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Tweedie random variables are exponential dispersion models that have power unit

variance functions, are infinitely divisible, and are closed under translations and scale

transformations. Notably, a Tweedie random variable has an indexing/power param-

eter that is key in describing its distribution. Actuaries typically set this parameter to

a default value, whereas R’s tweedie package provides tools to estimate the Tweedie

power via maximum likelihood estimation. This estimation is tested on simulations

and applied to an auto severity dataset and a home loss cost dataset. Models built

with an estimated Tweedie power observe lower Akaike Information Criterion rela-

tive to models built with default Tweedie powers. However, this parameter tuning

only marginally changes regression coefficients and model predictions. Given time

constraints, we recommend actuaries use default Tweedie powers and consider alter-

native feature engineering.

ii



Acknowledgments

First and foremost, I want to acknowledge the time and effort my thesis defense

committee members put in to support my education. I appreciate Peter Ralph and

Samantha Hopkins for reading this thesis and giving thoughtful feedback. Most im-

portantly, Chris Sinclair was an indispensible advisor to me. He met with me weekly

for a year, worked through proofs with me, exposed me to new mathematics, and

assisted in the editing process. I always left our meetings more inspired to pursue

mathematics.

Next, I want to thank my former manager Thomas Wright. He supervised my

summer project where I applied geographic information systems (GIS) to territorial

ratemaking, encouraged me to study generalized linear modeling, provided literature

recommendations, and helped me receive approval to use the encrypted Liberty Mu-

tual dataset seen in this thesis. As great bosses do, Tommy supported my drive to

do research and challenge the way we do things.

Lastly, I want to thank my parents and my brother for their unconditional love.

I have not been the easiest child at times. Show me a math student who has been

such. My mom sometimes texts Matt and me: “You two are my best sons.” I respond:

“Mom, that’s a vacuous statement. Matt and I are your only two sons. We are the

best, the worst, and everything in between.”

iii



Table of Contents

Foreword 1

1 The Tweedie Family and Linear Models 4

2 Numerically Approximating Tweedie Densities 33

3 Estimating the Power Parameter 41

4 Case Study: Automobile Bodily Injury Claims 45

5 Case Study: Liberty Mutual Home Fire Perils 50

6 Conclusion 55

Appendix 57

References 81

iv



List of Figures

1 Bell Curve Interpretation of µ and σ. . . . . . . . . . . . . . . . . . . 7

2 100,000 Simulated N(0,1) Random Variables . . . . . . . . . . . . . . 13

3 100,000 Simulated Gamma(α = 1, β = 1) Random Variables . . . . . 14

4 100,000 Simulated Poisson(λ = 2) Random Variables . . . . . . . . . 14

5 10,000 Simulated Tw1.33(2, 10) Random Variables . . . . . . . . . . . 20

6 10,000 Simulated Tw1.66(10, 100) Random Variables . . . . . . . . . . 21

7 Best Fit Line for Positively Correlated Data . . . . . . . . . . . . . . 26

8 Best Fit Line for Negatively Correlated Data . . . . . . . . . . . . . . 26

9 Locally-Weighted Regression Curve for Positively Correlated Data . . 27

10 10 Million Simulated Uniform Random Variables . . . . . . . . . . . . 32

11 Simple Damped Cosine Wave . . . . . . . . . . . . . . . . . . . . . . 36

12 More Complex Damped Cosine Wave . . . . . . . . . . . . . . . . . . 36

13 Highly Oscillatory Damped Cosine Wave . . . . . . . . . . . . . . . . 36

14 Profile Log-likelihood Plot for AutoBi Data . . . . . . . . . . . . . . 46

15 Distribution of Tw2.3 Severity Model . . . . . . . . . . . . . . . . . . 48

16 Distribution of Gamma Severity Model . . . . . . . . . . . . . . . . . 48

17 Distribution of AutoBi Losses . . . . . . . . . . . . . . . . . . . . . . 49

18 Profile Log-likelihood Plot for LM Home Fire LC Data . . . . . . . . 51

19 Distribution of Twp Loss Ratio Predictions . . . . . . . . . . . . . . . 53

20 Non-zero Loss Ratios for LM Home Fire Policies . . . . . . . . . . . . 53

21 Relationship between α and p for p ≤ 0 . . . . . . . . . . . . . . . . . 75

22 Relationship between α and p for p > 2 . . . . . . . . . . . . . . . . . 75

v



Foreword

Mathematics is a cumulative study. I have studied math continuously for close to

16 years. The material I present in this thesis draws from advanced probability

courses I took during my third year of undergraduate schooling, lessons I learned in

statistical modeling as an actuarial intern with Liberty Mutual, and a year’s worth

of independent research. I do not expect the reader to have any prior exposure to

the Tweedie family of distributions or to other statistical concepts discussed in this

paper. One aim of this work is to introduce the mathematically literate person to

a new class of probability distributions and to explain why actuaries incorporate

these distributions into insurance models. On the other hand, I expect the reader

to have some basic knowledge of probability and statistics. This text is written for

an audience of STEM (Science, Technology, Engineering, and Mathematics) students

and professionals who have taken one or two undergraduate courses in statistics. More

precisely, this thesis speaks to a niche audience of actuaries.

The main topic of this thesis is the Tweedie family of probability distributions.

Bent Jorgensen named this family in honor of the twentieth century hospital physician

and statistician Maurice Charles Kenneth Tweedie [15]. Tweedie first discussed these

distributions in his 1947 paper “Functions of a Statistical Variate with Given Means,

with Special Reference to Laplacian Distributions.” I focus on the Tweedie family

because it includes many famous distributions that are used as response distributions

in generalized linear models (GLMs). Actuaries use GLMs to predict the frequency

of claims, the severity of claims, and the combined loss costs. Much of my research

follows in the footsteps of prominent mathematicians who have written on the Tweedie

family and GLMs: MCK Tweedie, Bent Jorgensen, Peter Dunn, Gordon Smyth, John

Nelder, and Robert Wedderburn.

The idea for this project came by accident. During the spring of 2017, Professor

Chris Sinclair and I had been reading about and discussing renewal processes. Then,



while working at Liberty Mutual in Seattle during the summer of 2017, I stumbled

upon some SAS code that specified a model’s response distribution as Tweedie. Out

of curiosity, I browsed the Internet to learn more about this new distribution. I

quickly noticed how some Tweedie distributions relate to Wald’s equation–something

Chris and I had previously talked about. Eureka! I had found a connection between

my undergraduate research and my summer internship. When I pressed some of my

colleagues at Liberty Mutual to learn more about Tweedie distributions and why we

set the parameter to a particular value, I came out of the conversations dissatisfied.

As a result, I redirected my research and set out to investigate the Tweedie power

parameter in more detail.

Besides providing educational value to the reader, this thesis proposes methods

to improve Tweedie severity and loss cost models. Actuaries often exercise judgment

in selecting the power parameter. This judgment could mean choosing the power

parameter to be 1.5 for pure premium models and 2 or 3 for severity models. But

what if the empirical data suggests a different power parameter to be more likely?

Would picking the parameter value that better fits the underlying data enhance the

predictive power of the model? How easy is it to find an optimal power parameter?

I address these questions in the applied work of this paper.

Chapter 1 introduces the mathematics behind the Tweedie family and GLMs.

This section reads like a math textbook. It is my aim to bring this material down

to a level that is accessible to the undergraduate statistician. Chapter 2 summarizes

some papers by Peter Dunn and Gordon Smyth where they use numerical approxima-

tion techniques to evaluate Tweedie densities because, in general, Tweedie random

variables don’t have a closed form density. Their work enables contemporary statis-

ticians to use Tweedie distributions in R. In Chapter 3, I design an experiment to

evaluate if estimating the Tweedie power improves a predictive model. Chapters 4

and 5 report the results of the experiment. In Chapter 6, I give an interdiscplinary
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analysis of estimating the Tweedie power in a business setting. All in all, I hope that

you find something interesting or useful about the Tweedie family in this thesis.

3



1 The Tweedie Family and Linear Models

Applied probability assumes empirical data behaves according to a theoretical distri-

bution. For example, I could claim by making statistical arguments that a Poisson

random variable describes the annual count of earthquakes near Seattle. A Poisson

random variable is characterized by the density function

f(y;λ) =


e−λλy

y!
, ∀y ∈ N

0, otherwise

.

There are many distributions in probability theory: binomial, hypergeometric, nega-

tive binomial, Cauchy, normal, et cetera. Random variables define probability distri-

butions, density functions, and other useful functions such as the moment-generating

function and the cumulant-generating function. These random variables come with

parameters that determine the shape of such functions. For instance, a Poisson ran-

dom variable comes with the parameter λ and a normal random variable comes with

parameters µ (mean) and σ2 (variance). In building a statistical model, the mod-

eler must select a distribution to describe the empirical data and set values for some

parameters.

Actuaries use statistics, financial mathematics, and business intelligence to price

insurance policies and to reserve money for claim payments. These insurance profes-

sionals often build statistical models to solve regression problems. Regression analysis

examines the relationship between a dependent target variable and independent ex-

planatory variables.

The dependent variable in an insurance model is typically either claim frequency,

claim severity, or loss costs. Claim frequency measures how many claims a poli-

cyholder files. Actuaries build Poisson models to predict claim frequency. Claim

severity measures the monetary cost of a claim. A claim severity dataset contains

4
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only observations of filed claims. Actuaries make gamma or inverse-Gaussian models

to predict claim severity. Loss costs measure the amount an insurer pays to indem-

nify a policyholder. Most of the time, policyholders do not file claims. Actuaries use

Poisson-gamma models to predict loss costs.

Maurice Charles Kenneth (MCK) Tweedie put forward a framework that encom-

passes all these random variables in one class [26, 27]. We call that class of random

variables the Tweedie family and the distributions within it Tweedie distributions.

The Tweedie family is a robust family of probability distributions. It includes a dis-

crete random variable (Poisson), a mixed random variable (Poisson-gamma), continu-

ous random variables, and stable random variables. Tweedie models are implemented

often in regression analysis, but they are seldom understood past a superficial level.

By providing more context, I hope to inspire actuarial modelers to be more accurate

and creative in their application of Tweedie models.

Besides actuarial science, other discliplines employ Tweedie models. Tweedie

models have been used to describe monthly rainfall in Australia [12] and to perform

catch per unit effort analyses for fisheries research [24]. MCK Tweedie cites himself

and other statisticians who implement Tweedie models in the biological and medical

sciences [26]. Studying this family in more detail will be fruitful for many researchers,

not just actuaries.

Exponential Dispersion Models

The Tweedie family is a subset of a class of random variables described by Bent

Jorgensen in The Theory of Dispersion Models. As a result, we must first cover expo-

nential dispersion models (EDMs) before we discuss the Tweedie family. Jorgensen

presents two descriptions of EDMs in his monograph: one axiomatic and one con-

structive. The axiomatic version defines EDMs without justifying the origins of the

distributions; the constructive version begins with a cumulant function and builds the
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theory from there. (Later, Jorgensen proves that the axiomatic definition fits with

the constructive definition.) Here we provide the axiomatic definition for exponential

dispersion models [15].

Ideas inspire more ideas. This adage applies to the development of exponential

dispersion models. EDMs maintain the structure of the normal distribution. In order

to talk about this structure in abstract terms, we must establish some definitions.

Definition 1.1. Let f be a real-valued density function for the random variable X . The

support of X is the set of elements in the domain of f that do not map to zero. The convex

support of X is the smallest interval containing the support.

Definition 1.2. Let C be a convex support and let Ω be the interior C. Ω and C are intervals

satisfying that Ω ⊂ C ⊂ R. A unit deviance is a function d : C × Ω→ R that satisfies the

following:

(i) d(y; y) = 0, ∀y ∈ Ω;

(ii) d(y;µ) > 0, ∀y 6= µ.

Remark. This definition looks familiar to the definition of a metric, except without the

triangle inequality. Essentially, the unit deviance is a tool to measure distance.

Equipped with these two definitions, we are ready to present the definition of an

exponential dispersion model. Consider the density function for a normal random

variable N(µ, σ2):

f(y;µ, σ2) =
1√

2πσ2
exp

{
− 1

2σ2
(y − µ)2

}
.

Density functions for exponential dispersion models share this format.
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Definition 1.3. An exponential dispersion model EDM(µ, σ2) is a probability distribution

whose density function with respect to a suitable measure has the form

f(y;µ, σ2) = a(y;σ2) exp

{
− 1

2σ2
d(y;µ)

}
, y ∈ C

where a ≥ 0 is a suitable function, d is a unit deviance of the form d(y;µ) = yg(µ) +

h(µ) + k(y), C is the convex support, µ ∈ Ω = int C, and Ω is an interval.

Remark. This definition mentions measure theory. This thesis doesn’t cover probability

from a measure-theoretic lens. We consider a(y;σ2) suitable if the axioms of probability

hold. It suffices to check that ∫
f(y;µ, σ2) dy = 1.

Note. We call µ the position parameter and σ2 the dispersion parameter. This language and

notation draws from normal theory. Figure 1 shows the normal bell curve [2]. µ is where

the center of mass of the distribution is located. σ2 describes how spread out the mass of

the distribution is.

Figure 1: Bell Curve Interpretation of µ and σ.
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Proposition 1.1. The following distributions are exponential dispersion models:

(i) normal distribution;

(ii) Poisson distribution;

(iii) binomial distribution;

(iv) gamma distribution.

Proof. To show a distribution is an EDM, we first propose a(y;σ2) and d(y;µ). Next, we

argue that the unit deviance d has the correct form. Lastly, we do the algebra necessary to

show that f(y;µ, σ2) corresponds with the distribution’s usual density function.

(i) Consider a N(µ, σ2) random variable with µ ∈ R, σ2 ∈ R+, and y ∈ R. Let

a(y;σ2) = 1√
2πσ2

and d(y;µ) = (y − µ)2. Notice that

d(y;µ) = (y − µ)2

= y2 − 2yµ+ µ2.

Define g(x) = −2x, h(x) = x2, and k(x) = x2. The unit deviance is of the right

form and f(y;µ, σ2) matches the usual normal density.

(ii) Consider a Poisson random variable is defined with µ ∈ Z+ and y ∈ Z0+. Let

a(y;σ2) = yy

y!
exp {−y} and d(y;µ) = 2(y log y

µ
− y+µ). Here the a(y;σ2) function

is independent of the dispersion parameter σ2. For a Poisson random variable, σ2 = 1.

Notice that

d(y;µ) = 2
(
y log

y

µ
− y + µ

)
= 2y log y − 2y log µ− 2y + 2µ.
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Define g(x) = −2 log x, h(x) = 2x, and k(x) = 2x log x− 2x. The unit deviance is

of the right form. Now,

f(y;µ, 1) = a(y) exp

{
−1

2
· 2
(
y log

y

µ
− y + µ

)}
= a(y) exp

{
y log µ− y log y + y − µ

}
= a(y)ey logµe−y log yeye−µ

= a(y)yµy−yeye−µ

=
1

y!
yµe−µy−yyyeye−y

=
1

y!
yµe−µ.

Thus, f(y;µ, σ2) matches the usual Poisson probability mass function.

(iii) To prove that a binomial random variable is an EDM, we adjust our notation slighlty.

In practice, binomial random variables occur when we have an event with two possi-

ble outcomes and we want to know the probability of an outcome occurs m times out

of n independent attempts. Let the probability space of random variable X be {0, 1}

and set Pr(X = 1) = p. Replace y with m, µ with p, and σ2 with n. Also, we know

the parameter n because it is how many times we run the experiment. Fix n to be a

positive integer.

Consider a binomial random variables with p ∈ (0, 1), m ∈ Z0+, and n ∈ Z+. Let

a(m;n) =
(
n
m

)
and d(m; p) = −2n

(
m log( p

1−p) + n log(1− p)
)

. Notice that

d(m; p) = −2n
(
m log

( p

1− p

)
+ n log(1− p)

)
= −2nm log

( p

1− p

)
− 2n2 log(1− p).

Define g(x) = −2n log( x
1−x), h(x) = −2n2 log(1 − x), and k(x) = 0. The unit
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deviance is of the right form. Now,

f(m; p, n) = a(m;n) exp

{
−1

2n
· (−2n)

(
m log

( p

1− p

)
+ n log(1− p)

)}
=

(
n

m

)
exp

{
m log

( p

1− p

)
+ n log(1− p)

}
=

(
n

m

)
exp

{
m log p+ (n−m) log(1− p)

}
=

(
n

m

)
pm(1− p)n−m.

Thus, f(y;µ, σ2) matches the usual binomial probability mass function.

(iv) We again adjust the notation to prove that a gamma random variable is an EDM.

Conventionally, a gamma random variable is parameterized by shape parameter α

and rate parameter β. The density is

f(y;α, β) =
βαyα−1e−βy

Γ(α)

where the the gamma function is defined as

Γ(x) =

∫ ∞
0

yx−1e−ydy .

Set µ = α/β and σ2 = 1/α. α > 0 and β > 0, so µ > 0 and σ2 > 0. y takes values

in R+.

Let a(y;σ2) = a(y; 1/α) = 1
Γ(α)

ααe−αy−1 and d(y;µ) = 2
(
y
µ
− log( y

µ
) − 1

)
. We

omit the argument that unit deviance d is in the correct form. It mimics previous
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arguments. Now,

f(y;µ, σ2) = f(y;α/β, 1/α)

= a(y; 1/α) exp

{
−α
2
· 2
(
yβ/α− log(

yβ

α
)− 1

)}
= a(y; 1/α) exp

{
− yβ + α log(yβ)− α log(α) + α

}
=

1

Γ(α)
ααα−αe−αeα(yβ)αy−1e−yβ

=
1

Γ(α)
βαyα−1e−yβ.

Thus, f(y;µ, σ2) matches the usual gamma density function.

Note. The equations µ = α/β and σ2 = 1/α are useful if you use both tweedie and gamma

functions in the statistical software R. The tweedie functions expect parameters µ and σ2

whereas the gamma functions expect parameters α and β.

Remark. The proof of this proposition highlights the flexibility of the a(y;σ2) function in

the EDM framework. This flexibility is needed to relate dissimilar distributions within the

same framework.

It is important to underline that the dispersion parameter σ2 is not, in general,

equal to the variance of the random variable. Let X ∼ EDM(µ, σ2). The following is

true:

(i.) E[X] = µ;

(ii.) There exists a function V (µ) such that Var(X) = σ2 · V (µ).

V (·) is called the unit variance function. If V (µ) = 1, then the Var(X) = σ2. When

V (µ) 6= 1, then Var(X) 6= σ2. This logic makes sense, assuming that we know what

a unit variance function is. We provide a formal definition below.

11
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Definition 1.4. The unit deviance d is regular if d(y;µ) is twice continuously differentiable

with respect to (y, µ) on Ω× Ω and satisfies ∂2d
∂µ2

(µ;µ) > 0, ∀µ ∈ Ω.

Definition 1.5. The unit variance function V : Ω→ R+ of a regular unit deviance is

2
∂2d
∂µ2

(µ;µ)
.

Math is taught by examples. Let’s consider some examples of regular unit de-

viances and compute their corresponding variance functions.

Example 1.1. d(y;µ) = (y− µ)2 is a regular unit deviance. The expansion y2 − 2yµ+ µ2

is clearly twice continuously differentiable with respect to (y, µ). Compute the partial

derivatives:
∂d

∂µ
= −2y + 2µ;

∂2d

∂µ2
= 2.

By definition, V (µ) = 1. Recall that the unit deviance (y − µ)2 belongs to the normal

random variable. Therefore, the variance of a normal random variable is equal to the value

of its dispersion parameter.

Example 1.2. The Poisson unit deviance is 2y log y−2y log µ−2y+2µ. This unit deviance

is twice continuously differentiable with respect to (y, µ). ∂2d
∂µ2

= 2y
µ2

, so ∂2d
∂µ2

(µ;µ) = 2/µ.

The variance function is µ. If σ2 = 1, as it does when the Poisson random variable isn’t

overdispersed or underdispersed, the variance equals the expectation.

There is a nice lemma that provides the mathematician flexibility in computing

the variance function.

Proposition 1.2. Let d be a regular unit deviance. ∂2d
∂y2

(µ;µ) = ∂2d
∂µ2

(µ;µ) = − ∂2d
∂y∂µ

(µ;µ),

∀µ ∈ Ω.
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Proof. By definition, we know that d(µ;µ) = 0 and d(y;µ) > 0 ∀y 6= µ. This is sufficient

to claim that d(·;µ) has a local minimum at µ. Thus, ∂d
∂y

(µ;µ) = 0 and ∂d
∂µ

(µ;µ) = 0.

Adding by “0” gives that ∂d
∂µ

(µ;µ)+∂d
∂y

(µ;µ) = 0. Since d is regular, it is twice continuously

differentiable with respect to (y, µ). Take partial derivatives:

∂2d

∂µ2
(µ;µ) +

∂2d

∂µ∂y
(µ;µ) = 0;

∂2d

∂y2
(µ;µ) +

∂2d

∂y∂µ
(µ;µ) = 0.

Subtract by ∂2d
∂µ∂y

(µ;µ). Thus,

∂2d

∂µ2
(µ;µ) = − ∂2d

∂µ∂y
(µ;µ) =

∂2d

∂y2
(µ;µ).

So far, we have established a vocabulary to talk about the EDMs, identified some

members in the family, and figured out how to compute the variance function. What

is remarkable about the exponential family is that dissimilar distributions fit into

the same framework. As a demonstration, we simulate realizations of some random

variables belonging to the exponential family. Using the ggplot2 package in R, we

plot the empirical distributions of these random variables. Consider the following

figures.

Figure 2: 100,000 Simulated N(0,1) Random Variables
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Figure 3: 100,000 Simulated Gamma(α = 1, β = 1) Random Variables

The gamma distribution and the normal distribution look similar; you could argue

that the gamma distribution is just a left-skewed normal distribution. Pay attention

to the x-axis labels. Gamma random variables take only positive real values whereas

normal random variables take positive and negative real values.

Figure 4: 100,000 Simulated Poisson(λ = 2) Random Variables

Certainly this graph looks quite dissimilar from the previous two graphs. Poisson

random variables are discrete; that is, they only have positive probability for count-

ably many values. In contrast, normal and gamma random variables are continuous.

It is nontrivial work to relate these dissimilar distributions by just two parameters.

The diversity of this family makes it a good candidate to describe a variety of datasets.
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The Tweedie Family

Tweedie models are exponential dispersion models closed under scale transforma-

tions and translations. We denote a Tweedie model as Twp(µ, σ
2). Notice how this

notation includes a subscript p. Throughout this text, we will refer to p as either

the power parameter or as an indexing parameter. MCK Tweedie presented a paper

titled “An index which distinguishes between some important exponential families”

at the Indian Statistical Institute’s Golden Jubilee Conference in 1984, hence the

language indexing parameter [26]. The parameter p can be seen as an index that

identifies the type of Tweedie random variable. Its role in the variance functions of

Tweedie models earns it the designation as the power parameter. Tweedie models

have variance functions of the form V (µ) = µp, hence the language power parameter.

Below is a table of the Tweedie models and their powers [11, 15].

Distribution Domain p value
Stable∗ R p < 0

Normal (Gaussian) R 0
Poisson N 1

Compound Poisson-gamma R0+ 1 < p < 2
Gamma R+ 2
Stable∗ R+ 2 < p < 3

Inverse Gaussian R+ 3
Stable∗ R+ p > 3

Table 1: Tweedie models based on indexing parameter p. ∗ indicates that the model is only
stable for some parameter choices.

Before we give a theorem that specifies what makes Tweedie models distinct from

other EDMs, we must clarify a definition and argue two lemmas.

Definition 1.6. Let X be a random variable. We say X is infinitely divisible if ∀n ∈ N we

can write X as the sum of n independent, identically distributed (i.i.d.) random variables.

Lemma 1.1. Let X be a random variable. Then, Var(cX) = c2Var(x).
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Proof. From Ross [21], we use that Var(X) = E[X2]− E[X]2.

Var(cX) =E[(cX)2]− (E[cX])2

=c2E[X2]− c2E[X]2

=c2(E[X2]− E[X]2)

=c2 Var(X).

Lemma 1.2. Let g be some function that is at least once differentiable, takes positive real

inputs, and for which g(xy) = g(x)g(y) holds. Then g(x) = xa where a is some constant.

Proof. Consider a function f such that f(x) = log g(ex). So,

f(x+y) = log g(ex+y) = log g(exey) = log g(ex)g(ey) = log g(ex)+log g(ey) = f(x)+f(y).

Also, f(c · x) = c · f(x) for some constant c. Thus, f is linear. If f is linear, then g must

have been exponential.

Theorem 1.1. Let X be an EDM(µ, σ2) such that V (1) = 1 and V is at least once differ-

entiable. If there exists a function f : R+ × Σ→ Σ for which

cX = EDM(cµ, f(c, σ2)) ∀c > 0

holds, then:

(i.) X is a Tweedie model;

(ii.) f(c, σ2) = c2−pσ2;

(iii.) X is infinitely divisible.

Proof. According to Lemma 1.1, Var(cX) = c2Var(X) = c2σ2V (µ). Our assumption

gives that Var(cX) equals f(c, σ2)V (cµ) as well. Set these two expressions to be equal to

16

□ 

□ 



one another.

c2σ2V (µ) = f(c, σ2)V (cµ).

Divide by f(c, σ2). This division is legal because the codomain of f is R+. Now,

c2σ2

f(c, σ2)
V (µ) = V (cµ).

Take σ2 = 1. Then
c2

f(c2, 1)
= V (c)

because V (1) = 1 from our initial assumptions. This maneuver suggests that c2σ2

f(c,σ2)
is

V (c), though we don’t yet know what this V (·) function is. In any event, we have the

relation

V (cµ) = V (c)V (µ).

We use Lemma 1.2 to claim that V (µ) = µp for some p ∈ R. Next, we compare

c2σ2

f(c, σ2)
= V (c) = cp

and conclude that f(c, σ2) = c2−pσ2. For p 6= 2, f(c, σ2) varies in R+ because σ2 and

c vary in R+. This scalability allows us to construct X as a sum of i.i.d. cX random

variables; that is, X is infinitely divisible for p 6= 2. When p = 2, X is a gamma random

variable. It is well-known that gamma random variables are infinitely divisible. Thus, X is

infinitely divisible in the p = 2 case as well.

Corollary 1.1. Tweedie models are closed under scale transformations. For positive real

constant c > 0 and a Tweedie model Twp(µ, σ2),

c · Twp(µ, σ2) = Twp(cµ, c
2−pσ2).

Proof. This corollary follows immediately from Theorem 1.1.
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Corollary 1.1 provides a useful trick for scaling Tweedie models. Scaling X ∼

N(µ, σ2) by c results in cX ∼ N(cµ, c2σ2). Likewise, c · Ga(α, β) results in a

Ga(α, β/c) random variable because Tw2(α/β, 1/α) = Ga(α, β). These examples

showcase how easy it is to scale Tweedie models. Another useful property of Tweedie

models is that we can translate them, i.e. add or subtract by a constant value.

Theorem 1.2. Let X be an EDM(µ, σ2) closed under translation and with differentiable

unit variance function. This closure means that there exists a function h(c, σ2) such that

c+X = EDM(c+ µ, h(c, σ2)), ∀c ∈ R.

Such an EDM is infinitely divisible and has an exponential unit variance function.

Proof. Evaluate the variances on both sides.

σ2V (µ) = h(c, σ2)V (c+ µ).

Thus V (c + µ) = g(c)V (µ) where g(c) = σ2/h(c, σ2). Because V (·) is differentiable and

positive, g is differentiable and positive. c varies in R, so we can differentiate with respect

to it. Differentiate with respect to c at 0. We get V ′(µ) = g′(0)V (µ). Next we solve the

differential equation. ∫
1

V (µ)
V ′(µ) =

∫
g′(0)

log V (µ) = µg′(0) + c0

V (µ) = c0 exp{µg′(0)}

Here c0 > 0 stands for a constant. This constant is a consequence of indefinite integration.

Clearly V (µ) is an exponential function. Lastly, use substitution to solve for h(c, σ2) in the

equation

h(c, σ2)V (c+ µ) = σ2V (µ).

18
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h(c, σ2) = σ2 exp{−g′(0)c}. When g′(0) = 0, the unit variance function corresponds to

that of a normal random variable. It is well-known that a sum of i.i.d. normal random

variables is a normal random variable. When g′(0) 6= 0, h(c, σ2) varies with c ∈ R, so we

can construct a sum of i.i.d. random variables. Thus X is infinitely divisible.

Remark. Technically speaking, the unit variance function in Theorem 1.2 does not have

the form V (µ) = µp for some p ∈ R. Describing Tweedie models as EDMs that have unit

variance V (µ) = µp makes it easy to memorize, but we must relax this definition to include

closure under translation. Tweedie models are EDMs that are infinitely divisible and closed

under translation and scale transformations.

Up to now, we have stated that Tweedie models have unit variance V (µ) = µp for

some p ∈ R, and we have provided a few examples of possible values for the indexing

parameter. But, the real number line is infinitely large. Surely there must be some

values for the power parameter which do not work.

Proposition 1.3. There are no Tweedie models with index parameter 0 < p < 1.

The proof of this proposition involves moment-generating functions and cumulant-

generating functions. Because the main body of this text targets an undergraduate

audience, we reserve the proof for the Appendix. The argument synthesizes many

pages of Jorgensen’s book The Theory of Dispersion Models [15].

Since Tweedie models are EDMs, they have unit deviances. Proposition 1.1 gives

the unit deviances for the normal, Poisson, and gamma cases. But, what about

when p 6∈ {0, 1, 2}? To justify the unit deviance for the general case, we again

require advanced facility with EDMs. As a result, we leave the proof of the following

proposition for the Appendix.

Proposition 1.4. For a Tweedie model with index power p 6∈ {0, 1, 2}, the unit deviance

d(y;µ) is

2

{
[max{y, 0}]2−p

(1− p)(2− p)
− yµ1−p

1− p
+
µ2−p

2− p

}
.
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This proposition concludes our introduction to the Tweedie family. We now know

some useful properties about Tweedie models that distinguish them as a special class

of EDMs. In the following sections, we discuss how and why actuaries use Tweedie

random variables in generalized linear modeling.

A Special Look at Tweedie Distributions Used in Insurance Ratemaking

You don’t have to read too many scientific papers before you encounter a normal,

Poisson, or gamma random variable. These Tweedie models are very applicable to

real-life data. Actuaries also use Poisson-gamma sums in insurance ratemaking. For

these Tweedie models, the densities have domain R0+; that is, the random variable

can take on any nonnegative real value, including zero. Within a given time period,

most insurance policyholders don’t file a claim. Policyholders that do file claims could

have small claims, medium-sized claims, or large claims. Twp(µ, σ
2) random variables

with p ∈ (1, 2) and large σ2 describe the empirical data well. We use ggplot2 in R to

simulate some compound Poisson-gamma random variables. As you look over these

graphs, treat the x-axis values as dollar values and consider the costs an insurer covers

for its policyholders in a given time period.

Figure 5: 10,000 Simulated Tw1.33(2, 10) Random Variables
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Figure 6: 10,000 Simulated Tw1.66(10, 100) Random Variables

Most of the realizations take value 0 or values close to 0, but some realizations

take large positive values. This behavior is exactly what we expect from claims

data: mostly no claims, but a few large losses. Compound Poisson-gamma models do

a good job describing data that contain both zeros and continuous positive values:

daily rainfall in a month, fish caught in an hour, defunct lightbulbs in a large building

in a week, et cetera.

Viewing Poisson-gamma sums as Tweedie models does not provide us with any in-

tuition about how these distributions arise. To gain some intuition, we will introduce

renewal processes. Renewal theory is a topic in stochastic processes. A stochastic

(random) process is a sequence of random variables. Sidney Resnick explains that

“[r]enewal processes model occurrences of events happening at random times where

the times between the events can be approximated by independent, identically dis-

tributed random variables” [20]. Much of this section follows the writings of Resnick

and Sheldon Ross [20, 22]. To define a renewal process, we must equip ourselves with

some definitions.

Definition 1.7. Let {Xk, k ≥ 1} be a sequence of independent random variables that take

only nonnegative values. We call the random variables Xk interarrival times. The cumula-
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tive distribution F (x) of a givenXk is Pr(Xk < x). We say that the interarrival distribution

F is proper if F (∞) = 1. (We assume proper distributions in this section.)

Definition 1.8. Let Sn = X1 + · · ·+Xk + · · ·+Xn. We call the sequence {Sn, n ≥ 1} a

renewal sequence, or, equivalently, a renewal process.

Note. Think of a random variable Xk as the time until some event happens and the renewal

process Sn as the time until n such events happen in sequence.

Renewal processes involve time passing and random events happening. We would

like to count how many of these random events happen. A counting process N(t)

maintains the following properties:

(i.) N(t) ∈ N;

(ii.) N(s) ≤ N(t) if s ≤ t.

Ross presents two definitions for the counting process generated from a renewal se-

quence. We will use both definitions interchangeably to make proofs clearer. First,

let the counting process N(t) =
∑∞

n=0 I[0,t](Sn) where the indicator random variable

I[0,t] means

I[0,t](Sn) =


1 Sn ≤ t

0 otherwise

.

This notation with the indicator random variable stresses the act of counting when

renewals occur. Equivalently, let the counting process N(t) = max{n : Sn ≤ t}. This

notation illustrates finding the maximum of the events observed prior to time t. Now,

we exercise our expanded toolkit to prove a proposition from renewal theory.

Proposition 1.5. With probability 1, N(∞) = ∞. That is, almost surely, infinite events

occur in infinite time.
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Proof.

Pr(N(∞) <∞) = Pr

( ∞⋃
n=1

{Xn =∞}
)

≤
∞∑
n=1

Pr(Xn =∞)

= 0.

We justify the above argument. First, the probability of the arbitrary union expresses the

probability that some interarrival time never arrives. This is logically equivalent to saying

that the counting process is finite. Second, the inequality is Boole’s Inequality [21]. Third,

Pr(Xn =∞) = 0 because Xn is a proper interarrival time. That is, Pr(Xn <∞) = 1.

Now, use the complement rule. We get that Pr(N(∞) =∞) = 1.

If we consider some random variable Yk happening at each renewal, we can find

many applications of counting processes. For instance, suppose that at each renewal

there is a random positive cost that accrues. This example fits well to insurance

claims. Interarrival times correspond to when claims occur and the matching Yk

correspond to the cost of the claim. Compound Poisson-gamma processes are renewal

processes where the Yk correspond to gamma random variables and the counting

process N(t) corresponds to a Poisson random variable. (A Poisson point process

N(t) is constructed from exponential interarrival times [7].) Before we prove a result

for these compound processes, we define two things.

Definition 1.9. Let Xn be a random variable for all n ∈ N. A compound point process is∑N(t)
n=1 Xn where N(t) is a counting process.

Definition 1.10. We say that T is a stopping time if the occurrence of an event can be

determined by looking at values of a process up to that time.

Example 1.3. {N(t) = n} is a stopping time because it is independent of interarrival times

Xk, k ≥ n+ 1.
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Theorem 1.3 (Wald’s Equation). Suppose that the interarrival times are i.i.d. random vari-

ables with finite expectation and that N(t) is a stopping time with finite expectation. Then,

E

[ N(t)∑
n=1

Xn

]
= E[X] · E[N(t)].

Proof. Let the indicator variable In be 1 if N(t) ≥ n and 0 otherwise. It follows that∑N(t)
n=1 Xn =

∑∞
n=1 XnIn. In is independent of Xn because In is completely determined

by N(t) not stopping until after the observation of X1, · · · , Xn−1. Thus,

E

[
N∑
n=1

Xn

]
= E

[
∞∑
n=1

XnIn

]
=
∞∑
n=1

E[XnIn] =
∞∑
n=1

E[Xn] · E[In].

Now, consider the following algebra:

∞∑
n=1

E[Xn] · E[In] = E[X]
∞∑
n=1

E[In]

= E[X]
∞∑
n=1

Pr(N(t) ≥ n)

= E[X] · E[N(t)] .

What requires further justification in this lengthy sequence of equality statements is that∑∞
n=1 Pr(N(t) ≥ n) = E[N(t)]. Recall that N(t) is a discrete random variable. We can

formulate Pr(N(t) ≥ n) as Pr(N(t) = n)+Pr(N(t) = n+1)+Pr(N(t) = n+2)+· · · .

Thus, the summation is
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∞∑
n=1

Pr(N(t) ≥ n) = Pr(N(t) = 1) + Pr(N(t) = 2) + Pr(N(t) = 3) · · ·

+ Pr(N(t) = 2) + Pr(N(t) = 3) + · · ·

+ Pr(N(t) = 3) + · · ·

=
∞∑
n=1

nPr(N(t) = n)

= E[N(t)].

Remark. This proof assumes that E[N(t)] is finite. We justify this in the Appendix.

Example 1.4. Let Xi ∼ Ga(α, β) and let N(t) be a Poisson random variable with mean

λt. Use Wald’s equation to find the expectation.

E

[ N(t)∑
i=1

Xi

]
= E[Xi] · E[N(t)] =

αλt

β
.

Regression Analysis and Generalized Linear Models

Psychologist and winner of a Nobel Prize in Economics Daniel Kahnemann elo-

quently explains regression to the layperson in his 2011 book Thinking Fast and Slow.

He describes the phenomenon of “regression to the mean” as when a golfer performs

poorly the day after a stellar performance and vice versa [16]. In statistical modeling,

regression analysis means using algorithms to estimate the relationship between an

average output and other variables. With the widespread availability of data in the

early 21st century, regression analysis has become a popular form of machine learning

in many scientific fields. Actuaries are just some of the many professionals who rely

on regression models to do their routine work.

We introduce regression models with graphs. For demonstration purposes, we
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picked three sets of 25 numbers ranging from 0 to 100. Note that the linear models

have no predictive value. We handpicked vectors to demonstrate positive and negative

correlations.

Figure 7: Best Fit Line for Positively Correlated Data

Figure 8: Best Fit Line for Negatively Correlated Data

Figures 7 and 8 should remind you of your high school statistics courses. The

model draws a line that minimizes the total distance between the cluster of points.

Statistical programs like R, SAS, STATA, and Python offer functions to plot such re-

lationships. For Figure 9, we use the default method for geom smooth. This mapping

performs locally-weighted scatterplot smoothing. We do not discuss local regression
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here. We point it out to say that there are many regression models in use, though

many people are only familiar with linear regression.

Figure 9: Locally-Weighted Regression Curve for Positively Correlated Data

Researchers in the social sciences, the biologicial sciences, the financial sector, and

many other domains use regression models. The latter half of this thesis estimates the

Tweedie index parameter and evaluates the estimator’s performance in the context of

generalized linear models (GLMs). We introduce the framework of regression analysis

and its measurements of accuracy so that you can make sense of these case studies.

Definition 1.11. Let Y be a n × 1 vector. Each row in the vector Y contains a random

variable yi. LetX be a n×p matrix. Each column vector refers xj, 0 ≤ j ≤ p−1, contains

observations for some explanatory variable. We call X the design matrix or the matrix of

observations. Let β be a p× 1 vector with the βj unknown weight parameters, and let ε be

a n × 1 vector of unknown error terms. Consider some link function g that expresses the

relationship

g(Y ) = Xβ + ε ,

or, equivalently,

g(Y ) = β0x0 + · · ·+ βpxp + ε .
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This relationship is a generalized linear model.

In supervised learning, we know the link function g, the target values yi, and the

design matrix X. Although we have the realized values for each yi, the yi are still

random variables with mean parameter µi. The regression problem involves solving

the equation

g(µi) = β0xi,0 + · · ·+ βpxi,p, ∀1 ≤ i ≤ n .

Actuaries often use a log link function because it gives a multiplicative rating struc-

ture. That is,

log µi = β0xi,0 + · · ·+ βpxi,p .

Notice the transformation

µi = eβ0xi,0 × · · · × eβpxi,p .

The first explanatory variable x0 is often an intercept term; in other words, x0 is a n×1

column vector (1, · · · , 1)′. Therefore, eβ0 acts as a starting rate. It is then modified

by multiplication. One reason actuaries use this structure is because multiplication

is easy to explain to customers and regulators.

Besides the link function g, the statistical modeler must also specify what distri-

bution explains the random variables yi. When Nelder and Wedderburn developed

the software that enables modern-day statistical modeling, they established exponen-

tial dispersion models as response distributions. Gordon Smyth and Peter Dunn have

since written code in R to implement the whole spectrum of Tweedie models in as

response distributions for generalized linear models. This history explains one reason

why we care so much about EDMs and the Tweedie family: their ubiquitous use in

real-world modeling projects.
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The objective of regression analysis is to determine the weights βj that minimize

the residual error. Maximum likelihood estimation (MLE) is one popular method to

execute this task. MLE finds the βj parameter values that maximize the likelihood

that the observations Y occur, given the observations of the design matrix X. Once

we have βj weights, we can predict the target variables yi based on the weights and

the matrix of observations. We expect our model to imperfectly predict the values yi.

Hence, we record measurements that tell us how well our model fits the actual data.

Definition 1.12. Let Y be a random variable parameterized by θ with density function f .

Given a vector of observations (y0, · · · , yn), the log-likelihood is log
(∏

i f(yi | θ)
)

.

Definition 1.13. Suppose we have a generalized linear modelA that uses some explanatory

variables. Define the saturated model S to be the model that uses as many explanatory

variables as there are data points. Deviance for the model A is

2 · (llS − llA)

where ll stands for log-likelihood. Equivalently, the deviance is

2 ·
n∑
i=1

[
log
(
f(yi |µi = yi )

)
− log

(
f(yi |µi = µi )

)]
.

Deviance is one measurement that we use to evaluate the performance of a model.

However, using only deviance as a measurement of model performance leads to prob-

lems. A model always fits better to the training dataset with more explanatory

variables. But, the purpose of predictive analytics is to forecast results for a dataset

different from the training dataset. We worry that we might overfit to the training

data if we use too many explanatory variables in the model. As a result, we also

record a measurement of model accuracy that penalizes the model for using too many

explanatory variables.
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Definition 1.14. The Akaike Information Criterion (AIC) is

−2 · llA + 2 · p ,

where p is the number of explanatory variables used in model A.

With these metrics in our toolkit, a working definition of generalized linear models,

and background knowledge of Tweedie models, we are almost ready to estimate the

Tweedie power. The next chapter discusses a major obstacle we face in estimating

the Tweedie power and proposed solutions.
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Endnotes

• Tweedie random variables have a unit variance function. According to Defi-

nitions 1.4 and 1.5, the unit deviances of Tweedie random variables must be

continuous and differentiable.

• Given an exponential dispersion model, are the a(y;σ2) function and the unit

deviance d(y;µ) unique? Of course, we can make simple linear changes like

adding or subtracting a constant, but these changes to the a and d functions

are trivial. The question at hand is whether the structure of the a and d

functions are special and specific to the random variable. Future research could

evaluate this question of uniqueness.

• Exponential dispersion models provide a framework to describe random vari-

ables. We could propose functions a(y;σ2) and d(y;µ) as a method to generate

new probability distributions. Would probability distributions generated from

such an approach have any practical use? Do they occur naturally in empir-

ical distributions of raw data? Future research could address this question of

existence.

• Locally-weighted scatterplot smoothing combines the ideas of k-nearest neigh-

bors modeling and multiple regression modeling. You can find statistical litera-

ture about the technique (and about k-nearest neighbors modeling) in libraries

or on the Internet.

• Only use deviance to compare models if the models are nested [11]. In this

situation, performing an analysis of variance (ANOVA) is a viable option.

• You can use AIC as a metric to compare models that are not nested. Modelers

use multiple metrics to assess the performance of a model. It makes sense
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to analyze both deviance and AIC. Deviance analysis helps you find the most

probable model and AIC analysis addresses the concern of overfitting.

• Bayesian Information Criterion (BIC) is another common penalized measure of

fit. AICc is a form of AIC that corrects for small sample sizes.

• This idea of a penalty term comes from information theory.

• Uniform, negative binomial, hypergeometric, and binomial random variables

are examples of non-Tweedie random variables. The figure below shows 10

million random draws of a uniform random variable. Contrast this distribution

to Tweedie distributions.

Figure 10: 10 Million Simulated Uniform Random Variables
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2 Numerically Approximating Tweedie Densities

Maximum likelihood estimation is a popular way to estimate parameters for a distri-

bution. To perform MLE, we require a closed form for the density function. Unfortu-

nately, most Tweedie models do not have closed form densities. We have been writing

f(y;µ, σ2) as a succinct expression, but the a(y;σ2) part hides much of the baffling

behavior of the Tweedie model. The a(y;σ2) functions have a lot of freedom to take

on many forms. Besides some special cases, the a(y;σ2) functions are complicated

series objects that can’t be written down in a closed form. As a result, we must

approximate the Tweedie densities before we do MLE.

Peter Dunn and Gordon Smyth propose algorithms to numerically approximate

the Tweedie densities [4, 5, 6]. Peter Dunn created and maintains the tweedie R

package [3]; Gordon Smyth contributed to and maintains the statmod R package

[25]. Because I coded in R to do the applied work in Chapters 3, 4, and 5, Dunn and

Smyth’s collaborative research on numerical approximation methods is important to

this paper. We discuss their methods in the proceeding subsections.

Fourier Inversion

Random variables are defined by their characteristic functions. Moreover, if a

random variable has a density function, the characteristic function is the Fourier

transform of its density. Dunn and Smyth use these well-known facts to determine

the Tweedie densities.

Definition 2.1. Let X be a random variable. Its characteristic function is E[eitX ], where i

is the imaginary unit.

An integral transform maps a function from its original domain to another domain

where it is easier to evaluate the problem. Two popular integral transforms are

the Laplace transform and the Fourier transform. (The Laplace transform is widely
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applied in electrical engineering.) STEM students should be familiar with Fourier

series. Math students see them in linear algebra courses, and physics students use

them to deconstruct deconstruct a wave into a linear combination of sine and cosine

waves. The Fourier transform draws inspiration from this idea of superposition. It

expresses a continuous superposition of functions whereas a Fourier series expresses

discrete superpositions.

Definition 2.2. Let f(x) be some function. The Fourier transform of f is

F (t) =
1

2π

∫
R
e−itxf(x)dx .

The Fourier inversion of F (t) is

f(x) =
1

2π

∫
R
eitxF (t)dt .

Note. We present the Fourier transform and its inverse with the notation you see in many

math texts, on Wikipedia, and on Wolfram MathWorld. However, Dunn and Smyth and

other probabilists sometimes switch the i and−i. What is important to remember is that we

have an integral transform and its inverse. Do not worry too much about the nomenclature.

If a random variableX has a density function f(x), then the characteristic function

is the Fourier transform of f . That is,

E[eitX ] =

∫
R
eitxf(x)dx .

You may object that this format differs from our definition. We need only change the

parameter t. Let t = −2πs and manipulate the integral with u-substitution.

Likewise, we can find the density if we have the characteristic function. We

evaluate the Fourier inversion of the characteristic function to find the density (if it

exists). Besides Poisson random variables, Tweedie random variables have probability

densities. However, their densities include a(y;σ2) functions that, in general, have
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no closed form. One way that Dunn and Smyth implement Tweedie densities in R’s

tweedie package is by approximating the Fourier inversion of a model’s characteristic

function [4].

Recall that the density for a Tweedie model is

f(y;µ, σ2) = a(y;σ2) exp
{
− 1

2σ2
d(y;µ)

}
.

Dunn and Smyth set µ equal to 1, and they scale y to 1. Notice that y and µ are 1,

so d(y;µ) = 0. Thus, a(1;σ2/y2−p) = f(1; 1, σ2/y2−p). We can get a(1;σ2/y2−p) by

computing the Fourier inversion of the characteristic function. In the Appendix, we

justify that a(y;σ2) = f(y; y, σ2). Because Tweedie models are closed under scaling,

we rescale by y to get a(y;σ2). Substitute this a(y;σ2) into the density and compute

given µ. (Dunn and Smyth actually propose three different methods to get a(y;σ2)

by Fourier inversion [4].)

First, I recognize that this explanation is unsatisfactory. I encourage readers

to review the Appendix and read Dunn and Smyth’s papers to understand the full

picture. Ultimately, their method involves manipulating both the axiomatic and

constructive definitions of the Tweedie densities. Moreover, the characteristic function

they integrate involves a cumulant-generating function. As this thesis targets a wider

audience, I have resigned the details to the Appendix. Essentially, Dunn and Smyth

use the Fourier inversion and the rescaling property of Tweedie models to determine

a(y;σ2). It is easy to compute the other part of the density.

On another note, it is difficult to compute the Fourier inversion of the character-

istic function. This task boils down to evaluating a highly oscillatory integral. We

provide figures to illustrate how difficult this computation can be. Figure 11 shows a

damped cosine wave that oscillates slowly; Figure 12 shows a damped cosine wave that

oscillates faster; Figure 13 shows a damped cosine wave that oscillates very quickly.
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Adding up the areas under the curves for Figures 11 and 12 appears feasible. But,

for highly oscillatory integrands like that in Figure 13, we must rely on a numerical

approximation.

Figure 11: Simple Damped Cosine Wave

Figure 12: More Complex Damped Cosine Wave

Figure 13: Highly Oscillatory Damped Cosine Wave
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Dunn and Smyth modify an algorithm proposed by Sidi to approximate highly

oscillatory integrals [4]. First, the algorithm finds exact zeros where the curve crosses

the x-axis. Second, it defines linear equations, where the linear equations equal the

integral from 0 to the most recent root plus the area under the curve up to the

next root. Next, the algorithm solves the linear equations. That solution is an

approximation for the integral. This approximation increases in accuracy the more

linear equations we define because we incorporate in more areas under the curve.

Dunn and Smyth’s algorithm terminates when the relative error between performing

one more iteration is less than 10−10.

Another nontrivial part of this algorithm is how we compute the areas under the

curve. The integrands are not as simple to solve as the integrands we see in college

calculus courses. The algorithm uses 512-point Gaussian quadrature to compute the

areas under the curve. Recall Riemann sums and the trapezoidal method from your

college calculus course. These methods find points and weights, and then evaluate a

weighted average. Conveniently, the points and weights correspond to the geometric

idea of summing up rectangular/trapezoidal areas. Gaussian quadrature uses this

same approach, but the choice of points and weights is more ingenious.

Depending on y, σ2, and p, this algorithm could be computationally intensive or

inaccurate. For R’s tweedie package, this method of approximating a Fourier inver-

sion is the default way to get the Tweedie densities. Other methods perform better

for certain combinations of y, σ2, and p.

Infinite Series Evaluation

One such method involves approximating an infinite series expansion [5]. We can

write the a(y;σ2) function as a series expansion [5, 15]. For a Poisson-gamma model,

a(y;σ2) =
1

y
W (y;σ2, p),
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where W (y;σ2, p) =
∑∞

j=1Wj. For p > 2 and y > 0,

a(y;σ2) =
1

πy
V (y;σ2, p)

with V (y;σ2, p) =
∑∞

k=1 Vk.

Both Wj and Vk are complicated fractions with many parameters, exponents,

factorials, and gamma functions. (See Dunn and Smyth’s paper [5] for the exact

expression.) Nevertheless, we want to evaluate W and V . Dunn and Smyth determine

the indices j and k for which Wj and Vk reach maximums. They do this task by

treating j and k as continuous, differentiating with respect to them, and setting the

derivatives to zero. In other words, they find the maximum in the usual way taught

in college calculus. Next, Dunn and Smyth find upper and lower limits for j and k

around jmax and kmax. These bounds are found computationally by finding Wj and

Vk sufficiently small relative to Wmax and Vmax. In the end, their algorithm sums a

finite number of Wj and Vk to serve as an approximation for W and V .

This series approach aims to add up only terms in the series that contribute sig-

nificantly. We find the term that contributes the most, and we include it and its

neighbors in the computation. Like the Fourier inversion approach, this algorithm

could be computationally intensive or inaccurate depending on the parameters y, σ2,

and p.

Saddlepoint Approximation

The third way Dunn and Smyth approximate a(y;σ2) is by the saddlepoint ap-

proximation. This technique is well-known in the statistical community. You can find

a more thorough treatment of the saddlepoint approximation in the mathematical lit-

erature. In any event, the saddlepoint approximation gives that a(y;σ2) ≈
√

2πσ2yp,

where p is the Tweedie power [6]. For my projects, I do not use the saddlepoint
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method to approximate the Tweedie densities.

Comparing Methods

The series and inversion methods perform poorly in different parameter spaces [4,

5, 6]. Dunn and Smyth’s series approach requires extensive computing to reach an

accurate approximation in the following cases:

• p close to 2, y large, or σ2 small for Poisson-gamma models;

• p close to 2, y small, or σ2 small for models with p > 2;

• y small for inverse-Gaussian (p=3) models.

Meanwhile, the inversion approach performs well for p close to 2. It runs slow for

p > 3 and y large. Do not try to memorize which methods perform best for which

parameters.

We can use if-else control structures so that our algorithm uses the most efficient

and accurate method for the given parameters. In R, dtweedie does this automatically,

and tweedie.profile does this if you set the method parameter as “interpolation”. I

experimented with methods “series”, “inversion”, and “interpolation” and found that

I get quicker and more reliable results with “interpolation” as my method. We will

use these methods in Chapters 4 and 5 to approximate Tweedie densities and estimate

the Tweedie power.
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Endnotes

• Due to my limited exposure to programming languages, I only considered using

R and Python for my applied projects. They are the most commonly used

programming languages for data science. I am aware of SAS having some ability

to make Tweedie models. I don’t know if there are any other programming

languages that enable Tweedie modeling.

• I briefly looked into using Python. From this research, I know that Python can

perform Tweedie modeling. However, I don’t consider Python’s implementation

to be as functional or well-documented as R’s tweedie package. I determined

that R would best suit my purposes. After all, Dunn and Smyth have written

extensively on at least three different numerical approximation methods, and

the tweedie R package provides four different numerical approximation methods.

• Dunn uses Fortran to speed up the numerical computations in the inversion

algorithm. A good software development project could be to translate Dunn’s

tweedie package to Python. This project would likely require the programmer

to be familiar with Fortran.
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3 Estimating the Power Parameter

The Tweedie power parameter acts an an index, telling us the distribution of our

model. This feature is why MCK Tweedie named his paper “An Index which Dis-

tinguishes between Some Important Exponential Families.” We know that the index

encodes important information. Choose p = 1, and we get the discrete Poisson dis-

tribution. Select p = 3, and we get the sharp-peaked, wide-tailed continuous inverse-

Gaussian distribution. There is a clear difference between Tweedie random variables

with 1 < p < 2 and p ≥ 2. What I want to look into is the differences between

Tweedie random variables in the same subclass. That is, how different are different

compound Poisson-gamma models? Can we improve a loss cost model by estimating

p ∈ (1, 2)? How different are gamma random variables to inverse-Gaussian random

variables? Can we improve a severity model by estimating p ∈ (2, 3)? I hypothesize

that we can improve our insurance models by estimating the power parameter.

We estimate the power parameter by computing log-likelihoods [3]. The technique

used in the tweedie.profile function does the following:

1. Take as input a vector of data and a list of possible power parameters.

2. Given the vector data, compute the log-likelihood of the vector for each power

parameter.

3. Return the power parameter that maximizes the log-likelihood.

4. (Optional) Plot the log-likelihoods on a graph.

5. (Optional) Draw a smooth curve that passes through the points on the graph.

6. (Optional) Return the power that maximizes log-likelihood on the curve.

Before I begin modeling with this new tool, I test how well it performs on simu-

lated data. Using rtweedie, rinvgauss, and rgamma, I generate realizations of random
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variables. For instance, I create 10,000 realizations of a Tw1.33 model, 10,000 real-

izations of a Tw1.5 model, and 10,000 realizations of a Tw1.75 model. tweedie.profile

accurately estimates the power parameter within two decimal places and the disper-

sion parameter within single digits. Moreover, rtweedie and tweedie.profile execute

in less than a minute. Likewise, I receive promising results in estimating a gamma

random variable and an inverse-Gaussian random variable. (I recommend you use

rinvgauss in the statmod package to generate these realizations. rtweedie executes

slowly for p > 2.)

I struggle to continue these tests with p > 3. rtweedie and tweedie.profile execute

slowly for large p. I don’t worry too much about this behavior. Applications to loss

cost and severity modeling will focus on 1 < p < 2 and 2 ≤ p ≤ 3. Moreover, it is

difficult to describe Tweedie models for p > 3. At this time, we recognize them only

for their theoretical purposes. All in all, this approach to estimating the Tweedie

power performs well for the parameter spaces we care about.

I practiced using these packages by modeling with data from the insurance-

Data R package [31]. I built severity models and loss cost models. In both cases,

tweedie.profile returned Tweedie power estimates that fell into the range I suspected

they would. These results give me additional confidence that tweedie.profile estimates

the power parameter well.

We can get a good maximum likelihood estimate for the Tweedie power, but that

doesn’t mean that the estimated Tweedie power will provide significant improvements

to our insurance models. Models are built with many features. The Tweedie power

parameter is one feature out of many. In the next two chapters, I optimize the

Tweedie power for two insurance case studies. I design my experiments as follows:

1. Split the data into 75 percent training data and 25 percent test data.

2. Build a Tweedie model using the training data. I look at deviance change,

the significance of a variable, and AIC, and then I arbitrate on if I include the
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variable in the model. For the most part, I include a variable if it decreases the

AIC.

3. Ceteris paribus, change the Tweedie power from a default value to an estimated

value. Severity models use default value p = 2 and loss cost models use default

values p ∈ (1.33, 1.5, 1.66).

4. See how the models perform on the test data.

5. (Optional) Use ggplot2 to visualize the results.

6. (Optional) Consider other metrics to examine model performance.

This design highlights the Tweedie power’s effect as a model parameter. Of course,

this step in model production takes time and energy. As a result, I will also comment

on the economic value this parameter tuning brings to an insurance company.
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Endnotes

• David A. Freedman discusses maximum likelihood estimation in depth in his

book Statistical Models: Theory and Practice.

• R’s glm object performs the well-documented iteratively re-weighted least squares

algorithm from Nelder and Wedderburn.

• I don’t try to build a perfect model. The models I build are on outdated data

and will never be put in production. I try to build decent models that include

some predictive features. Ultimately, the aim of this modeling is to perform a

scientific experiment, not to provide an insurance product.

• Be cautious when using the do.smooth hyper parameter in the tweedie.profile

function. When smoothing is on, the list of Tweedie powers you pass to the

function can affect the estimate. When smoothing is off, the Tweedie power

in the input list that maximizes log-likelihood becomes your estimate. If the

spacing between Tweedie powers is large, you can get a poor estimate.
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4 Case Study: Automobile Bodily Injury Claims

This chapter showcases the applied work I did to model severity with an optimized

Tweedie power. For severity datasets, actuaries usually use a gamma or inverse-

Gaussian distribution to describe the target variable’s distribution. Gamma models

correspond to a Tweedie power of 2 and inverse-Gaussian models correspond to a

Tweedie power of 3. I want to evaluate if we can improve the likelihood of a severity

model by estimating the true Tweedie power.

Our severity data was collected by the Insurance Research Council in 2002. We

access the data from the R package insuranceData. The dataset is titled AutoBi,

standing for Automobile Bodily Injury [31]. Bodily injury coverage pays for the costs

to people injured in a car accident. Such costs may involve medical expenses, legal

fees, funeral costs, and loss of income. Given that medical care and legal services cost

a lot in America, you can imagine that bodily injury claims have high payouts. Besides

the column data on claim costs, AutoBi contains six other categorical variables. These

variables explain if the claimant had an attorney represent him or her, if the claimant

wore a seatbelt, if the claimant had insurance, the age of the claimant, the sex of the

claimant, and the marital status of the claimant. In total, the dataset contains 1340

observations.

The model we build uses AGE, ATTORNEY, and SEATBELT as explanatory

variables. ATTORNEY is a binary variable, SEATBELT has categories Yes, No, Not

Applicable, and AGE is split roughly into 10-20 year age groups. Only these three

variables decreased the Akaike Information Criterion. We expect ATTORNEY to be a

strongly predictive covariate in my model because it captures the costs associated with

legal representation. Using a seatbelt should decrease the risk of death and serious

injury, so it makes sense why the SEATBELT is predictive. I am less confident putting

AGE in our model. It provides less significance and only a marginal decrease in AIC.

Nevertheless, we want to have at least a few covariates in the model to differentiate
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between policyholders. Modeling with only three explanatory variables is not ideal.

This paucity of variables fails to capture enough signal about the target. I would

want to model with more explanatory variables for actual insurance products.

In any event, this study is meant to assess the utility of tuning the Tweedie power.

Below we display the profile log-likelihood plot made to estimate the Tweedie power.

According to this technique, the Tweedie power is most likely 2.3 and the dispersion

parameter is most likely 1.110. We make a Tweedie model with these parameter

choices and a gamma model based on 75 percent training data.

Figure 14: Profile Log-likelihood Plot for AutoBi Data

We compare the two models. The Akaike Information Criterion for the Tweedie

model evaluates to 4499.53, whereas it evaluates to 4611.25 for the gamma model.

These results say that the Tweedie model fits better to the data than the gamma

model. We underline that AIC talks about the quality of a model relative to another

model. It is possible that both models fit the data poorly.

Based on the AIC metrics, we conclude that we get a better model when we

estimate the Tweedie power. However, we want to quantify this improvement. Table

2 presents the weights for the two models. Observe that the coefficients change with

order of magnitude 10−2. Table 3 records predictions for the first 5 cases in the

training set. We see differences in the tens and hundreds of dollars.
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Explanatory Variable Tweedie Model Gamma Model
Intercept 1.8699 1.8382

ATTORNEY -1.4757 -1.4772
SEATBELT 1 0.4490 0.4887
SEATBELT 2 1.3231 1.4061

AGE 1 -1.4032 -1.3988
AGE 2 -0.6246 -0.6544
AGE 3 -0.1750 -0.1814
AGE 4 -0.0666 -0.0669
AGE 5 -0.6338 -0.6296

Table 2: Comparison of linear weights between the two AutoBi severity models.

Policyholder Index Actual Loss Tweedie Model Gamma Model
7 3538 5443.06 5325.41
9 874 1232.93 1257.50

22 230 1955.63 1951.10
23 26262 8554.29 8546.74
33 603 1244.36 1215.72

Table 3: Loss predictions for first 5 rows in AutoBi testing data.

The training set accounts for about 5.1 million dollars in losses. We calculate

that the Tweedie model predicts about 100,000 dollars less in losses than the gamma

model. I credit this difference to how the Tweedie model situates itself in between

the gamma and inverse-Gaussian cases. Inverse-Gaussian models have smaller peaks

and wider tails than gamma models. Because most of the claims reside in the peak

area, I suspect the smaller peak in the Tweedie model explains the discount. This

information suggests that estimating the Tweedie power could improve accuracy by

approximately 2 percent.

We receive less encouraging results when we look at the testing set. These losses

account for about 2.8 million dollars in loss. We predict losses based on the two models

and observe that the difference in predicted losses only varies by about two thousand

dollars. This computation indicates that the trained model doesn’t translate over as

well to the testing data. Moreover, both models fail to predict a huge amount of the

total losses. The ratio of predicted aggregate losses over actual aggregate losses is
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approximately 57 percent. If we had access to more explanatory variables, I reckon

we could enhance my models and fix this issue.

Next, we plot the model predictions and the target’s empirical distribution. No-

tably, we see multiple humps and thin tails in Figures 15 and 16, whereas the actual

distribution has one hump and a thicker tail. Neither model predicts the large losses

very well. Additionally, we see little difference between Figures 15 and 16. The shapes

of the two distributions look almost identical. This observation calls into question

how different two Tweedie models are when they both fall into the same subclass.

Figure 15: Distribution of Tw2.3 Severity Model

Figure 16: Distribution of Gamma Severity Model
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Figure 17: Distribution of AutoBi Losses

This experiment considered severity modeling with a Tweedie power p ∈ (2, 3).

Actuaries normally encounter the name Tweedie in terms of compound Poisson-

gamma random variables and loss cost modeling. In this sense, this case study

provides some novelty. We made a Tweedie model for claims severity, and we ar-

gued its advantages over a gamma model. Unfortunately, our parameter tuning of

the Tweedie power did little to change the model predictions.
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5 Case Study: Liberty Mutual Home Fire Perils

The first case study concerned automobile claims and severity data. Now, we consider

home insurance claims and loss cost data. We did a poor job modeling automobile

bodily injury claims, in large part because we didn’t have many explanatory variables

available. This next case study involves more policyholders and more explanatory

variables. Liberty Mutual provided me with a large dataset concerning fire coverage

home insurance policies. The data contains 300 explanatory variables and 450,065

observations. The explanatory variables fall into descriptive classes. We have some

generic variables that I suspect refer to marital status, sex, age, et cetera. Geodemo-

graphic variables discuss the statistics about the policyholder’s neighborhood. For

example, average commute to work and the number of fire stations in an area could

be geodemographic variables. Weather variables refer to regional statistics like annual

rainfall. Crime variables measure statistics like the number of police officers in a com-

munity. (Note: I guess at possible interpretations for the variables because Liberty

Mutual encrypted the variable names to safeguard their proprietary practices.)

Since the target variable is loss cost, many rows hold zeros for their target. That

is, most policyholders do not file a claim for fire damage. This scenario calls for a

compound Poisson-gamma model to describe the discrete mass at 0 and the otherwise

continuous positive density. We build models with 2 generic variables, 2 geodemo-

graphic variables, and 7 weather variables. We estimate the Tweedie power to be 1.5.

We compare the Tw1.5 model to Tw1.33 and Tw1.66 models.
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Figure 18: Profile Log-likelihood Plot for LM Home Fire LC Data

Again, we observe the best AIC measurement from the model with the estimated

Tweedie power. For the models with power 1.33, 1.5, and 1.66, we measure AIC as

16018, 15518, and 15681. These results indicate that the model with the estimated

Tweedie power provides a better fit. It makes sense that we get a better model by

estimating a parameter value rather than arbitrarily selecting it.

We provide some tables to quantify the results. Table 4 summarizes the linear

weights for the three models. Table 5 reports loss cost predictions for the first 5 rows.

Similar to the automobile bodily injury claims, the weights only vary by an order of

magnitude 10−2. Due to some issues with the target variable, we do not report on

the business value of our optimized model. (See the chapter endnotes.) Our models

give a ratio of predicted losses over the true losses that is approximately 85 percent.

I suspect this improvement from our first case study has to do with the increase in

the number of variables used.
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Explanatory Variable Tweedie 1.33 Model Tweedie 1.5 Tweedie 1.66 Model
Variable 10 -0.8316 -0.8395 -0.8493
Variable 13 -0.3864 -0.4015 -0.4206
Geodem 24 -0.7472 -0.5915 -0.4208
Geodem 37 0.1056 0.0750 0.0425
Weather 7 0.2223 0.1853 0.1502

Weather 10 -0.8446 -0.8730 -0.9013
Weather 72 -0.1523 -0.1650 -0.1793
Weather 102 0.0167 0.0168 0.0170
Weather 104 0.1804 0.1783 0.1760
Weather 118 0.0309 0.0314 0.0318
Weather 173 -0.0121 -0.0118 -0.0121

Table 4: Comparison of linear weights between LM Home Fire LC models.

Policyholder Index Actual Loss Tweedie Model 1.5 Tweedie Model 1.66
8 0 0.0037 0.0039

10 0 0.0060 0.0060
19 0 0.0014 0.0013
20 0 0.0033 0.0032
23 0 0.0033 0.0032

Table 5: Loss predictions for first 5 rows in LM Home Fire testing data.

We conclude this case study with some graphs. You can’t see changes in prediction

between the different models. Moreover, the models predict the loss costs poorly. All

three models predict a distribution ostensibly similar to the distribution shown in

Figure 19. Notice that the models uniformly predict loss ratios close to 0. Meanwhile,

Figure 20 shows the actual count of loss ratios greater than 0. Essentially, all three

models fail to identify risky policies.
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Figure 19: Distribution of Twp Loss Ratio Predictions

Figure 20: Non-zero Loss Ratios for LM Home Fire Policies

All things considered, I evaluate that tuning the Tweedie power provides little

to no enhancement to the model. This parameter tuning mainly tinkers with indi-

vidual predictions. For the two case studies presented in this thesis, I would advise

alternative feature engineering to enhance the models.
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Endnotes

• Our model fits a Tweedie distribution to empirical data. Implicitly, we are

assuming that the data is well-described by a Tweedie distribution. But, this

assumption could be flawed. Fitting a distribution to data is a difficult and

imprecise science.

• The target variable for the Liberty Mutual dataset is not actually loss cost.

It is a transformed ratio where the loss cost is divided by the premium. From

Chapter 1, we know that Tweedie models are closed under scalar multiplication.

However, this transformed ratio involves multiplication that is not constant.

Policyholders pay different premiums. We accept this imperfection in order to

use a larger dataset. The target still appears to make sense in the context of

Tweedie models. However, we can’t report on total loss costs in this scenario

because the target is a ratio

• In both case studies, we see heavier losses predicted as the Tweedie power

nears 2. Hypothetically, the actuary could observe this trend and pick a power

value that begets the predictions he or she desires. Such an action calls into

question the actuary’s ethics. In this regard, estimating the Tweedie power via

an algorithm appears to conform with reasonable ethical standards.

• I don’t consider crime variables in modeling because they included many missing

values. For the sake of time, I don’t wrangle the empties. I choose to not exclude

the large number of observations that have these empties. Hence, I don’t use

crime variables in my models.

• I don’t include Tweedie powers close to 1 and 2 in the profile log-likelihood

analysis. Dunn and Smyth’s algorithm misbehaves in these situations.
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6 Conclusion

One main motivation for this research is to enhance actuarial models via tuning the

Tweedie power. In other words, is it worthwhile to estimate the Tweedie power in

actuarial ratemaking? Both my case studies indicate that using an estimated Tweedie

power can decrease the Akaike Information Criterion. However, it remains unclear

how this change modifies the model and how much benefit this parameter tuning

provides to the model.

There are advantages and disadvantages to estimating the Tweedie power. The

case studies I provided suggest that estimation leads to a more probable model. It

is good practice to use the power value that best characterizes the underlying data.

Actuaries could justify their parameter selections to regulators by citing the statistical

literature. On the other hand, estimating the Tweedie power could slow down model

production and/or insert new costs for software acquisition and technical training.

The actuary should balance practical and theoretical considerations to provide the

best insurance product possible given the available resources.

This research started in earnest when my manager Tommy Wright told me that

we arbitrarily set the Tweedie power to be 1.5 for loss cost models. I spent over a

year researching for this project, at least nine of which I dedicated to studying the

Tweedie family. Initially, the prospect of improving actuarial models by estimating

the Tweedie power excited me greatly. Yet, I conclude this research by seeing reason

behind the thing I had hoped to fix. That is, I now feel comfortable arbitrarily setting

the Tweedie power to 1.5.

This conclusion notwithstanding, I developed my research skills, learned about

mathematical topics at the graduate-level, and improved my facility with R pro-

gramming. Second, this document makes accessible to actuaries and other STEM

professionals some advanced statistical theory. Third, I expect researchers to contin-

ually refine tools used in generalized linear modeling. Fourth, a company’s technical
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infrastructure changes over time. Maybe someday it will make practical sense for

actuaries to estimate the Tweedie power. Lastly, Tweedie models find application in

other fields besides actuarial science. For other fields, accuracy could matter more

than business considerations. In the end, I hope that you have found some value in

this applied introduction to Tweedie models.
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Appendix

Chapters 1 and 2 discussed Tweedie models and numerical approximations of their

densities without introducing generating functions and measure theory. Speaking

about Tweedie models at a high level made the thesis palatable for a larger audience.

However, some readers want to look “under the hood” and see the base parts that

make up Tweedie models. This appendix is for those readers.

One big advantage of this continued exploration is that we will add to our toolkit

as probability theorists. With this expanded field knowledge, we will be able to

prove results that we left unjustified in Chapters 1 and 2. Moreover, topics covered

in this appendix have value for the graduate student in probability or statistics. I

encourage you to take these appendix items as jumping-off points for further research.

Elementary Measure Theory

Some math students see ring theory and topology in their undergraduate school-

ing. To explain the basics of measure theory, I’ll try to draw analogies to ring theory

and topology. For instance, a topology defines what it means for a set to be open. A

topology for X is a set of sets T ⊂ P(X) for which the following is true:

(i.) ∅, X ∈ T ;

(ii.) arbitrary unions of sets in the topology are in the topology;

(iii.) finite intersections of sets in the topology are in the topology.

Measure theory involves a mathematical object similar to a topology: a σ-algebra.

This object has three rules that determine what is in the collection of subsets.

Definition. A σ-algebraA ⊂ P(X) is a collection of subsets ofX for which the following

is true:

(i.) ∅, X ∈ A;
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(ii.) countable unions of sets in A are in A;

(iii.) complements of sets in A are in A.

Informally, an algebra is a ring closed under scalar multiplication. A ring is a set of

elements coupled with two operations. On the other hand, σ means summand (add

things together) in mathematics. Thus, a σ-algebra is a ring for which we can perform

an operation countably many times. The two operations are complement ′ and union

∪.

How do σ-algebras relate to probability theory? σ-algebras make concrete the idea

of a probability space. There are random events in a probability space. We want to

be able to detect if an event is in our probability space. That is, if we take the union

of countably many events, we can detect the event in our experiment. We also want

to be able to identify the event in our probability space. If we take the intersection

of countably many events, we can narrow in on the event in our experiment.

Definition. A nonempty set X equipped with a σ-algebra A is called a measurable space.

Definition. A measure is a countably additive, nonnegative, extended real value function

defined on a σ-algebra. That is, ν : A → [0,∞] such that

(i.) ν(∅) = 0;

(ii.) ν
(⋃n

i Ai

)
=
∑n

i ν(Ai) for mutually exclusive events
{
Ai : i ∈ N

}
⊂ A.

Notice the relationship between the third axiom of probability and the definition

of a measure. This is no coincidence. Probability is a measure. Measure theory is an

abstraction of basic probability.

Example. Let {H,T} be a set. Define the σ-algebra to be P({H,T}). Consider the

measure ν : P({H,T}) → [0,∞] where ν({H}) = 0.5 and ν({T}) = 0.5. Then,

({H,T},P({H,T}), ν) is a measure space. This measure space corresponds to the proba-

bility of flipping fair coins.
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Remark. The power set of a set is always a σ-algebra.

Example. Let X = {1, 2, 3, 4, 5, 6} and P(X) be a σ-algebra. Define the measure

ν(i) = 1/6 ∀i ∈ X . The measure space (X,P(X), ν) corresponds to the probability of

rolling a fair dice.

Example. Let X be an arbitrary nonempty set and P(X) be a σ-algebra. Define the mea-

sure

νC(A) =


|A|, A is finite

∞, otherwise
.

This measure νC is called the counting measure. We use it to define discrete probabilities

in a measure-theoretic way.

Example. Another important measure is the Lebesgue measure νL. Given an open set,

O =
∐

k(ak, bk), where ∀k (ak, bk) is an open interval. (
∐

denotes the disjoint union.)

Then, νL =
∑

k(bk − ak). The spirit of the Lebesgue measure is to measure length in Rn.

There are two more measure-theoretic definitions relevant to this thesis. First,

we say a measure ν is finite if ν(X) is finite. Second, we say a measure ν is σ-finite

if the set X is the countable union of measurable sets with finite measure νi. It is

immediate from the definitions that a finite measure is σ-finite. However, a measure

being σ-finite doesn’t imply that it is finite.

Integration

Most STEM students are familiar with integration from their calculus courses.

This integration is Riemann integration. We denote it

∫ b

a

f(x) dx .
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There are many different ways to integrate though. Abstractly speaking, integration

is the process of adding up (infinitely) many tiny pieces. Another popular integral is

the Riemann-Stieltjes integral. For the Riemann integral, we call the function f the

integrand and we call x in the dx part the integrator. The Riemann-Stieltjes integral

is similar to the Riemann integral, but we allow the integrator function to be different

than the identity function g(x) = x. That is,

∫ b

a

f(x) dg(x) ,

where f is a function defined on [a, b] and g is a monotone increasing function defined

on [a, b], is the Riemann-Stieltjes integral. Steven Krantz provides a formal definition

of the Riemann-Stieltjes integral and a detailed study of it in his paper “The Integral:

A Crux for Analysis” [17]. While researching the Riemann-Stieltjes integral, I didn’t

find many examples online of solved practice problems. Below we offer two examples

of Riemann-Stieltjes integration. The examples highlight some important properties.

See the properties of the Riemann-Stieltjes integral and some more examples here [9].

Example. Compute
∫ 10

3
x2d(x2 + 2x+ 1).

∫ 10

3

x2 d(x2 + 2x+ 1) =

∫ 10

3

x2 dx2 + 2

∫ 10

3

x2 dx+

∫ 10

3

x2 d1

=

∫ 10

3

x2 · 2x dx+ 2

∫ 10

3

x2 dx+

∫ 10

3

x2 · (1)′ dx

= 2

∫ 10

3

x3 dx+ 2

∫ 10

3

x2 dx+ 0

≈ 5603.167 .

60



Example. Solve
∫ 5

−3
x3 d[x].

∫ 5

−3

x3 d[x] =
5∑

i=−2

x3

= −8− 1 + 0 + 1 + 8 + 27 + 64 + 125

= 216 .

The floor function is constant for intervals of length 1 and then jumps up 1 mark at a new in-

teger. The change in the integrator is 0, except for at integers. This argument explains why

we can express Riemann-Stieltjes integrals with a floor function integrator as summations.

The key idea behind Riemann-Stieltjes integration is that the integrator function

does not have to be static. We can integrate with a measure as the integrator. For

instance, we can integrate ∫
X

f(x) ν(dx),

where f is defined on measurable space X and ν is a measure. Jorgensen bases his

constructive definition of exponential dispersion models on integrals of this kind.

Generating Functions

Moment-generating functions and cumulant-generating functions are essential tools

in any probability theorist’s toolkit.

Definition. Let X be a random variable with density function f . The moment-generating

function of X is

MX(t) = E[eXt] =

∫
extf(x)dx.

Definition. Let X be a random variable with density function f . The cumulant-generating
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function of X is

KX(t) = logMX(t) = log E[eXt] = log

∫
extf(x)dx.

Proposition.

Ma+bX(t) = eatMX(bt).

Ka+bX(t) = at+KX(bt).

Proof.

Ma+bX(t) =

∫
e(a+bx)tf(x)dx

=

∫
eatex(bt)f(x)dx

= eat
∫
ex(bt)f(x)dx

= eatMX(bt).

Ka+bX(t) = log

[
eat
∫
ex(bt)f(x)dx

]
= log eat + log

∫
ex(bt)f(x)dx

= at+KX(bt).

Proposition. If X and Y are independent random variables, then

MX+Y (t) = MX(t)MY (t) and KX+Y (t) = KX(t) +KY (t).

Proof. By independence, MX+Y (t) = E[e(X+Y )t] = E[eXt]E[eY t] = MX(t)MY (t). Like-

wise, KX+Y (t) = logMX+Y (t) = logMX(t) + logMY (t) = KX(t) +KY (t).
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The jth moment is E[Xj] = M
(j)
X (0) where (j) denotes the jth derivative of the

function. Similarly, the jth cumulant is K
(j)
X (0). Cumulants are a useful way to com-

pute expectations and variances; the first cumulant is the expectation and the second

cumulant is the variance. Sometimes the 3rd cumulant is referred to as skewness and

the 4th cumulant is referred to as kurtosis. People say that the third cumulant affects

how the distributon leans and that the fourth cumulant impacts the sharpness of the

peak in the distribution. In general, it is hard to describe how cumulants after these

influence the shape of a distribution.

A Constructive Definition for EDMs

This subsection reiterates much of what Jorgensen formalizes in The Theory of

Dispersion Models [15]. I cherry-pick definitions and theorems for discussion. We

start with one-parameter models. Then, we complicate things by introducing a second

parameter.

Definition. Let ν be a σ-finite measure on R. Define the cumulant function κ(θ) for θ ∈ R

as

κ(θ) = log

∫
eθy ν(dy).

The domain of the cumulant function κ(θ) is

Θ =

{
θ ∈ R :

(∫
eθy ν(dy)

)
<∞

}
.

This definition asks a lot of the reader all at once. In practice, we seldom compute the

cumulant function κ(θ). Proofs and results we give substitute in κ(θ) as a convenient

way to encapsulate this analytic expression. What is suspect about this definition is

the σ-finite measure ν. We would like to know what ν is before we proceed.

Recall the a(y;σ2) functions present in the EDM densities. After Proposition 1.1,

I remarked that these a(y;σ2) functions maintain incredible flexibility. We proposed
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suitable a(y;σ2) functions for the normal, Poisson, binomial, and gamma cases. These

candidates didn’t look akin to one another. In general, these a(y;σ2) functions don’t

have closed forms. Let b(y;σ2) be a function like a(y;σ2) that takes input (y, σ2).

For now, let σ2 = 1.

ν(dy) = b(y; 1)dy,

where dy is the Lebesgue measure. Similar to the a(y;σ2) function, this function

b(y;σ2) has a lot of freedom.

For a random variable Y parameterized by θ and defined on a measurable sets A,

the cumulative distribution is

Prθ(Y ∈ A) =

∫
A

exp{yθ − κ(θ)} ν(dy).

Notice the density function exp{yθ−κ(θ)}b(y; 1) inside this expression. Contrast this

density with the axiomatic density we presented in Chapter 1:

f(y;µ, 1) = a(y; 1) exp{−1

2
d(y;µ)}.

We will soon argue that these two formulations are the same.

With this expression for the distribution, it is easy to determine the moment-

generating function and the cumulant-generating function for the random variable

Y .

MY (t; θ) =

∫
exp{yt} exp{yθ − κ(θ)} ν(dy)

= exp{−κ(θ)}
∫

exp{yθ + yt} ν(dy)

= exp{−κ(θ)} exp{κ(θ + t)}

= exp{κ(θ + t)− κ(θ)}.
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We get the third line in the derivation by citing the definition of the cumulant func-

tion. The result gives a neat expression for the moment-generating function. Since

the cumulant-generating function KY (t; θ) is just the log of the moment-generating

function, it follows immediately that

KY (t; θ) = κ(θ + t)− κ(θ).

Using these simple expressions, we can compute the jth cumulant and the jth moment

with respect to t. This evaluation justifies the jargon “cumulant function” κ(θ).

K(j)(t; θ) =
∂(j)K(t; θ)

∂tj
= κ(j)(θ + t).

K(j)(0; θ) = κ(j)(θ).

Recall that the first cumulant is the mean µ. Observe that

κ′(θ) = µ.

Define a function τ : Θ→ Ω where Θ is the parameter space, Ω is the mean parameter

space, and τ(θ) = κ′(θ). In other words, we have a function that maps the parameter

θ to the position parameter µ. Let τ−1 : Ω → Θ be the inverse function of τ . This

function τ−1 maps a position parameter µ to the parameter θ. With functions τ and

τ−1, we will soon show that the axiomatic defintion and the constructive definition

of an exponential dispersion model express the same idea. First, we formalize the

constructive definition of an exponential dispersion model.

Definition. We call {Prθ : θ ∈ Θ} a one-parameter exponential family if

(i) the distribution functions do not map to a constant value to 1;

(ii) Θ contains more elements than just 0.
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These two conditions say that the distribution functions describe random behavior

and that the family includes at least two members. We generalize this one-parameter

family into a two-parameter family: exponential dispersion models. Let Σ be a set

containing elements σ2 > 0. Given a one-parameter exponential family,

κ(θ)

σ2
= log

∫
exp

{
θ
y

σ2

}
ν 1
σ2

(dy)

holds for some σ-finite measure ν 1
σ2

. Essentially, we have scaled the original one-

parameter exponential family by a second parameter (the dispersion parameter).

The distribution function for a member Y of the two-parameter exponential family

has a familiar form:

Pr(θ,σ2)(Y ∈ A) =

∫
A

exp
{yθ − κ(θ

σ2

}
ν 1
σ2

(dy).

We evaluate the moment-generating function and cumulant-generating function with

this distribution function.

MY (t; θ, σ2) =

∫
exp{yt} exp

{yθ − κ(θ)

σ2

}
ν 1
σ2

(dy)

= exp

{
− κ(θ)

σ2

}∫
exp

{
y

σ2
(θ + tσ2)

}
ν 1
σ2

(dy)

= exp

{
− κ(θ)

σ2
)

}
exp

{
κ(θ + tσ2)

σ2

}
= exp

{
κ(θ + tσ2)− κ(θ)

σ2

}
.

KY (t; θ, σ2) = log
(

exp
{κ(θ + tσ2)− κ(θ)

σ2

})
=
κ(θ + tσ2)− κ(θ)

σ2
.
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Find the first and second cumulants by differentiating with respect to t at t = 0.

σ2κ′(θ)

σ2
= κ′(θ)

= τ(θ)

= µ.

(σ2)2κ′′(θ)

σ2
= σ2κ′′(θ)

= σ2τ ′(µ).

Recall that the second cumulant K ′′(0) gives variance for the random variable. More-

over, σ2 ·V (µ) is the variance of an EDM. Therefore, τ ′(θ) = κ′′(θ) = V (µ). We have

three ways to describe the variance function for an exponential dispersion model.

Return to the distribution function Pr(θ,σ2)(Y ∈ A). We defined this function with

a σ-finite measure ν 1
σ2

(y), but we didn’t explain what the measure is. Let ν 1
σ2

(y) equal

b(y;σ2)dy. It follows that the density is

f(y;µ, σ2) = b(y;σ2) exp

{
yθ − κ(θ)

σ2

}
= b(y;σ2) exp

{
yτ−1(µ)− κ(τ−1(µ))

σ2

}
.

Compare with the axiomatic density

f(y;µ, σ2) = a(y;σ2) exp

{
− 1

2σ2
d(y;µ)

}
.

In The Theory of Dispersion Models, Jorgensen gives that the unit deviance d(y;µ) for

an exponential dispersion model as

2
[

sup
θ∈Θ

(
yθ − κ(θ)

)
− yτ−1(µ) + κ(τ−1(µ))

]
.
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Use calculus to find θ that maximizes yθ − κ(θ).

∂

∂θ

(
yθ − κ(θ)

)
= y − κ′(θ) = y − τ(θ) = 0.

Suppose y is in the mean parameter space Ω. Observe that τ−1(y) maximizes yθ−κ(θ).

Thus, when y ∈ Ω, we get unit deviance d(y;µ) as

2
[
yτ−1(y)− κ(τ−1(y))− yτ−1(µ) + κ(τ−1(µ))

]
.

Recall that the mean parameter space Ω is the interior of the convex support C.

Table 1 in Chapter 1 records the convex supports for Tweedie models. Most of the

time, the convex support is an open interval like R. As a result, y is almost always in

the mean parameter space. Only for Twp(µ, σ
2) with 1 < p < 2 is the convex support

the half open interval [0,∞). Jorgensen handles this special case when y = 0 in his

book [15]. To keep things simple, we assume y ∈ Ω. The following proposition draws

the connection between the axiomatic definition and the constructive definition.

Proposition. Let fa be the density function from the axiomatic definition and fc be the

density function from the constructive definition. Suppose a(y;σ2) = fc(y; y, σ2). Then,

for Tweedie models,

fa(y;µ, σ2) = fc(y;µ, σ2).

That is,

a(y;σ2) exp

{
− 1

2σ2
d(y;µ)

}
= b(y;σ2) exp

{
yθ − κ(θ)

σ2

}
.

Proof. By assumption, we have a Tweedie model. As a result, y ∈ Ω and the unit deviance

is

2
[
yτ−1(y)− κ(τ−1(y))− yτ−1(µ) + κ(τ−1(µ))

]
.
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Substitute in a(y;σ2) = fc(y; y, σ2).

fa(y;µ, σ2) = fc(y; y, σ2) exp

{
− 1

2σ2
d(y;µ)

}
= b(y;σ2) exp

{
yτ−1(y)− κ(τ−1(y))

σ2

}
exp

{
− 1

2σ2
d(y;µ)

}
= b(y;σ2) exp

{
yθ − κ(θ)

σ2

}
= fc(y;µ, σ2).

Remark. We only discuss the convex supports of Tweedie models. In general, the axiomatic

and constructive definitions of exponential dispersion models are the same. See The Theory

of Dispersion Models [15].

To summarize, we now have a different way to think about EDM (and Tweedie)

densities in terms of cumulant functions, moment-generating functions, and cumulant-

generating functions. This version is identical to what we discussed in Chapter 1.

Besides expanding our toolkit with moments and cumulants, we revealed how EDMs

are constructed by scaling one-parameter exponential families.

Tweedie Family Proofs

We asserted some propositions for Tweedie models in Chapter 1 without justi-

fication. Furthermore, we suggested in a footnote that some index parameters p

correspond to stable distributions. I am happy to now give arguments for these re-

sults. I hope that the inquisitive reader who has persevered through this not-so-gentle

introduction receives some satisfaction from this subsection.

Recall that the variance function for a Tweedie model is V (µ) = µp. We determine

an expression for parameter θ and cumulant function κ(θ) in terms of µ and p. Observe
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that

κ′′(θ) =
∂τ(θ)

∂θ
=
∂µ

∂θ
= µp.

Ignoring the arbitrary constants we get from indefinite integration,

θ =


µ1−p

1−p p 6= 1

log µ p = 1

.

Jorgensen writes µ in terms of θ and p as well [15]. He introduces a parameter α

that is related to p in that

α =
p− 2

p− 1
.

The inverse relationship says that

p =
α− 2

α− 1
.

Consider that

p− 1 =
α− 2

α− 1
− 1 =

α− 2

α− 1
− α− 1

α− 1
=
−1

α− 1
.

Now, compute µ in terms of θ and α by finding the inverse of θ in terms of µ and p.

µ =


(

θ
α−1

)α−1

p 6= 1

eθ p = 1

.

Next, we find the cumulant function κ(θ) by solving the differential equation

κ′(θ) = τ(θ) = µ. For p 6= 1, 2, integrate to get

κ(θ) =
α− 1

α

( θ

α− 1

)α
.

For p = 1, we integrate to see that κ(θ) = eθ. The tricky case is for p = 2. When
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p = 2, α = 0. Thus, we get

κ′(θ) =
−1

θ
.

The antiderivative is − log(−θ). In summary,

κ(θ) =



α−1
α

(
θ

α−1

)α
p 6= 1, 2

− log(−θ) p = 2

eθ p = 1

.

I understand that it is difficult to remember these many relationships between

p, α, µ, θ, κ(θ), and V (µ). Math is trying sometimes because it challenges your

mental faculties, and sometimes it is trying because it requires you to regurgitate

and synthesize a bulk of information. The task at hand speaks to the latter. For

the proceeding proofs, we will use these expressions. Refer back to this page and the

preceding page when you need to recall the relationships between Tweedie parameters

and functions.

Proposition. There are no Tweedie models with index parameter 0 < p < 1.

Proof. Assume there exists a Twp(µ, σ2) where p ∈ (0, 1). We know that

κ(θ) =
α− 1

α

( θ

α− 1

)α
.

Differentiate twice with respect to θ to find that

κ′′(θ) =
( θ

α− 1

)α−2

.

Before we take the next step, we must consider what α is. The relationship between α and

p is best shown graphically. Observe that limp→0+
p−2
p−1

= 2 and that the mapping from p to

α is monotone increasing. Therefore, α− 2 > 0.
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Recall that 0 ∈ Θ for all exponential dispersion models. For θ = 0, the variance of the

Tweedie random variable is 0. That is, the Tweedie random variable is not stochastic at all.

This result contradicts the fact that Tweedie models are random objects. We conclude that

there exist no Tweedie models indexed by p ∈ (0, 1).

We can derive the general unit deviance for Tweedie models as well. In Chapter 1,

we saw the unit deviances for the normal, Poisson, and gamma cases. These Tweedie

models are special cases.

Proposition. For a Tweedie model with index power p 6∈ {0, 1, 2}, the unit deviance

d(y;µ) is

2

{
max(y, 0)2−p

(1− p)(2− p)
− yµ1−p

1− p
+
µ2−p

2− p

}
.

Proof. Recall that Tweedie models have unit deviance

2

{
sup
θ∈Θ

[
yθ − κ(θ)

]
−
(
yτ−1(µ) + κ(τ−1(µ)

)}
.

We know that τ−1(µ) = θ and κ(τ−1(µ)) = κ(θ). Verify that

yτ−1(µ) = yθ =
yµ1−p

1− p
.

This equality follow directly from how we described θ in terms of µ and p. Writing κ(θ)

in terms of µ and p requires more algebraic manipulation than just substitution. Check

the algebra below. We start by simplifying what is inside of the parentheses, and then

we simplify the multiplier outside of the parentheses. Observe that we apply the formula

(p− 1)(α− 1) = −1 multiple times.
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κ(θ) =
α− 1

α

( θ

α− 1

)α
=
α− 1

α

( µ1−p

(1− p)(α− 1)

)α
=
α− 1

α
(µ1−p)α

=
α− 1

α
(µ1−p)

p−2
p−1

=
α− 1

α
µ

(p−2)(1−p)
p−1

=
α− 1

α
µ2−p

=
(α− 1)(p− 1)

p− 2
µ2−p

= − µ
2−p

p− 2

=
µ2−p

2− p
.

Next, we concern ourselves with supθ∈Θ

[
yθ − κ(θ)

]
. From calculus, we see that the

maximum occurs when

y =
( θ

α− 1

)α−1

=
( µ

(α− 1)(1− p)

)(α−1)(1−p)

= µ(α−1)(1−p)

= µ.

This calculation means that we only get a solution if y ≥ 0. Substitute in max(y, 0) for y.
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Compute

sup
θ∈Θ

[
yθ − κ(θ)

]
= max(y, 0) · max(y, 0)1−p

1− p
− max(y, 0)2−p

2− p

=
max(y, 0)2−p

1− p
− max(y, 0)2−p

2− p

=
max(y, 0)2−p

(1− p)(2− p)
.

Bring all the pieces together. For Twp(µ, σ2) with p 6∈ {0, 1, 2}, we conclude that the

unit deviance is

2

{
max(y, 0)2−p

(1− p)(2− p)
− yµ1−p

1− p
+
µ2−p

2− p

}
.

The last interesting thing we will say about Tweedie models harkens back to a

comment I made in Chapter 1. I remarked that some Tweedie models are stable

distributions for some parameter choices θ. Stable distributions connect to limiting

distributions and they find application in many financial settings. For example, James

Weatherall talks at a high level about stable distributions in his science-popularizing

book The Physics of Wall Street [29]. This topic is something I plan to study more

during my professional career. For now, we introduce stable distributions in the

context of Tweedie models.

Definition. Let X1, · · · , Xn be independent, identically distributed random variables with

distribution F . We say X is a stable random variable, if, for all n ∈ N, there exist constant

b and non-constants ci such that

aX + b =
n∑
i=1

ciXi

also has distribution F . If b = 0, we say that X is a strictly stable random variable.

Theorem. Let X be a Tweedie model with p ∈ (−∞, 0]∪ (2,∞) and with τ−1(µ) = 0. X
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is a strictly stable random variable.

Proof. Observe that τ−1(µ) = θ, so θ = 0. The cumulant-generating function of the

Tweedie model is

KX(t; 0, σ2) =
κ(tσ2)− κ(0)

σ2
.

Recall that κ(θ) = α−1
α

(
θ

α−1

)α
for the given p. For p ≤ 0, α ∈ (1, 2]; for p > 2, α ∈ (0, 1).

We see these mappings in Figures 21 and 22. Consequently, |α− 1| > 0 and κ(0) = 0.

Figure 21: Relationship between α and p for p ≤ 0

Figure 22: Relationship between α and p for p > 2
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Consider X1, · · · , Xn independent, identically distributed copies of X . Evaluate the

cumulant-generating function of
∑n

i=1 Xi. That is,

n∑
i=1

KXi(t; 0, σ2) = n ·KX(t; 0, σ2)

=
n(α− 1)

ασ2

( tσ2

α− 1

)α
=
α− 1

ασ2

(n1/αtσ2

α− 1

)α
= KX(n1/αt; 0, σ2).

X1 + · · · + Xn has the same distribution as n1/αX . By definition, X is a strictly stable

distribution.

Besides the fact that some Tweedie random variables are stable in special cases,

Jorgensen justifies the jargon “stable” by stating that Tweedie random variables have

properties similar to stable distributions. For example, both Tweedie random vari-

ables and stable random variables are infinitely divisible. Moreover, Tweedie distri-

butions appear as limiting distributions in a kind of generalized central limit theorem

[15]. See The Theory of Dispersion Models to study this tangential idea.

Renewal Theory

This subsection covers some properties of renewal processes and proves some re-

lated propositions. Proofs in this section follow the approaches taken in Sheldon Ross’

“Stochastic Process” [22].

A convolution expresses how one function modifies the integral of another function.

We interpret a convolution visually as the overlap seen when shifting one function

over another function.
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Definition. (f ? g)(t) =
∫ t

0
f(τ)g(t− τ)dτ is the convolution of shifting g over f .

Remark. The bounds of integration do not need to be 0 and t. We define convolution with

these bounds because most Tweedie models have the nonnegative reals as their domains. t

is some number that is in the domain of both f and g.

Note. We denote the n-fold convolution as f ?n = f ? · · · ? f .

Here are some useful properties for convolutions:

• Associativity: (f ? g) ? h = f ? (g ? h).

• Commutativity: f ? g = g ? f .

We use convolutions in probability to find the cumulative distribution function

of a sum of two random variables. Suppose X and Y are random variables with

cumulative distribution functions FX and FY . Then, the new random variable X+Y

has cumulative distribution functions FX ? FY . n-fold convolution comes in handy

when we talk about infinitely divisible random variables. For example, consider n i.i.d.

exponential random variables with cumulative distribution function F . The sum of

these random variables is a gamma random variable with cumulative distribution

function F ?n. With this background in convolutions well-established, we now return

to renewal theory.

Much of renewal theory involves the study of the renewal function. The renewal

function r(t) is the expectation of the counting process. That is, r(t) = E[N(t)].

Another way to express the renewal function is as a n-fold convolution.

Proposition. r(t) =
∑∞

n=1 Fn(t) where Fn is the n-fold convolution of the interarrival

distribution.

Proof. Evaluate the statement N(t) ≥ n ⇐⇒ Sn ≤ t. In words, this statement means

that the number of renewals by time t is greater than or equal to n if and only if n renewals

occur before time t. Review this statement until you agree with its logic.
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Next, consider the following:

Pr(N(t) = n) = Pr(N(t) ≥ n)− Pr(N(t) ≥ n+ 1)

= Pr(Sn ≤ t)− Pr(Sn+1 ≤ t)

= Fn(t)− Fn+1(t).

Compute
∑∞

n=1 nP (N(t) = n) = E[N(t)].

∞∑
n=1

nP (N(t) = n) =
∞∑
n=1

nFn(t)− nFn+1(t)

= F1(t)− F2(t) + 2F2(t)− 2F3(t) + 3F3(t)− 3F4(t) + · · ·

= F1(t) + F2(t) + F3(t) + · · ·

=
∞∑
n=1

Fn(t).

We conclude that the renewal function r(t) is the infinite sum of the n-fold convolutions of

the interarrival distribution F .

In our proof of Wald’s equation in the thesis body, we assumed that the expec-

tation of E[N(t)] to be finite. This assumption requires a proof. For the next two

propositions, we investigate the finite nature of the random variable N(t).

Proposition. With probability 1, N(t)
t
→ 1

µ
at t→∞.

Proof. Consider SN(t) and SN(t)+1. SN(t) is the time of the last renewal prior to or at time

t. Likewise, SN(t)+1 is the time of the first renewal after time t. Thus, SN(t) ≤ t ≤ SN(t)+1.

Now, divide by N(t).
SN(t)

N(t)
≤ t

N(t)
≤
SN(t)+1

N(t)
.

78

□ 



(If we define the renewal process with the zeroth renewal at time 0, then N(t) ≥ 1. So

it is legal to divide by N(t).) Next, observe that S refers to the timing of events and N

refers to the count of events. It would make sense if the average of the time elapsed until an

event happened was the expectation of the interarrival distribution. From the strong Law

of Large Numbers, we get that µ ≤ t
N(t)
≤ µ. Here, µ is E[Xi]. Take the reciprocal to

get µ ≤ N(t)
t
≤ µ. (Again, we exercise caution in dividing by µ. But, µ > 0 from our

definition of the interarrival times.) Therefore, N(t)
t
→ 1

µ
with probability 1.

Note. This proposition speaks to the rate at which the counting process grows whereas the

next proposition states that the count of random events is finite in expectation.

Proposition. E[N(t)] is finite.

Proof. For interarrival time Xi, we know that Pr(Xi = 0) < 1 by definition. Thus, there

exists α > 0 such that Pr(Xi ≥ α) > 0. Let {X̄n, n ≥ 1} be a set of random variables

where

X̄n =


0 Xn < α

α Xn ≥ α

.

Observe that X̄n ≤ Xn. Define the counting process N̄(t) = max{n : X̄1 + · · ·+X̄n ≤ t}.

The random variable X̄1 + · · ·+X̄n takes on only discrete values kα in its support (k ∈ N).

Consider a renewal for the X̄n random variable whenXn ≥ α. The counts of these renewals

at the times kα are independent geometric random variables (getting a α is a success and

getting a 0 is a failure). Their mean p is Pr(Xn ≥ α). Formalize these independent

geometric random variables as G1, · · · , Gn.

Suppose nα ≤ t ≤ (n+ 1)α. Compute E[N̄(t)] as

n∑
k=1

E[Gk] =
n

p
≤ t/α

p
<∞ .
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Because X̄n ≤ Xn, it follows that N̄(t) ≥ N(t). In English, we count more renewals when

the interarrival time is shorter. Take expectations for the two counting processes. Clearly,

E[N̄(t)] ≥ E[N(t)]. We conclude that the expectation of N(t) is finite. (Equivalently, the

renewal function is finite.)

Remark. The approach of this proof is to define a related renewal process, and then show

that the corresponding counting process is both finite and greater than the original counting

process.

80

D 



References
[1] Stephen Abbott. Understanding Analysis. Vol. 2. Springer, 2015.

[2] Beginning Statistics: Continuous Random Variables. https://2012books.
lardbucket.org/books/beginning-statistics/s09-continuous-
random-variables.html. Accessed: 2018-05-03.

[3] Peter Dunn. Package ’tweedie’. R Documentation. Package for R programming. Dec.
2016.

[4] Peter K Dunn and Gordon K Smyth. “Evaluation of Tweedie Exponential Dispersion
Model Densities by Fourier Inversion”. In: Statistics and Computing 18.1 (2008),
pp. 73–86.

[5] Peter K Dunn and Gordon K Smyth. “Series Evaluation of Tweedie Exponential
Dispersion Model Densities”. In: Statistics and Computing 15.4 (2005), pp. 267–
280.

[6] Peter K Dunn and Gordon K Smyth. “Tweedie family densities: methods of evalua-
tion”. In: Proceedings of the 16th International Workshop on Statistical Modelling,
Odense, Denmark. 2001, pp. 2–6.

[7] Richard Durrett. Essentials of Stochastic Processes. Vol. 2. Springer, 2012.

[8] Kirill Eremenko. R Programming A-Z: R for Data Science with Real Exercises!
https://www.udemy.com/r-programming/. Advanced Visualization
with GGPlot2. 2018.

[9] Evaluating Riemann-Stieltjes Integrals. http : / / mathonline . wikidot .
com/evaluating-riemann-stieltjes-integrals. Accessed: 2018-
02-15.

[10] David A Freedman. Statistical Models: Theory and Practice. Cambridge University
Press, 2009.

[11] Mark Goldburd, Anand Khare, and Dan Tevet. “Generalized Linear Models for In-
surance Rating”. In: Casualty Actuarial Society. 2016.

[12] Md Masud Hasan and Peter K Dunn. “Two Tweedie distributions that are Near-
optimal for Modelling Monthly Rainfall in Australia”. In: International Journal of
Climatology 31.9 (2011), pp. 1389–1397.

[13] John K Hunter. Measure Theory Notes. https://www.math.ucdavis.edu/
˜hunter/measure_theory/measure_notes.pdf. University of Califor-
nia Davis, 2011.

[14] Bent Jorgensen. “Exponential Dispersion Models”. In: Journal of the Royal Statisti-
cal Society. Series B (Methodological) (1987), pp. 127–162.

[15] Bent Jorgensen. The Theory of Dispersion Models. Chapman and Hall, 1997.

[16] Daniel Kahneman. Thinking Fast and Slow. Farrar, Straus and Giroux, Oct. 2011.

[17] Steven G Krantz. “The Integral: A Crux for Analysis”. In: Synthesis Lectures on
Mathematics and Statistics 4.1 (2011), pp. 76–80.

81



[18] Richard J Larsen, Morris L Marx, et al. An Introduction to Mathematical Statistics
and Its Applications. Vol. 5. Pearson, 2017.

[19] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing. Vienna, Austria, 2018. URL: https://www.R-
project.org/.

[20] Sidney I Resnick. Adventures in Stochastic Processes. Springer Science & Business
Media, 2013.

[21] Sheldon M Ross. A First Course in Probability. Pearson Education International,
2009.

[22] Sheldon M Ross. Stochastic Processes. John Willy & Sons, 1983.

[23] Sheng G Shi. “Direct Analysis of Pre-adjusted Loss Cost, Frequency or Severity in
Tweedie Models”. In: Casualty Actuarial Society E-Forum. 2010, pp. 1–13.

[24] Hiroshi Shono. “Application of the Tweedie Distribution to Zero-catch Data in CPUE
Analysis”. In: Fisheries Research 93.1 (2008), pp. 154–162.

[25] Gordon Smyth. Package ’statmod’. R Documentation. Package for R programming.
June 2017.

[26] MCK Tweedie. “An Index which Distinguishes between Some Important Exponen-
tial Families”. In: Statistics: Applications and new directions: Proc. Indian statistical
institute golden Jubilee International conference. Vol. 579. 1984, p. 604.

[27] MCK Tweedie. “Functions of a Statistical Variate with Given Means, with Special
Reference to Laplacian Distributions”. In: Mathematical Proceedings of the Cam-
bridge Philosophical Society. Vol. 43. 1. Cambridge University Press. 1947, pp. 41–
49.

[28] Hans Van Vliet. Software engineering: principles and practice. Vol. 3. Wiley New
York, 1993.

[29] James Owen Weatherall. The Physics of Wall Street: A Brief History of Predicting
the Unpredictable. Houghton Mifflin Harcourt, 2013.

[30] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York, 2009. ISBN: 978-0-387-98140-6. URL: http://ggplot2.org.

[31] Alicja Wolny-Dominiak and Michal Trzesiok. insuranceData: A Collection of In-
surance Datasets Useful in Risk Classification in Non-life Insurance. R package
version 1.0. 2014. URL: https://CRAN.R- project.org/package=
insuranceData.

82




