
Journal of Computational and Applied Mathematics 436 (2024) 115396

y
o
a
N

m
e
w
t
w
c
p

h
0

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Physics-InformedNeural Networks for 2nd order ODEswith
sharp gradients
Mario De Florio a, Enrico Schiassi b, Francesco Calabrò c,∗, Roberto Furfaro b,d

a Division of Applied Mathematics, Brown University, 170 Hope St, Providence, 02906, RI, USA
b Department of Systems & Industrial Engineering, The University of Arizona, Tucson, AZ, USA
c Dipartimento di Matematica e Applicazioni ‘‘Renato Caccioppoli’’, Università degli Studi di Napoli ‘‘Federico II’’, Naples, Italy
d Department of Aerospace & Mechanical Engineering, The University of Arizona, Tucson, AZ, USA

a r t i c l e i n f o

Article history:
Received 3 February 2023
Received in revised form 19 May 2023

Keywords:
Extreme learning machine
Functional interpolation
Least-squares
Physics-Informed Neural Networks

a b s t r a c t

In this work, four different methods based on Physics-Informed Neural Networks (PINNs)
for solving Differential Equations (DE) are compared: Classic-PINN that makes use of
Deep Neural Networks (DNNs) to approximate the DE solution;Deep-TFC improves the
efficiency of classic-PINN by employing the constrained expression from the Theory of
Functional Connections (TFC) so to analytically satisfy the DE constraints;PIELM that
improves the accuracy of classic-PINN by employing a single-layer NN trained via
Extreme Learning Machine (ELM) algorithm;X-TFC, which makes use of both constrained
expression and ELM. The last has been recently introduced to solve challenging problems
affected by discontinuity, learning solutions in cases where the other three methods fail.
The four methods are compared by solving the boundary value problem arising from
the 1D Steady-State Advection–Diffusion Equation for different values of the diffusion
coefficient. The solutions of the DEs exhibit steep gradients as the value of the diffusion
coefficient decreases, increasing the challenge of the problem.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Machine Learning, in particular, Neural Networks (NNs), have become widespread across many scientific fields in recent
ears. This requires designing them to satisfy application-specific constraints, such as conservation laws, symmetries, or
ther domain-specific knowledge. These constraints are usually imposed as soft penalties during network training and act
s regularizers within the loss function. An example of this philosophy is the recently introduced Physics-Informed Neural
etworks (PINNs), see [1].
Within the PINN paradigm, the network’s outputs are constrained to approximately satisfy specific physics laws,

odeled as a set of Differential Equations (DEs). PINNs are introduced to add the DEs, modeling the physics of the
xperimental dataset, as a penalty to the loss function. This additional term acts as a regularizer that penalizes the training
hen the DE and its constraints (e.g., initial conditions ICs and/or boundary conditions BCs) are violated. Overall, one aims
o ensure that the process’s physics is not violated. This approach is called data-physics-driven solution of DEs. Conversely,
hen the goal is to estimate parameters governing some physical phenomena modeled through a DE (e.g., the thermal
onductivity in the heat equation), one usually talks about data-physics-driven parameter discovery of DEs (e.g., inverse
roblems). When data is unavailable, and therefore the loss function contains only the residual of the DEs and the

∗ Corresponding author.
E-mail address: francesco.calabro@unina.it (F. Calabrò).
ttps://doi.org/10.1016/j.cam.2023.115396
377-0427/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cam.2023.115396
https://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2023.115396&domain=pdf
mailto:francesco.calabro@unina.it
https://doi.org/10.1016/j.cam.2023.115396

M. De Florio, E. Schiassi, F. Calabrò et al. Journal of Computational and Applied Mathematics 436 (2024) 115396

C
r
a

corresponding DE’s constraints, PINNs are used for approximating the solutions of problems involving DEs, solely in a
physics-driven fashion.

In the authors’ opinion, classic PINN frameworks present two important drawbacks: (1) the use of Deep NNs (DNNs)
to approximate the DE solutions and (2) the fact that the equation’s constraints are not analytically satisfied.

The use of standard DNNs introduces four main issues:

• Gradient-based methods are required to minimize the scalar loss function. These methods are computationally
expensive and sensitive to the algorithm chosen for the minimization.

• The complexity of the DNN may cause the divergence of the training. Indeed a non-convex optimization problem is
solved.

• Linear DEs are treated as nonlinear ones, as the network parameters appear non-linearly to approximate the DE
solutions.

• For nonlinear DEs, it is prohibitive to provide an informative initial guess on the solution to be used as starting point
of the optimization.

Having the equation’s constraints not analytically satisfied introduces the issues of having competing objectives during
the PINN training: learning the DE solution within the domain and learning its constraints. This can lead to unbalanced
gradients when training the networks via gradient-based techniques that cause PINNs to fail to approximate the DE
solution accurately [2].

Thus, a significant advance in the research area of PINNs would be to introduce a PINN framework able to remove both
the issues discussed above.

In [2], to overcome the issue caused by having competing objectives during the PINN training, the authors proposed
a learning rate annealing algorithm. It uses gradient statistics to adaptively assign proper weights to the different terms
forming the PINN loss function (e.g., DE residuals within the domain and DE residuals on the boundaries) during the
network training. With the algorithm proposed in [2], the issue of having competing objectives during the PINN training
is mitigated, but the issue of using standard DNN remains.

In [3], the authors remove the issue of having the DE constraints included in the loss function by merging, for the
first time, DNNs and the Theory of Functional Connections [4]. This PINN framework is called Deep Theory of Functional
onnections (Deep-TFC). TFC is a functional interpolation methodology, where any mathematical problem solution can be
epresented via the so-called Constrained Expressions (CEs). The CEs are a sum of a free function and a functional that
nalytically satisfies the problem constraints [5]. That is,

u(x) ≃ uCE(x, g(x)) = A(x) + B(x, g(x)) (1)

where u(x) is the unknown function to be interpolated, uCE(x, g(x)) is the CE, A(x) is the functional that analytically satisfies
any given linear constraint, and B(x, g(x)) projects the free function g(x), which is a real function that must exist on the
constraints, onto the space of functions that vanish at the constraints [3]. When applied to problems involving DEs, the
mathematical problem is represented by the DE itself, where the constraints are the initial and/or boundary conditions [6].
Nevertheless, Deep-TFC does not remove the issues caused by using DNNs.

Shallow NN gives an alternative that has been considered so as not to consider deep structure. In [7], the authors
for the first time introduce a PINN framework with shallow NN trained via Extreme Learning Machine (ELM) called
Physics-Informed Extreme Learning Machines (PIELM). The advantage of the ELM algorithm is that input weights and
biases are randomly selected: the training is solely necessary for the output weights, with a significant reduction in the
computational effort [8]. Other authors have considered the use of NN trained via ELM for differential problems, see
e.g. [9–11]. Nevertheless, none of these approaches remove the issue of having the DE constraints included in the loss
function.

In [12], for the first time, the authors merge ELM and TFC, generating a PINN framework that overcomes all the main
issues of the classic one. Indeed, using TFC removes the issue of having the DE constraints included in the loss function.
Hence, this PINN framework is called Extreme Theory of Functional Connections (X-TFC). Using ELM removes the issues
caused by using DNNs.

Our aim is to present and compare such approaches using as a test problem a second-order differential equation. This
manuscript is organized as follows. Section 2 briefly describes the four PINNs methods under study. Section 3 provides the
numerical results for the 1D Steady-State Advection–Diffusion Equation for different values of the diffusion coefficient,
with discussions. The article concludes with Section 4.

2. PINNs for differential equations

Consider a generic single PDE,

D (u(x);Γ) = f (x), x ∈ Ω (2)
B (u(x)) = g(x), x ∈ δΩ (3)

where D(·) and B(·) are some linear or nonlinear differential operators, u : Rn
→ R is the unknown exact DE solution,

x = {x , . . . , x }
T are the independent variables (with x ∈ R∀ i = 1, . . . , n), f : Rn

→ R and g : Rn
→ R are some known
1 n i

2

M. De Florio, E. Schiassi, F. Calabrò et al. Journal of Computational and Applied Mathematics 436 (2024) 115396

T
w

C

functions, Ω is a bounded open domain with boundary δΩ , and Γ ∈ Rm are some parameters governing the DE. When
dealing with forward problems, Γ is known.

In the classic PINN frameworks, as presented by Raissi et al. [1], u is represented through a NN. That is,

u(x) ≃ u(x; θ) = uθ (x) (4)

where θ are the NN parameters (e.g., weights and bias). Considering, as an example, a Multiple-Input Single-Output (MISO)
single layer (e.g., shallow) NN as represented in Fig. 1, uθ (x) is expressed as follows,

uθ (x) =

L∑
j=1

βjσ
(
wT

j x + bj
)

(5)

where σ ’s are some nonlinear activation functions, W = {w1, . . . ,wL} ∈ RL×n (with wj = {wj,1, . . . , wj,n}
T

∈ RL, ∀ j =

1, . . . L) is the input weights matrix, b = {b1, . . . , bL}T ∈ RL is the bias vector, β = {β1, . . . , βL}
T

∈ RL is the output
weights vector, and θ = {W | b| β} ∈ RL×(n+2) is the NN parameters matrix. uθ (x) is plugged into the DE residual and into
the boundary conditions (BC), which are then collocated on the collocation (or training) points {xΩ,i}

NΩ

i=1 and {xδΩ,i}
NδΩ
i=1 ,

that can be chosen from any collocation scheme. Finally, the following optimization problem is solved via gradient-based
techniques (e.g., ADAM optimizer [13]) or LBFGS optimizer,

min
θ

NΩ∑
i=1

(
∥D(uθ (xΩ,i;Γ)) − f (xΩ,i)∥2)

+

NδΩ∑
i=1

(
∥B

(
uθ (xδΩ,i)

)
− g(xδΩ,i)∥2) (6)

Once the training is completed, the optimal NN parameters, θ∗, are learned and plugged back into Eq. (5). That is,

uθ∗ (x) =

L∑
j=1

β∗

j σ

(
w

∗,T
j x + b∗

j

)
(7)

which is a closed-form analytical approximation of the DE true unknown solution u.
Within PIELM, (5) is replaced with an ELM. Hence, input weights and bias are randomly selected and not tuned during

the training, leaving the output weights the only trainable parameters. Thus (6) is solved with a single pass least-square
if the DE is linear, or with an iterative least-squares procedure, if the DE is nonlinear. More details regarding PIELM can
be found in [7] and references within.

Within Deep-TFC, u is approximated with the TFC CE, where the free function is a DNN. Hence the DE constraints are
analytically satisfied and (6) reduces to,

min
θ

NΩ∑
i=1

(
∥D(uθ (xΩ,i;Γ)) − f (xΩ,i)∥2) (8)

which is solved via gradient-based methods, as for classic PINNs. More details regarding Deep-TFC can be found in [3]
and references within.

Within X-TFC, u is approximated with the TFC CE, where the free function is an ELM. Therefore, (6) reduces to (8).
Moreover, as the free function is an ELM, (8) is solved with a single pass least-square, if the DE is linear, or with an
iterative least-squares procedure, if the DE is nonlinear. More details regarding X-TFC can be found in [12] and references
within.

3. Numerical results and discussions

We tested the PINN frameworks explained above in solving the 1D Steady-State Advection–Diffusion Equation for
different values of the diffusion coefficient ν.

The equation under study is the following,

uxx − Peux = 0 subject to
{
u(0) = 1
u(1) = 0

where x ∈ [0; 1] and Pe =
1
ν
is the Peclet number.

The analytical solution is,

u(x) =
1 − ePe(x−1)

1 − e−Pe

he sharpness of the solution increases for decreasing values of ν. That is, for high values of ν the solution is smooth,
hile for low values of ν the solution tends to have a steep gradient, thus miming a discontinuous behavior.
The problem considered has been coded in MATLAB R2022a and all the tests were run with an Intel Core i7 - 9700

PU PC with 64 GB of RAM.
3

M. De Florio, E. Schiassi, F. Calabrò et al. Journal of Computational and Applied Mathematics 436 (2024) 115396
Fig. 1. MISO NN schematic.

Table 1
Simulations hyperparameters.

PINN PIELM Deep-TFC X-TFC

Number of layers 10 1 10 1
Number of neurons per layer Problem dep. Problem dep. Problem dep. Problem dep.
Activation function e−(•)2 e−(•)2 e−(•)2 e−(•)2

Optimizer ADAM/LBFGS Least-Squares ADAM/LBFGS Least-Squares
Learning-rate Adaptive – Adaptive –
Nint 10000 10000 10000 10000
NBC 2 2 0 0
Epochs 15000 1 15000 1
Mini-batch size (for ADAM) 2000 10000 2000 10000
Number of batches (for ADAM) 5 1 5 1

We run the tests using the hyperparameters reported in Table 1. For PINN and Deep-TFC the DNN parameters were
randomly initialized. For PIELM and X-TFC input weights and bias were sampled according to the sampling technique
proposed in [9].

For Deep-TFC and X-TFC the CE is the following,

uβ(x) = g(x) +
xf − x
xf − x0

(u(0) − g(0)) +
x − x0
xf − x0

(u(1) − g(1)) (9)

where g(x) is a DNN for Deep-TFC and an ELM for X-TFC. From (9) the reader can see how the DE constraints are
analytically satisfied.

Results and performances are summarized in Tables 2–6 and Figs. 2–6. The definition of training error εT and
generalization error are given in detail in [14] and references within.

It is straightforward to note that ELM-based methods (PIELM and X-TFC) achieve the best accuracy both in terms
of absolute difference compared with analytical solution and training error, for each value of the diffusion coefficient
ν. This is due to the employment of a single-layer NN trained via ELM. Also, among the two ELM-based methods, X-TFC
outperforms PIELM, thanks to its capability to analytically satisfy the boundary conditions to which the problem is subject.

In detail, we can see that in the simplest case for ν = 1, all the four methods are able to learn the solution of the
DE under study (Fig. 2), with mean absolute errors of the order of e-05 and e-08 for PINN and Deep-TFC, respectively,
and e-15 and e-16, for PIELM and X-TFC, respectively. Similar results are obtained for the case ν = 0.1 (Fig. 3). The first
failure on the part of PINN is seen for the case ν = 0.01, where the solution is missing to be learned, and a slight deviation
from the analytical solution is seen for Deep-TFC (Fig. 4). Here, both PIELM and X-TFC keep a great accuracy in the mean
absolute error (e-08 and e-14, respectively). By decreasing the value of the diffusion coefficient at ν = 0.001, the failure
of Deep-TFC appears (Fig. 5), while PIELM and X-TFC keep the accuracy of e-08 and e-14, respectively. In the last, more
complex case, ν = 0.0001, all the methods fail, but X-TFC, which learns the solution with a mean absolute error of e-03.
One can see that the training error is high even for X-TFC (4.87e2). This is due to the fact that all these methods collocate
the DE residuals on the training points. Hence, when the salutation gets almost discontinuous, the derivative is not well
computed. This issue can be possibly overcome by decomposing the domain into smaller sub-domains, as done in domain
decomposition methods. Such an approach needs more investigation.
4

M. De Florio, E. Schiassi, F. Calabrò et al. Journal of Computational and Applied Mathematics 436 (2024) 115396

p
s

D

2
m

Fig. 2. ν = 1.

Table 2
Results for ν = 1. The superscript indicates the number of neurons per layer. The subscript indicates the gradient-based optimizer used. The same
applies to all the other tables.

PINN2e1
A PINN2e1

L Deep-TFC2e1
A Deep-TFC2e1

L PIELM1e2 X-TFC1e2

Training time [s] 10192.3 4855.51 11018.3 5019.69 0.02 0.02
εT 2.7e−04 4.0845e−05 6.10e−04 2.11e−04 5.26e−11 2.44e−12
εG 7.65e−06 3.34739e−08 2.35557e−07 6.49304e−08 2.99e−15 1.57e−16
max|u∗

− u| 3.15e−05 9.96934e−08 1.04022e−06 1.619e−07 6.11e−15 3.89e−16
mean|u∗

− u| 2.01e−05 4.02397e−08 3.70183e−07 7.62862e−08 2.10e−15 1.17e−16
std|u∗

− u| 9.99e−06 2.52352e−08 2.5048e−07 4.67391e−08 1.68e−15 1.134e−16
|u∗(x0) − u(x0)| 2.65e−05 7.56815e−08 0 0 2.22e−15 0
|u∗(xf) − u(xf)| 3.64e−06 3.58488e−08 0 0 3.29e−16 0

Table 3
Results for ν = 0.1.

PINN2e1
A PINN2e1

L Deep-TFC2e1
A Deep-TFC2e1

L PIELM1e2 X-TFC1e2

Training time [s] 10483.3 4556.97 11756.7 5170.77 0.02 0.02
εT 1.03e−03 3.28e−04 4.35e−02 3.01e−02 3.33e−09 1.46e−09
εG 1.35075e−05 9.38758e−06 5.08616e−05 3.97102e−05 1.90e−13 7.31e−14
max|u∗

− u| 5.7474e−05 1.47079e−05 1.03e−04 1.10e−04 3.18e−13 1.49e−13
mean|u∗

− u| 4.95858e−05 1.27206e−05 6.35822e−05 4.55148e−05 1.64e−13 5.93e−14
std|u∗

− u| 1.11992e−05 3.46304e−06 2.96194e−05 3.13723e−05 9.15e−14 4.29e−14
|u∗(x0) − u(x0)| 5.28097e−05 1.43572e−05 0 0 1.36e−13 0
|u∗(xf) − u(xf)| 1.3113e−05 2.40891e−07 0 0 5.89e−14 0

4. Conclusions

In this work, we explained four different PINN frameworks and tested them on a benchmark second-order ODE which
resents sharp gradients while varying the DE parameter. Two of the PINN frameworks, classic PINN and Deep-TFC, employ
tandard DNNs; while two, PIELM and X-TFC use shallow NN trained via ELMs.
The frameworks employing ELMs outperform the ones using standard DNNs. In particular, X-TFC was able to solve the

E even when the solution was highly challenging because of vanishing diffusion.
X-TFC has been tested also in other different engineering and science fields leading to good performance, see e.g. [15–

1]. Nevertheless, the reported tests in the standard linear 1d case lead to new insight into the strength of such a
ethod.
5

M. De Florio, E. Schiassi, F. Calabrò et al. Journal of Computational and Applied Mathematics 436 (2024) 115396
Fig. 3. ν = 0.1.

Table 4
Results for ν = 0.01.

PINN2e2
A PINN2e2

L Deep-TFC2e2
A Deep-TFC2e2

L PIELM1e3 X-TFC1e3

Training time [s] 12298.9 43318 12400.3 35946.7 2.11 2.14
εT 3.53e−01 3.53e−01 3.58e0 1.85e−01 1.38e−06 1.23e−06
εG 3.50e−01 3.50e−01 1.08e−02 2.20906e−05 2.16e−08 6.70e−13
max|u∗

− u| 5.00e−01 5.00e−01 2.59e−02 6.18332e−05 2.18e−08 1.73e−12
mean|u∗

− u| 5.00e−01 5.00e−01 1.26e−02 2.47546e−05 2.18e−08 9.45e−14
std|u∗

− u| 3.10e−03 5.00e−01 8.34e−03 2.08108e−05 1.36e−10 3.43e−13
|u∗(x0) − u(x0)| 5.00e−01 5.00e−01 0 0 2.18e−08 0
|u∗(xf) − u(xf)| 5.00e−01 5.00e−01 0 0 2.18e−08 0

Table 5
Results for ν = 0.001.

PINN1e3
A PINN1e3

L Deep-TFC1e3
A Deep-TFC1e3

L PIELM1e4 X-TFC1e4

Training time [s] 19030.6 181125 19491.6 91380.8 156.06 153.78
εT 3.53e−01 3.53e−01 7.07e2 7.07e2 1.48e−04 6.83284e−06
εG 3.53e−01 3.53e−01 4.07e−01 4.07e−01 4.88e−05 1.18e−12
max|u∗

− u| 5.00e−01 5.00e−01 9.58e−01 9.58e−01 4.89e−05 2.83e−12
mean|u∗

− u| 5.00e−01 5.00e−01 4.6e−01 4.59e−01 4.89e−05 7.09e−13
std|u∗

− u| 1.33015e−05 1.00701e−05 3.04e−01 3.04e−01 4.27e−09 7.80e−13
|u∗(x0) − u(x0)| 5.00e−01 5.00e−01 0 0 4.89e−05 0
|u∗(xf) − u(xf)| 5.00e−01 5.00e−01 0 0 4.89e−05 0

Table 6
Results for ν = 0.0001.

PINN1e3
A PINN1e3

L Deep-TFC1e3
A Deep-TFC1e3

L PIELM1e4 X-TFC1e4

Training time [s] 19030.6 181125 19491.6 91380.8 155.60 153.81
εT 3.53e−01 3.53e−01 7.07e2 7.07e2 1e0 4.87e2
εG 3.53e−01 3.53e−01 4.07e−01 4.07e−01 5.0e−01 1.74e−03
max|u∗

− u| 5.00e−01 5.00e−01 9.58e−01 9.58e−01 5.0e−01 2.89e−03
mean|u∗

− u| 5.00e−01 5.00e−01 4.6e−01 4.59e−01 5.0e−01 1.39e−03
std|u∗

− u| 1.33015e−05 1.00701e−05 3.04e−01 3.04e−01 1.53e−13 9.18e−04
|u∗(x0) − u(x0)| 5.00e−01 5.00e−01 0 0 5.0e−01 0
|u∗(xf) − u(xf)| 5.00e−01 5.00e−01 0 0 5.0e−01 0
6

M. De Florio, E. Schiassi, F. Calabrò et al. Journal of Computational and Applied Mathematics 436 (2024) 115396

D

A

(

Fig. 4. ν = 0.01.

Fig. 5. ν = 0.001.

ata availability

No data was used for the research described in the article.

cknowledgments

F.C. was partially supported by the Istituto Nazionale di Alta Matematica - Gruppo Nazionale per il Calcolo Scientifico
INdAM-GNCS), Italy.
7

M. De Florio, E. Schiassi, F. Calabrò et al. Journal of Computational and Applied Mathematics 436 (2024) 115396

R

Fig. 6. ν = 0.0001.

eferences

[1] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.

[2] S. Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient flow pathologies in physics-informed neural networks, SIAM J. Sci.
Comput. 43 (5) (2021) A3055–A3081.

[3] C. Leake, D. Mortari, Deep theory of functional connections: A new method for estimating the solutions of partial differential equations, Mach.
Learn. Knowl. Extr. 2 (1) (2020) 37–55.

[4] D. Mortari, The theory of connections: Connecting points, Mathematics 5 (4) (2017) 57.
[5] C. Leake, H. Johnston, D. Mortari, The Theory of Functional Connections: A Functional Interpolation. Framework with Applications, Lulu,

Morrisville NC, 2022.
[6] C. Leake, H. Johnston, D. Mortari, The multivariate theory of functional connections: Theory, proofs, and application in partial differential

equations, Mathematics 8 (8) (2020) 1303.
[7] V. Dwivedi, B. Srinivasan, Physics Informed Extreme Learning Machine (PIELM)–A rapid method for the numerical solution of partial differential

equations, Neurocomputing 391 (2020) 96–118.
[8] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications, Neurocomputing 70 (1–3) (2006) 489–501.
[9] F. Calabrò, G. Fabiani, C. Siettos, Extreme learning machine collocation for the numerical solution of elliptic PDEs with sharp gradients, Comput.

Methods Appl. Mech. Engrg. 387 (2021) 114188.
[10] G. Fabiani, F. Calabrò, L. Russo, C. Siettos, Numerical solution and bifurcation analysis of nonlinear partial differential equations with extreme

learning machines, J. Sci. Comput. 89 (2) (2021) 1–35.
[11] S. Dong, Z. Li, Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations,

Comput. Methods Appl. Mech. Engrg. 387 (2021) 114129.
[12] E. Schiassi, R. Furfaro, C. Leake, M. De Florio, H. Johnston, D. Mortari, Extreme theory of functional connections: A fast physics-informed neural

network method for solving ordinary and partial differential equations, Neurocomputing 457 (2021) 334–356.
[13] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv preprint arXiv:1412.6980.
[14] S. Mishra, R. Molinaro, Estimates on the generalization error of physics-informed neural networks for approximating PDEs, IMA J. Numer. Anal.

(2022).
[15] E. Schiassi, M. De Florio, B.D. Ganapol, P. Picca, R. Furfaro, Physics-informed neural networks for the point kinetics equations for nuclear reactor

dynamics, Ann. Nucl. Energy 167 (2022) 108833.
[16] E. Schiassi, A. D’Ambrosio, K. Drozd, F. Curti, R. Furfaro, Physics-informed neural networks for optimal planar orbit transfers, J. Spacecr. Rockets

59 (3) (2022) 834–849.
[17] E. Schiassi, M. De Florio, A. D’ambrosio, D. Mortari, R. Furfaro, Physics-informed neural networks and functional interpolation for data-driven

parameters discovery of epidemiological compartmental models, Mathematics 9 (17) (2021) 2069.
[18] M. De Florio, E. Schiassi, B.D. Ganapol, R. Furfaro, Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the

Bhatnagar–Gross–Krook approximation, Phys. Fluids 33 (4) (2021) 047110.
[19] M. De Florio, E. Schiassi, R. Furfaro, Physics-informed neural networks and functional interpolation for stiff chemical kinetics, Chaos 32 (6)

(2022) 063107.
[20] M. De Florio, E. Schiassi, B.D. Ganapol, R. Furfaro, Physics-Informed Neural Networks for rarefied-gas dynamics: Poiseuille flow in the BGK

approximation, Z. Angew. Math. Phys. 73 (3) (2022) 1–18.
[21] E. Schiassi, A. D’Ambrosio, R. Furfaro, Bellman neural networks for the class of optimal control problems with integral quadratic cost, IEEE

Trans. Artif. Intell. (2022).
8

http://refhub.elsevier.com/S0377-0427(23)00340-0/sb1
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb1
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb1
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb2
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb2
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb2
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb3
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb3
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb3
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb4
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb5
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb5
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb5
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb6
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb6
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb6
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb7
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb7
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb7
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb8
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb9
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb9
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb9
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb10
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb10
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb10
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb11
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb11
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb11
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb12
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb12
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb12
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb14
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb14
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb14
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb15
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb15
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb15
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb16
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb16
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb16
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb17
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb17
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb17
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb18
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb18
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb18
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb19
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb19
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb19
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb20
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb20
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb20
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb21
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb21
http://refhub.elsevier.com/S0377-0427(23)00340-0/sb21

	Physics-Informed Neural Networks for 2nd order ODEs with sharp gradients
	Introduction
	PINNs for Differential Equations
	Numerical Results and Discussions
	Conclusions
	Data availability
	Acknowledgments
	References

