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Abstract

Deep learning is notably successful in data analysis, computer vision, and human control.

Nevertheless, this approach has inevitably allowed the development of DeepFake video

sequences and images that could be altered so that the changes are not easily or explicitly

detectable. Such alterations have been recently used to spread false news or disinforma-

tion. This study aims to identify Deepfaked videos and images and alert viewers to the possi-

ble falsity of the information. The current work presented a novel means of revealing fake

face videos by cascading the convolution network with recurrent neural networks and fully

connected network (FCN) models. The system detection approach utilizes the eye-blinking

state in temporal video frames. Notwithstanding, it is deemed challenging to precisely depict

(i) artificiality in fake videos and (ii) spatial information within the individual frame through

this physiological signal. Spatial features were extracted using the VGG16 network and

trained with the ImageNet dataset. The temporal features were then extracted in every 20

sequences through the LSTM network. On another note, the pre-processed eye-blinking

state served as a probability to generate a novel BPD dataset. This newly-acquired dataset

was fed to three models for training purposes with each entailing four, three, and six hidden

layers, respectively. Every model constitutes a unique architecture and specific dropout

value. Resultantly, the model optimally and accurately identified tampered videos within the

dataset. The study model was assessed using the current BPD dataset based on one of the

most complex datasets (FaceForensic++) with 90.8% accuracy. Such precision was suc-

cessfully maintained in datasets that were not used in the training process. The training pro-

cess was also accelerated by lowering the computation prerequisites.

Introduction

Advancements in camera technology and the prevalence of social networks (Facebook, What-

sApp, and Instagram) and video-sharing sites (YouTube and Vimeo) have rendered digital
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media production, editing, and distribution easier and more popular. Processing requires each

video frame to be altered individually, thus prolonging the fake video production process and

time without sophisticated editing equipment and software. Consequently, realistic fake videos

were rare as they are typically identified with the presence of explicit visual aberrations.

This situation has radically changed with the recent emergence of generative deep neural

networks. The generative adversary networks (GANs) application [1, 2] has catalyzed the crea-

tion of software that limited manual intervention and produced videos from substantial photo-

graph collections. The resulting fake media proved far more realistic when evaluated by a

human viewer. As the first widely-available software implementing GANs, DeepFake was digi-

tally published in early 2018. DeepFake, which employs GANs to replace an individual’s face

in a video sequence with synthesized faces of another counterpart, witnessed a significant rise

in the number of fake online videos involving a breach of privacy and identification and legal

repercussions [1–7]. The necessity to detect such false videos has led forensic science commu-

nity members to develop novel technology.

Conventional media forensic techniques have utilized signal level cues (double JPEG com-

pression), physical level information, or semantic level consistencies (meta-data consistency).

Nevertheless, such approaches were not sufficiently reliable or efficient in identifying more

generic DeepFake videos [8–12]. Traditional contrast enhancement (CE) anti-forensic meth-

ods have depicted their practical forging ability in erasing the forensic fingerprints of enhanced

images within histograms and the grey-level co-occurrence matrix (GLCM) with color filter

array (CFA) interpolation using signal-level cues [13]. Regardless, the pixel value changes

resulting from this approach are frequently exposed in the pixel domain. Latent GANs could

be alternatively applied to mitigate this issue. The method outperformed deep-learning-based

CE detection techniques in the pixel, histogram, and GLCM domains under anti-forensic

attacks. Summarily, fake video detection with CFA is no longer deemed reliable [14, 15].

Adaptive PRNU denoising (APD) counter-forensic attacks on digital images did not previ-

ously affect image textural properties [16, 17]. Hence, Venkata et al. proposed an image-texture

layer-based forensic solution for the source identification of APD counter-forensic images,

which reported successful counter-forensic image source attribution with over 96% accuracy

[18]. A calibration loss function could be applied to alleviate the variance gap in the high-fre-

quency sub-bands between generated images and their calibrated versions to evade forensic

detection [19, 20]. Following Jianyuan Wu et al., this method outperformed current advanced

JPEG anti-forensic counterparts. In other words, fake image detection using double JPEG

compression no longer proves suitable [21, 22].

Much emphasis has been placed on deep learning-based approaches and DeepFake coun-

termeasures in addition to reviewing traditional media forensics methods. The attacker assum-

ably modifies the metadata to render it useless as it would provide otherwise valuable

information to verify image and video authenticity [14, 23]. Meanwhile, metadata are fre-

quently omitted when media assets are uploaded to a social network. Thus, it is no longer

deemed appropriate to rely on metadata consistency for authentication purposes [8, 24]. The

current state of forensic approaches in terms of DeepFake video identification implies the

urgent need for novel detection techniques. This research introduced a novel means of reveal-

ing DeepFake videos through the eye-blinking pattern of the synthesized face.

Blinking involves rapidly closing and opening one’s eyelid. The pre-motor brain stem con-

trols these spontaneous blinks, which occur without conscious effort and serves as an essential

biological function to (i) moisturize the cornea and conjunctiva with tears and (ii) remove irri-

tants from the surface [25]. Generally, the interval between each blink is approximately two to

10 seconds for a healthy adult human with the actual rate varying based on the individual [26–

28]. The duration of a typical blink cycle is between 0.1 and 0.4 seconds [11]. As such,
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spontaneous eye-blinking occurs within this specified frequency range and duration in videos

of human. Contrarily, the core GAN model of DeepFake is trained with a large number of iso-

lated human face pictures in many DeepFake videos. With an exposure time of 1/60 seconds,

the probability of capturing a still image with the subject blinking is approximately 15% as

illustrated in Fig 1. Based on the graphs, each action performed by the right and left eye proves

useful to document any anomaly occurring throughout the target video. In reality, most of an

individual’s online pictures would not depict closed eyes as such images were probably not

selected for publication. The absence of eye-blinking is a useful characteristic to ascertain

DeepFake media.

The current study proposed a method that potentially leverages the benefits of using a deep

learning model to train blinking pattern features. A fully connected network (FCN) was uti-

lized in this approach with processed datasets running into a trained long short-term memory

(LSTM) network. Appropriate video pre-processing techniques were incorporated to reduce

the FCN computation time.

The three study contributions are presented as follows:

1. The current work demonstrates how spatial and temporal information could be derived

from the input eye sequence and the eye blinking probability could be computed by cascad-

ing convolutional neural networks (CNNs) with LSTM. The data, which are converted into

meaningful knowledge by pre-processing the information into a labeled sequence, could be

more easily employed by other researchers.

2. The eye-blinking pattern is utilized as a feature to detect anomalies in fabricated videos.

The novel dataset facilitates the training process for classification purposes by minimizing

the computation prerequisites and the memory required by GPU.

3. An FCN with three distinct models is applied to the classification stage. Each model is sub-

jected to three separate tests entailing a range of epoch counts, patience values, and batch

sizes. The optimal model and associated attributes are duly obtained.

Related works

DeepFake videos generators

Artificial images and videos are conventionally generated with detailed 3D computer graphics

models. Goodfellow et al. [1] first proposed the use of GANs, which encompassed a network

generator and discriminator. The generator employed a set of training images from which out-

put candidate images were extracted for subsequent analysis by the discriminator. Both net-

works underwent training with the creator striving to generate images that could deceive the

discriminating unit in its attempts to distinguish synthetic images from actual training ones.

Fig 1. Explicit eye-blinking in real video sequences.

https://doi.org/10.1371/journal.pone.0278989.g001
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Several articles that described picture or face synthesis methods through GANs have been

published. Denton et al. [29] recommended a Laplacian pyramid GAN [30] for coarse-to-fine

picture generation, whereas Radford et al. [31] who suggested deep convolutional GANs

(DC-GAN) demonstrated the potential of such an approach for unsupervised learning. Mean-

while, Arjovsky et al. [32] utilized the gaps in Wasserstein distances to stabilize training. Isola

et al. [5] employed conditional adverse networks to learn mappings from image to image and

train the loss function while Shrivastava et al. [33] utilized an integration of adversarial loss

and self-regularization loss to close a distance measure between artificial and real picture dis-

tributions. Liu et al. [2] proposed a coupled GAN-based unsupervised image-to-image conver-

sion process to examine mutual image representations in several domains. Notably, this

algorithm is the basis for that of DeepFake. The original face would be located while the land-

marks for the whole face region would be defined to facilitate subsequent operations, such as

accurate face-cropping to precisely warp the target face into the original. The face swap was

subsequently applied to the original frame, which led to the creation of DeepFake.

Detection of blinking eyes

The identification of eye blinks was previously examined in machine vision under fatigue

detection applications [34, 35]. Pan et al. [25] developed an undirected conditional random

field system to detect eye blinking by inferring eye closeness. The model simplifies the complex

inference and optimizes the performance by omitting dependent eye state variables in a linear

chain. Sukno et al. [36] employed active shape models with invariant optimal features

(IOF-ASM) to delineate the eye contour and compute the vertical eye gap for eye condition

assessment. A statistical analysis of the resulting shape sequence enabled the estimation of sev-

eral blinking parameters. The outcome validation against manual annotations yielded a high

level of accuracy in blink frequency estimation.

Yang et al. [27] incorporated a pair of parameterized parabolic curves to model the human

eye shape and subsequently fitted a model to each frame in order to track eyelid movement.

The face tracker, which was based on active shape models (ASMs) [37], employed a Kanade-

Lucas-Tomasi tracker to continually track face landmarks. Determined by the face tracker, the

eye region was refined by a deformable contour template for eyelid-fitting. A scalar quantity

was proposed by Soukupova et al. [38], in which a rectangular bounding box was placed

around the eye with an aspect ratio paralleling the degree of eye openness. The elicited pattern

relied on the speed of eye-closing and opening, degree of eye-squeezing, and blink duration. In

this vein, an ‘eye aspect ratio support vector machine’ was developed to identify the final eye

condition with these features as inputs.

Kim et al. [6], who studied CNN-based classifiers to assess if one’s eyes are open or closed,

employed a ResNet-50 revised model [39] with a specified number of nodes in its fully con-

nected layer. Li et al. subsequently extended the CNN-based classifier to consider the temporal

relationship between consecutive frames as eye blinking occurs over several frames. Long-

term recurrent convolutional networks proved suitable to analyze changes over several frames

while mitigating the significance of changes introduced between consecutive images [40]. The

authors then extended the method with LSTM-RNN to better control when and how to forget

previous and update the currently hidden states.

Methodology

Fig 2 below depicts the DeepFake detection approach, whose process can be divided into the

following stages:
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• Stage 1: Eye Localization. The video is extracted into frames during the pre-processing

period with each face in each frame being characterized. The recognized faces are subse-

quently aligned and warped to ensure the consistency of their eye orientation and direction.

The eyes are then cropped and saved as pixel values.

• Stage 2: Blink Detection System. The characteristics-extracting method allows the status of

both eyes to be recognized. Every frame series is fed into the cascade model, which entails

convolution, LSTM, and an FCN. Essentially, the output represents the probability of each

eye condition.

• Stage 3: Blink Probability Dataset (BPD): The probability data collected in Stage 2 are re-

sampled and processed within 4.5-second sliding windows to develop a novel BPD dataset.

• Stage 4: DeepFake Classifier. This classifier functions to train real and fake videos with data

from the BPD dataset on eye state probability. The FCN architecture model is selected for

training together with its dropout, early-stopping, batch size, and network configuration.

The visual studio code-Python integration served to run the algorithm. The OpenCV
library was incorporated for frame extraction from the videos and image manipulation. Mean-

while, dlib library was applied to recognize the face mark, which allows bending, warping,

and cropping of the eye. Tensorflow functioned as a framework to run the algorithm dur-

ing the eye-blink state extraction based on a pre-trained model. This extraction was utilized to

develop the blink pattern from the BPD dataset. A further model was structured following this

new dataset to predict DeepFake videos with PyTorch and PyTorchLightning. Both

Tensorboard and matplotlib were employed for outcome virtualization.

Eye localization

First, the datasets provided by Zhou T, Wang W, Liang Z, et al., the FaceForensics++
dataset [41] and YouTube videos were extracted into individual frames. The face is detected

through the dlib library while the landmark of the face is duly determined. The function of

the library and FL detectors depend on the approach represented by [42], which outputs an

array of 68 points in the (x, y) coordinate format. Essentially, the faces are aligned and warped

Fig 2. DeepFake detection approach based on eye state data.

https://doi.org/10.1371/journal.pone.0278989.g002
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before the eyes are cropped into a single input to ensure that the line joining the eye centers is

horizontal and scaled to a uniform size. The eye positions are determined by points 37 to 48.

Furthermore, the rectangular region is established by omitting the bounding boxes of each eye

landmark points, thus scaling each bounding box by a factor of 1.25 in the horizontal direction

and a factor of 1.75 in the vertical direction and ensuring the inclusion of the eye region in the

cropped zone. Fig 3 illustrates the relevant processes. The depicted individuals provided

informed consent in written form based on the PLOS consent form to publish their image

alongside the manuscript.

Blink detection system

Fig 4 illustrates the blink detection system performance procedures. The sequences encom-

passing the cropped eye regions, which were derived from the eye localization in Stage 1, were

saved as RGB images. These data sequences were fed into a pre-trained CNN to extract the

spatial information for each eye. Additionally, the extracted features were fed into the LSTM

network for further feature extraction.

The LSTM nodes illustrated in Fig 5 denote memory units that regulate when and how (i)

previous hidden states are forgotten and (ii) hidden states are updated [4]. The first sigmoid

function from the left of the block diagram, which is known as the forget gate, ft, pushes the

input xt into the [0, 1] range.

ft ¼ sðwf � ½ht� 1; xt� þ bf Þ ð1Þ

Fig 3. Obtaining the eyes from the input videos.

https://doi.org/10.1371/journal.pone.0278989.g003
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Fig 4. Blink detection system.

https://doi.org/10.1371/journal.pone.0278989.g004
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where σ denotes sigmoid function, wx implies the weight for respective gate(x) neurons, ht
reflects the LSTM block output, and bx indicates the biases for the respective gates(x).

The vector output of the forget gate was simply formed from a dot product of the input

weights and previous cell states. The result would ascertain whether to amplify or attenuate the

original value. As a cross product with the hyperbolic tangent function of previous cell states,

the second sigmoid function constrains the input to the [−1, 1] range.

it ¼ sðwi � ½ht� 1; xt� þ biÞ ð2Þ

~Ct ¼ tanhðwc � ½ht� 1; xt� þ bcÞ ð3Þ

Ct ¼ ft � Ct� 1 þ it � ~Ct ð4Þ

where ~Ct implies the candidate for cell state at timestamp(t), Ct denotes the cell state at time-

stamp(t), and other mirror Eq 1.

The sigmoid output (amplifier or attenuator) was subsequently utilized to scale the encoded

data based on its appearance pre-application to the cell state. Plausibly, the inclusion of such

features to render the present state essential to recall implies their reference as input gates in

(Eq 1), which would later be integrated with the forget gate from (Eq 3) to form the new cell

state (Ct) as expressed in (Eq 4). A hyperbolic tangent was applied to the new cell state in com-

pressing the values into the [-1, 1] range as presented in (Eq 5). Lastly, the cross-product with

the input sigmoid function was expressed in (Eq 6).

ot ¼ sðwo � ½ht� 1; xt� þ boÞ ð5Þ

ht ¼ ot � tanhðCtÞ ð6Þ

where ot represents the output gate and ht depicts the LSTM block output at timestamp(t).

This outcome formed the current recurrent network output, which also became the hidden

state for the subsequent network. At this point, the LSTM model output provided the temporal

features derived from the sequence of cropped eyes. Regarding the final prediction state, each

LSTM neuron output was sent to a neural network constituting a fully connected layer, which

incorporated the LSTM output and generated the probabilities of both open and closed eye

states.

Fig 5. The LSTM.

https://doi.org/10.1371/journal.pone.0278989.g005
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Blink Probability Dataset (BPD)

The eye state probability values gathered in the Blink Detection System section were stored in

a temporal sequence that paralleled the input source frame rate. Each video sequence encom-

passed a modified frame rate and duration with the probability sequence for each video also

undergoing changes. As such, it proves necessary to standardize the frame rate for the blinking

pattern to be used as a legitimate feature in system training and the incoming data to have a

specific length of sequence before proceeding. An input sequence that is too long would

require trimming within a particular sliding window formation. The frame rate for each prob-

ability sequence was converted to 50 frames per second. Any data in between were resampled

using the value from the prior data. As a result, the sliding windows are set at 4.5 seconds,

resulting in 225 eye-state probabilities in each sequence, so ensuring that there is the opportu-

nity for the eyes to blink at least once within the trimmed sequence.

The final (BPD) dataset had the input marked with a 0 for an authentic video and 1 for a

tampered one (see Fig 6). Each input constituted 225 features ranging from the second to the

226th column. These properties stored the probability of blinking with values ranging between

0 (eye fully open) and 1 (eye fully closed). The 225 probability values reflected the eye condi-

tion for 4.5 seconds, during which at least one eye blink would normally occur. As stated in

the final stage, the whole dataset was fed into the study models for preparation, validation, and

testing purposes.

DeepFake classifier

An FCN is typically defined to provide appropriate discrimination of features. Specifically, the

FCN output denotes a predicted classification label. All inputs pass through the fully connected

layer with a separate weight applied for each connected neuron. Selecting the most optimal

combination of layers would offer an optimum network with minimal calculation cost.

The operations performed by the FCN are presented below:

nout
0
¼ I ð7Þ

nin
0
¼ nout

0
�Wi þ Bi ð8Þ

nout
i ¼ Fiðnin

i Þ ð9Þ

where Fi denotes an activation function for layer i. With this formula, a forward pass could be

executed and the network output produced for each network layer.

Backpropagation was then applied to update all the weights and biases. The weight and bias

update process in this study involved Diederik and Jimmy et al.’s adaptive moment estimation

[7], whereas stochastic gradient descent served to update the neural network parameters.

Meanwhile, adaptive gradients (AdaGrad) offered a direct means of gradually varying the

learning rate to accommodate dataset changes, as small- or large-scale shifts are possible based

on how the learning rate is selected. The equation is expressed as follows:

ytþ1;i ¼ yt;1 �
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�þ
Pt

t¼1
ðrJðyt;iÞÞ

2
q rJðyt;iÞ ð10Þ

where θ implies a parameter consisting of the weight, biases and activation,η reflects the learn-

ing 258 rate,r denotes the gradient, and J is the objective function with its features and labels.

To initialize the calculation of the error gradients, it is necessary to provide an error calcula-

tion for determining the losses. This work uses the cross-entropy loss as it is widely adopted by
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researchers in this field. The cross-entropy loss L is given by

L ¼ �
XC

j

yjlnŷj ð11Þ

where C represents the number of classes, y denote the labels, and ŷ imply the predicted labels.

The loss, which dictated the gradient of the backpropagation steps, was updated based on

the selected learning rate. A batch of inputs were fed into the network during each epoch with

Fig 6. Processing the raw data into a complete BPD.

https://doi.org/10.1371/journal.pone.0278989.g006
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the weights and biases updated at the end of the epoch. The final accuracy and loss value were

computed as FCN performance measures.

Based on the newly-established BPDs, each input constitutes 225 features reflecting the eye

blinking state every 0.02 seconds, thus providing a total duration of 4.5 seconds for the eye

sequence. It is designed so that at least one eye blinking condition would be present in each

sequence. The sequences were fed to FCN networks with a range of different layer designs,

each with a 0.1 dropout. The rectified linear unit (ReLU) selected as the activation function

was applied at the output of each layer. The probability used in the prediction of the video

ingenuity status was provided by the output layer values.

The process for distinguishing between genuine and tampered videos in this research was

derived by feeding the BPD into three different FCN architectures. In line with Table 1, each

model has its own number of hidden layers and individual number of nodes in each layer.

Other than the models used for testing purposes, each model was executed with a distinct

set of settings and parameters. The number of epochs in Experiment 1 was set to 100, 300, and

500. Experiment 2 incorporated an early stopping function into each model with patience val-

ues of 20, 40, 60, 80, and 100, whereas experiment 3 demonstrated the result of adjusting the

batch value from 5, 10, 15, 20, and 25 to achieve the highest precision for the epoch setting

derived from experiments 1 and 2. All the experiments assessed the model accuracy with the

outcomes and the analysis elaborated in the following section.

Results and discussion

The current study datasets were established through the FaceForensics++ dataset and

converted into probability values for the eye-blinking state, which were subsequently trimmed

to fit the required 225 values of the input data sequence. This new data collection trained the

model and validated the classification of real and fake videos. This experimental study encoun-

tered several limitations. For example, videos with more than one individual were excluded as

the method only analyzed one face at a time. The selected face was then pre-processed with

only the left and right eye areas included in the training model. The dataset source was elicited

from the FaceForensics++ dataset. Furthermore, five different tools involving DeepFake,

DeepfakeDetection, Face2Face, FaceSwap, and Neural Textures were employed to generate the

Deepfake media although the media source was restricted to a single dataset. In this vein, the

high levels of diversity and complexity were regarded In the Wild dataset.

Dataset

A total of 451 videos consisting of 200 real videos and 251 tampered ones were generated.

Each video represented one individual with at least one blink occurring to form the BPDs. The

datasets were prepared with Yuezun Li et al.’s [11] annotation tools where each video provided

two CSV files with timestamps determined based on video length and frame per second (fps).

These files were subsequently processed to form part of the final BPD dataset.

Table 1. Layers of FCN models used.

Layer input h1 h2 h3 h4 h5 h6 output

Model1 225 512 1024 256 64 2

Model2 225 512 1024 128 2

Model3 225 512 1024 2048 1024 512 256 2

https://doi.org/10.1371/journal.pone.0278989.t001
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Eye blinking extraction result using CNN-LSTM pre-trained model

Each video was analyzed before being fed to the proposed model. The pre-trained CNN-LSTM

model omitted the eye blinking state for each frame. Specifically, the model predicted a proba-

bility value for every (open/closed) state for each eye and frame in each clip. Fig 7 illustrates

the model operation. The depicted individuals in Figs 7 and 10 had provided written informed

consent in compliance with the PLOS consent form to publish their image alongside the

manuscript.

The CNN used in this work is based on VGGNet-16 model (see Fig 8) and comprised 16

convolutional layers. Pre-training was performed on the model with ImageNet datasets. This

model was selected given its outstanding precision in eliminating features from still images

and ability to distinguish between apparent changes in the eye size when opening and closing.

Fig 7. Pre-trained CNN-LSTM model for eye state prediction.

https://doi.org/10.1371/journal.pone.0278989.g007

PLOS ONE Cascade CNN-LSTM-FCNs to identify AI-altered video

PLOS ONE | https://doi.org/10.1371/journal.pone.0278989 December 15, 2022 12 / 23

https://doi.org/10.1371/journal.pone.0278989.g007
https://doi.org/10.1371/journal.pone.0278989


A technique with sole reliance on CNN to train the pixel pattern of the eyes and the system

is generally incapable of ascertaining whether the eyes were in the closing or opening state.

Predictions on changing eye state could be improved through an RNN that incorporates tem-

poral features. The CNN output was reshaped into 20 sequences and fed to a RNN with the

LSTM variant. Notably, LSTM could extract the relationship between the temporal features of

the sequences for each set of the 20 spatial features elicited from CNN. The performance mea-

sures derived for the many-to-many LSTM network was routed through FCN for classifica-

tion. Fig 9 illustrates the complete architecture.

A technique that relies solely on CNN to train the pixel pattern of the eyes and the system is

often unable to distinguish whether the eyes were in a state of closing or opening. The predic-

tion of changing eye state can be improved by using a RNN that incorporates, temporal

features.

The video signal, which was fed into the network, yielded a probability value for the eye

state ranging between 0 (eye fully open) and 1 (eye fully closed). In line with Fig 10, the

CNN-LSTM network precisely predicted the eye probability that represented the eye-blinking

status on both sides.

Fig 11 depicts an individual’s blinking sequence from the original video versus the Deep-

Fake-generated counterpart. Observably, the generated eye sequence between opening and

closing proved intermittent: an unnatural blinking pattern compared to the original sequence.

The anomaly in the fake video was amplified by the temporal features of the blinking sequence

and fed into the train model.

Fig 8. The VGGNet-16 model for extracting eyes spatial features.

https://doi.org/10.1371/journal.pone.0278989.g008
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Classification

The BPD dataset elicited in the Dataset section was fed into the model for training purposes.

Particularly, the dataset was divided into (i) training-evaluating and (ii) testing sets. The train-

ing-evaluation set encompasses 3484 data values for both real and fake videos with 70% of the

set utilized for training, 15% for validation and 15% for testing. The train, validate, and test
Dataloaders were then distributed using a random split. Dropout with a value of 0.1 was

used for each neural network layer to avoid overfitting cases. The learning rate of 0.0004 was

selected with ADAM incorporated as the optimizer. Meanwhile, the random seed was set to 42

in each epoch in standardizing the initial weight and demonstrating a valid comparison.

The input data length was fixed at 225 data points during training. Each hidden layer passes

was fully connected, albeit with a different number of nodes and a specific rectified linear acti-

vation function. The FCN generated a SOFTMAX output that implied the media authenticity

Fig 9. The LSTM network for extracting temporal features of eye-blinking state.

https://doi.org/10.1371/journal.pone.0278989.g009

Fig 10. Result of CNN-LSTM network for every frame in the video input.

https://doi.org/10.1371/journal.pone.0278989.g010
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Fig 11. Sample of blink sequence pattern for real and fake video.

https://doi.org/10.1371/journal.pone.0278989.g011
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or fakeness. Several training cycles were attempted with various batch sizes, epoch counts, and

early stopping mechanisms. The training model was evaluated for each set of experiments by

considering the test_acc and test_loss derived from the trained model. Notably, this model

employed the same dropout value and activation mechanism, albeit with differing layers

between the study models (see Table 1).

Experiment 1: Epoch. The first experiment was run with a batch size of 15 and no early

stopping. Nevertheless, each model was trained for 100, 200, 300, 400, and 500 epochs. Table 2

presents the elicited outcomes.

Based on the test dataset accuracy, all the models could deliver over 80% of accuracy with

Model 1 demonstrating the highest at 88.31% when predicting real or fake films through 400

epochs. Both Models 2 and 3 also performed optimally with 400 epochs. Although Model 3

depicted the most hidden layers with prolonged training time, it failed to provide a signifi-

cantly improved performance.

Experiment 2: Early stopping. The second experiment was conducted by fixing the batch

size at 15. Regardless, the early stopping incorporated into each model stopped at a specific

number of epochs upon meeting the final condition. The patience values used were set at 20,

40, 60, 80, and 100. Table 3 presents the elicited outcomes.

Although the early stopping function rapidly completed the training, the degree of rapidity

depended on the validation accuracy value requirement. This approach could generate a better

model with minimal training time. For example, Model 1 demonstrated an outstanding result

of 89.66% in test accuracy when performed with a patience value of 100, whereas Models 2 and

3 failed to attain better accuracy in any patience setting. It is deemed possible to cease training

early when a large neural network could generalize in a manner comparable to a smaller coun-

terpart. This ability could efficiently minimize calculation time and generate optimal

performance.

Experiment 3: Batch size. The final experiment fixed the epoch number that provided

the most optimal outcomes in Experiments 1 and 2. The employed batch sizes were 5, 10, 15,

20, and 25 (see Table 4).

With a batch size of 20 and 105 epochs, Model 1 offered the most optimal accuracy value of

90.80%. All the models denoted little variation in terms of test accuracy. As the number of con-

nected layers was reduced, the model could rapidly achieve convergence to better minima.

Larger batch sizes expanded the training to include additional compute nodes, which would

save energy in reduced computation efforts.

Table 2. Test accuracy for a range of epoch values in three FCN models.

Number of Epoch 100 200 300 400 500

Model1 82.18% 84.29% 83.52% 88.31% 86.97%

Model2 82.76% 84.10% 84.11% 85.82% 82.57%

Model3 80.65% 84.29% 84.10% 86.20% 83.14%

https://doi.org/10.1371/journal.pone.0278989.t002

Table 3. Test accuracy for early stopping with patience setting of 20, 40, 60, 80, and 100 on three FCNs models.

Patience 20 40 60 80 100

Model1 81.61% 83.72% 84.29% 85.05% 89.66%

Model2 81.42% 79.89% 74.33% 81.99% 81.23%

Model3 79.69% 83.33% 83.14% 83.33% 83.33%

https://doi.org/10.1371/journal.pone.0278989.t003
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Fig 12 presents a summary of the experimental outcomes. Despite having fewer hidden lay-

ers than other models, Model 1 reflected the most optimal performance in detecting fake video

sequences. Establishing early stopping as an extra callback enables specific models to end the

learning process earlier, alleviate training costs, and minimize time consumption. Notwith-

standing, the end model in this study relied on an FCN that rendered early stopping ineffective

as observed in Experiment 2. Selecting a specific batch size could significantly improve accu-

racy while saving time during the training session. Following the results derived from all three

experiments, Model 1 with a batch size of 15 offered the highest accuracy without depending

on an early stopping mechanism.

Table 5 presents several approaches to the same problem. Using only spatial information,

Guo et al.’s incorporation of AMTEN and CNN provided 87.05% accuracy post-testing on

their own datasets [43]. This accuracy significantly improved when RGB information was uti-

lized as input along with the noise features extracted by a spatial rich model, hence resulting in

90.36% accuracy assessed on a still image in the FaceForensics++ dataset [44]. Regardless,

insufficient temporal information deterred the model from performing optimally on sequence

data. Integrating temporal information as additional features enables one to examine the

inconsistency between frames as the change occurs at the single frame level. Although the per-

formance of [45] and [47] on the FaceForensics++ dataset proved slightly lower than the spa-

tial-based technique, merely utilizing the basic model to extract both spatial and temporal

features could still provide a substantial outcome with accuracy up to 85.80% [46].

In terms of overall performance, the model probability of failing to forecast the test video

remained significant. Based on the model evaluation of false predictions, most cases occurred

when the generated video generated an eye sequence that closely resembled the source. Fig 13

illustrates the relative similarity of the generated eye sequence with that of the original eye. Per-

ceivably, the generated eye sequence between opening and closing states was more instanta-

neous and delayed than the original sequence despite a minute difference between them.

Conclusion

The current study introduced a novel means of exposing fake videos created with deep neural

networks, which depended on identifying eye blinking in videos: a physiological signal not typ-

ically included in fake videos. This approach, which was tested on datasets containing

sequences that include eye-blinking, demonstrated optimal outcomes in detecting the fake vid-

eos created with the DeepFake-based programme. The method could distinguish between real

and fake image sequences with up to 90.8% accuracy with Model 1 and a batch size of 20 at

105 epochs. DeepFakeDetection-generated media could be identified with up to 95.57% accu-

racy (the highest percentage) in the FaceForensics++ dataset, followed by DeepFakes, FaceS-

wap, and Face2Face at 94.65%, 91.54%, and 90.37%, respectively. Neural Textures-generated

media denoted the lowest model accuracy performance at 86.76%.

The researchers intend to take this study in several distinctive directions for improved per-

formance. First, alternative deep neural network architectures require further examination to

determine the presence of more effective training methods to identify eye-blinking patterns.

Table 4. Test accuracy for a batch size of 5, 10, 15, 20, and 25 at best epoch number for each FCNs models.

Batch Size Epoch 5 10 15 20 25

Model1 105 90.04% 90.61% 89.66% 90.80% 89.85%

Model2 400 86.59% 85.25% 85.82% 84.67% 84.67%

Model3 400 85.44% 86.78% 86.20% 86.78% 86.59%

https://doi.org/10.1371/journal.pone.0278989.t004
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Second, more complex and complete rhythms of blinking, such as physiologically-impossible

and excessive blinking that may indicate tampering could be included as the blinking state is

the only input in the current method. Lastly, eye-blinking is merely a basic cue to detect fake

face images as forgers would produce convincing blinking effects with post-processing and

advanced models trained using blinking image sequence once the detection techniques gains

Fig 12. Comparative performance of the three models.

https://doi.org/10.1371/journal.pone.0278989.g012
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popularity. Thus, it proves necessary to consider alternative physiological signals that could

distinguish a real image sequence from those generated by AI synthesis methods.

The study is concluded as follows:

1. Using a novel dataset potentially accelerated the training process by lowering the calcula-

tion requirements and reducing the memory needed by the GPU in the training process.

2. By providing the eye state probability as the FCN model input, the trained model could pro-

vide optimal results with up to 90.80% accuracy.

3. Early stopping can provide good models faster and automatically but prevent the establish-

ment of a better model, which could be derived by training over more epochs.

4. Based on the most complex model (Model 3), large batch size did not provide a significant

improvement. Nevertheless, controlling the batch size proved pivotal for Models 1 and 2

Table 5. Performance comparison with other detection technique.

Dataset Architecture Classifier Strategy Accuracy

Face RGB and Own Dataset AMTEN with CNN [43] FCN Spatial 87.05%

Face RGB FF++ 2 stream XceptionNet (pixel & filtered) [44] FCN Spatial 90.36%

Face RGB, FF++ Optical flow feed into ResNet50 [45] FCN Temporal 80.56%

Face RGB, FF++, Deepfake-TIMIT dataset Use spatial angle and temporal rotation as classifier input [46] SVM Spatial Temporal 85.80%

Face RGB seq, CelebDF, FF++ dataset 2 stream: MesoNet + ResNet [47] FCN Spatial Temporal 80.00%

https://doi.org/10.1371/journal.pone.0278989.t005

Fig 13. Comparison between real and fake eye blinking sequence for false prediction output.

https://doi.org/10.1371/journal.pone.0278989.g013
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with fewer hidden layers to ensure that they were not overfitting to the training and valida-

tion datasets.

Future works

Significant advancements have been identified in multimedia forensics over the last 16 years.

The establishment of new detection methods is a continuous process given the perpetuity of

various unresolved issues and challenges. In this vein, deep learning catalysed the development

of both media manipulation techniques and forensic technologies. An FCN proved suitable for

classification with no specific assumptions on the inputs. Notwithstanding, an input with

more dimensions or features would lead to an increase in the number of weights slow training

time, and high GPU memory usage. Alternative classification techniques, such as CNNs could

accelerate the process and minimize the possibility of overfitting during training. Overall, this

study generated empirical results with time domain input features. By pre-processing the data-

sets to produce frequency domain features, additional temporal information could be provided

to the training process for enhanced performance.
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