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Abstract—Efficient and effective object detection is a key prob-
lem in Computer Vision. Numerous object detection algorithms
have been developed, whose aim is to achieve two conflicting
goals, namely accuracy and efficiency, while being executed in
real-time with high robustness. Many of these algorithms must
run for an extended period of time, i.e., in video surveillance
or in self-driving cars – a working condition that make them
subject to the risk of software aging.

In this work, we focus on evaluating several object detection
algorithms to understand if and to what extent they are affected
by software aging. A measurement-based aging approach was
adopted, with a series of long-running tests and subsequent data
analysis. The results report significant trends of performance
degradation, sometimes leading to aging-related failures, as well
as memory consumption trends, which turned out to be the main
issue across all the experiments.

Keywords—Object detection, software aging, performance,
computer vision

I. INTRODUCTION

Computer vision (CV) aims to replicate the human eye in
order to collect, process and analyze all media-related data,
including photos and videos. It has a wide range of real-
world applications, such as security and surveillance, home
automation, biometric recognition, motion capture, optical
character recognition, facial recognition, navigation, and etc.
Some examples of typical computer vision tasks are [1]: (i)
image classification is to identify what class an object belongs
to; (ii) object detection is to identify and locate an object
in a given image; (iii) instance segmentation is the same as
object detection but at the pixel level; (iv) image captioning:
to describe the image; and (v) Simultaneous Localization and
Mapping (SLAM) is to construct and update an environment
map while a robot/agent moves in it.

Among these popular computer vision tasks, one of the most
fundamental and critical problems in CV is object detection
[2]. As stated by [3], the goal of object detection is “to
determine whether there are any instances of objects from
given categories (such as humans, cars, bicycles, dogs or cats)
in an image and, if present, to return the spatial location and
extent of each object instance (e.g., via a bounding box)”.
In some domains, such as video surveillance, image retrieval,
or Advanced Driver Assistance Systems (ADAS) [4], object
detection algorithms, which are crucial technology, may be

required to run for an extended period of time. One of the
concerns in the use of computer vision for these domains
is the software reliability issue during a longtime operation.
Although object detection algorithms represent a widespread
and mature technology, to the best of our knowledge, there
is no work focused on long-running scenarios, despite them
being adopted in many systems ranging from business-oriented
to safety-critical.

In this work, we analyze the phenomenon of software
aging in state-of-the-art object detection algorithms. More
specifically, we performed long-running experiments to ana-
lyze how software aging manifests under different algorithms,
libraries/implementations and datasets. We collected both re-
source consumption indicators (e.g., free/buffer/cache memory
and resident memory size) and performance-related indicators
(e.g., frames per second) and statistically analyze the presence
or absence of aging phenomena, quantify their extent and
assess the difference between various settings (i.e., algorithms,
libraries, datasets).

Results highlighted that every aging indicator used in
our experiments shows resource consumption or performance
degradation, regardless of the algorithm, implementation or
dataset. It is also showed that four out of six aging indicators,
more than 50% of the experiments, manifest aging effects with
a peak of over 95%. Additionally, the results revealed that the
algorithm and dataset factors seem to be less important than
the library one (i.e., the specific implementation).

This paper is organized as follows. Section II briefly de-
scribes the background and related work. Section III details
our experiments. Section IV shows the results of the experi-
ments and statistical analysis. Finally, Section V presents the
conclusions and briefly describes future work.

II. BACKGROUND AND RELATED WORK

A. Software aging

Software aging is a runtime phenomenon affecting a numer-
ous number of software systems. It consists in the progressive
increase of the failure rate as the system executes [5], [6],
which can lead to a progressive performance degradation and
eventually to crash. Software aging can be due to the accumu-
lation of errors in the system state and/or to the progressive
consumption of resources such as physical memory [7].



Studies in this area are broadly divided into model-
based and measurement-based approaches. With respect to
model-based approaches, the systems are commonly described
through stochastic models such as stochastic Petri nets (SPN)
and stochastic reward nets (SRN) [8], continuous-time Markov
chains (CTMC) [9], semi-Markov processes (SMP) [10], as
well as combinatorial models such as reliability block dia-
grams (RBD) [11] and dynamic fault trees (DFT) [12]. With
respect to measurement-based approaches, non-parametric sta-
tistical methods are used for empirically characterizing soft-
ware aging phenomena in software systems. In this work, more
specifically, we adopt a measurement-based approach.

Over the past year, many measurement approaches have
been used to identify suspicious software aging. Garg et al.
[13] were among the first researchers who adopted the Mann-
Kendall test and Sen’s slope estimator to identify suspicious
software aging. They monitored for more than 50 days the
health of Unix workstations at the OS level using a distributed
SNMP (simple network management protocol) framework, so
as to identify aging trends. As a matter of fact, a visual
inspection is often not enough to detect these trends. This
was one of the first works that tackled the quantification of
aging and time-to-failure estimates. Cotroneo et al. [14], [15]
found software aging both in the Linux operating system and
in the Java VM. Statistically significant trends in memory
consumption either-or in throughput were discovered. Other
techniques such as Principal Component Analysis (PCA) were
applied to remove linear correlation between parameters and
Clustering to isolate distinct workload states that could present
different aging trends. More recenlty, Andrade et al. [16] in-
vestigated software aging in an image classification system that
continuously runs on cloud and edge computing environments.
They statistically confirmed degradation trends for cloud and
edge. In addition, they revealed that performance degradation
trends in cloud computing were significantly more severe than
in the edge environment.

B. Object detection algorithms

Object detection algorithms are either machine learning-
based (it is preliminary required to define features to then
classify images using algorithms such as support vector ma-
chines, SVM), or deep learning-based (typically CNN-based,
end-to-end approaches). Deep-learning ones are predominant
since they provide top-class accuracy and performance when
combined with powerful GPUs and a vast training dataset.
Generic object detection frameworks fall into two categories
[17]:

1) region proposal-based or two-stage detection which gen-
erates region proposals at first and then classifying each
proposal into different object categories;

2) regression/classification-based or one-stage detection
adopts a unified framework to achieve final results (cat-
egories and locations) directly.

Region-based CNN (R-CNN), spatial pyramid pooling (SPP-
net), Fast R-CNN, Faster R-CNN [18], region-based fully con-
volutional networks (R-FCN) [19], feature pyramid network

(FPN), and Mask R-CNN [20] are examples of the former
group. Unified or one-stage detection frameworks include
Overfeat, Multibox, You Only Look Once (YOLO) [21], and
Single Shot MultiBox Detector (SSD) [22]. These algorithms
are state-of-the-art in this context.

In general, region-based approaches are more computation-
ally expensive (due to the region proposal search), especially
for mobile devices, and they provide higher detection accuracy
than unified ones. When considerable computational power is
available and there are less strict time requirements Faster
R-CNN, R-FCN, and Mask R-CNN are commonly used.
However, the one-stage frameworks like SSD and YOLO are
much more efficient (their detection speed is close to real-
time) and less sensitive to the backbone network’s quality
but have lower-end performance when the objects are small.
Actually, deeper backbone networks perform better but require
better, hence more expensive, hardware and significantly more
training data. The most known algorithms are implemtend by
common libraries such as TensorFlow [23], GluonCV [24],
and ONNX [25].

There are several standard benchmark datasets to compare
different object detection algorithms like PASCAL VOC 2007
or PASCAL VOC 2012, Microsoft COCO, ImageNet Large
Scale Visual Recognition (ILSVRC), and Open Images. In
specific contexts, such as ADAS and autonomous driving,
other datasets like KITTI should be considered. The most
popular datasets are PASCAL VOC 2007/2012, which consists
of 20 categories, and MS COCO with 80 categories (20 of
which are the PASCAL VOC ones). For further reading about
object detection, see the comprehensive survey work in [3],
[17].

Researchers in the Computer Vision area have analyzed
several DNNs, including algorithms for object detection, from
the performance perspective [26], [27], even on Raspberry
Pi devices [28], and on mobile robotics devices [29]. These
studies consider metrics that are of interest for software aging
too, including power consumption, inference time, memory.
However, none of them is focused on software aging, namely
on what happens to performance and resource consumption
metrics in the long running, which is the main goal of this
work.

III. EMPIRICAL EVALUATION

A. Reserach questions

The objective of the empirical evaluation is to figure out
if, and to what extent, object detection algorithms suffer
from aging phenomena, and under what conditions one would
observe more or less aging. We formulate the following two
questions:

• RQ1: Are object detection algorithms affected by soft-
ware aging? In particular, does software aging affect
responsiveness and resource utilization, and to what
extent?

• RQ2: How does software aging vary under different al-
gorithms, libraries/implementations, and workloads (e.g.,
datasets)?



B. Factors

The algorithms considered for our analysis are: SSD,
YOLO, Faster R-CNN, Mask R-CNN1, and R-FCN. These
are arguably the widely adopted algorithms both from industry
and from academics [3], [17].

Numerous libraries provide the principal and already trained
object detection algorithms’ implementations. Tensorflow [23],
GluonCV [24], and ONNX [25] were chosen, since they
include the above-mentioned algorithms. In addition, a Keras
[30] implementation by P. Ferrari [31] of the original SSD
model was considered (hereafter named KerasF ).

As for the data to be used as test set, we rely on a widely-
used one for comparing object detection algorithms, which
is PASCAL VOC [32] [2]. Specifically We use two sets,
PASCAL VOC 2007 test and VOC 2007 trainval.

C. Experimental Plan

The experiment consists of a series of long-running load
testing2, planned according to a Design of Experiment (DoE)
strategy. In each experimental run, the system has been exer-
cised with a long-running workload to increase the likelihood
that software aging effects accumulate over time [34]. The
duration of each test meets both these stopping criteria: run
the test for at least 12 hours, and until at least 100 samples are
collected. The total experimental time was about 300 hours.

We investigate the impact on software aging of three (con-
trollable) factors, which are:

1) Algorithm, with five possible values (a.k.a. levels): SSD,
YOLO, Faster R-CNN, Mask R-CNN, and R-FCN;

2) Implementation, with four levels: Tensorflow, GluonCV,
ONNX, and KerasF ;

3) Test dataset, with two levels: PASCAL VOC 2007 test
set (2007 test) and PASCAL VOC 2007 trainval set (2007
trainval), hereafter referred to as ”test set”.

It is worth noting that not all levels can be combined to-
gether (e.g., the YOLO algorithm is not implemented in the
Tensorflow library), hence we have an unbalanced design.
The factorial design resulting from all the allowed levels’
combinations is shown in the Table I.

D. Response variables

The response variables to be observed in each long-running
test are the aging indicators. We gather both resource con-
sumption indicators (specifically, memory consumption indi-
cators, as most of the aging literature [7]) and performance-
related indicators, which, in the case of object detection,

1To be rigorous, Mask R-CNN is an instance segmentation algorithm,
but it is implemented in almost all the object detection libraries, so it was
considered anyhow.

2Performance- , stress- and load- testing terms typically overlap each
other and there is no clear taxonomy [33]. Usually, when the workload used
for performance testing is the nominal or operational one, the practice is
referred as load-testing, whereas, when the workload is particularly intensive
or devoted to assess robustness under unspecified conditions, performance
testing is also named stress-testing. Our case fits the load-testing definition
better.

TABLE I: Experiment factorial design

ID Algorithm Library/Implem. Test set

EXP1 SSD KerasF 2007 test

EXP2 SSD KerasF 2007 trainval

EXP3 SSD GluonCV 2007 test

EXP4 SSD GluonCV 2007 trainval

EXP5 SSD Tensorflow 2007 test

EXP6 SSD Tensorflow 2007 trainval

EXP7 SSD ONNX 2007 test

EXP8 SSD ONNX 2007 trainval

EXP9 YOLO GluonCV 2007 test

EXP10 YOLO GluonCV 2007 trainval

EXP11 YOLO ONNX 2007 test

EXP12 YOLO ONNX 2007 trainval

EXP13 Faster R-CNN GluonCV 2007 test

EXP14 Faster R-CNN GluonCV 2007 trainval

EXP15 Faster R-CNN Tensorflow 2007 test

EXP16 Faster R-CNN Tensorflow 2007 trainval

EXP17 Faster R-CNN ONNX 2007 test

EXP18 Faster R-CNN ONNX 2007 trainval

EXP19 Mask R-CNN Tensorflow 2007 test

EXP20 Mask R-CNN Tensorflow 2007 trainval

EXP21 Mask R-CNN ONNX 2007 test

EXP22 Mask R-CNN ONNX 2007 trainval

EXP23 R-FCN Tensorflow 2007 test

EXP24 R-FCN Tensorflow 2007 trainval

are the Frame per Second (FPS). Specifically, the collected
indicators are as follows.

• Frames Per Second (FPS) count the number of images
classified by the algorithms in a second. This denotes the
performance in terms of inference rate.

• Resident memory size (RES) is the non-swapped physical
memory for a given task.

• Swap is the non-resident portion of a task’s address space,
used when the amount of physical memory (RAM) is full.
If the system needs more memory and the RAM is full,
inactive pages in memory are moved to the swap space.

• RealFree memory is the sum of free, buffer, and cache
memory. They represent, respectively, the amount of idle
memory, memory used as buffers, and memory used as
cache. Their sum is the memory that can be actually freed
by the OS in case it is needed [15].



• Inactive refers to memory pages that have not been
accessed “recently”, and is a further indication of memory
that can be used: in fact, inactive memory pages are
candidates for being swapped out, either pre-emptively,
before free memory pages are required, or when free
pages are (expected to be imminently) needed, and is
therefore related to swap usage.

The chosen aging indicators (FPS, RES, Swap, RealFree,
Inactive) are the response variables to observe. We consider
the slope values of the response variables over the experiment
period to analyze potential aging phenomena. It should be
noted that these response variables are not a single-point mea-
surement of the chosen metric, but they are a slope estimate
obtained from the observed samples along the experiment, and
are therefore associated with a confidence interval [34].

E. Data collection and testbed

Experiments were run on a machine equipped with 2 3GHz
CPUs, 8GB Ram, 512 SSD storage, running Ubuntu 18.04 OS.
The response variable measurements were collected through
the well-known vm-stat and top utilities, which provide
system indicators, such as virtual memory (VIRT), shared
memory (SHR), memory used (mem used), among others,
with a sampling period of 1 second.

The FPS was calculated over sets of 100 randomly-chosen
images. Specifically, a workload generator iteratively samples
100 random images (out of thousands of images from the test
datasets), and computes the FPS (i.e., how many images are
processed per second) – thus the sampling period is not fixed
for this indicator.

F. Statistical analysis

The statistical techniques to analyze the time series are:
• The Mann-Kendall (MK) test [35] to determine the pres-

ence of trends in the data. The Mann-Kendall hypothesis
is that there is no monotonic trend in data. For this reason,
if the p-value is lower than α, the hypothesis is rejected
with a confidence greater than (1 − α) (α = .05 in our
case);

• The Sen’s procedure to compute the slope of the trend
in the data [36]. It is a robust non-parametric procedure
insensitive to outliers;

• A pairwise comparison between the slopes to determine
which pairs of factor levels are significantly different
from each other, by means of the Student’s t-test for
regression lines comparison [37]. We report the number
of “wins” of one algorithm/library/dataset over another –
a “win” means a significantly less severe slope, namely
less degradation, at α = .05. Note that less severe means
bigger for FPS, RealFree and Inactive and smaller for
RES and Swap.

IV. EXPERIMENTAL RESULTS

A. RQ1: Aging trend analysis

The first question concerns whether object detection al-
gorithms suffer from software aging. Table II reports the

54%

29%

17%

Aging trend
No aging trend
Not significant

Figure 1: FPS: Proportion of experiments with aging/non-
aging/non-significant trend

value of the slope as estimated by the Sen’s procedure for
each response variable, with the boldface text highlighting the
statistically significant trends (at significance level: α = .05).
Moreover, the estimation of the depletion of each resource (or
degradation of the FPS value) after 12 hours of execution is
reported. For instance, in EXP10 the FPS after 12 hours is
estimated to be 1.16E-01 slower than at the beginning of the
experiment, and the RES memory to be depleted by 6.33E+05
KB (i.e., 633 MB). A first remark is that aging effects
manifest themselves in the majority but not all the experiments
(details are discussed in the next section), both as performance
degradation (i.e., FPS) and as memory consumption. Looking
at the mean over all the experiments, aging effects seem to be
negligible in terms of FPS (with a slow down of -1.49E-02 in
12 hours) while very severe in terms of memory depletion (all
the indicators tell that depletion is hundreds of MB as order
of magnitude, and even more for Swap space).

1) Performance degradation: Performance is assessed by
the FPS indicator. Figure 1 summarizes the number of times
an aging effect is present. Overall, in 13 out of 24 experiments
the slope are negative, in 4 out of 24 are non-significant, while
in the remaining 7 out of 24 the slope are positive.

Although there is a trend in many cases, the extent of the
degradation (i.e., the slope) is not too remarkable. However, a
progressive trend can be harmful in long-running applications
even if the trend is slight. For example, in EXP2 (KerasF
SSD on 2007 trainval), after the first classifications, the FPS
value is around 2.1396. Instead, the last observation’s value is
2.1187 (after more than 900 observations in 12 hours). With
the slope being equal to -2.05E-05, the final estimated FPS is
2.1211, close to the actual value. If we ideally consider the
estimate after 54,000 observations (corresponding to about one
month), the FPS would be 1.1067 lower, which is more than a
half of the original value (clearly, the much more pronounced
trends in memory consumption will likely cause aging failures
very earlier). Long-running applications would thus experience
problems even with small but constant trends.



TABLE II: Slope value of the aging trend for the response variables. Boldface text indicates the trend is significant (p-value
<0.05). The expected depletion of the indicator after 12 hours is also reported (e.g., in EXP1, the FPS slows down by 3.13E-02
after 12h). The ’/’ symbol indicates the slope is estimated to be 0. For RES and SWAP, the bigger the more sever aging is;
the opposite for FPS, RealFree and Inactive

ID Frame per Second (FPS) RES (Kb) SWAP RealFree Inactive

Slope 12h depl. Slope 12h depl. Slope 12h depl. Slope 12h depl. Slope 12h depl.
(FPS/sample*) (FPS) (KB/s) (KB) (KB/s) (KB) (KB/s) (KB) (KB/s) (KB)

EXP1 -7.25E-05 -6.53E-02 / / 1.67E+01 7.23E+05 7.32E-01 3.16E+04 / /

EXP2 -2.05E-05 -1.85E-02 / / 4.35E+00 1.88E+05 -1.28E+01 -5.55E+05 / /

EXP3 -7.44E-05 -6.70E-02 -3.03E+00 -1.31E+05 2.20E+02 9.48E+06 -2.06E+00 -8.92E+04 -2.53E+00 -1.09E+05

EXP4 -6.33E-05 -5.70E-02 -3.57E+00 -1.54E+05 2.28E+02 9.84E+06 1.12E+00 4.82E+04 -2.60E+00 -1.12E+05

EXP5 -4.99E-05 -4.49E-02 -7.92E+00 -3.42E+05 5.88E+00 2.54E+05 1.09E+00 4.70E+04 -1.79E+01 -7.74E+05

EXP6 5.57E-06 5.01E-03 -2.58E+01 -1.11E+06 1.52E+01 6.57E+05 4.92E+00 2.13E+05 1.13E+00 4.88E+04

EXP7 8.11E-06 7.30E-03 1.38E+00 5.96E+04 3.97E-01 1.71E+04 -2.38E-01 -1.03E+04 4.10E+00 1.77E+05

EXP8 2.42E-05 2.18E-02 -2.11E+00 -9.11E+04 4.12E+00 1.78E+05 -2.20E+01 -9.49E+05 -2.12E+01 -9.18E+05

EXP9 -1.09E-04 -9.81E-02 -1.85E+00 -7.97E+04 2.84E+02 1.23E+07 -8.61E-01 -3.72E+04 -9.61E-01 -4.15E+04

EXP10 -1.29E-04 -1.16E-01 -1.46E+01 -6.33E+05 3.80E+02 1.64E+07 -4.60E-01 -1.99E+04 -4.23E-01 -1.83E+04

EXP11 -2.93E-06 -2.64E-03 1.63E-01 7.04E+03 2.47E+00 1.07E+05 1.96E+01 8.46E+05 -3.12E+01 -1.35E+06

EXP12 5.90E-05 5.31E-02 2.31E+00 9.98E+04 0.00E+00 0.00E+00 -4.55E+00 -1.96E+05 -3.59E+00 -1.55E+05

EXP13 -2.59E-06 -2.33E-03 4.23E+00 1.83E+05 1.12E+02 4.83E+06 6.39E+00 2.76E+05 1.49E+00 6.43E+04

EXP14 -2.70E-06 -2.43E-03 8.03E+00 3.47E+05 1.34E+02 5.77E+06 -2.84E+00 -1.23E+05 2.29E+00 9.88E+04

EXP15 5.61E-06 5.05E-03 -2.87E+00 -1.24E+05 4.71E+00 2.03E+05 2.01E-01 8.68E+03 9.94E+00 4.29E+05

EXP16 -1.63E-04 -1.47E-01 -6.28E+00 -2.71E+05 8.97E+00 3.87E+05 9.61E+00 4.15E+05 -4.10E+01 -1.77E+06

EXP17 -3.73E-06 -3.36E-03 9.57E+00 4.14E+05 5.41E+01 2.34E+06 -4.56E+00 -1.97E+05 6.72E+00 2.90E+05

EXP18 1.59E-04 1.43E-01 4.42E+02 1.91E+07 2.53E+02 1.09E+07 -1.53E+01 -6.59E+05 7.58E+01 3.27E+06

EXP19 1.27E-04 1.14E-01 -4.94E-01 -2.13E+04 7.17E+00 3.10E+05 6.33E+00 2.73E+05 -4.23E+00 -1.83E+05

EXP20 -4.51E-05 -4.06E-02 -2.67E+01 -1.15E+06 9.97E+00 4.31E+05 1.33E+01 5.75E+05 6.22E+01 2.69E+06

EXP21 2.09E-05 1.88E-02 1.09E+01 4.71E+05 4.60E+01 1.99E+06 1.62E+01 6.98E+05 5.94E+00 2.57E+05

EXP22 -3.54E-05 -3.19E-02 4.66E+01 2.01E+06 6.50E+01 2.81E+06 -6.62E+01 -2.86E+06 -1.21E+01 -5.25E+05

EXP23 1.96E-06 1.76E-03 -1.60E+01 -6.90E+05 3.48E-02 1.50E+03 -3.19E+00 -1.38E+05 -1.54E+00 -6.64E+04

EXP24 -3.58E-05 -3.22E-02 -1.00E+02 -4.32E+06 5.50E+01 2.38E+06 8.25E+01 3.57E+06 3.35E+01 1.45E+06

Mean -1.66E-05 -1.49E-02 1.43E+01 6.16E+05 7.96E+01 3.44E+06 1.12E+00 4.85E+04 2.90E+00 1.25E+05
St.Dev 7.13E-05 6.41E-02 9.88E+01 4.27E+06 1.11E+02 4.77E+06 2.39E+01 1.03E+06 2.62E+01 1.13E+06

*The sampling periof for FPS is not constant, as it is calculated over sets of 100 randomly-chosen images (cf. with Section III-E)

2) Resource consumption: In terms of resource consump-
tion indicators, similar considerations apply in terms of propor-
tion of experiments with aging trends, but with considerably
more pronounced slopes:

• RES: eight experiments show an increase in resident set
size;

• SWAP: all the experiments but EXP12 (95.83%) exhibit
a positive trend: this means that the swap space increase
is a common effect;

• RealFree memory (i.e., Free plus Buffer plus Cache): half
of the experiments (12) exhibit a reduction of the real free
memory, since the slopes are negative;

• Inactive: half of the experiments (12) have a trend in
inactive memory.

Figure 2 summarizes the percentage of experiments having

a significant trend on the considered indicators, while the
average slope per indicator are at the bottom of Table II.

While the swap space aging trend is consistently present
across all the experiments and with remarkable trend, the
memory indicators are present in about half of the experiments,
with the most severe average trend being manifested as RES
depletion.

3) Trends by factor: The contribution of each factor is pre-
sented in Table III. It reports the average slopes per factor, for
all the indicators, and considering only statistically significant
experiments. Boldface text highlights the most severe trends. A
general consideration is that every algorithm, library, dataset is
somehow affected by some aging phenomena, namely, there
is no configuration that is aging-free for all the indicators.
This can be inferred both in terms of avearge slopes (Table



TABLE III: Average slope value for each factor and response
variable. Boldface text highlights the most severe trends

(a) Average trend by algorithm

Average slope
FPS RES Swap RealFree Inactive

SSD -3.03E-05 -6.84E+00 6.17E+01 -4.28E+00 -6.51E+00

YOLO -5.96E-05 -4.73E+00 2.22E+02 3.43E+00 -9.04E+00

Faster
R-CNN -2.33E-06 7.57E+01 9.44E+01 -1.08E+00 9.20E+00

Mask
R-CNN 1.69E-05 7.59E+00 3.20E+01 -7.61E+00 1.29E+01

R-FCN -3.58E-05 -5.80E+01 2.75E+01 3.97E+01 1.60E+01

(b) Average trend by library

Average slope
FPS RES Swap RealFree Inactive

KerasF -4.65E-05 - 1.05E+01 -1.28E+01 -

GluonCV -6.35E-05 -1.80E+00 2.22E+02 2.10E-01 4.60E-01

ONNX 3.93E-05 7.29E+01 6.07E+01 -9.63E+00 3.04E+00

T.Flow -2.68E-05 -2.32E+01 1.37E+01 1.64E+01 5.27E+00

(c) Average trend by dataset

Average slope
FPS RES Swap RealFree Inactive

2007
test -1.9E-05 -6.10E-01 6.28E+01 3.86E+00 -2.74E+00

2007
trainval -2.06E-05 2.00E+01 1.05E+02 -1.05E+00 8.54E+00

RES SWAP RealFree Inactive
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Figure 2: Percentage of aging-affected experiments

III) and as number of aging-suffering experiments (looking at
the rows of Table II, there is no aging-free experiment). In the
next Section, with RQ2 we detail the within-factor differences.

B. RQ2: Aging analysis by factor

In the previous section, software aging has been proven to
exist across several algorithms, implementations, and datasets.

Nevertheless, the by-factor aging trends show that there are
indeed differences between the considered factors. For ex-
ample, some libraries exhibit more aging effects than others.
Thus, to answer RQ2, we investigate whether a specific factor
has a greater impact on performance degradation or resource
consumption.

1) Algorithms: Looking at the algorithms, Table III(a)
highlights that, averaging over all the experiments wherein
the algorithm is used, YOLO has the worst average trend of
FPS, Swap space and Inactive memory, while Faster R-CNN
has the worst RES average trend, and Mask R-CNN the worst
free memory average trend.

Averages however can be affected by some experiments with
a particularly pronounced trend (i.e., outliers). Therefore, we
compare each pairs of algorithms (implemented on a same
library and experimented on the same dataset) statistically
by counting how many times the slope value is significantly
better than another (by t-test for slope values comparison of
regression lines [37]) – i.e., what we called a a win. When the
difference is not significant, we state there is a tie between the
two. Table IV reports the number of wins/ties/losses for each
pair of algorithms.3 Note that the total number of comparisons
for a given algorithm differs from each other, as the design
is unbalanced (e.g., there are 8 experiments with SSD and
4 with YOLO) and, as said in footnote 3, some pairwise
comparisons cannot be done. Figure 3 summarizes the total
result per algorithm, in terms of number of wins/losses/ties,
and commented hereafter.

a) FPS: Given the same library and dataset, performance
of YOLO turns out to be worse in 70% (7 out of 10) of
the pairwise comparisons: 3 against SSD, 3 against Faster R-
CNN, 1 against Mask R-CNN (Table IV). The others have
comparable number of wins/losses, in approximately half of
the comparisons.

b) RES: Given the same library and dataset, YOLO wins
80% of comparisons. Despite its worst performance in terms
of FPS, YOLO is the algorithm that makes less use of resident
set size. SSD is good also in this indicator, winning most of
comparisons (62.5%), while R-FCN is again in the middle
(50% of wins). The worst one in terms of RES is Faster R-
CNN, with only one win and one tie out of sixteen.

c) SWAP: In terms of SWAP consumption, there is a
substantial balance, with R-FCN being slighlty superior with
4 wins out of 6 at the expense of Mask-R-CNN (4 out of 12).
SSD, Faster R-CNN, and YOLO have similar performances
(50%, 56.25%, and 50%, respectively). While YOLO had
exhibited the greatest average swap consumption, Mask-R-
CNN has the worst swap consumption more often.

d) RealFree: : SSD and Faster R-CNN consume more
memory more often, as they win only 37.5% of comparisons.
While this is coherent with RES for Faster R-CCNN, it is
not for SSD (for which RES had slightly better values). This

3The “*” symbol means the comparison is not possible (there is no com-
parison between YOLO and R-FCN algorithms with the same implementation
and dataset, since R-FCN is only implemented in Tensorflow, but Tensorflow
does not implement YOLO)



TABLE IV: Pairwise algorithms comparison. #wins of row al-
gorithm over column algorithm / total #comparisons (#number
of ties)

YOLO Faster Mask R-FCN
R-CNN R-CNN

SSD

FPS 3/4 2/6 2/4 (1) 1/2
RES 2/4 (1) 0/6 1/4 2/2
Swap 1/4 4/6 1/4 (1) 2/2
RealFree 1/4 3/6 1/4 1/2
Inactive 1/4 1/6 0/4 0/2

YOLO

FPS 0/4 (1) 1/2 *
RES 0/4 0/2 *
Swap – 2/4 0/2 *
RealFree 2/4 (1) 2/2 *
Inactive 0/4 1/2 *

Faster
R-CNN

FPS 1/4 0/2 (1)
RES 2/4 (1) 2/2
Swap – – 2/4 1/2
RealFree 1/4 1/2
Inactive 4/4 2/2

Mask
R-CNN

FPS 1/2 (1)
RES 2/2
Swap – – – 1/2
RealFree 1/2
Inactive 1/2

implies that when SSD runs, the usage of cache and buffers
impact negatively on the real memory free (e.g., they are less
used). Mask R-CNN and R-FCN are in the middle, while
YOLO, coherently with RES, wins 70% of the comparisons.

e) Inactive: Faster R-CNN wins almost every time
(93.75%), coherently with the limited trend in the Swap space
(in fact, inactive pages are the candidates pages to be swapped
out). Mask R-CNN and R-FCN are, again, in the middle
(winning half the comparisons), followed by YOLO. SSD,
although the average trend is the second best one, loses most
of comparisons; together with results on RealFree, it is likely
that paging is managed differently when SSD is executed.

2) Libraries: For libraries, Table III(b) highlights that,
averaging over all the experiments wherein the libraries used,
KerasF has the worst RealFree average trend, while GluonCV
has the worst average trend of FPS and Swap, and ONNX has
the worst RES average trend.

Table V reports the number of wins/ties/losses for each pair
of libraries. Figure 4 summarizes the total results per library.

a) FPS: Given the same algorithm and the same dataset,
GluonCV and KerasF are the implementations that cause more
performance degradation, respectively with only 8.33% and
16.67% of wins. Tensorflow is in the middle, while ONNX
implementations give the best FPS more often (9 out of 14).
This is also confirmed by the average trend in Table III.

TABLE V: Pairwise libraries comparison. #wins of row library
over column library / total #comparisons (#number of ties)

GluonCV TensorFlow ONX

KerasF

FPS 1/2 (1) 0/2 0/2
RES 1/2 0/2 2/2
Swap 0/2 1/2 2/2
RealFree 1/2 0/2 2/2
Inactive 0/2 1/2 2/2

GluonCV

FPS 1/4 0/6 (1)
RES 4/4 0/6
Swap – 2/4 5/6
RealFree 2/4 4/6
Inactive 2/4 3/6

TensowFlow

FPS 1/6 (2)
RES 0/6
Swap – – 2/6
RealFree 5/6
Inactive 3/6

TABLE VI: Pairwise dataset comparison. #wins of row dataset
over column dataset / total #comparisons (#number of ties)

2007 trainval

2007 testval

FPS 6/12 (3)
RES 3/11 (2)
Swap 11/13
RealFree 6/13 (1)
Inactive 3/11 (1)

b) RES: Tensorflow has the least RES-consuming imple-
mentations, since it wins every comparison; on the opposite
side, ONNX, which had the best FPS, systematically give the
worst RES consumption.

c) SWAP: GluonCV is the implementation that causes
more SWAP consumption (25% of wins), followed by KerasF
(50%) and Tensorflow (58.33%). The best one in terms of
swap consumption is ONNX.

d) RealFree: Results confirm the RES consumption, with
Tensorflow being the best one (75% of wins), followed by
GluonCV (58.33%), and KerasF (50%), and ONX (21.42%).

e) Inactive: There is no difference among the libraries
in the Inactive pages trends, all the other factors being equal.

3) Datasets: Table VI reports the number of
wins/ties/losses, given the same algorithm and library,
between two datasets. Figure 5 summarizes the total result
per dataset.

The use of Pascal VOC 2007 test entails better performance
for the algorithms in terms of FPS and, especially, of swap
space consumption, while a slightly worse performance in
terms of memory consumption compared to using Pascal VOC
2007 training.
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Figure 3: Summary of wins, ties and losses, for the compared algorithms, per indicator

4) Discussion: Tables VII to IX summarize the results of
by-factor aging analysis. For each aging indicator and factor,
a rank is reported. The first item in the ranking is the least
consuming/degrading one.

A first remark is that in no case there is one level (al-
gorithm/library/dataset) systematically better than others for
all the indicators. On the other hand, clear patterns allow
distinguishing in what aspects a level is better than another.
For instance, in the case of algorithms (Table VII) Faster
R-CNN has top-rated FPS trends, a limited SWAP usage
increase (corroborated by a smaller inactive pages trend) but
a more severe memory-related trends (RES and RealFree),
while YOLO behaves oppositely. SSD has good FPS, SWAP
and RES consumption, but it likely causes a worse usage
of caching/buffering (as witnessed by Inactive and RealFree,
which depend on caching/buffering). One more consideration
is about the importance of the indicator. Clearly, FPS is the in-
dicator directly perceived by end users, and is very important;
on the other hand, FPS average trends are less pronounced than
memory-related trends and, in a very long running application,
the latter could cause more severe problems even before an
FPS degradation is noticed by end users. The choice of the
algorithm would then depend on how often the system is
rejuvenated, on the FPS requirements and on the available

hardware resources.
As for the implementations, the libraries differ in the

various indicators but with less heterogeneously: ONNX and
Tensorflow exhibit slower aging effects in all the indicators
(except ONX for RealFree), while GluonCV and KerasF have
more severe trends. GluonCV has good RES and RealFree
trends, but it experienced very severe trends in the swap usage
(the average if 2.22E+02, Table III).

As for the dataset, it even produces a difference, contrarily
to the expectation, as there is a smaller RES and Inactive aging
trends when using 2007 trainval and a bigger trend for FPS,
SWAP and RealFree.

As different images were not expected to produce a different
ranking in the indicators, we ran a further experiment (EXP25)
to investigate the impact of the classified images. In this
experiment, we replicate the configuration of EXP1, but use a
new dataset built as follows: we first merged the two datasets,
then we classified all the images four times (to account for
randomness) and measure the classification (i.e., inference)
time. For each repetition, we get the 20 images that required
longer classification time. Finally, we build a unique list
including the images, if any, present in the top-20 list of every
repetition, then the images present in all but one repetition, and
so forth. The output is a list of 60 images, ordered by how
many times they were present in the repetitions’ lists.
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Figure 4: Summary of wins, ties and losses, for the compared libraries, per indicator

TABLE VII: Summary of comparison between algorithms (ranking from the least to most aging-suffering)

FPS SWAP RES RealFree Inactive

1. Faster R-CNN 1. R-FCN 1. YOLO 1. YOLO 1. Faster R-CNN

2. SSD 2. Faster R-CNN 2. SSD 2. Mask R-CNN 2. Mask R-CNN

3. Mask R-CNN 3. SSD 3. R-FCN 3. R-FCN 3. R-FCN

4. R-FCN 4. YOLO 4. Mask R-CNN 4. Faster R-CNN 4. YOLO

5. YOLO 5. Mask R-CNN 5. Faster R-CNN 5. SSD 5. SSD

TABLE VIII: Summary of comparison between libraries (ranking from the least to most aging-suffering)

FPS SWAP RES RealFree Inactive

1. ONNX 1. ONNX 1. Tensorflow 1. Tensorflow 1. ONNX

2. Tensorflow 2. Tensorflow 2. GluonCV 2. GluonCV 2. Tensorflow

3. KerasF 3. KerasF 3. ONNX 3. KerasF 3. GluonCV

4. GluonCV 4. GluonCV 4. KerasF 4. ONNX 4. KerasF

With this dataset, we ran the new long-running experiment
(EXP25), whose results are shown below.

Table X shows a comparison between EXP1 and EXP25.
EXP25 is confirmed to exhibit a greater aging trend in terms

of FPS; it also has a more severe trend in terms of memory
consumption (as per the RealFree indicator), while this does
not reflect on a more severe swap consumption. The type of
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Figure 5: Summary of wins, ties and losses, for the compared datasets, per indicator

TABLE IX: Summary of comparison between datasets (ranking from the least to most aging-suffering)

FPS SWAP RES RealFree Inactive

1. 2007 test 1. 2007 test 1. 2007 trainval 1. 2007 test 1. 2007 trainval

2. 2007 trainval 2. 2007 trainval 2. 2007 test 1. 2007 trainval 2. 2007 test

images is likely to have a systematic impact on aging trends.
Some of the top-20 most time-consuming images of 2007 test
are displayed in Figure 6.

The more apparent commonalities in this set of images are:
• they are less illuminated;
• there are subjects rotated or in the background;
• some objects are covering the main subjects;
• there are smaller subjects;
• in general, the subjects are in less natural positions.
A deeper investigation on the features of the images im-

pacting more on the inference time is left to future work.

C. Threats to validity

In this work, the experimental plan covered only a small,
yet representative, subset of each factor’s possible levels (i.e.,
algorithms, libraries, dataset). The selection relied firstly on
the cited surveys in the object detection area [2], [3], [17]
and, secondly, on the ease of setting up the experiments

and the time required to complete all of them in a factorial
design. Besides the three main libraries (Tensorflow, ONNX,
GluonCV, which provide several algorithms), we also added
a customized implementation of the SSD algorithm in Keras.
This is not at the same level of the other three libraries, as
Keras depends on TensorFlow. The Keras results, which refer
just to SSD in only EXP1 and EXP2, should be interpreted
to judge the particular implementation of the SSD algorithm
rather than aging due to the underlying library.

Results are based on a single, although long, time series
for each experimental combination. Although the slope value
of each of the 24 experiments were accompanied by the
non-parametric 95% confidence interval, which accounts for
noise in the data, the replication of each experiment would
have provided indeed more accurate results. In other words,
repeating a run could lead to different results, but it should
be considered that a great part of the variance is already
accounted for by the long duration of the experiment, and trend



TABLE X: A comparison between EXP1 and EXP25 (‘/’
means the slope is 0)

EXP1 CI Lower CI Upper Sen’s slope

FPS -8,11E-05 -6,39E-05 -7,25E-05

RES / / /

SWAP 16,5293 16,9631 16,7476

RealFree -2,42132 4,39689 0,73197

Inactive / / /

EXP25 CI Lower CI Upper Sen’s slope

FPS -2,70 E-05 -1,91 E-05 -2,30 E-05

RES -22,3179 -17,2162 -19,7703

SWAP 7,2477 7,9292 7,5640

RealFree -13,1973 -9,0185 -11,0726

Inactive 15,4199 17,2834 16,5032

Figure 6: EXP25: The most time-consuming images

values within the slope’s confidence intervals are expected
with probability 0.95 when repeating a run.

Besides, the experiments’ duration is inevitably limited.
Although it was far enough to observe aging phenomena,
it goes without saying that a longer duration would further
improve the accuracy of aging phenomena assessment (e.g., a
crash could have been observed).

Finally, changing the hardware configuration, the relative
performance of the algorithms or libraries could change, a hy-
pothesis that needs to be investigated with further experiments.

V. CONCLUSIONS

This paper experimentally investigated the phenomenon
of software aging in deep learning object detection algo-
rithms. It also showed how software aging manifests under
different algorithms, libraries/implementations and datasets.
The results clearly showed that object detection applications
exhibit software aging. There is no single aging-free algorithm,
implementation, or dataset. Statistical analysis confirmed that
performance deteriorates in more than half of the experiments,
and memory consumption increases in all aging indicators
collected. It also revealed that some libraries exhibited more
aging effects than others.

As future works, we plan to extend the experimental plan
with new applications, algorithms, libraries, and datasets. We
also plan to identify the causes of this phenomenon to better
understand the cause-effect relationships (e.g., investigating
the bug repositories for the implementations looking for aging-
related bugs), as well as propose software rejuvenation solu-
tions tailored for this domain.
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