 

odeled through a diffusion equation. Deep reinforcement learn- 

ng (DRL) techniques allow the agents to learn in a specific envi- 

onment during the training phase, generating data that are ex- 

loited in the testing phase, where the multiscale model predicts 

he best action using a neural network. For this study, the dataset 

enerated during the training phase considered several attributes 

f cells and vessels, mainly related to the tumor microenvironment 

nd their status (e.g., hypoxic, necrotic), which were used as the 

nput layer (three nodes) of the neural network during the testing 

hase. Meanwhile, the output layer, consisting of five nodes, was 

et to the number of cell and vessel attributes. Pearson correlation 

nalysis was used to compare simulated tumor growth data and 

esults obtained using independent mathematical models. 

Both the articles selected for the Cellular Dynamics section fol- 

ow the implementation protocol IP-3, as in Fig. 4 . 

. Discussions & conclusions 

Simulations based on mechanistic mathematical models, as 

ethods of artificial intelligence, represent two of the most 

romising and widely employed tools in SB. Individually, these 

wo approaches present some pitfalls, which limit their applica- 

ility in specific contexts. An increasing number of scientific works 

uggest that such problems can be overcome by properly combin- 

ng these two approaches. Hybrid approaches are highly promis- 

ng since they can leverage, on the one hand, the explainability of 

athematical models and the possibility to easily carry out numer- 

cal simulations (often named in-silico experiments in the biologi- 

al context) and, on the other hand, the effectiveness of machine 

earning techniques in interpreting large amounts of experimental 

ata. 

In the present systematic review, we have analyzed the main 

nvestigation paradigms and fields of application of this hybrid 

pproach in SB. In particular, from a detailed analysis of the lit- 

rature on the subject, 14 research articles were selected, which 

resent different applications of hybrid MMs-ML approaches. The 

nalysis of these documents allowed us to identify genomics, pro- 

eomics, metabolomics, and cellular dynamics as the main applica- 

ion fields. Specifically, in the selected contexts, the hybrid MMs- 

L techniques were mainly used to improve the reconstruction of 

ene, protein, and metabolic interaction networks, as well as for 

he development of robust tools to generate reliable in-silico data 

nd to investigate the dynamics underlying the growth and differ- 

ntiation of several types of cells. 

Furthermore, according to the implementation protocols high- 

ighted in [16] , the selected works have been classified into 4 

ain classes shown in Fig. 4 , featuring different combinations of 

he MMs and ML analysis phases. A particularly interesting re- 

ult extracted from this study is related to the preferential hybrid 
12 
chemes of the micro (genomics, proteomics, and metabolomics) 

nd the macro (cellular dynamics) fields, for which most of the 

elected works present the implementation protocols IP-1 and IP- 

, respectively, as summarized in Table 4 . This demonstrates that, 

n the genomics, proteomics, and metabolomics fields, mechanis- 

ic models can be effectively exploited as means to generate large 

mounts of synthetic data that, in turn, can be leveraged to tune 

L-based algorithms for the reconstruction of interaction net- 

orks. On the other hand, concerning the modeling of cellular dy- 

amics, there is a tendency to prefer hybrid protocols based on re- 

nforcement learning. These approaches, mostly relying on agent- 

ased modeling, are inspired by biological evolution and function- 

ng principles, where the dynamics of each cell are driven by the 

urrounding environment and the local interaction with other cells. 

Finally, our hope is that this work may provide a valuable start- 

ng point to spark the interest of those researchers involved in both 

echanistic modeling of biological systems and ML techniques ap- 

lied to biological data and encourage the development of novel 

ffective hybrid investigation frameworks in the field of SB. The 

resent systematic review is part of a larger research project, 

134,135] , focused on the development of hybrid techniques that 

an exploit the robustness and reliability of MMs and the capabil- 

ty to learn from data typical of ML, to design robust pipelines for 

he reconstruction and the assessment of biological networks (e.g. 

EMs) and improving clinical-decisions making. 
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