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Abstract
We present a discontinuity detection method based on the so-called null rules, computed as
a vector in the null space of certain collocation matrices. These rules are used as weights in
a linear combination of function evaluations to indicate the local behavior of the function
itself. By analyzing the asymptotic properties of the rules,we introduce two indicators (one for
discontinuities of the function and one for discontinuities of its gradient) by locally computing
just one rule. This leads to an efficient and reliable scheme, which allows us to effectively
detect and classify points close to discontinuities. We then show how this information can
be suitably combined with adaptive approximation methods based on hierarchical spline
spaces in the reconstruction process of surfaces with discontinuities. The considered adaptive
methods exploit the ability of the hierarchical spaces to be locally refined, and fault detection
is a natural way to guide the refinement with low computational cost. A selection of test cases
is presented to show the effectiveness of our approach.
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1 Introduction

The detection of discontinuity curves of bivariate functions (and of their gradients) is an
important problem that arises in many contexts, like surface reconstruction from scattered
data, edge detection in image and geometric processing, geological lineaments extraction,
or general sudden changes in data, see for example [1, 5, 8, 16, 24] and references therein.
We call ordinary faults the discontinuity curves of the function and gradient fault the ones of
its gradient. Many different techniques have been proposed to address the problem of fault
detection, according to the considered application and to the type of discontinuity which
needs to be found.

In image processing, edge detection essentially corresponds to finding only the disconti-
nuity curves of the function describing the color of the pixels composing the image (often in
greyscale). As a consequence, in this application the data are gridded: they are the pixel loca-
tions and the corresponding color values. The goal can be achieved by applying linear filters
to the image and then looking for the local maxima of the result, as described e.g. in [13]
and more recently in [26]. Another popular approach relies on the definition of an indicator
which can be evaluated at each data point to determine whether or not the considered point
is close to a fault. The indicator can be based for example on an estimate of the derivative
[2] or on the principle of gravitation law [23].

The construction of fault indicators has beenwidely employed in recent years, being easily
applicable to scattered data. In [16, 24] indicators based on coefficients obtained by radial
basis function interpolation were successfully used to find ordinary faults. The possibility of
definingdifferent indicators enables the identification of both ordinary andgradient faults, like
in [5, 6, 8], where the indicators are based on estimates of the gradient and of the Laplacian.
At each point, an approximation of the gradient and an approximation of the Laplacian are
computed in order to assess if the point is close to an ordinary or a gradient fault. In [5, 6]
the method essentially works on gridded data, as in the case of scattered data the function is
simply approximated at points on a grid. In [8] both ordinary and gradient fault indicators can
be directly applied to scattered data, as they are based on numerical differentiation formulas
which do not need any assumptions on the data configuration.

In this paper, we explore for the first time the use of null rules in the framework of fault
detection from scattered data with application to (adaptive) surface reconstruction. Null rules
are used in numerical quadrature since the paper by Lyness [22], where the construction of
nested quadrature rules was addressed. The same rules were then considered for the error
detection in adaptive quadrature, see [4, 15, 19]. In the recent paper [12], interested readers
can find results concerning the use of null rules to find low regularity intervals of univariate
functions and a complete review of the literature. In this paper, we analyze the asymptotic
behaviour of null rules and we use the results to construct two indicators for ordinary and
gradient faults, whose evaluation requires the computation of only one null rule at each point.
We then apply the result to design effective adaptive methods for surface reconstruction from
scattered data. While this problem can be addressed with a variety of techniques, see e.g., [3]
and references therein, we here focus on using adaptive spline spaces [14, 17, 21] to perform
local refinement and obtain high accuracy with only a fraction of the degrees of freedom
needed with traditional global refinement schemes. We show that the result of the fault
detection algorithm can effectively drive the refinement, as the low regularity areas naturally
identify regions where additional degrees of freedom are needed to properly increase the
accuracy of the reconstruction. In particular, we consider truncated B-hierarchical splines,
an effective choice for surface reconstruction methods [9, 10, 18]. The key advantages of the
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proposed approach are (1) the possibility to deal with scattered data configurations without
additional postprocessing, (2) the definition of two indicators based on the application of a
single null rule, and (3) an efficient adaptive spline surface reconstruction scheme driven by
fault detection.

The paper is organized as follows. In Sect. 2 we introduce the fault detection problem, as
well as basic concepts and properties related to null rules. Our main results for the analysis
of the proposed indicators are presented in Sect. 3. The indicators for the detection of the
numerical fault lines and the corresponding fault detection algorithm are introduced in Sect. 4,
while Sect. 5 discusses how to properly exploit the result of the proposed algorithm for the
design of effective surface reconstruction schemes. Section6 presents a selection of numerical
tests on synthetic and geological data sets. Finally, Sect. 7 concludes the paper.

2 Notations and Preliminaries

Let f : Ω ⊂ R
2 → R be our target function. Our aim is to detect the curves, usually

indicated as fault curves, where the function f or its gradient are not continuous.
We assume that f ∈ C2(ΩR), with ΩR := Ω\ (FO ∪ FG), FO = ⋃MO

i=1 Ci , FG =
⋃MG

i=1 Gi , where Ci , i = 1, ..., MO , and Gi , i = 1, ..., MG , are planar curves in Ω. Without
loss of generality we can assume that all the curves are regular: a curve including non regular
points can be always split into regular curves. For the same reason, we can also assume that
neither C̊i or G̊i includes intersection points. Each ordinary fault Ci is characterized by the
condition

lim
θ→0+ f (z + θdL

z ) =: f Lz �= f Rz := lim
θ→0+ f (z + θdR

z ), z ∈ C̊i , (1)

where, denoting by tz the unit tangent to Ci in z, dL
z and dR

z are arbitrary vectors such that
tz × dL

z < 0 and tz × dR
z > 0. Analogously, each gradient fault Gi is characterized by the

condition

lim
θ→0+ ∇ f (z + θdL

z ) =: vLz �= vRz := lim
θ→0+ ∇ f (z + θdR

z ), ∀z ∈ G̊i , (2)

where the vector vLz − vRz is parallel to the unit normal to Gi at z. By starting from a set of
(scattered) points X = {zl = (xl , yl) : l = 1, . . . , N } ⊂ R

2 and the corresponding set of
function values F = { f (zl) : l = 1, ..., N }, we want to determine a suitable subset of points
in X sufficiently close to the fault lines. From the result of the detection algorithm, one can
then reconstruct the discontinuity curves.

In order to detect points close to the fault lines, we propose the use of the so-called null
rules, by focusing on the bidimensional case. We refer to [12] for additional details on their
construction and related use in the unidimensional case.

Definition 1 Given Z = {zl = (xl , yl) ∈ R
2, l = 1, ..., n} ⊂ Ω and the class of functions

� = {φi (z), i = 1, . . . , q}, we define the null rule N (·, Z,�) on the set Z, exact on the
class of functions �, as

N ( f , Z,�) :=
n∑

l=1

wl f (zl) ∀ f : Ω → R such that

n∑

l=1

wl = 0 , ∃h : wh �= 0 ,
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N ( f , Z,�) = 0,∀ f ∈ �.

Note that, due to the linearity of the definitions and of the operators, if a rule is exact on
a family of functions {φi }, then it is exact on the full space spanned by the same functions.
The existence of null rules is related to the interpolation properties of the functions for which
exactness is required, and to the location of points. If we denote by� ∈ Rq×n the collocation
matrix [φi (zl)]i,l , then we have

N (φi , Z,�) = 0 ∀ i, w �= 0 ⇔ ∃ w �= 0 : �w = 0. (3)

In other words, the null rule on the set Z exact on the class of functions � exists if and only
if there is a non-trivial vector in the null space of the matrix �. While any multiple of a
non-trivial solution of the homogeneous linear system (3) is still a non-trivial solution, we
consider solutions that have unitary L1 norm, i.e.

∑
l |wl | = 1.

Usually, exactness is required with respect to polynomials of total degree t , whose basis
we denote by Π2

t := {xνx
l y

νy
l : νx , νy ∈ N0 s.t . νx + νy ≤ t}. We call degree of precision

of the null rule the maximum integer t such that the rule is exact for all polynomials of total
degree less than or equal to t , that is, such that it satisfies

n∑

l=1

wl x
νx
l y

νy
l = 0 ∀ νx , νy ∈ N0 s.t . νx + νy ≤ t . (4)

Since NP (t) := |Π2
t | = (t + 1)(t + 2)/2, we need at most NP (t) + 1 points to have non

trivial solutions to the Eq. (4). For example, a null rule with a degree of precision t = 1
is then constructed on a set of at most 4 points, while one rule with a degree of precision
t = 2 requires at most 7 points. In order to guarantee that there exists a unique null rule (up
to multiplicative constant factor) we require that the set of points Z is such that the rank of
the collocation matrix � is NP (t), so that the dimension of the null space is exactly 1. In
other words, when constructing a null rule with degree of precision t , we assume that Z has
cardinality NP (t) + 1 and has at least a subset which is a unisolvent point set for Π2

t .
The construction of the null rule depends only on the geometric location of the points, but

it is independent of the position and distances between points in the two principal directions,
as formalized in the following proposition.

Proposition 2 Let Z have cardinality NP (t)+1 and let it have a subset which is a unisolvent
point set for Π2

t . Let N (·, Z,Π2
t ) be a null rule with degree of precision t on a set of nodes

Z = {zl = (xl , yl), l = 1, ..., n} with weights {wl}l=1...n. Let d = (dx , dy) ∈ R
2 be an

arbitrary vector. Then:

– The null rule on the (shifted) set of nodes Z̃ = {zl = (xl + dx , yl + dy), l = 1, ..., n}
with a degree of precision t has the same weights;

– The null rule on the (shrinked) set of nodes Z̃ = {zl = (dx xl , dy yl), l = 1, ..., n} with a
degree of precision t has the same weights.

Proof Thefirst statement follows from the fact that exactness onmonomials implies exactness
on general polynomials:

n∑

l∈I
wl x

ν1
l yν2

l = 0 ∀ν1, ν2 ∈ N0 s.t . ν1 + ν2 ≤ t ⇒
n∑

l∈I
wl(xl + d1)

ν1(yl + d2)
ν2 = 0 ∀ν1, ν2 ∈ N0 s.t . ν1 + ν2 ≤ t .
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The second statement follows from the properties of homogeneous operator:

n∑

l∈I
wl(d1xl)

ν1(d2yl)
ν2 =

n∑

l∈I
wld

ν1
1 xν1

l dν2
2 yν2

l = dν1
1 dν2

2

n∑

l∈I
wl x

ν1
l yν2

l = 0.

�

3 Main Results: Asymptotic Behaviour of Null Rules

In this section, we prove our main results on the behaviour of a null rule applied to a point
near a fault. In what follows, when the null ruleN (·, Z,Π2

t ) has a degree of precision t ≥ 1,
we assume that the set of points Z has cardinality NP (t)+1 and a subset which is a unisolvent
point set for Π2

t .

Theorem 3 Let zk = (xk, yk) ∈ C̊ ∩ X , where C is an ordinary fault of the function f : Ω ⊂
R
2 → R. Let us consider null rulesN (·, Zδ,Π

2
t ), with Zδ := {z̄δ

l , l = 1, .., n} and weights
{wδ

l }l∈I , such that:

(i) zk ∈ Zδ;
(ii) Zδ ⊂ Bδ(zk) = {z ∈ R

2 : ‖z − zk‖ < δ};
(iii) For any δ1 �= δ2, Zδ1 and Zδ2 differ only for the transformations (shifts and shrinkings)

of Proposition 2;
(iv) Being tzk the unit vector tangent to C at zk , and denoting IL

δ := {1 ≤ l ≤ n : (z̄δ
l −

zk) × tzk < 0} and IR
δ := {1 ≤ l ≤ n : (z̄δ

l − zk) × tzk > 0}, then IL
δ , IR

δ �= ∅;
(v)

∑
j∈IL

δ
wδ

j �= 0 and
∑

j∈IR
δ

wδ
j �= 0.

We have

lim
δ→0

|N ( f , Zδ,Π
2
t )| = C > 0, where C < | f Rzk − f Lzk |.

Proof First, we note that by assumption (iii) and Proposition 2 the weights of the considered
null rules do not depend on δ, and therefore we will denote them just by wl . Moreover, by
definition of Zδ , z̄k = zk ∈ Zδ . Assuming that f (zk) = f Lzk (the proof is analogous assuming
f (zk) = f Rzk ), since

∑
l∈Iδ

wl = 0, we have

N ( f , Zδ,Π
2
t ) =

n∑

l=1

wl f (z̄l) =
n∑

l=1

wl f (z̄l) −
n∑

l=1

wl f
L
zk =

n∑

l=1

wl( f (z̄l) − f Lzk ).

Then, dividing the indices into two parts:

n∑

l=1

wl( f (z̄l) − f Lzk ) =
∑

l∈IL
δ ∪{k}

wl( f (z̄l) − f Lzk ) +
∑

l∈IR
δ

wl( f (z̄l) − f Lzk ).

Note that, by definition of Zδ , limδ→0 maxl∈Iδ dist(z̄l , zk) = 0. Since zk belongs to (the
interior of) an ordinary fault C and assumption (i i i) holds, by definition of ordinary fault (1)
we obtain the following limit behaviour:

lim
δ→0

∑

l∈IL
δ ∪{k}

wl( f (z̄l) − f Lzk ) = 0,
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lim
δ→0

∑

l∈IR
δ

wl( f (z̄l) − f Lzk ) =
∑

l∈IR
δ

wl( f
R
zk − f Lzk ) = ( f Rzk − f Lzk )

∑

l∈IR
δ

wl .

By assumption (i i), we can conclude that the second limit is not null. The upper bound for
the constant C can be derived as follows

C =

∣
∣
∣
∣
∣
∣
∣
( f Rzk − f Lzk )

∑

l∈IR
δ

wl

∣
∣
∣
∣
∣
∣
∣

≤
∣
∣
∣ f Rzk − f Lzk

∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

∑

l∈IR
δ

wl

∣
∣
∣
∣
∣
∣
∣
≤

∣
∣
∣ f Rzk − f Lzk

∣
∣
∣

∑

l∈IR
δ

|wl |

<

∣
∣
∣ f Rzk − f Lzk

∣
∣
∣

∑

l∈Iδ

|wl | ≤
∣
∣
∣ f Rzk − f Lzk

∣
∣
∣ ,

where in the last step we have applied hypothesis (iv) and the L1 normalization property of
null rules. �

The previous theorem holds if the point is exactly on the fault line, but the same results
hold with slightly different assumptions for sequences of points moving toward the fault
curve. The proof of such a result is analogous to the one of Theorem 3.

Corollary 4 Let C be an ordinary fault of the function f : Ω ⊂ R
2 → R. Let us consider

null rules N (·, Zδ,Π
2
t ), where Zδ := {z̄δ

l , l = 1, .., n} and weights {wδ
l }l∈I , such that:

(i) Zδ ⊂ Bδ(zδ), zδ ∈ R
2, with limδ→0 zδ = z̄ ∈ C̊;

(ii) For any δ1 �= δ2, Zδ1 and Zδ2 differ only for the transformations (shifts and shrinkings)
of Proposition 2;

(iii) Being tz̄ the unit vector tangent to C at z̄, and denoting IL
δ := {1 ≤ l ≤ n : (z̄δ

l − zk) ×
tzk < 0} and IR

δ := {1 ≤ l ≤ n : (z̄δ
l − zk) × tzk > 0}, then IL

δ , IR
δ �= ∅;

(iv)
∑

j∈IL
δ

wδ
j �= 0 and

∑
j∈IR

δ
wδ

j �= 0.

Then:

lim
δ→0

|N (·, Zδ,Π
2
t )| = C > 0, where C < | f Rz̄ − f Lz̄ |.

The above results cover the case of points where we expect ordinary faults, as we will
discuss in the next section. In general, a null rule has an asymptotic behaviour that depends
on the regularity of the function. We consider building null rules centered on the target point.
When f is known to be regular we then have the following:

Theorem 5 Let f be r times differentiable at z̄ = (x̄, ȳ), and let N (·, Zδ,Π
2
t ) be null rules

with z̄ ∈ Zδ and such that Zδ ⊂ Bδ(z̄). Then

N ( f , Zδ,Π
2
t ) = o

(
δmin{r ,t})

Proof Let s = min{r , t}, and let
f (z) = f (z̄) + ∂ f (z̄)

∂x
(x − x̄) + ∂ f (z̄)

∂ y
(y − ȳ) + ... + R(z)

be the Taylor expansion of degree s of f (z) centered at z̄, where R(z) is the remainder term.
Since the rule has degree of precision t , we have N ( f , Zδ) = N (R, Zδ). Then:

N (R, Zδ,Π
2
t ) =

n∑

l=1

wl R(zl) ≤ ‖w‖ · ‖R‖ (5)

where R = [R(zl)]l=1,...,n . Finally, because points zl ∈ Bδ(z̄), we have R(zl) ≤ k · δs and
this concludes our proof. �
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4 Discontinuity Detection by Null Rules

Our goal is to be able to detect which points are close to ordinary and gradient faults starting
from the given set of scattered pointsX and corresponding function values F . In other words,
with the given data we cannot consider a sequence of null rules like in Theorem 3, Corollary
4, and Theorem 5. However, since these results describe the asymptotic behaviour of the null
rules as the distances between the points decrease, they also provide accurate information
when the density of the given points is sufficiently high. In this section, we use these results
in order to define a reliable and efficient estimator to be used in the case of general scattered
data configurations.

We introduce two indicators to detect ordinary and gradient fault, respectively. Starting
from Theorem 5, we know that a null rule will be rapidly vanishing when applied to points
that belong to regions where the function is regular. On the other side, as a consequence
of Theorems 3 and 4, it will not vanish if the point is near an ordinary fault. Since the
computation of high order null rules can be expensive, for any point zk ∈ X we chose to
construct a null rule with a degree of precision t = 2 on Zk , where Zk is the set of the n = 7
nearest neighbours of zk (zk included) such that it cointains a subset of unisolvent points for
Π2

2 (or, equivalently, the corresponding collocation matrix � in (3) has rank 6). The 7 points
satisfying this requirement coincide very often with the 7 points closest to zk , but in some
cases, we need to select a slightly different set (see lines 6–20 of Algorithm 1). This set is
obtained by first adding to Zk just enough neighbours so that rank(�) = 6 (lines 6–8 of
Algorithm 1), for then removing some of these points, starting from the farthest neighbours,
until a matrix � ∈ R

6×7 with rank(�) = 6 is suitably identified (lines 6–8 of Algorithm 1).
Therefore, with this choice of Zk the null rule with a degree of precision 2 is unique. We
simplify the notation by using N ( f , Zk) instead of N ( f , Zk,Π

2
t ). We define the ordinary

fault indicator as

IO (zk, X) := N ( f , Zk)

η
, (6)

with η = maxz∈Zk ‖z − zk‖. In view of Theorem 5, we expect that this indicator assumes
small values if f is C0 at zk and large values if f is C−1 at zk . Therefore, it is reasonable to
classify zk as close to an ordinary fault if and only if IO (zk, X) > αO for a certain threshold
αO . Particular attention should be devoted to fixing this threshold. Note that if f has a jump at
zk , according to Theorems 3–4, asymptotically the value ofN ( f , Zk) depends on | f Rz̄ − f Lz̄ |,
that is, on the height of the jump. Because of this, using a large threshold αO could make it
difficult to catch discontinuities with small jumps. On the other hand, setting a small value for
αO could cause the classification of non-fault points as fault ones, maybe because of a rapid
variation of the functions. Therefore, we use a non-constant αO , depending on an estimate
of the jump:

αO = σ

((

max
z∈Zk

f (z) − min
z∈Zk

f (z)
)

/η

)

, (7)

where σ is the sigmoidal function

σ(s) := 1

1 + eσ1s+σ2
, σ1, σ2 ∈ R.

The function σ is a bounded and differentiable function with non-negative derivative and
one inflection point chosen to take a value close to 1 or 0.1 when its argument is 10 or 0,
respectively.
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In view of Theorem 5, the third power of the null rule of degree 2 is expected to be o((η2)3)
in the regular cases and o(η0) or less if f is C0 or C−1 at zk . As an indicator of the gradient
fault, we then evaluate the ratio between this value and the fifth power of η:

IG(zk, X) := [N ( f , Zk)]3

η5
. (8)

What we expect is that the indicator IG(zk, X), if f is no more than C0 at zk , tends to take
large values, while tends to have small values if f is C2 at zk . Also in this case we need to set
a threshold, which we denote by αG and will be a free parameter of the detection algorithm.
Finally, in order to not classify ordinary faults as gradient ones, we classify zk as close to a
gradient fault if and only if IG(zk, X) > αG and IO (zk, X) ≤ αO .

The fault detection method resulting from the combination of the construction of the null
rule, the computation of the two indicators, and their application to the data is formally
described in Algorithm 1. The parameter activeG in Algorithm 1 is a boolean variable
determining whether or not the algorithm must look for gradient fault points.

Algorithm 1: FAULT_DET
Input : X, F, αG , activeG

1 Set XO = ∅ and XG = ∅;
2 for k = 1, . . . , N do
3 Sort the points in X with respect to their distance from zk ;
4 Initialize Zk with the 7 nearest neighbors of zk in X ;
5 Set � as the collocation matrix of the linear system (4) with t = 2;
6 while rank(�) < 6 do
7 Add to Zk the successive neighbor of zk and update � accordingly;
8 end
9 Set Z̃k = Zk , �̃ = �, and Ẑk = |Zk |;

10 for j = 1, . . . , Ẑk − 7 do
11 Set i = |Zk |;
12 Update Z̃k by removing the i-th point from Zk ;
13 Update �̃ by removing the i-th column from �;
14 while rank(�̃) < 6 do
15 Decrease i by 1;

16 Update Z̃k by removing the i-th point from Zk ;

17 Update �̃ by removing the i-th column from �;
18 end
19 Set Zk = Z̃k and � = �̃;
20 end
21 Find the null ruleN (·, Zk ) as a non-null normalized vector of ker(�);
22 Compute the indicators IO (zk , X) and IG (zk , X) from equations (6)-(8);
23 Compute the threshold αO from equation (7) ;
24 if IO (zk , X) > αO then
25 Add zk to the set of ordinary fault points XO ;
26 else
27 if IG (zk , X) > αG & activeG =TRUE then
28 Add zk to the set of gradient fault points XG ;
29 end
30 end
31 end

Output: Sets of ordinary (XO ) and gradient (XG ) fault points
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Remark 6 Being based on null rules, the indicators (6–8) can be directly applied to a set X
of scattered data. Moreover, for each point zk the two indicators IO (zk, X) and IG(zk, X)

are computed using the same null ruleN ( f , Zk), which means that in our approach the cost
of finding both ordinary and gradient fault points is very similar to the cost of finding only
ordinary fault points.

5 Adaptive Surface Reconstruction

Detecting the points close to faults provides essential information for the accurate recon-
struction of a target surface and its discontinuities. In particular, in the context of adaptive
approximation methods, it is natural to use the location of the points close to discontinuities
to drive the refinement. Here, as a proof of concept, we focus on adaptive global least squares
approximations based on hierarchical spline spaces, but the basic idea can be easily applied
to any adaptive approximation method based on spaces with local refinement capabilities.

Let us consider the space of hierarchical splines, see, e.g., [17], which have already
been employed to define adaptive approximation methods in different contexts, see, e.g.,
[9, 10, 18]. Let V 0 ⊂ . . . ⊂ V L−1 be a sequence of L spaces of tensor-product splines of
degree p := (p1, p2) defined on a certain domain Ω and constructed on the meshes G,
 = 0, ..., L − 1. Each mesh G is usually obtained from the one of the previous level by
performing uniform dyadic refinement. Let Ω0 ⊇ . . . ⊇ ΩL be a sequence of subdomains
(each of them being a union of cells of the tensor-product grid of the corresponding level),
with Ω0 := Ω and ΩL := ∅. The hierarchical mesh GH is the set of active cells at different
levels.

We indicate byB
p := {

B
J

}
J∈�

p
the B-spline basis of V . For any s ∈ V ,  = 0, . . . , L−

2, let

s =
∑

J∈�+1
p

c+1
J B+1

J

be its representation in terms of B-splines of the finer space V +1. The truncation of s with
respect to level  + 1 and its (cumulative) truncation with respect to all levels are defined as

trunc+1(s) :=
∑

J∈�+1
p : supp(B+1

J )�Ω+1

c+1
J B+1

J ,

and

Trunc+1(s) := truncL−1(truncL−2(. . . (trunc+1(s)) . . .)),

respectively. For the finest level, we set TruncL(s) := s for s ∈ V L−1. The truncated
hierarchical B-spline (THB-spline) basis Tp(GH) of the hierarchical space SH is defined as

Tp(GH) :=
{
T 
J := Trunc+1(B

J ) : J ∈ A
p,  = 0, . . . , L − 1

}

where

A
p :=

{
J ∈ �

p : supp(B
J ) ⊆ Ω ∧ supp(B

J ) � Ω+1
}

is the set of activemulti-indices, and supp(B
J ) denotes the intersection of the support of B


J

with Ω0. The B-spline B
J is called the mother B-spline of the truncated basis function T 

J .
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In other words, in different areas of the domain the space is spanned by splines defined on
finer or coarser meshes. The choice of the subdomains determines where the space is coarser
or finer.

Given the set of scattered data points X = {zk, k = 1, ..., N } and the corresponding set
of function values F = { f (zk) : k = 1, ..., N }, we can define a classic regularized least
squares approximation

s(z) :=
∑

T∈Tp(GH)

cT T (z) (9)

minimizing the objective function

N∑

k=1

(s (zk) − f (zk))2 + μ E(s), (10)

where μ > 0 is a smoothing coefficient and E(s) the thin-plate energy

E(sJ ) :=
∫

Ω

∣
∣
∣
∣

∣
∣
∣
∣
∂2s
∂x2

∣
∣
∣
∣

∣
∣
∣
∣

2

2
+ 2

∣
∣
∣
∣

∣
∣
∣
∣

∂2s
∂x∂ y

∣
∣
∣
∣

∣
∣
∣
∣

2

2
+

∣
∣
∣
∣

∣
∣
∣
∣
∂2s
∂ y2

∣
∣
∣
∣

∣
∣
∣
∣

2

2
dxdy.

The key point in order to effectively use the approximant (9) is costructing a suitable
hierarchical space Tp(GH) over the adaptively refinedmeshGH. This is wherewe can suitably
exploit the result of the fault detection algorithm.

The basic idea relies upon refining the mesh in the areas containing the fault points.
However, it is a good idea to first apply a post-processing step to the detected fault points.
The fault point cloud has a certain thickness, while the fault itself is, in principle, simply a
curve. Consequently, the location of the fault can be better described if we apply narrowing
techniques to the cloud of fault points. In particular, we here employ the method successfully
applied in [8, Section 4], based on the computation of local least squares approximations,
see also [20] and [25] for the details.

By starting from a tensor-product mesh (and the corresponding spline space), we can then
set up an iterative scheme where at each refinement step one hierarchical level is added by
refining the union of the supports of the mothers of the basis functions containing at least one
fault point (and update the spline space accordingly). Moreover, in order to have a limited
number of basis functions active on each cell, we apply an algorithm that guarantees the
admissibility of the mesh, see, e.g., [11]. The refinement stops once a maximum number of
levels L is reached, and the hierarchical spline approximation s in (9) is then computed in
the resulting adaptively refined spline space.

It should be noted that since gradient faults have higher regularity than ordinary faults, it
is reasonable to assume that gradient fault areas require less refinement than ordinary fault
ones. Therefore, we allow to set a different maximum number of refinement levels for areas
with ordinary and gradient fault points, denoted respectively by LO and LG .

The adaptive surface reconstruction method resulting from the combination of the refine-
ment based on the fault detection algorithm here proposed and the hierarchical spline
approximation given by (9) is detailed in Algorithm 2 and denoted FDSR (Fault Detection
Surface Refinement).
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Algorithm 2: FDSR

Input : X, F, αG , activeG ,G0, V 0, LO , LG , μ

1 [XO , XG ] = FAULT_DET(X, F, n, αG , activeG );
2 Update the sets XO and XG by applying to them the narrowing algorithm ;

3 Initialize the hierarchical mesh and the corresponding spline space: GH = G0 and SH = V 0;
4 for i = 1, . . . , LO − 1 do
5 if i ≤ LG − 1 then
6 Set Ωi =

⋃

T :supp(T )∩(XO∪XG ) �=∅

⋃

Q∈supp(T )

Q;

7 else
8 Set Ωi =

⋃

T :supp(T )∩XG �=∅

⋃

Q∈supp(T )

Q;

9 end
10 Update Ω1, ...,Ωi by applying the admissibility algorithm;
11 Update the hierarchical space SH accordingly;
12 end
13 Compute the approximation s (9) in the space SH with smoothing coefficient μ;

Output: Regularized least squares approximation s

Remark 7 Note that the adaptive surface refinement based on fault detection proposed in
Algorithm 2 enables the construction of the hierarchical mesh by simply taking into account
the location of the detected fault points. The THB-spline approximation in (9) can then
be computed only once, after the hierarchical spline space has been finalized, see line 13 of
Algorithm2. In thisway, our adaptivemethod is computationally less expensive than standard
adaptive methods based on error-driven refinements. In that case, not only the approximation
in (9) but also the corresponding errors at the points z ∈ X need to be computed at each
refinement step, as the refinement is driven by the location of points where the error exceeds
a given tolerance ε—see lines 8–9 inside the iterative loop of Algorithm 3 presented in the
next section.

6 Numerical Tests

In this section, we first test the fault detection algorithm on several datasets, including ana-
lytical benchmarks and a geological point cloud. Then, we compare the adaptive algorithm
for the (adaptive) reconstruction of surfaces with discontinuities with the classical approach
where adaptivity is driven by the error evaluation.

If not indicated otherwise, in all tests the parameters in the sigmoidal functions are σ1 =
−0.40, σ2 = 1.96, and the threshold αG for the detection of gradient faults is set to 1/10. In
all tests, except for the one of Sect. 6.2, when applying Algorithm 1, the collocation matrices
� used to compute the null rules obtained with the initially selected 7 neighboring points
always have rank 6. For the example of Sect. 6.2, we will provide an analysis of the initial
rank of the collocation matrices.

6.1 Fault Detection on Benchmark Data

Wefirst test the detection algorithmon some benchmark examples. The first two test functions
(already considered in [7, 8]) are
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f1(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x − 0.4 − 0.1 sin(2π y) − 0.2 if x > 0.7 + 0.1 sin(2π y)

x − 0.4 − 0.1 sin(2π y) if x ≤ 0.7 + 0.1 sin(2π y)

and x2 + y2 > 0.16,
√
4 − x2 − y2 − √

4 − 0.16 + 0.1 if x2 + y2 ≤ 0.16,

f2(x, y) =
∣
∣
∣
∣x

2 + y2 − 1

2

∣
∣
∣
∣ − x + y2 + 0.3(−x + 0.4 + 0.1 sin(2π y))+,

where

(t)+ :=
{
t if t ≥ 0,

0 if t < 0,

and the function describing the well-known Shepp-Logan phantom surface. In order to assess
the behavior of the indicators on unorganized point clouds of different nature and density,
we consider the following three scattered data sets X in [0, 1]2: N = 104 random points
generated according to the uniform distribution, N = 8 · 103 Halton points in [0, 1]2, and
N = 6 ·104 Halton points in [0, 1]2. Halton points are quasi-random deterministic points that
are often used to test numerical methods dealing with scattered data, and they can be easily
generated in Matlab via the haltonset routine. In all the cases, the detection algorithm is
appliedwith the parameter activeG = T RUE , that is, we look for both ordinary and gradient
faults. Figures1, 2 and 3 show the surfaces corresponding to the test functions and the results
obtained by applying our fault detection algorithm. In the figures, the points are black and
red according to their classification as ordinary and gradient fault points, respectively.

For all test functions and sets of points the detection is able to detect the correct shape of
the discontinuities. As with other methods based on the analysis of the asymptotic behaviour
of indicators, the number (and, as a consequence, the density) of the points has some influence
on the results, see, e.g., Example 6.1 in [7]. As the density of the points increases, the strip
of detected points becomes narrower and the classification of the fault type is more accurate,
see Figs. 1d, 2d and 3d. From this point of view, the Shepp-Logan Phantom example is the
most challenging of the presented ones, since both modest and high jumps are present in the
surface. However, also in this case, as shown in Fig. 3b–d, the method correctly provides a
more and more accurate detection and classification of the discontinuities as the density of
points increases.

6.2 Fault Detection on Geological Data

Wealso test our detectionmethod in a case of interest previously addressed in [8].We consider
the geological dataset composed of 149511 scattered points with their associated heights,
corresponding to the surface shown in Fig. 4 (left). In this case, since the data are affected by
a lot of small bumps, we do not expect to be able to detect gradient faults, so we apply the
fault detection algorithm with parameter activeG = FALSE . This is not restrictive for this
kind of application, since we are interested in detecting fractures in the terrain, which can
be mathematically identified as ordinary faults. In this case the parameters of the sigmoidal
function are σ1 = −0.65 and σ1 = 1.30. The plot on the right of Fig. 4 clearly shows that
the algorithm is able to properly catch all the main ordinary fault curves.

In this case, when applying Algorithm 1, for some points the collocation matrix � used
to obtain the null rules initially has rank less than 6, and then some of the 7 neighbors were
replaced by near points (according to lines 9–20 of Algorithm 1). More precisely, for 98.52%
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Fig. 1 Application of the detection algorithm on data sampled from the test function f1 (top left). The results
obtained by considering 104 uniformly distributed random points (top right), as well as 8 · 103 (bottom left)
and 6 · 104 (bottom right) Halton points are shown

of points the rank of � was already 6 considering the initial 7 neighbors, for 1.47% of points
the rank was 5, and for the remaining points it was 4 or less.

6.3 Adaptive Reconstruction of Surfaces with Discontinuities

In this subsection, we test the application of fault detection in adaptive surface reconstruction,
as previously described in Sect. 5. In order to show the advantages of this approach, we
compare the FDSR method introduced in Algorithm 2 with the ESR (Error-based Surface
Reconstruction) method detailed in Algorithm 3. The difference with respect to FDSR relies
upon the nature of the refinement scheme, which is error-based, as commonly done in several
adaptive approximation methods based on hierarchical splines, see, e.g., [9, 10, 18]. As
anticipated in Remark 7, in ESR both the approximation (9) in the current hierarchical space
SH and the errors at the points in X are evaluated at each iteration of the adaptive loop. The
hierarchical mesh is then updated by refining the supports of the basis functions containing
at least one point where a given tolerance ε is exceeded.
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Fig. 2 Application of the detection algorithm on data sampled from the test function f2 (top left). The results
obtained by considering 104 uniformly distributed random points (top right), as well as 8 · 103 (bottom left)
and 6 · 104 (bottom right) Halton points are shown

Algorithm 3: ESR

Input : X, F,G0, V 0, L, μ, ε

1 Set GH = G0 and SH = V 0;
2 Compute the approximation s (9) in the space SH with the smoothing coefficient μ;
3 Evaluate ek := | f (zk ) − s(zk )| for k = 1, ..., N and set D = {zk ∈ X : ek > ε};
4 while SH has less than L levels and D �= ∅ do
5 Set Ωi =

⋃

T :supp(T )∩D �=∅

⋃

Q∈supp(T )

Q;

6 Update Ω1, ...,Ωi by applying the admissibility algorithm;
7 Update the hierarchical space SH accordingly;
8 Compute the approximation s (9) in the space SH with smoothing coefficient μ;
9 Evaluate ek := | f (zk ) − s(zk )|, for k = 1, ..., N , and D = {zk ∈ X : ek > ε};

10 end
Output: Regularized least squares approximation s
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Fig. 3 Application of the detection algorithm on data sampled from the Shepp-Logan phantom surface (top
left). The results obtained by considering 104 uniformly distributed random points (top right), as well as 8 ·103
(bottom left) and 6 · 104 (bottom right) Halton points are shown

Fig. 4 A geological dataset visualized as a piecewise linear surface obtained from a triangulation of the point
cloud (left) and the results of the detection algorithm (right)

123



   37 Page 16 of 21 Journal of Scientific Computing            (2023) 97:37 

Table 1 Comparison between approximations obtained by using fault detection-based and error-based refine-
ments for test surface f1, geological dat,a and test surface f2

FDSR ESR

RMSE NDOF RMSE NDOF

test surf. f1 (LO = LG = 6) 1.004e − 02 14210 1.004e − 02 21306

geo. data-set (LO = LG = 6) 1.193e − 02 29468 1.187e − 02 35201

test surf. f2
(LO = LG = 6)
(LO = 6, LG = 4)

9.400e − 03
9.379e − 03

16588
12138

9.383e − 03 16145

Fig. 5 The surfaces and hierarchical meshes obtained applying to test surface f1 the regularized least-squares
approximation with fault detection-based (a) and error-based (b) refinement

For all the examples we start from a 16 × 16 tensor-product mesh G0 and the space
of biquadratic splines V 0 defined on it. First, we try to reconstruct two surfaces with
only ordinary faults, by considering the dataset coming from sampling the test function
f1 and the geological dataset. We compare the results obtained by applying the algorithms
FDSR(X, F, 0.1, FALSE,G0, V 0, 6, 6, 10−5) and ESR(X, F,G0, V 0, L, 10−5, 10−2). We
test the methods also on a third example where both ordinary and gradient faults are present,
namely, the dataset coming from sampling the test function f2. In this case, we then apply
FDSR with activeG = T RUE . Moreover, since we have both types of fault, for this third
example we add to the comparison also the result obtained by choosing a different maxi-
mum number of levels for the areas with ordinary and gradient faults: LO = 6, LG = 4.
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Fig. 6 The surfaces and hierarchical meshes obtained applying to the geological data the regularized least-
squares approximation with fault detection-based (a) and error-based (b) refinement

Table 1 reports, for each test, the Root Mean Square Error (RMSE) obtained and the Number
of Degrees of Freedom (NDOF) obtained. In Figs. 5, 6 and 7 we give a visual comparison
between the application of the two methods in the case of the surface reconstruction for the
three tests.

From Table 1, it is clear that in all examples the fault detection-based and the error-based
refinements achieve analogous error values. However, the fault detection-based refinement
FDSR reaches this accuracy with significantly fewer degrees of freedom than ESR, the
refinement driven by error computation. Note that in the third example on function f2, this
advantage is obtained by exploiting the ability to refine less in areas close to the gradient fault.
In fact, being the gradient fault a discontinuity of higher order, less refinement is sufficiently
close to this fault with respect to the refined regions that would be needed in the neighborhood
of an ordinary fault. This is achieved by setting LG to 4, which leads to a strongly reduced
number of degrees of freedom (11858) with respect to ESR (16145).

In order to complete the analysis of our approach, we also compare the refinement driven
by the fault detection based on null rules with the fault detection based on minimal numerical
differentiation presented in [8], which were also designed to work on scattered data. We
consider the test function (see Example 6.1 in [8])

f4(x, y) =
{

|x − 0.4 − 0.1 sin(2π y)| if x ≤ 0.7 + 0.2 sin(2π y),

|x − 0.4 − 0.1 sin(2π y) − 0.2| otherwise.

123



   37 Page 18 of 21 Journal of Scientific Computing            (2023) 97:37 

Fig. 7 The surfaces and hierarchical meshes obtained applying to test surface f2 the regularized least-squares
approximation with fault detection-based refinement and LO = LG = 6 (a), fault detection-based refinement
and LO = 6, LG = 4 (b), and error-based refinement (c)

For this example we start again from the space of biquadratic splines V 0 defined on a 16 ×
16 tensor-product mesh G0, and the data are the set X of N = 6 · 104 Halton points in
[0, 1]2 and the set F of corresponding values of f4. A visual comparison of the results is
presented in Fig. 8. In the left column of the figure, the sets of detected points obtained with
the two approaches after the narrowing post-processing are shown. On the right column
of the figure, instead, the corresponding hierarchical meshes obtained during the adaptive
surface reconstruction scheme which suitably exploits these points to drive the refinement
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Fig. 8 Adaptive refinement driven by fault detection based on null rules (top) and numerical differentiation
formulas (bottom). The detected ordinary and gradient fault points after the narrowing process are shown on
the left column, while the corresponding hierarchical meshes are shown on the right

are presented. The two approaches produce very similar results: the hierarchical meshes are
almost the same and lead to very close numbers of degrees of freedom (20054 vs. 20183).
Note that the indicators defined in [8] require, for each point, the computation of two rules:
one to approximate the Laplacian and one for the gradient of the function. This corresponds
to solving 3 local linear systems for each point. Our approach based on null rules requires
solving only one local linear system for each point, which results in a clear computational
advantage.

7 Conclusions

We analyzed the behaviour of null rules close to faults of bivariate functions as well as in
areas where the functions are regular. Based on the results reported in Theorems 4–5 that
link the asymptotic behaviour of the application of the null rules to the local regularity of
the function, we construct two indicators. The values of the indicators are used to determine
if a point is close to an ordinary or gradient fault (or it is regular). Since null rules do not
require any structured data configuration, these indicators can be directly applied to scattered
data. Moreover, they are very cheap: only one null rule (for each point) must be computed
in order to evaluate both indicators, and the null rule is obtained by solving a local, small
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linear system of dimension 6 × 7. The numerical experiments show that the indicators are
able to properly detect and classify the points close to faults. This information can then be
suitably exploited to drive the refinement in adaptive reconstruction methods based on THB-
splines. The results show that this kind of refinement, compared to the traditional error-driven
adaptive loop, gives an equally accurate approximation with a reduced number of degrees of
freedom.
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