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ABSTRACT - Thermal Energy Storage (TES) is a valuable tool for improving the energy 
efficiency of renewable energy conversion systems. One of the most effective methods for 
harnessing thermal energy from solar sources is through energy storage using phase change 
materials (PCMs). However, the thermal performance of PCMs is hindered by their low thermal 
conductivity. This research focuses on enhancing the thermal performance of salt hydrate 
PCM using multi-walled carbon nanotubes (MWCNTs) and surfactants. Through experimental 
investigations, a salt hydrate PCM with varying concentrations of MWCNTs (ranging from 
0.1% to 0.9%) was prepared using a two-step technique and their thermophysical properties 
were thoroughly characterized. Various techniques such as field emission scanning electron 
microscope, thermal conductivity analyzer, ultraviolet-visible spectrum, thermogravimetric 
analyzer, and Fourier transform infrared spectroscopy were utilized to study the effect of 
surfactant on the nanocomposites and examine their morphology, thermal conductivity, optical 
properties, thermal stability, and chemical stability. The results indicated that the inclusion of 
MWCNTs with salt hydrate significantly improved the thermal conductivity by 68.09% at a 
concentration of 0.7 wt %, compared to pure salt hydrate. However, this enhancement in 
thermal performance was accompanied by a reduction in optical transmittance in the 
developed nanocomposite PCM. Additionally, the formulated nanocomposite demonstrated 
excellent thermal and chemical stability up to temperatures as high as 468 °C. As a result, 
this nanocomposite shows great promise as a potential candidate for solar TES applications, 
offering favourable characteristics for efficient energy storage from solar sources. 
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1.0 INTRODUCTION 
The pressing issue of global warming and environmental pollution stemming from excessive reliance on fossil fuels 

has led to a growing emphasis on adopting renewable energy systems [1]. Among various renewable energy sources, 
solar energy stands out as the most credible, environmentally friendly, and accessible option. Nevertheless, the 
intermittent nature of solar energy poses a significant challenge to its widespread implementation in energy systems [2]. 
To enhance the effectiveness of renewable energy conversion systems, thermal energy storage (TES) has proven reliable. 
Phase change materials (PCMs) [3] offer an efficient technology for harnessing solar energy. These PCMs can absorb, 
store, and release heat energy during their phase transition from solid to liquid, maintaining isothermal conditions. The 
key advantages of using PCMs include their wide range of melting temperatures, high latent heat storage (LHS) capacity, 
thermal stability, and eco-friendliness [4]. However, PCMs do have certain limitations, such as lower thermal conductivity 
(TC) and suboptimal light absorption properties, which hinder their practical application in solar thermal systems and 
lead to slower charging and discharging rates [5], [6]. As a solution, some researchers suggest incorporating high-
conductive nanoparticles into the PCM to improve its heat conductivity and modify other properties [7]–[9]. Despite an 
abundance of research on enhancing the performance of PCMs, selecting the most suitable PCM and conductive particles 
remains a challenging and complex task. 

The incorporation of nanomaterials into the base PCM is known as nano-enhanced phase change materials (NePCMs). 
Some researchers have suggested that adding a small amount of surfactant to the PCM can improve dispersion stability, 
leading to increased thermal conductivity (TC) [10]–[12]. In recent studies, a salt hydrate PCM with Copper Oxide (CuO) 
nanoparticles and a surfactant nanocomposite was synthesized using a two-step method at various concentrations (0.1%, 
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0.5%, 1%, 2%, 3%, and 5%). The results demonstrated that at 3.0 wt% CuO with salt hydrate PCM, the TC was enhanced 
by 87.39%, and the prepared nanocomposites exhibited chemical and thermal stability up to 474°C [13]. Using the T-
history method, Qu et al. conducted an experimental characterization of carbon-based nanoparticles dispersed in paraffin 
PCM. They found that the TC was enhanced by 240% and 108% for the composite with compositions of paraffin: High-
density polyethylene: Expanded Graphite: MWCNTs (75:20:5:0) and (75:20:0:5), respectively [14]. Furthermore, 
Octadecanol (OD) thermophysical properties with MWCNT nanocomposites were synthesized at various concentrations. 
The outcome indicated that the TC increased from 0.16±0.001 W/mK to 0.82±0.04 W/mK at OD-g-MWCNT (1:1) [15]. 
Comparing regular MWCNTs with surface-modified MWCNTs dispersed in salt hydrate PCM, it was observed that 
functionalized MWCNTs exhibited higher dispersion stability, thermal stability, and TC due to the attachment of the 
COOH group on their surface. The TC was improved from 0.45 W/mK to 0.92 W/mK at 0.7 wt% [16]. These studies 
demonstrate the potential of nanocomposites in significantly improving the TC of PCMs, which could pave the way for 
more efficient and practical applications of renewable energy systems utilizing solar energy. 

Several studies have investigated the enhancement of thermal properties in PCMs using various nanoparticles. For 
instance, the two-step approach was used to prepare a binary nanoparticle (TiO2-graphene) dispersed paraffin wax PCM 
composite at different concentrations. The findings showed that the addition of TiO2 particles increased the TC by 120% 
compared to the base PCM at 1.0 wt%. Furthermore, the TiO2-graphene nanocomposite exhibited a 179% increase in TC 
compared to the base PCM. This binary composite significantly improved the TC [17]. Similarly, graphene-enhanced 
erythritol PCM nanocomposites were synthesized using a two-step method at different concentrations (0.1%, 0.5%, and 
1.0%). At 1.0 wt%, the developed nanocomposite showed a 53.1% enhancement in TC, and the latent heat storage (LHS) 
was reduced by 6%. Although the LHS decreased after several thermal cycles, the high TC helped maintain a high value 
of LHS [18]. In another study by Ranjbar et al. [12], the performance of PCMs (stearic acid and polyethylene glycol) 
embedded with MWCNTs was examined for TES applications. The TC was enhanced by 16.83% and 16.57% for stearic 
acid/MWCNT and polyethylene glycol/MWCNT at 1.0 wt%, respectively. Furthermore, the thermal stability and 
reliability of a nano silica-based PCM composite were analyzed at different concentrations (0.5%, 1.0%, and 2.0%). The 
results demonstrated that the decomposition temperature of the formulated nanomaterials augmented from 246 °C to 270 
°C, indicating higher thermal stability due to the development of thermal barriers with nano PCMs [19]. Investigating the 
physical and thermal properties of TiO2-embedded stearic acid PCM composites at various concentrations (0.09%, 0.26%, 
0.335, and 0.36%), the findings showed that the addition of TiO2 particles enhanced the TC by 6.97%, 27.16%, and 
17.53% at 30 °C, 60 °C, and 70 °C, respectively, at 0.36 wt%. The Fourier transform infrared (FTIR) curve suggested 
that the formulated nanomaterials were chemically stable and true composites [20]. Manoj Kumar et al. [21] studied the 
thermal performance of PCM dispersed with CuO and Al2O3. The TC of paraffin/CuO and paraffin/ Al2O3 was enhanced 
by 60.56% and 39.44%, respectively, at 1.0 wt%. The paraffin/CuO dispersed PCM performed better than the 
paraffin/Al2O3 dispersed PCM. Additionally, the performance of MWCNT and graphene platelets enhanced PCMs for 
photovoltaic thermal applications was compared [22]. The TC of paraffin/MWCNTs and paraffin/graphene nanoplatelets 
was 0.191 W/m°C and 0.169 W/m°C, respectively, at 0.5wt%. The results concluded that MWCNTs enhanced PCM with 
higher TC, while graphene platelets dispersed PCMs had higher specific heat. An innovative hybrid nanoparticle 
(MWCNT-CuO) enhanced PCM was fabricated for TES applications in a parabolic dish [23]. The addition of hybrid 
nanoparticles into the PCM enhanced the TC by 6.125% compared to plain PCM, and the formulated nanocomposites 
exhibited a higher charging rate. Recently, nano carbon-based paraffin nanocomposites were developed to enhance 
thermophysical properties at various weight concentrations (0.02%, 0.06%, and 0.1%) [24]. The TC of paraffin/nano 
coconut shell and paraffin/nano graphite was increased by 0.36 W/m°C and 0.32 W/m°C at 0.02 wt%, and 0.336 W/m°C 
and 0.326 W/m°C at 0.1 wt%, respectively. Additionally, PW/ TiO2 nanocomposites were fabricated for TES applications. 
The results indicated that the addition of a small quantity of nano-size particles enhanced the TC, decomposition 
temperature, and absorption capability. The TC was improved by 86.36% at 1.0wt% TiO2, and the decay temperature was 
increased from 225 °C to 237 °C at 1.0wt% TiO2 [11]. The thermal and chemical properties of various sizes of carbon-
based nanoparticles enhanced the magnesium nitrate hexahydrate PCM for TES [25]. The TC of mesoporous carbon, 
nano graphite, MWCNTs, carbon sphere, and graphene nanoplatelets with magnesium nitrate hexahydrate was enhanced 
by 75.0%, 65.0%, 82.4%, 100%, and 72.5%, respectively. The nanocomposite with carbon sphere-enhanced PCM showed 
the highest reduction in charging time. The research publications that reported the thermal properties of carbon-based 
nanoparticle-dispersed PCM are summarized in Table 1.  

In this study, the researchers aimed to enhance the energy management of solar thermal systems by developing 
nanocomposites with improved thermal conductivity (TC) and dispersion stability. To achieve this, they used PlusICE 
S50 salt hydrate as the phase change material (PCM), MWCNT as nanoparticles, and Sodium dodecylbenzene sulfonate 
(SDBS) as a surfactant. The addition of nanoparticles in PCM has been previously shown to enhance thermal properties, 
but the effect of using a surfactant in carbon-based nanoparticle-dispersed salt hydrate PCM for solar applications has not 
been addressed in experimental studies. The research methodology involves collecting the necessary materials and 
formulating the MWCNT-dispersed salt hydrate at various concentrations using a two-step technique. Subsequently, they 
investigated the thermal behavior of formulated nanocomposite. The findings indicated an improvement in the thermal 
properties of inorganic PCM, which is supported by previous studies on nanocomposite preparation and characterization. 
The novelty of the present research lies in studying the effect of using a surfactant in PCM and MWCNT composites, 
characterizing the properties of the developed nanocomposites, and evaluating their performance. The study is organized 
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in a systematic manner, with Section 1 discussing the research purpose and reviewing related literature on nanocomposite 
preparation and characterization. Section 2 covers the methods used for fabricating the nano PCM composite, the 
characterization techniques employed, and the materials used in the preparation of the composites. In Section 3, the 
research delves into the characterization and performance evaluation of the nanocomposites’ thermal stability, TC, and 
chemical stability. Finally, Section 4 depicts the conclusions drawn from the research results, and the study concludes 
with future recommendations. Overall, this research holds the potential to enhance the application of salt hydrate for TES 
purposes, aligning with the sustainable development goals (SDGs) set by the United Nations. By exploring the 
incorporation of surfactant in the nanocomposite preparation, the researchers aim to contribute to advancing solar thermal 
systems and promoting sustainable energy management. 

Table 1. Thermal properties investigation of some major work with MWCNTs 

PCM 
Melting 

temperature 
(°C) 

Nanoparticle Size 
(nm) 

Weight 
percentage 

(%) 

Thermal 
conductivity 
enhancement 

(%) 

Reduction in 
light 

transmittance 
(%) 

Reference 

Stearic 
acid 55-62 MWCNT 10-

20 - 16.83 - [12] 

Inorganic 50 FMWCNT 10-
23 0.3 58.7% 89.8% [16] 

Paraffin 50 Graphene and 
silver 20 0.8 53.7  [26] 

Paraffin 53 MWCNT 30 2 35% - [27] 
Paraffin 50 Graphene 8 0.6 72% 32% [28] 
Paraffin 40-42 MWCNT 2-8 0.5 15.75 - [22] 
Inorganic 58-60 MWCNT+CuO - - 6.125 - [23] 
Salt 
hydrate 50 MWCNT 10-

20 0.7 68.09 89 Present 
work 

2.0 MATERIALS AND METHODS 
This section discusses the various materials used to prepare the nanocomposites, the preparation methods and 

characterization techniques. 

2.1 Materials 

The selection of the appropriate PCM and nanoparticles is a critical step in TES applications, and it depends on factors 
such as the specific application and the operating temperature range. For this research, a commercial-grade inorganic 
PCM called PlusICE S50 was obtained from PCMs Ltd, United Kingdom. The phase transition temperature range is 50°C, 
making it suitable for the intended application. To improve the thermal properties of the PCM, MWCNT were chosen as 
the nanoparticles. These MWCNTs were procured from Cheap Tubes Inc., USA, and they have a diameter of 10-20 nm 
with 95% purity. MWCNTs are expected to improve the nanocomposite’s thermal conductivity and overall performance. 
Additionally, a surfactant/stabilizer called SDBS was acquired from Sigma Aldrich Sdn Bhd. The surfactant plays a 
crucial role in the dispersion and stability of the MWCNTs within the PCM matrix, preventing agglomeration and 
ensuring uniform distribution. This can lead to better enhancement of thermal properties and improved performance of 
the developed nanocomposite. Table 2 provides the properties of the SDBS, MWCNT, and salt hydrate PCM, which are 
essential for understanding their characteristics and how they might interact within the nanocomposite material. This data 
is vital for the researchers to analyze and optimize the composition of the nanocomposite to achieve the desired 
performance for solar thermal applications. 

Table 2. Properties of salt hydrate PCM, MWCNT and surfactant 
Property MWCNTs SDBS PCM 
Melting temperature (°C) 3650-3700 204-207 50 
Thermal conductivity (W/mK) 3000 - 0.45 
Latent heat (J/g) - - 100 
Colour Black white white 
Density (kg/m3)   1600 
Size  Diameter:10-20 nm and length: 10-30 µm - - 

2.2 Sample Preparation 

The synthesis of the nanocomposites is carefully carried out by dispersing MWCNT into PCM. The preparation 
method is outlined in Figure 1 and involves a two-step process. The following equipment was used for the formulations: 
an analytical balance machine UNIBLOC, TX323L, a hot plate for heating the PCM, a magnetic stirrer for mixing, and a 
bath ultrasonic (Model: EASY 60H, ELMASONIC) for sonication. The procedure starts by placing the salt hydrate PCM 
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in a beaker and heating it to a temperature above 70 degrees Celsius using the hot plate. Next, the required amount of 
SDBS is added to the liquid PCM, and the mixture is stirred for five minutes using the magnetic stirrer. Subsequently, a 
pre-measured weight concentration of MWCNT is added to the mixture and stirred for an additional 10 minutes. This 
step aims to ensure uniform dispersion of the MWCNT within the PCM matrix. To further improve the dispersion and 
minimize nanoparticle agglomeration, the beaker is placed in the bath ultrasonic, and sonication is carried out for one 
hour. Throughout the sonication process, the temperature is maintained at 70 °C to facilitate effective dispersion and 
enhance the interaction between the MWCNT and PCM. After completing the one-hour bath sonication, the 
nanocomposite is allowed to cool down to room temperature. This procedure is repeated for various weight concentrations 
of MWCNT (0.1%, 0.7%, and 0.9%) to prepare nanocomposites with different compositions. Once the nanocomposites 
are prepared, they are subjected to characterization to investigate various thermophysical properties. This step is crucial 
for understanding the performance and suitability of the developed nanocomposites for solar thermal applications. The 
nanocomposites’ thermophysical properties were assessed to determine how the addition of MWCNT and surfactant 
influences their thermal conductivity, stability, and other relevant characteristics. 

 
Figure 1. Schematic diagram of nanocomposite preparation method 

2.3 Characterization Techniques 

In this research, detailed morphological analysis of both the salt hydrate and nanocomposites was performed using 
TEM (FEI Tecnai G2 20 TWIN, 200 kV) and Field Emission Scanning Electron Microscope (FESEM) (TESCAN, 
VEGA3). To determine the thermal conductivity (TC) of the formulated nanocomposites, a Thermal Property Analyzer 
(Model: METER group, TEMPOS, SH-3, two-needle) was utilized at room temperature. The sensor (needle) was inserted 
into the centre of a 10 ml beaker containing the nanocomposite to measure the TC in its solid phase. Each sample’s 
experiment was repeated ten times to obtain average values for more accurate results. Fourier Transform Infrared 
Spectroscopy (Model: Perkin Elmer) was used to identify the interaction between the PCM and nanoparticles. KBr pellets 
were used to create samples for analysis, and the wavenumber range of 400 – 4000 cm-1 was scanned. The thermal 
decomposition behaviour of the nanocomposite PCM was analyzed using Thermogravimetric Analysis (TGA). The TGA 
was conducted by heating the samples from 30 °C to 600 °C at a heating rate of 10 °C/min under an N2 atmosphere. A 
UV-Vis spectrometer (model: Lambda 750) was used to study the light transmission capability of the samples. The 
spectrometer covered a range of 200-1700 nm to analyze how the nanocomposites interacted with light across this 
spectrum. These characterization techniques gave the researchers insights into the nanocomposite’s morphology, thermal 
properties, interaction between components, and light transmission capability. The obtained data would be vital for 
understanding the performance and potential applications of the developed nanocomposites for solar thermal systems. 

3.0 EXPERIMENTAL RESULTS 
In this section, the formulated nanocomposite’s morphology, chemical stability, TC, thermal stability, and optical 

performance were characterized by FESEM, FTIR, Thermal property analyzer, TGA and UV-Vis. 

3.1 Morphology of MWCNT, Salt Hydrate and Nanocomposite 

Figure 2 displays the morphological behaviour of MWCNT, salt hydrate PCM, and the resulting nanocomposite as 
observed under FESEM. In Figure 2(a), the microstructure of MWCNT is shown, with tube sizes ranging between 10-24 
nm. The MWCNTs exhibit a characteristic tubular structure with a nanoscale diameter. Figure 2(b) illustrates the 
microstructure of the pristine salt hydrate PCM. It shows a sticky nature with tight bonding among the adjacent PCM 
molecules. This sticky nature is typical of the salt hydrate PCM. Figure 2(c) reveals the microstructure of the 
nanocomposite, where MWCNTs are uniformly distributed within the salt hydrate PCM matrix. The well-dispersed 
mixture of MWCNT nanomaterials with the base PCM is observed. The tubular structure of the MWCNT nanoparticles 
is adequately dispersed and can be identified by marked blue colour circles in the image. The successful dispersion of 
MWCNT within the salt hydrate PCM matrix indicates that a homogeneous composite has been formed. The large surface 
area and tubular structure of MWCNTs contribute to their proper dispersion, allowing them to mix effectively with the 
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salt hydrate PCM. This uniform distribution of MWCNTs within the PCM matrix is advantageous for enhancing the 
thermal properties of the nanocomposite, as well as its overall performance in solar thermal applications. 

 
Figure 2. Morphology of (a) MWCNT, (b) salt hydrate and (c) MWCNT dispersed salt hydrate PCM 

3.2 Fourier Transform Infrared Spectrum Analysis 

FTIR analysis was conducted to evaluate the chemical stability of the formulated nanocomposites at various 
concentrations of MWCNTs with surfactant. The FTIR analysis covered a range from 400 1/cm to 4000 1/cm. Several 
characteristic peaks were observed for the pure salt hydrate PCM (blue-coloured line in Figure 3). The peaks at 3240 
1/cm correspond to O-H stretching, 1643 1/cm to N=O bending, 1324 1/cm to a mixture of N-O stretching and bending, 
N=O bending, and 822 1/cm to NO3-. Additionally, a peak at 1040 1/cm represents C-O, indicating the presence of the 
ester group. Similarly, for the salt hydrate/MWCNT with surfactant nanocomposite in Figure 3, the peaks showed 
similarity to those of the pure PCM. There were no additional peaks related to the base PCM observed, indicating no new 
chemical bonds formed between the PCM and MWCNTs. This suggests that the newly created nanocomposite is 
chemically stable, and the MWCNTs did not chemically react with the salt hydrate PCM. The absence of chemical 
interaction between the PCM and MWCNTs indicates that the formulated nanocomposites are stable and well-suited for 
solar energy storage applications. This chemical stability is essential for reliable and efficient energy storage materials in 
solar thermal systems. Therefore, the nanocomposites developed in this research show promising potential for enhancing 
solar energy storage and contributing to sustainable energy solutions. 

 
Figure 3. FTIR graph of MWCNT dispersed salt hydrate with SDBS at various concentrations 

3.3 Thermal Conductivity 

Thermal conductivity (TC) is a crucial property of PCM as it directly affects the heat absorbing and releasing rate of 
LHS materials. In the present study, the TC of the formulated PCM with different concentrations of MWCNT with SDBS 
and without SDBS was evaluated at room temperature, and the findings are described in Figure 4. The TC of the salt 
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hydrate PCM was measured to be 0.47 Wm-1.K-1. On the other hand, the TC of the nanocomposites SH0.1MWS, 
SH0.7MWS, and SH0.9MWS, which contain different weight concentrations of MWCNT with SDBS, were found to be 
0.56 Wm-1.K-1, 0.79 Wm-1.K-1, and 0.68 W/mK, respectively, at room temperature. The findings demonstrate that the TC 
value increases with MWCNT concentrations up to 0.7 wt%. Beyond this concentration, there is a decreasing trend in the 
TC. The maximum TC of the MWCNT dispersed salt hydrate with SDBS was achieved at 0.7 wt%, with a value of 0.79 
Wm-1.K-1. The percentage enhancement in the TC of the formulated nanocomposites was calculated using Eq. (1). This 
calculation allows researchers to quantify and compare the improvement in TC achieved with the addition of MWCNTs 
and SDBS. Overall, these findings indicate that the inclusion of MWCNTs with SDBS to PCM significantly enhances the 
TC of the nanocomposite. The optimized concentration of MWCNTs was found to be 0.7 wt%, leading to the highest 
enhancement in TC. 

𝑘𝑘𝑒𝑒𝑒𝑒ℎ  =  [
𝑘𝑘𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁  −  𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒 𝑁𝑁𝑁𝑁𝑁𝑁

𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒 𝑁𝑁𝑁𝑁𝑁𝑁
] (1) 

The percentage improvement in TC of SH0.1MWS and SH0.7MWS nanocomposites compared to the base PCM was 
found to be 19.15%, 68.09%, and 44.68%, respectively. The TC increases with the weight fraction of MWCNTs in the 
nanocomposite increases. This enhancement in TC can be attributed to two main mechanisms: electron transport and 
phonon transport. Electron transport is more prominent in metals, but in the case of salt hydrate and MWCNTs, the major 
contribution to TC enhancement is through phonon-phonon transfer. Phonon transport involves energy transfer through 
lattice or phonon vibrations. The mean free path of phonons needs to be increased to improve phonon transport. However, 
scattering between phonons, phonons and impurities, and phonons and barriers can limit the mean free path of phonons. 
As the thermal path lengthens and the temperature rises, one of these factors might become the limiting factor [29]. In 
this study, the addition of MWCNTs in the salt hydrate increased the phonon transport mechanism, leading to an increase 
in TC. At lower concentrations of MWCNTs, the combining of nanoparticles may not occur, resulting in a decrease in 
the mean free path of phonons due to phonon-boundary scattering. On the other hand, at higher concentrations, the 
coupling of nanoparticles creates a continuous thermal network in the sample, resulting in a higher TC. MWCNTs have 
a hexagonal structure with no functional groups or other bonds. The enhancement in TC may be attributed to the addition 
of the surfactant, which reduces surface resistance and enhances the relations between the base PCM and nanoparticles. 
The surfactant plays a critical role in improving the dispersion and stability of MWCNTs in the nanocomposite. However, 
at higher weight concentrations of MWCNTs, nanoparticle agglomeration can occur, disrupting the thermal network and 
reducing electron thermal transport. Moreover, impurities tend to increase linearly with concentration, leading to 
increased phonon-impurity scattering, which reduces the mean free path length and, ultimately, the thermal conductivity. 
From the discussion, it is evident that the optimum TC was achieved in the SH0.7MWS nanocomposite, where the 
enhancement was significant due to a balanced combination of phonon transport, appropriate nanoparticle coupling, and 
the presence of surfactant for improved interaction between the components. 

 
Figure 4. Thermal conductivity of formulated nanocomposite with various concentrations of MWCNT with surfactant 

3.4 Thermal Stability 

Figure 5 illustrates the decay temperature of the base PCM and the formulated nanocomposites at various weight 
concentrations. Based on the literature, salt hydrate PCMs typically decompose in two steps. The first step involves the 
decomposition of water molecules at around 300°C, while the second step involves the decomposition of salt particles 
like magnesium nitrate (Mg(NO3)2) at around 460°C. The water molecules decompose in two stages, with a portion 
degrading at around 160°C and the remaining water molecules decomposing in the second stage at around 300°C. After 
decomposition, some MgO and carbon residues may be left as byproducts. The TGA profile of the base salt hydrate PCM 
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shows that degradation begins at 56°C, with 28% of the water molecules degrading at 166°C and the remaining water 
molecules degrading at 298°C. The magnesium nitrate Mg(NO3)2 decomposes at 456°C, leaving behind 8.63% residue, 
possibly MgO. Figure 5 displays the TGA profiles of the SH0.1MWS, SH0.7MWS, and SH0.9MWS nanocomposites. 
These nanocomposites’ onset temperatures were 62°C, 63°C, and 61°C, respectively. The water molecules in these 
nanocomposites decompose at higher temperatures than the base PCM, with weight reductions of 21%, 24%, and 25.4% 
for SH0.1MWS, SH0.7MWS, and SH0.9MWS, respectively. The remaining water molecules decompose at higher 
temperatures (295°C, 298°C, and 296°C) than the base PCM. The remaining mass (residue) decomposition occurs at 
higher temperatures (464°C, 468°C, and 464°C), with leftovers of 14%, 12.6%, and 12.4%, respectively. It is observed 
that adding various weight concentrations of MWCNT into the salt hydrate composites increases the decomposition 
temperature, leading to improved stability. The enhancement in stability can be attributed to two main factors: the creation 
of oxygen vacancies and free oxygen in MWCNTs, which causes thermal excitation, and the creation of a thermal barrier 
[8]. The creation of a thermal barrier in the nano PCMs happens due to the addition of MWCNTs, which may delay the 
breakage of the polymer chains to monomers, resulting in increased thermal stability. This combination of factors 
contributes to the overall improvement in the thermal stability of the formulated nanocomposites. Overall, the addition of 
MWCNTs in the salt hydrate PCM nanocomposites positively impacts the decomposition temperature and stability of the 
materials, making them more suitable for TES applications and contributing to their potential for solar thermal systems. 

 
Figure 5. TGA profile of SH, SH0.1MWS, SH0.7MWS and SH0.9MWS nanocomposites 

3.5 Optical Performance Analysis through UV-Vis 

In solar TES applications, PCM plays a crucial role in actively storing thermal energy during phase changes and 
releasing it as required for specific applications. PCMs are chosen for their high transmissibility and transparency to 
electromagnetic waves, including solar energy, to ensure efficient solar radiation absorption. In this study, UV-Vis 
experiments were conducted to determine the optical absorptance and transmittance of the salt hydrate PCM and 
MWCNT-enhanced salt hydrate PCM, and the transmittance results are presented in Figure 6. The irradiation is 
categorized into ultraviolet (280-380 nm), visible (380-740 nm), and near-infrared regions (740-1400 nm) based on their 
maximal availability [30]. The transmittance percentage was calculated for a wavelength range of 250-1700 nm to realize 
the light transmission characteristics of the developed composites related to the solar spectrum data from NREI [31]—
the transmittance percentage of the base PCM was found to be 62.0%. However, the transmittance of the nanocomposites 
SH0.1MWS, SH0.7MWS, and SH0.9MWS decreased significantly to 15.9%, 6.64%, and 6.12%, respectively. This 
remarkable reduction in transmittance is attributed to the incorporation of MWCNT into the salt hydrate PCM. The 
reduction in transmittance percentages for SH0.1MWS, SH0.7MWS, and SH0.9MWS were 74.3%, 89%, and 90%, 
respectively. When radiation interacts with a medium, the particles can be transmitted, absorbed, or reflected. The 
decrease in transmittance of the PCM when MWCNT is dispersed can be compensated by an increase in absorbance. 
Inorganic PCMs are often transparent mediums that allow radiation to pass through. A higher absorptivity of the 
nanocomposite provides the ability to respond more favourably to the solar radiation it receives, leading to a larger thermal 
energy storage capacity at a relatively faster rate. Due to the higher absorbance capability of the developed nanocomposite 
PCM, it has become a promising material for solar thermal applications. The reduction in transmittance signifies that the 
nanocomposite absorbs more solar radiation, making it an efficient choice for storing solar energy and facilitating its 
utilization in solar thermal systems. This property makes the MWCNT-enhanced salt hydrate PCM a potential substance 
for solar TES applications. 
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Figure 6. Transmittance of salt hydrate and nanocomposites 

3.6 Determination of Bandgap of Nanocomposites using UV-Vis Spectra 

The UV-vis spectroscopy’s absorption peak reveals that electrons absorb energy at a specific wavelength. This 
absorption suggests that these electrons are transitioning from their ground to an excited state. Such transitions indicate 
the presence of a band gap in the material, where electrons move from the lower energy state to a higher one when exposed 
to the absorption wavelength. The material’s absorption wavelength can determine the band gap’s magnitude. 

The energy equation of quantum mechanics: 

Eg = h*C/λ (2) 

where, Eg is Bandgap (eV), h is Plank constant, 6.626*10-34 Joules sec, C is velocity of light, 2.99*108 m/s, and λ 
(Wavelength) is absorption peak (nm)—also, 1eV= 1.6810-19 Joules [32]. 

Figures 7(a) and 7(b) provide the means to measure the peak absorption and corresponding wavelengths of salt hydrate 
and nanocomposites. The band gap values can be calculated using Eq. (2), presented in Table 3, for both the salt hydrate 
and the composites. Remarkably, introducing MWCNTs in the nanocomposites has led to a significant reduction in the 
band gap values. Specifically, SH0.1MWS, SH0.7MWS, and SH0.9MWS exhibit reductions of 5.0%, 6.87%, and 
13.73%, respectively, when compared to the base salt hydrate’s band gap. Moreover, an alternative method to examine 
the band gap is plotting the Tauc plot, which involves (αhv)2 versus hv. This analysis further confirms that the dispersion 
of MWCNTs can excellently reduce the band gap, with a maximum reduction of 13.73%. The presence of MWCNT 
scaffolds in the nanocomposites has resulted in a narrower band gap, creating a more photo-responsive region. This region 
becomes highly favourable for photon production and utilization, making the materials more conducive to photon-related 
processes. 

 
Figure 7. Bandgap value of (a) Sat hydrate and (b) SH0.7MWS nanocomposite 
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Table 3. Bandgap values of nanocomposites 
Samples Bandgap (eV) Decrement in band gap (%) 
SH 3.64 -- 
SH0.1MWS 3.46 5.00 
SH0.7MWS 3.39 6.87 
SH0.9MWS 3.14 13.73 

3.7 Thermal Effusivity 

Thermal effusivity measures the ability of a substance to exchange heat with its immediate surroundings at a surface. 
Moreover, the thermal effusivity can be calculated as the product of the square root of thermal conductivity and volumetric 
heat capacity λ [33]. 

𝑒𝑒 =  �𝑘𝑘𝑘𝑘𝑘𝑘 (3) 

where, e is thermal effusivity (Ws1/2/m2K), k is thermal conductivity (W/mK), ρc is volumetric heat capacity (J/m3K), ρ 
is density (kg/m3) and c is specific heat capacity (J/kg K). 

As observed in Table 4, the thermal effusivity of the developed nanocomposites demonstrates continuous 
improvement within the MWCNT loading range of 0.1-0.9 wt%. The trend suggests that as the MWCNT content 
increases, the thermal effusivity increases, potentially reaching a peak value at a specific MWCNT loading. Beyond this 
optimal loading point, the thermal effusivity might start to decline. Thermal effusivity holds significant importance in 
guiding the design of nanocomposites for various applications, particularly in thermal management scenarios. These 
nanocomposites show great potential for enhancing thermal management in diverse fields, such as batteries, buildings, 
solar energy harvesting, and electronics. By understanding and utilizing the concept of effusivity, researchers and 
engineers can optimize the composition of nanocomposites to achieve the desired thermal properties required for specific 
applications. This knowledge could lead to the development of more efficient and effective materials that can efficiently 
handle heat dissipation and thermal regulation in various technological and industrial settings. 

 Table 4. Effective thermal effusivity of developed nanocomposites 
Sample SH SH0.1MWS SH0.7MWS SH0.9MWS 
Thermal effusivity (Ws1/2/m2K) 38.28 41.79 49.64 46.05 

4.0 CONCLUSIONS 
The current study explores the chemical and thermal performance of MWCNTs enhanced PCM by adding a surfactant. 

A comparison was made between these nanocomposites’ thermal and chemical performance and the base PCM, leading 
to significant improvements. The FTIR spectrum demonstrated that the formulated nanocomposites are chemically stable, 
showing no presence of additional functional groups. This confirms that the prepared NePCMs are indeed composites. 
The decomposition temperature of the developed nanocomposites was notably increased compared to the base salt hydrate 
PCM. The enhancement in decomposition temperature was observed as follows: from 456 °C to 464 °C for SH0.1MWS, 
469 °C for SH0.7MWS, and 464 °C for SH0.9MWS. After decomposition, the leftover weight percentage of the samples 
indicates the presence of MgO and carbon residues, contributing to the excellent thermal stability achieved in these nano 
PCMs. The improved thermal stability can be attributed to the formation of a thermal barrier within the nanocomposites. 

The addition of MWCNTs may have caused the breakage of polymer chains into monomers, thereby increasing 
thermal stability. Regarding thermal conductivity (TC), the base salt hydrate PCM exhibited a TC of 0.47 W/mK. The 
formulated nanocomposites, SH0.1MWS, SH0.7MWS, and SH0.9MWS, demonstrated remarkable enhancements in TC 
by 19.15%, 68.09%, and 44.68%, respectively. This improvement can be attributed to increased intermolecular attraction 
between nano-sized particles and the PCM due to the presence of a surfactant. The nanocomposites also showed enhanced 
light absorbance and reduced light transmission, particularly significant in the SH0.7MWS composite, which saw an 89% 
reduction in light transmission. The bandgap of the nanocomposites decreased considerably, resulting in improved 
absorption capabilities. Future research will investigate the optical performance, morphology, elemental analysis, latent 
heat storage (LHS) capabilities, and the formulated NePCM’s thermal reliability. These formulated nanocomposites hold 
potential applications in thermal management and TES systems, such as PVT (Photovoltaic-Thermal) systems, cooling 
electronic components, and battery thermal management in buildings. The higher TC, chemical and thermal stability up 
to 468 °C make these nanocomposites promising candidates for such applications. Furthermore, this research aligns with 
the United Nations’ SDG 7 and 13, which focus on affordable and clean energy and climate action, contributing to 
sustainable and environmentally friendly technologies. 
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