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A B S T R A C T

To meet the demand of the world’s largest population, smart manufacturing has accelerated the adoption of
smart factories—where autonomous and cooperative instruments across all levels of production and logistics
networks are integrated through a Cyber-Physical Production System (CPPS). However, these networks are
comprised of various heterogeneous devices with varying computational power and memory capabilities. As
a result, many secure communication protocols – that demand considerably high computational power and
memory – can not be verbatim employed on these networks, and thereby, leaving them more vulnerable to
security threats and attacks over conventional networks. These threats can largely be tackled by employing
a Trust Management Model (TMM) by exploiting the behavioural patterns of nodes to identify their trust
class. In this context, ML-based models are best suited due to their ability to capture hidden patterns in data,
learning and improving the pattern detection accuracy over time to counteract and tackle threats of a dynamic
nature, which is absent in most of the conventional models. However, among the existing ML-based solutions
in detecting attack patterns, many of them are computationally expensive, require a long training time, and a
considerably large amount of training data—which are seldom available. An aid to this is the association rule
learning (ARL) paradigm, whose models are computationally inexpensive and do not require a long training
time. Therefore, this paper proposes an ARL-based intelligent Behavioural Trust Model (iBUST) for securing
the CPPS. For this intelligent TMM, a variant of Frequency Pattern Growth (FP-Growth), called enhanced FP-
Growth (FP-Growth) algorithm is developed by altering the internal data structures for faster execution and
by developing a modified exponential decay function (MEDF) to automatically calculate minimum supports for
adapting trust evolution characteristics. In addition, a new optimisation model for finding optimum parameter
values in the MEDF and an algorithm for transmuting a 1D quantitative feature into a respective categorical
feature are developed to facilitate the model. Afterwards, the trust class of an object is identified employing
the Naïve Bayes classifier. This proposed model is evaluated on a trust evolution-supported experimental
environment along with other compared models taking a benchmark dataset into consideration, where it
outperforms its counterparts.
1. Introduction

In recent years, the industry-based manufacturing sector has faced
several challenges, including short product lead times, diverse con-
sumer needs, irregular demand fluctuations, and small-quantity batch
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production. To overcome many of these constraints, the Fourth Indus-
trial Revolution or Industry 4.0 has emerged (Lee, Bagheri, & Kao,
2015). On the other hand, over the last decade, Artificial Intelli-
gence (AI) and Machine Learning (ML) have been playing significant
roles in the methodological developments in diverse problem domains,
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including computational biology (Rahman, 2018; Rakib, Rumky, Ashraf,
Hillas, & Rahman, 2021), biomechanics (Zhang, Li, Xiao, & Zhang,
2023; Zhang et al., 2022), cyber security (Ahmed et al., 2021; Farhin,
Kaiser, & Mahmud, 2021; Islam et al., 2021; Zaman et al., 2021),
disease detection (Biswas, Kaiser, et al., 2021; Ghosh et al., 2021;
Noor, Zenia, Kaiser, Mamun, & Mahmud, 2020; Wadhera & Mahmud,
2022a, 2022b, 2022c, 2023) and management (Ahmed, Hossain, et al.,
2022; Akhund et al., 2018; Al Banna et al., 2020; Jesmin, Kaiser,
& Mahmud, 2020; Mahmud et al., 2022; Sumi et al., 2018), elderly
care (Biswas et al., 2021b; Nahiduzzaman et al., 2020), epidemiological
study (Sadik et al., 2020), fighting pandemic (AlArjani et al., 2022;
Bhapkar et al., 2021; Kumar et al., 2021; Mahmud & Kaiser, 2021; Paul
et al., 2022; Prakash et al., 2021; Satu et al., 2021), healthcare (Mah-
mud, Kaiser, Hussain, & Vassanelli, 2018; Mahmud, Kaiser, McGinnity,
& Hussain, 2021; Mahmud, Kaiser, et al., 2018; Nasrin, Ahmed, &
Rahman, 2021; Rahman, Brown, Mahmud, et al., 2022), healthcare
service delivery (Biswas et al., 2021a; Farhin, Kaiser, & Mahmud, 2020;
Kaiser et al., 2021), natural language processing (Adiba, Islam, Kaiser,
Mahmud, & Rahman, 2020; Das et al., 2021; Nawar et al., 2021; Rabby,
Azad, Mahmud, Zamli, & Rahman, 2020; Rabby et al., 2018), social in-
clusion (Mahmud, Kaiser, & Rahman, 2022; Rahman, Brown, Shopland,
Burton, & Mahmud, 2022; Rahman, Brown, Shopland, Harris, et al.,
2022) and many more. To benefit from the current state-of-the-art AI-
systems and towards creating Industry 4.0 compliant smart factories,
the Cyber–Physical System (CPS) (Monostori et al., 2016; Nourian &
Madnick, 2018) technology has appeared as the core infrastructural
backbone on which a production pipeline is automated and leading to
a Cyber–Physical Production System (CPPS) (Bicaku et al., 2017) that
integrates autonomous and cooperative elements of the pipeline across
all levels of production and logistics networks (Lee et al., 2015).

Since these networks connect the physical world or PW (i.e.,
communication-capable physical things) to the cyber world or CW
(i.e., cloud computing, data analytics, communication, control plat-
forms, etc.) and vice-versa, they experience notable threats and attacks
as reported in a recent recommendation by the International Telecom-
munication Union (ITU-T Y.3052) (International Telecommunication
Union, 2017). Of these threats and attacks, the PW may observe
the installation and booting of fraudulent or modified software; the
sensing systems may experience GPS spoofing, false signal injection,
sensor device tempering, etc.; the CW may face eavesdropping, packet
relaying, remote spying, and many more; finally, the core network
may experience an impersonation of devices, traffic tunnelling between
impersonating devices, intrusion, and many others.

Most of these threats and attacks can largely be tackled by employ-
ing a Trust Management Model (TMM), specifically by exploiting the
behavioural or activity patterns of the nodes (Mahmud et al., 2019),
and hence, the focus of this paper. It is noteworthy to mention that trust
is a concept that can cover security and privacy aspects (International
Telecommunication Union, 2017). Although several trust models are
proposed for CPS and/or CPPS, but only a few of them are machine
learning (ML)-based.

However, within this context, ML-based models are best suited
due to their ability to capture hidden patterns in data, learning and
improving the pattern detection accuracy over time to counteract and
tackle threats of a dynamic nature, which is absent in most of the
conventional models. Again, since trust evolves with time, ML-based
models must adapt to this characteristic through a relearning process or
any other appropriate method. On top of that, in a hostile environment
where the likelihood of various threats and attacks are high with
evolving facets, the adaptation capabilities of various ML-based models
remain an important concern, which, to the best of our knowledge,
has not been raised in the literature. To mitigate these issues, this
paper aims to put forward an experimental procedure considering the
learning, relearning and performance evaluation processes, which is
designed and performed in a comprehensive manner incorporating the
2

prominent trust attacks.
Also, among the existing ML-based solutions in detecting attack
patterns, many of them are computationally expensive, require a long
training time, and a considerably large amount of training data—
which are seldom available (D’Angelo, Rampone, & Palmieri, 2017).
An aid to this is the association rule learning (ARL) paradigm, whose
models are computationally inexpensive and do not require a long
training time (D’Angelo & Rampone, 2015; D’Angelo et al., 2017).
Herein, Apriori (Wang & Zheng, 2020) and Frequent Pattern-Growth
(FP-Growth) (Feng, Zhu, Zhuang, & Yu, 2018) algorithms are popular
in mining rules (Borgelt, 2012) and are also suitable for this appli-
cation. However, at times they fail to meet the required performance
expectation due to the extraction of many irrelevant association rules
(ARs) (Fournier-Viger et al., 2017). To overcome this issue, an updated
version of the FP-Growth algorithm, named enhanced FP-Growth or
FP-Growth, has been proposed in this paper with notably faster AR
extraction time alongside making it suitable for the trust evaluation
environment. Here, it is noteworthy to mention that in mining an
appropriate amount of ARs relevant to a given context, minimum
threshold support (minsupp) plays an important role. However, it
requires searching an exponentially growing search space, which is a
daunting task, especially considering the dynamic characteristic of the
trust as well as attack evolution. To facilitate this process, a modified
exponential decay function has also been developed to automatically
calculate minimum support or minsupp for the FP-Growth algorithm.

Following the aforementioned discussions, this work has the follow-
ing notable contributions:

i. A new and intelligent BTM is developed – named iBUST – using
ML-based approaches with applicability to industry-based CPPS

ii. An existing algorithm is enhanced – called FP-Growth – by
modifying the internal data structures of the FP-Growth algo-
rithm for faster ARs’ extraction

iii. A mathematical expression is modified – named Modified Ex-
ponential Decay Function (MEDF) – to calculate minsupp val-
ues automatically for aiding the adaptation of the FP-Growth
algorithm to dynamically evolving trust characteristics

iv. An algorithm is designed for transmuting a 1D quantitative
feature into a respective categorical feature employing the 1D
K-means clustering and the Davis-Boulding (DB) indexing tech-
niques, and

v. A trust evolution phenomena supported experimental setup is
developed for incorporating prominent trust attacks during the
learning and relearning processes and while evaluating the per-
formance of the various models.

For the rest of the paper, the relevant trust models are detailed
in Section 2, with Section 3 describing the network architecture. The
proposed iBUST model is discussed in Section 4 with Section 5 contains
the experimentation and the obtained results. A general discussion
with the limitations of the proposed work and its future directions are
mentioned in Section 6 and the work is concluded in Section 7.

2. Related work

Trust within a specified context refers to a firm belief in the abil-
ity of an entity to perform an action dependably, securely and reli-
ably, and have been widely studied for a wide range of applications.
Within the context of Information and Communication Technology
(ICT) infrastructures and services, TMMs focus on solving security and
privacy-related issues (Jayasinghe, Lee, Um, & Shi, 2019). Out of the
available TMMs, only a subset of the existing security and privacy-
related TMMs are applicable to CPPS as these models require careful
design considerations related to both PW and CW. The development of
models for trust management takes on many different attributes into
consideration depending on the application paradigm (Yan, Zhang, &
Vasilakos, 2014) and the popular models relevant to this context are

discussed below.
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Fig. 1. The network architecture of a smart industry showing different parts of the CPPS.
Policy-based TMMs. The policy-based TMMs like (Gavriloaie, Nejdl,
Olmedilla, Seamons, & Winslett, 2004; Nejdl, Olmedilla, & Winslett,
2004) estimate the trust class of an object depending on a set of
predefined policies or rules. They are not suitable for dynamic and
complex environments since they often rely on predefined perimeters.

Reputation-based TMMs. On the other hand, TMMs proposed in Blaze,
Feigenbaum, Ioannidis, and Keromytis (1999), Xiong and Liu (2003)
estimate trust classes based on reputation, i.e., by keeping track of the
status of the interactions and behaviours. Alike Policy-based TMMs,
they are also not suitable for dynamic and complex environments due
to their inherent static nature.

Network-based TMMs. Furthermore, network-based models
(Jayasinghe, Truong, Lee, & Um, 2016; Zhang, Chen, & Wu, 2006)
employ a considerable amount of structural information like in-degree,
out-degree and page rank concepts for extracting trust attributes or
trust-relevant properties. Similar to previous two classes, they are
not suitable for dynamic and complex environments due to lack of
adaptation capabilities.

Game theory-based TMMs. In Pawlick and Zhu (2017), a game theory-
based trust model is proposed for tackling Advanced Persistent Threats
(APTs). However, the game theoretic approaches demand well-defined
problems; whereas, in the real world, security-related problems are
rarely well-defined and seldom static in nature. Similarly, several other
conventional TMMs are proposed, including in Wang (2018), Zhao,
Sun, Yue, Zhao, and Cheng (2018). However, an ML-based model is
opted for in this paper for designing a new BTM for CPPS due to its
capability of adapting dynamic and evolutionary characteristics of the
trust as well as the attacks.

Fuzzy-based TMMs. Recently, a fuzzy-based brain-inspired model has
been proposed in Mahmud et al. (2019) for securing data communica-
tion targeting Neuroscience applications. Since it has been developed
taking a specific application into consideration – i.e., Neuroscience
applications – it is not suitable for CPPS.

ML-based TMMs. Again, a support vector machine (SVM) based trust
computational model is proposed in Jayasinghe et al. (2019) for IoT
services along with the K-means algorithm and the Elbow method for
clustering and labelling. Similarly, several other SVM-based models are
3

proposed in Chen and Xu (2009), Han et al. (2019). However, none of
them is tested on trust evolution-supported experimental environments
incorporating prominent attacks. Therefore, in this paper, an SVM-
based model is developed for investigating its performance against
other models in hostile environments.

The work in D’Angelo and Rampone (2015), D’Angelo et al. (2017)
is based on the Apriori ARL and Bayesian classification with an appli-
cation to pervasive computing, which has several drawbacks compared
to the FP-Growth algorithm (Al-Maolegi & Arkok, 2014). Particularly,
the Apriori algorithm fails to load the whole database in memory
when the database size is large and this requires an increased number
of disk read operations as they scan the database in each iteration.
Conversely, FP-Growth scans a database only twice irrespective of
the number of itemsets in the database (Al-Maolegi & Arkok, 2014).
Moreover, FP-Growth provides more relevant frequent itemsets than
that of Apriori (Borgelt, 2012). Therefore, a variant of the FP-Growth
algorithm is proposed in this paper for faster AR extraction and for
adapting trust evolution.

3. Network architecture

A conceptual CPPS network architecture is shown in Fig. 1. It
can be seen in the figure that diverse types of devices are installed
in the network, including sensors, actuators, sinks, servers, gateways,
routers, and operating and visualisation panels to facilitate automation.
This network is comprised of two independent sub-networks, namely
Industrial and Cloud networks (Asif-Ur-Rahman et al., 2019). Here,
the industrial network supports local operations and the cloud network
supports remote operations.

Most of the end devices in the industrial network transmit and re-
ceive data through the sinks and access points, which are subsequently
connected to the server where the proposed trust estimating model or
trust engine is installed. The key responsibilities of this trust engine
are: to accept communication requests from the requester nodes, to
identify the trust class of the requesting nodes, and to grant access to
the ones found trustworthy. Here, the remote operations are performed
through designated panels that communicate with the web server using
Application Programming Interfaces (APIs). The web server also hosts
data storage to store connection data and related activities, which are
later shared using APIs. The communication between the gateways
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and the end devices takes place over secure communication protocols,
such as Hypertext Transfer Protocol Secure (HTTPS), Internet Protocol
Security (IPSec), Secure Sockets Layer (SSL), and others making the
cloud network inherently secure. This leaves the industrial network
vulnerable and is the focus of this work. Again, it is a known fact
that internal attacks on a network have more adverse effects on its
performance than external attacks (Giandomenico & de Groot, 2018;
Lord, 2017).

For further discussion, let us designate the trust engine as the
Trustor, 𝑋, since it evaluates the trust of the other nodes in the network
and the remaining nodes as Trustee, 𝑌 . The trust of 𝑋 on 𝑌 can be built
through an influence of a trusted third party, 𝑍. These designations are
in line with the definitions in the existing literature (Lin & Dong, 2017).
In many real-world scenarios, such as in Banks, these three actors are
often chosen to derive the trustworthiness of the Trustee, i.e., 𝑌 . For
instance, for many banks, if an applicant wants to open a new account,
it is necessary to submit a referral letter from the applicant’s employer
or a reference of any existing account holder. Here, the bank is 𝑋, the
applicant is 𝑌 , and the organisation that is providing a referral letter
or the existing account holder is 𝑍. Considering these designations, the
following assumptions are made in designing the proposed TMM:

• The evaluation of trustworthiness is a unilateral process, which is
only performed by 𝑋 (e.g., the bank).

• The evaluation depends on past interactions between 𝑋 (e.g., the
bank) and 𝑌 (e.g., the applicant) and a recommendation from a
trusted third party, 𝑍 (e.g., the recommender).

• The trustworthiness of a new 𝑌 (e.g., a new applicant) is in-
fluenced by the recommendation or reputation of 𝑍 (i.e., the
recommender).

• Decisions taken by 𝑋 (e.g., the bank) in the relearning sessions
are revised by experts until satisfactory performance is reached
(e.g., re-evaluation of an account opening application of 𝑌 by 𝑋).

• Trust is asymmetric, i.e., even though 𝑌 trusts 𝑋, there is no obli-
gation that 𝑋 must trust 𝑌 (e.g., the trust relationship between
bank, 𝑋, and applicant, 𝑌 ).

• Trust may be transitive within a given context, but not in nature.
For instance, when 𝑋 trusts 𝑍 for a given context (i.e., new
account opening) and 𝑍 trusts 𝑌 in the same context, then, 𝑋
may trust 𝑌 for that context. However, it may not be true outside
the context.

• Reputation and interaction data are given equal priority in decid-
ing the proposed model’s capability to handle reputation-based
situations (e.g., an existing account holder’s previous reputation
and transaction history affect the present reputation).

It should be noted that, in modelling trust in artificial systems, the
frameworks attempt to explain how trust is formed, maintained, and
evaluated in various contexts. Admitting the fact that mimicking human
trust ‘as is’ in an artificial system is an NP-hard problem. Therefore,
for the sake of simplicity, each trust model makes some assumptions
that are relevant to a specific scenario, which may vary from scenario
to scenario with a certain degree of similarity to the human trust
mechanism.

4. Proposed model: iBUST

Fig. 2 shows the conceptual design of the proposed TMM. It de-
termines a node’s trustworthiness through a number of steps that can
be categorised in five stages: 𝑖. trust attribute extraction, 𝑖𝑖. feature
categorisation and attribute vector identification, 𝑖𝑖𝑖. behavioural signa-
ture detection, 𝑖𝑣. node signature generation, and 𝑣. trust classification.
4

These stages are described in the following subsections. s
4.1. Trust attribute extraction

Even though, a CPPS network generates a large amount of data;
however, only a few of them can be directly utilised in the trust
classification process. Again, the performance of a model is subject to
the appropriate selection of trust attributes (TAs) and generally are
accumulated by scanning various systems and custom-level log files
along with other relevant data sources. In this paper, the following
TAs are selected due to their relationship to the PW and CW and their
influence on trust estimation:

4.1.1. Relative frequency of interaction (RFI)
In general, the interaction frequency refers to the number of inter-

actions take place between the trustor and the trustee within a given
unit of observation time (Zhang, 2001). In the context of the CPPS
network architecture, only successful connection requests are counted
in interactions, and thus, it favours trustworthy over untrustworthy
nodes. Hence, the feature values of the RFI, 𝑅𝐹𝐼

𝑋𝑌 can be calculated
by Eq. (1) (Mahmud et al., 2019).

𝑅𝐹𝐼
𝑋𝑌 =

𝑛𝑋𝑌
𝑁

(1)

where 𝑛𝑋𝑌 is the number of successful communication requests from
the trustee 𝑌 to the trustor 𝑋 over an epoch of 𝑡 and 𝑁 is the total
umber of successful requests received by the trustor 𝑋 within that
poch.

.1.2. Co-location relationship (CLR)
In a CPPS model, objects always remain in a relationship with their

wner(s) (a.k.a., Owner Object Relationship or OOR) and therefore,
he movement nature (static or dynamic) of OOR always influence the
alculation of CLR (Jayasinghe et al., 2019). Again, since most of the
oT devices involve in the production system seldom shift their physical
ocations and hence, a decision boundary involving the distance from
he trustor and the time spent within that vicinity must be taken into
ccount in trust class estimation. If a node’s continual spending time
ithin the decision boundary surpasses the minimum time threshold
efore a connection request is performed, can be considered as a
rustworthy node. Hence, CLR can be calculated as follows (Jayasinghe
t al., 2019):

𝐶𝐿𝑅
𝑋𝑌 = 1

𝑑𝑖𝑠𝑡(𝑋, 𝑌 )
𝑋𝑌

‖𝑋‖ ‖𝑌 ‖
(2)

where, 𝑋 and 𝑌 are the GPS coordinates of the trustor 𝑋 and
trustee 𝑌 , respectively and the symbol ‘‘‖.‖’’ is the norm. Here, cosine
similarity between the two nodes is calculated using the second term,
which is normalised by the first term, i.e., the geo distance factor,
which can be calculated employing the algorithm discussed in Veness
(2016). The geo distance factor is considered here since it calculates the
distance with respect to actual earth surfaces in contrast to the naive
euclidean distance calculation function.

4.1.3. Intimacy (I)
In the context of social relationships, the intimacy or relationship

duration of interaction is an important feature in calculating the trust
level. Following this, in the IoT ecosystem, the higher the duration of
interaction between a trustee and a trustor, the higher the intimacy.
Now, considering the total communication time between the trustee
𝑌 with the trustor 𝑋, 𝜏𝑋𝑌 and the time difference between their
initial encounter, 𝜏 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑋𝑌 and the final encounter, 𝜏𝑓𝑖𝑛𝑎𝑙𝑋𝑌 , intimacy can
e calculated as below:
𝐼
𝑋𝑌 =

𝜏𝑋𝑌
𝜏𝑓𝑖𝑛𝑎𝑙𝑋𝑌 − 𝜏𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑋𝑌

(3)

This feature is important since it appreciates the long-term relation-
hip between the trustee and the trustor.
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Fig. 2. The conceptual design of the iBUST TMM.
4.1.4. Honesty (H)
Analogous to social trust, honesty can be considered one of the

main features for establishing trust between two IoT nodes in an IoT
ecosystem. It can be determined using the successful and unsuccessful
interactions between the involved nodes. While 𝜂𝑠𝑋𝑌 and 𝜂𝑢𝑋𝑌 denote
successful and unsuccessful interactions between the trustor 𝑋 and the
trustee 𝑋, respectively. Hence, the feature values for honesty can be
calculated as Mahmud et al. (2019):

𝐻
𝑋𝑌 =

𝜂𝑠𝑋𝑌
𝜂𝑠𝑋𝑌 + 𝜂𝑢𝑋𝑌

(4)

As can be observed from Eq. (4) is that the honesty value lies
between [0, 1], where 0 means no successful interaction occurs between
the involved nodes, i.e., 𝑋 and 𝑌 and 1 is the opposite.

4.1.5. Other features
Several other important features, which are reported in D’Angelo

et al. (2017), are mentioned below:

Transactions Context (TC): This feature identifies the context of trans-
actions, namely e-commerce, social
networking, game, holiday, and others.

Counting Trust (CT): It is the count of trustworthy transactions
belonging to a specific context that occur
after encountering the last untrustworthy
transaction.

Counting Untrust (CU): In contrast to CT, it is the count of untrust-
worthy transactions belonging to a specific
context that occur after encountering the
last trustworthy transaction.
5

Last Encounter (LT): It takes into account of the time when the
identical context was last encountered.

4.2. Trust attribute categorisation and attribute vector identification

Among the aforementioned chosen TAs (see Section 4.1), except
for transactions context, the rest of them are quantitative. However,
ARL techniques are originally designed to work with discrete (categor-
ical) TAs. Hence, in the subsequent sections, we discuss the relations
between the quantitative and the categorical features followed by a
technique of transmuting quantitative features to categorical features
using our newly proposed algorithm.

4.2.1. Quantitative vs categorical features
As mentioned earlier, ARL techniques are originally designed to

work with discrete (categorical) data or features. However, they can
also support any continuous (quantitative) data or features by dis-
cretising them during the preprocessing stage. In detail, a quantitative
feature can be partitioned into a number of consecutive intervals
to generate new categorical values while preserving the initial or-
der (D’Angelo & Rampone, 2015). Thereby, a quantitative rules prob-
lem is mapped into a Boolean rules problem, which is preferable for
most of the ARL techniques (Srikant & Agarwal, 1996). However, this
naive concept leads to two profound problems as reported in Srikant
and Agarwal (1996): (𝑖) a large number of partitions may not produce
quality rules due to a small partition interval, called the ‘‘MinSup’’
problem and (𝑖𝑖) a smaller number of partitions experience possibility
of losing information and confidence for a rule and hence, may not pro-
duce quality rules due to large partition interval, called the ‘‘MinConf’’
problem.
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Algorithm 1: Clustering and labelling a feature
Input:  ← feature data, 𝜏 ← cluster threshold, 𝛿 ← DB_index,

 ← feature name
Procedure computeDBIndex (C, )

for 𝛽 in range || do
for 𝑖 in || do

𝜓𝑖 ← calculate using Eq. (5) for cluster 𝑖
for 𝑗 in || do

𝜓𝑗 ← calculate using Eq. (5) for cluster 𝑗
if 𝑖 ≠ 𝑗 then

𝑅𝑖𝑗 ← calculate using Eq. (6) for clusters 𝑖 and 𝑗,
respectively
𝑅𝑖𝑗 _list.append(𝑅𝑖𝑗)

𝜎𝑅 = 𝜎𝑅 + max(𝑅𝑖𝑗 _list)
𝛿 = 𝜎𝑅∕||
return 𝛿

rocedure findOptimumNumberOfClusters ( , 𝜏)
for 𝛼 in range (𝜇, 𝜏) do

,  ← kmeans1D ( , 𝛼)
C← split into respective clusters
𝛿 ← computeDBIndex(C, )
𝛿_list.append(𝛿)

 ← index of min(𝛿_list) + 𝜇
return 

 ← findOptimumNumberOfClusters ( , 𝜏)
,  ← kmeans1D ( , ) COMMENTS: Labelling feature values to
respective clusters
for ℑ in  do

file.write ( + "_range_" + ℑ)

A solution for this conflicting set of problems is also proposed
n Srikant and Agarwal (1996), where the authors combined base
artitions with adjacent partitions while generating the rules. How-
ver, it leads to another problem, called the ‘‘ManyRules’’ problem.
s the name suggests, the proposed solution generates many insignif-

cant rules and thus, increases execution time. Again, to counter this
‘‘ManyRules’’) problem, a solution using equal-depth partitioning is
roposed in D’Angelo et al. (2017). However, this approach loses
nter-cluster separability as well as intra-cluster homogeneity and com-
actness.

.2.2. Clustering and labelling
For clustering and labelling quantitative features, an algorithm

Algo. 1) is developed in this paper for: (𝑖) finding the optimum cluster
size by integrating the 1D K-means clustering technique (Grønlund,
Larsen, Mathiasen, & Nielsen, 2017) and the Davies–Bouldin (DB)
indexing technique (Davies & Bouldin, 1979), (𝑖𝑖) identifying respective
lusters of various feature values according to the optimum cluster size
mploying the 1D K-means clustering technique, and (𝑖𝑖𝑖) transmuting

a quantitative feature into a respective categorical feature. In addition,
the DB indexing technique is also amended for identifying the optimum
number of clusters,  from a 1D data structure for a given feature.

First and foremost, the concept of DB_indexing is based on the
intuition that a quality cluster requires a high inter-cluster separability
as well as a high intra-cluster homogeneity and compactness. In this
proposed model, every selected feature is partitioned into the optimum
number of clusters since they facilitate in extracting the most relevant
behavioural patterns. Here, a feature can be defined as below:

Definition 1. A feature, f = {f1, f2,… , f𝑛}, where 𝑛 is the number of
members in f, and every, f𝑖 ∈ f, where 1 ≤ 𝑖 ≤ 𝑛, is a feaure value.

Every f can be divided into 𝑘 ≥ 2 clusters using 1D K-means
6

clustering algorithm as demonstrated in Algo. 1, and denoted as C. a
Table 1
Snippet of a table that demonstrates an example of the RFI feature.

RFI Value Cluster Label

0.5895540503507924 2 RFI_range_2
0.1874549699881658 0 RFI_range_0
0.8281046274692764 3 RFI_range_3
0.10511064718072272 0 RFI_range_0
0.6540537102656461 2 RFI_range_2
0.3484650192862032 1 RFI_range_1
0.37024337793962736 1 RFI_range_1
0.665640115101046 2 RFI_range_2
0.8096313792134168 3 RFI_range_3
0.5565647719108703 2 RFI_range_2
⋯ ⋯ ⋯

Hence, it can have a set of 𝑘 centroids,  in accordance to the number
of clusters, i.e., || = 𝑘. Then, a cluster, C𝑖 can be defined as:

Definition 2. A cluster, C𝑖 = {fC𝑖1 , f
C𝑖
2 ,… , fC𝑖𝑚 }, where 𝑚 is the number

of members in C𝑖, |C𝑖| = 𝑚, 𝑚 < 𝑛, and every, fC𝑖𝑗 ∈ C𝑖, where 1 ≤ 𝑗 ≤ 𝑚,
is a cluster member.

For calculating DB_index of C, two measures are necessary to be
calculated beforehand, namely 𝜓𝑖, which measures the dispersion of
various points of any cluster, C𝑖 and 𝑅𝑖𝑗 , which measures the separation
between two clusters, C𝑖 and C𝑗 . Now, 𝜓𝑖 can be found as follows:

𝜓𝑖 =

(

1
|C𝑖|

|C𝑖|
∑

𝑗=1

|

|

|

f
C𝑖
𝑗 − 𝑖

|

|

|

𝑝
)

1
𝑝

(5)

where, 𝑖 is the centroid of C𝑖 and since the values in the cluster are 1D;
hence, the Euclidean distance function for 1D is employed to find the
distance between two points, which is nothing but the absolute value
of their difference. Again, 𝜓𝑖 is the 𝑝th root of the 𝑝th moment of the
points in C𝑖 about their mean. When 𝑝 = 1, 𝜓𝑖 becomes the average
Euclidean distance of vectors in C𝑖 to the 𝑖; whereas, when 𝑝 = 2, 𝜓𝑖 is
he standard deviation of the distance of samples in C𝑖 to the respective
𝑖.

Again, 𝑅𝑖𝑗 between the clusters C𝑖 and C𝑗 can be found as:

𝑖𝑗 =
𝜓𝑖 + 𝜓𝑗
|𝑖 − 𝑗 |

(6)

where 𝑖 and 𝑗 are the centroids of C𝑖 and C𝑗 , respectively. Again, since
both the centroids are 1D, the Euclidean distance for the 1D function
s employed here. If 𝑅𝑖 = 𝑚𝑎𝑥(𝑅𝑖𝑗 ), where 𝑖 ≠ 𝑗, DB_index, 𝛿 can be

calculated as:

𝛿 = 1
||

||
∑

𝑖=1
𝑅𝑖 (7)

This procedure of calculating 𝛿 for various k values iterates until
|| as demonstrated in Algo. 1 and is also depicted in Fig. 3. Now,
ince only a limited number of clusters are usually generated, an exact
ethod is preferable for identifying the optimum cluster size, . Hence,
brute force method is employed to find , which is the 𝑘 that scores

he lowest 𝛿 as could be seen in Fig. 3. As could be seen in the
igure is that since cluster 4 scores the lowest DB_index, this is the
ptimum cluster size in this example. Afterwards, the final clusters are
reated employing  in 1D K-means clustering technique (see Algo. 1).
nce clusters are identified for all the feature values, they are labelled
oncatenating the acronym of the feature, ‘‘_range_’’, and respective
luster id. A snippet of such a table for the RFI feature is presented
n Table 1.

.2.3. Attribute vectors identification
For modelling trust relationships between entities, both transmuted

ategorical features (see Section 4.2.2) and natural categorical features

re combined together to form an attribute vector. In support of this
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Fig. 3. Clustering with the acquired feature values using k-means clustering on 1D data and Davies–Bouldin indexing for finding optimum cluster size. (a) Finding optimum cluster
size using the minimum Davies–Bouldin index. (b) Centroids distributions of the optimum cluster.
model, it can be argued that this model captures the context-based,
identity-based, and recommendation-based trust relationships in an
expressive and simple manner (D’Angelo et al., 2017). Later, these
vectors are utilised by the Naïve Bayes classifier for identifying the trust
class. An attribute vector (AV) can be defined as below:

Definition 3. E𝑖𝑗 =<id𝑗 , RFI, CLR, I, H, TC, CT, CU, LT>, where, E𝑖𝑗
is an AV that records the experiences of a node 𝑖 with another node 𝑗
and id𝑗 is the unique identification number of node 𝑗, which is denoted
by the network address.

These AVs are accumulated periodically considering new interaction
data and stored in a database for all the interested nodes in the network
for future use.

4.3. Detecting behavioural signatures using enhanced FP-growth

behavioural signatures are detected using an enhanced FP-Growth
algorithm (FP-Growth) with the following enhancements as contribu-
tions of the current work.

4.3.1. Altering internal data structures
For extracting AR, the FP-Growth algorithm represents a database

in the form of a tree data structure, called FP-tree, which excludes the
necessity of candidate generation. Every node in this FP-tree represents
an item from a record in the database. When a record, 𝑟 is fetched from
the database, the FP-Growth algorithm examines whether or not the
prefix of 𝑟 maps to a path in the tree. For the affirmative reply, the
support counts of the corresponding nodes are increased. Conversely,
new nodes are created and added to the tree with a support count of 1.

For accelerating the process of finding identical nodes, every node in
the tree holds a reference to the next node. These connected nodes form
a singly linked list for each item and the head of this list is stored in
a table, called ‘header table’ as demonstrated in Fig. 4 (top). However,
when a tree is considerably large with many subtrees due to the high
variability of the items in the records of a database, it takes a long
time in generating a suffix list using a singly linked list. The proposed
enhancement replaces the header table and the singly linked list by
offering the suffix list from a table, called ‘link table’ as demonstrated
in Fig. 4 (bottom). Thereby, it reduces execution time for AR extraction
and thus, respective association rule mining. Again, since the suffix list
that is offered from the link table contains identical references like in
the FP-Growth algorithm, the quality of the rules is not compromised
for the proposed enhancement. In addition, the inclusion of a link table
is not increasing space complexity with respect to its ancestor since it
replaces the header table and the singly linked list which are of equal
space.
7

Fig. 4. Representation of the internal data structures of FP-Growth and FP-Growth
algorithms.

4.3.2. Adapting trust evolution
The importance of selecting a suitable minsupp for extracting more

relevant AR is reported in several literatures, including (Borgelt, 2012;
Fournier-Viger, 2010). Generally, minsupp decreases with increasing
dataset length (Fournier-Viger, 2010), and this threshold must be set
with great caution. However, there is no really easy way to determine
the best minsupp threshold. Again, in the case of a trust evolution
environment where training data size increases over time, selecting
a fixed minsupp threshold is impractical. Conversely, a formula for
automatic minsupp calculation can be handy in this case. Therefore,
a modified exponential decay function (MEDF) is developed from the
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Fig. 5. Respective Y values of the exponential decay function and the modified
exponential decay function for various 𝑐 values with respect to various dataset lengths.

exponential decay function (EDF) proposed in Fournier-Viger (2010) as
follows:

minsupp(𝑛) = |𝑒(−𝑎𝑙𝑜𝑔10(𝑛)−𝑏) + 𝑐) × 𝑛| (8)

here, 𝑛 is the number of records in the database and 𝑎, 𝑏, and 𝑐 are
ositive constants, which contribute to the curve behaviour. The effect
f these constants has been shown in Fig. 5, where it can be seen that
he effect of constant 𝑐 is not dominant in MEDF in contrast to EDF —
ven for a large value of 𝑛. Again, determining the values for constants,
, 𝑏, and 𝑐 are tedious using a trial and error-based method, which is the
ost common method. Therefore, in this paper, an optimisation model

s proposed for discovering optimum values for 𝑎, 𝑏, and 𝑐.

Algorithm 2: Pseudo Code for SCA Algorithm
Input: population 𝑋 = {𝑋1, 𝑋2, ..., 𝑋𝑛}, max_repetition (R),

max_iteration (T), and constant magnitude (a)
Output: best outcome (𝑋𝑏𝑒𝑠𝑡) and final population

𝑋𝑓 = {𝑋𝑓
1 , 𝑋

𝑓
2 , ..., 𝑋

𝑓
𝑁}

for 𝜌 = 1 till R do
Initialisation;
𝑎↩ 2;
for 𝑡 = 1 till T do

Set initial 𝑟1 using Eq. (11);
for all population in 𝑋𝑡 do

Evaluate each population, 𝑋𝑡
𝑖 by the objective function

in Eq. (9);
Update 𝑋𝑏𝑒𝑠𝑡 based on the obtained result, if condition
satisfied;

Assign relevant random values to 𝑟2, 𝑟3, and 𝑟4 between
[0, 1];

Update 𝑋𝑡 to 𝑋𝑡+1 using Eq. (10);
return 𝑋𝑏𝑒𝑠𝑡 and 𝑋𝑓

(a) An optimisation Model for Finding Optimum Parameter Values

Finding optimum values for the constants, 𝑎, 𝑏, and 𝑐 in MEDF is an
optimisation problem and demands an optimisation model. Moreover,
since these constants can receive any value between the range [0, 1],
finding an optimum solution by any exact optimisation method within
a linear time is infeasible (Zamli, Din, Nasser, & Alsewari, 2020).
Conversely, meta-heuristic-based algorithms are preferable due to their
adaptability to any optimisation problem and their ability to find
a solution within a linear time. For this, the Sine-Cosine Algorithm
(SCA) (Eyedali Mirjalili, 2016) has been chosen in this paper, which
is a meta-heuristic algorithm with the added advantage of parameter
independence. The SCA exploits the sine and cosine functions to per-
form both the local and global search by fluctuating outward or towards
8

d

the global optimal solution, and hence, the name. It also introduces
several random and adaptive parameters to facilitate the search process
as presented in Algo. 2.

Since SCA is a population-based meta-heuristic algorithm, which
generates population, 𝑋𝑡 for iteration 𝑡 where 𝑡 ∈ Z+ encompassing 𝑁
number of agents. Generally, agents are D-dimensional data structure;
and hence, an agent (a.k.a candidate solution) can be described as
𝑋𝑡
𝑖 = {𝑥𝑡𝑖1, 𝑥

𝑡
𝑖2,… , 𝑥𝑡𝑖𝐷}, where 1 ≤ 𝑖 ≤ 𝑁 . In this paper, agents or

candidate solutions are 3-dimensional that represent three parameters
in Eq. (8), i.e., 𝑎, 𝑏, and 𝑐. From 𝑋𝑡, the best candidate solution, 𝑋𝑡

𝑏𝑒𝑠𝑡
is discovered using the following objective function:

𝑥𝑡𝑏𝑒𝑠𝑡 = argmin
𝓁𝑋

𝑡
𝑖

𝑓 (𝓁𝑋
𝑡
𝑖 ) =

∑

|𝓁𝑋
𝑡
𝑖
|

𝑘=1 (ℎ𝑘 − 𝓁
𝑋𝑡𝑖
𝑘 )2

|𝓁𝑋
𝑡
𝑖
|

(9)

where 𝓁𝑋
𝑡
𝑖 is a result (𝓁𝑋

𝑡
𝑖 = 1) or a list of results (when 𝓁𝑋

𝑡
𝑖 > 1) that is

cquired after experimenting with a certain metric using the candidate
olution, 𝑋𝑡

𝑖 (or in other words, using the minimum support that is
alculated using 𝑋𝑡

𝑖 ); and ℎ𝑘 is the theoretically highest achievable
esult or target result for the instance or index 𝑘. The differences in the
esults are squared to support the minimum theoretical highest. The
ationale of this equation is that it finds out how deviated the acquired
esult(s) is from the target result(s). Based on this equation, 𝑋𝑡

𝑏𝑒𝑠𝑡 offers
he minimum deviation from the target. A practical implementation
f this equation for a trust evolution phenomenon is explained in
ection 5.

Afterwards, the best solution, 𝑋𝑏𝑒𝑠𝑡 is updated if 𝑋𝑡
𝑏𝑒𝑠𝑡 satisfies the

bjective; and it is also utilised in updating the population for the next
teration, 𝑋(𝑡+1), where the 𝑗th dimension of the 𝑖th candidate solution
s found as follows:

(𝑡+1)
(𝑖,𝑗) =

⎧

⎪

⎨

⎪

⎩

𝑋𝑡
(𝑖,𝑗) + 𝑟1𝑠𝑖𝑛(𝑟2)|𝑟3𝑋

𝑡
(𝑏𝑒𝑠𝑡,𝑗) −𝑋

𝑡
(𝑖,𝑗)|, 𝑟4 < 0.5

𝑋𝑡
(𝑖,𝑗) + 𝑟1𝑐𝑜𝑠(𝑟2)|𝑟3𝑋

𝑡
(𝑏𝑒𝑠𝑡,𝑗) −𝑋

𝑡
(𝑖,𝑗)|, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(10)

here 𝑟2, 𝑟3, and 𝑟4 are random numbers ranges between [0, 1]. Again,
since 𝑟1 dictates the radius of the search circle, it can be adaptively and
dynamically vary 𝑟1 during the iteration process as follows:

𝑟1 = 𝑎
(

1 − 𝑡
𝑇

)

(11)

where 𝑇 is the maximum iteration and 𝑎 is the constant. After iteration
𝑡 reaches 𝑇 , the entire process is repeated with a different set of initiali-
ation. This way, SCA keep repeating until the stopping condition is met
r in other words, maximum repetition, 𝑅 is encountered. The returned
alues, i.e., 𝑋𝑏𝑒𝑠𝑡 and 𝑋𝑓 , are utilised later in experiments; especially,
𝑏𝑒𝑠𝑡 is utilised in calculating minimum support using Eq. (8).

.3.3. Extracting behavioural signatures
To identify the trust (trustworthy (𝜏) and untrustworthy (𝜐)) be-

avioural signatures of a node, respective AVs are segregated into two
espective sets. Each of these sets is passed to the FP-Growth algorithm
o identify the associations among its items. The resulting associations
onstitute the behavioural signatures of that node for that particular
S class. Note that these signatures may change over time due to the
ynamic nature of the trust; therefore, it needs to be revised after
ertain epochs.

.4. Generating node signature vector

When the trust engine, 𝑋 encounters any connection request from a
ode, 𝑌 , it updates E𝑋𝑌 . Afterwards, all possible frequent itemsets are
xtracted from E𝑋𝑌 . For example, assuming it is a three-dimensional
ector containing < 𝛼4, 𝛽2, 𝛾1 >, the possible itemsets that can be
xtracted from this vector are: {𝛼4}, {𝛽2}, {𝛾1}, {𝛼4, 𝛽2}, {𝛼4, 𝛾1}, {𝛽2, 𝛾1},
nd {𝛼4, 𝛽2, 𝛾1}. These itemsets are combined to build a node signa-
ure vector, 𝜍𝑖, which is later passed to the Naïve Bayes classifier to

etermine its trust class.
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Fig. 6. Comparison between the surface graphs for accuracy for various lengths of dataset and minimum supports. (a) A surface graph that demonstrates the accuracy of the
Apriori algorithm for DIUD with respect to various lengths of dataset and minimum supports. (b) A surface graph that demonstrates the accuracy of the FP Growth algorithm for
DIUD with respect to various lengths of dataset and minimum supports.
4.5. Making decision using Naïve Bayes classifier

The Naïve Bayes classifier is utilised in this work for decision-
making on a requested connection from a node. It is a Bayes the-
orem based on the probabilistic classifier with strong independence
assumptions (Wang & Lin, 2019) that classifies the extracted 𝜍𝑖 (see
Section 4.4) to the suitable TS class.

Assuming, ℎ be a hypothesis, which says that 𝜍𝑖 belongs to a specific
TS class, 𝑃 (ℎ) is the prior probability of ℎ, and 𝑃 (𝜍𝑖) is the prior
probability of 𝜍𝑖. Hence, the probability that ℎ holds for the observation
𝜍𝑖, i.e., 𝑃 (ℎ|𝜍𝑖) can be found as:

𝑃 (ℎ|𝜍𝑖) =
𝑃 (ℎ)𝑃 (𝜍𝑖|ℎ)

𝑃 (𝜍𝑖)
(12)

where, 𝑃 (𝜍𝑖|ℎ) is the posterior probability of 𝜍𝑖 given ℎ, which can be
calculated as:

𝑃 (𝜍𝑖|ℎ) =
∏

𝑛
𝑃 (𝜍𝑖𝑛 |ℎ) (13)

Now, let ℎ be the TS class (trustworthy, untrustworthy), i.e., ℎ =
𝜏𝑜𝑟𝜐 and 𝑡 ∈ ℎ; and 𝜍𝑖𝑛 = {𝜖1, 𝜖2,… , 𝜖𝑛} be the node entity vector with
𝑛 number of itemsets; then, Eq. (12) can be written as for a specific 𝑡:

𝑃 (𝑡𝑡∈ℎ|𝜍𝑖) =
𝑃 (𝑡)

∏

𝑛 𝑃 (𝜍𝑖𝑛 |𝑡)
𝑃 (𝜍𝑖)

(14)

The obtained probability values for various 𝑡 can be utilised to take
the final decision, 𝛿, which mentions the class where 𝜍𝑖 belongs. Again,
since the denominator is identical for any 𝑡 in Eq. (14), 𝛿 can be found
as follows:

𝛿(𝜍𝑖) = argmax
𝑡∈ℎ

𝑃 (𝑡)
∏

𝑛
𝑃 (𝜍𝑖𝑛 |𝑡) (15)

Here, 𝑃 (𝜍𝑖𝑛 |𝑡) is calculated using the Laplace estimator (Sarkar,
2019) to avoid the zero probability condition, which is probable in our
scenario, as below:

𝑃 (𝜍𝑖𝑛 |ℎ) =
𝜎𝜖𝑘 + 1
𝜎 + |𝑑|

(16)

where, 𝜎 is the sum of occurrence of the itemsets in the set of tuples
that are associated with class 𝑡, 𝜎𝜖𝑘 is the frequency of 𝜖𝑘 (where 𝑘 =
1, 2,… , 𝑛) and 𝜖𝑘 ∈ 𝜍𝑖 in the set of tuples that are associated with 𝑡, and
|𝑑| is the dimension of the tuples including all the categories.

As could be observed from Eq. (15) is that the class of 𝜍𝑖 is decided
based on the highest probability value between 𝑃 (𝜏|𝜍𝑖) (trustworthy)
and 𝑃 (𝜐|𝜍𝑖) (untrustworthy). For instance, if 𝑃 (𝜏|𝜍𝑖) = 4.86𝑒−20 and
𝑃 (𝜐|𝜍𝑖) = 7.41𝑒−20; since the latter scores the highest probability value,
hence, the final decision is 𝛿 = 𝜐 or untrustworthy.
9

5. Experimental evaluation

This section is divided into three subsections. Among them, the first
subsection describes the experimental setup that has been taken into
account during conducting the experiments, and the other two subsec-
tions compare the performance of the FP-Growth and the proposed
model.

5.1. Experimental setup

In the following sections, the experimental setup is detailed.

5.1.1. Implementation details
For comparing the performance of the proposed BTM model

(iBUST), two other models are considered, namely BTM with Apri-
ori (BTM_Apriori) as in D’Angelo et al. (2017) and BTM with SVM
(BTM_SVM) as in Jayasinghe et al. (2019). Since iBUST and
BTM_Apriori are the ARL-based algorithms, both extract relevant be-
havioural signatures before classifying by the Naïve Bayes. On the
contrary, since SVM is an association learning-based model, it is trained
before classification.

All the compared BTMs are implemented using python and its
relevant packages, including pyfpgrowth, random, Scikit-learn, apyori,
matplotlib, and csv (Van Rossum & Drake, 1995). All implementa-
tion codes along with their respective datasets are currently available
in Bllagdham and Azad (2020) to access upon request.

5.1.2. Datasets
The key dataset of this experimental evaluation is the Dishonest

Internet User Dataset (DIUD) as in D’Angelo et al. (2017), which is a
benchmark dataset for evaluating trust models. In addition, to compare
FP-Growth with its ancestor, FP-Growth, two benchmark datasets are
chosen, namely Kosarak and Accident (Goethals, 2004).

5.1.3. Performance metrics
The performances of the compared techniques are evaluated em-

ploying the following four performance metrics, which are calculated
in accordance with the standard definition, also available in D’Angelo
et al. (2017), Jayasinghe et al. (2019), namely Execution Time (𝐸𝑇 ),
Accuracy (𝐴𝑐), Sensitivity (𝑆𝑒), and Area Under ROC curve (𝐴𝑈𝐶).
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Fig. 7. Convergence curve for finding the best parameter values for various iterations.

Table 2
Summary of experimental setup.

Parameter Options

Compared Models iBUST, BTM_Apriori, BTM_SVM
Datasets DIUD, Kosarak, Accident
Metrics Execution Time, Accuracy, Sensitivity,

Area Under ROC curve (AUC)
Indirect Attacks Ballot Stuffing (BS), Bad Mouthing (BM),

Random Opinion (RO)
Direct Attacks Counting (CN), Context (CX), Timing (TI)
Relearning Intervals, M 10
Optimum values for Eq. (8) 𝑎 = 7.91315688𝑒 − 01, 𝑏 = 8.45780180𝑒 − 01,

𝑐 = 4.87325936𝑒 − 04

5.1.4. Attacks
For the experiments, three nodes are selected, namely a trustor (𝑋),

a trustee (𝑌 ), and a trusted third party (𝑍). Note that since the process
is similar for every node in the network, the inclusion of more nodes in
the experiments will not influence the performance. Again, to make the
learning (or training) and relearning (or retraining) process hostile for
𝑋, 3 indirect attacks are considered (D’Angelo, 2019), namely Ballot
Stuffing (BS), Bad Mouthing (BM) and Random Opinion (RO). On top
of that, to stress the effect, both attacks tamper up to 50% of the reputa-
tion data. Furthermore, 3 direct attacks, namely Counting (CN), Context
(CX), and Timing (TI), which 𝑌 directly initiates while maintaining a
ood reputation with 𝑋, are considered (D’Angelo, 2019).

.1.5. Supporting trust evolution
As it is a well-known fact that trust evolves with time, and hence, an

fficient trust model should take into consideration during the design.
n our case, it is performed by automatically calculating minsupps
sing MEDF. As mentioned earlier in Section 1 is that even though
everal ML-based trust models are proposed in the literature, their
erformances are hardly evaluated in a trust evolution scenario. There-
ore, in this paper, a such scenario has been designed for evaluating
he performance of all the compared models. For that, initially, the
hosen dataset is divided into 𝑀 segments for 𝑀 relearning intervals
n chronological order. Afterwards, during the relearning process, the
urrent segment is merged with all the previously accounted segments
mitating trust evolution.

.1.6. Optimum parameter values selection
For finding optimum parameter values for all the compared models,
= 10 relearning intervals are considered. In other words, during the

xperiments, 𝑓 (𝑥) = {10𝑥 ∣ 1 ≤ 𝑥 ≤ 10, 𝑥 = 𝑥 + 1}% length of dataset is
mployed here. Again, 70% of the records are utilised for training and
10

he rest (30%) of them are utilised for testing.
Fig. 8. Comparison between FP-Growth and FP-Growth. Here, the tuples present
extracted frequent pattern count and association rule count, respectively.

Apriori. The accuracy results acquired for various minsupp with re-
spect to various dataset lengths are plotted in Fig. 6 (a). As could be
observed from the figure, although for some higher minimum support
and for certain dataset lengths, some improvement in accuracy is
observed; however, for any dataset length, the highest accuracy is
achieved for the minsupp lower than 0.1. More specifically, it is re-
ceived at 0.08 and hence, in BTM_Apriori, it is selected as the minsupp.
Again, this optimum value is also in line with trust evolution since
it is fixed for sequentially increasing dataset length. Note that since
analogous observations are recorded for other metrics, they are not
reported in this paper.

Enhanced FP-growth. Alike Apriori, the accuracy results of various
minsupp with respect to various dataset lengths are plotted in Fig. 6
(b). However, unlike Apriori, the highest accuracy values are scattered
throughout the entire experimental space. As could be observed from
the figure is that for 100% length of dataset, minsupp 16 is providing
he highest accuracy; whereas for 50% length of dataset, it is between
6, 10], and so on. Hence, we cannot fixed any minsupp like Apriori for
FP-Growth, which would perform better for any length of dataset.

This observation also advocates the necessity of calculating minsupp
automatically, which is performed in this paper using Eq. (8). Con-
sidering the identical scenario and metric, and ℎ𝑗 = 1,∀𝑗 in Eq. (9),
the SCA return following optimum values: 𝑎 = 7.91315688𝑒 − 01, 𝑏 =
8.45780180𝑒 − 01, and 𝑐 = 4.87325936𝑒 − 04, which is also mentioned in
Table 2.
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Table 3
Parameters provided in GridSearchCV.

Parameter Options

kernel ’linear’, ’poly’, ’rbf’, ’sigmoid’
C {𝑐 ∣ 1 ≤ 𝑥 ≤ 52, 𝑥 = 𝑥 + 1}
degree {𝑑 ∣ 3 ≤ 𝑑 ≤ 8, 𝑑 = 𝑑 + 1}
coef0 {𝑐𝑜𝑓 ∣ 0.001 ≤ 𝑐𝑜𝑓 ≤ 10, 𝑐𝑜𝑓 = 𝑐𝑜𝑓 + 0.5}
gamma ’auto’, ’scale’

The convergence curve for various numbers of iterations is depicted
n Fig. 7 where returned values by the SCA are shown explicitly with
rrows. As could be observed from the figure is that 𝑋𝑏𝑒𝑠𝑡 is found after
2 iterations.

upport vector machine (SVM). It is always a difficult task in SVM to
tipulate values for hyperparameters since the performance of SVM
s outrightly influenced by the values specified for these parameters.
hanks to the GridSearchCV of the sklearn library (Pedregosa et al.,
011), which automates this process. It employs the grid search tech-
ique, and hence, the name. It requires a list of parameters and the
ange of values for each parameter. The range of values that are taken
nto account for various parameters in this paper are mentioned in
able 3.

In the case of GridSearchCV, a cross-validation process is performed
n order to determine the hyperparameter value set which provides the
est accuracy levels. The optimum parameters that are returned from
t are mentioned below: {C=1, coef0=10, degree=3, gamma=’scale’,
11

ernel=’poly’}.
5.2. Performance comparison of enhanced FP-growth vs FP-growth

To compare FP-Growth with its ancestor, FP-Growth, two bench-
ark datasets are chosen, namely Kosarak and Accident (Goethals,
004). In favour of our selection, we would like to argue that the AV list
ay keep increasing in a trust evolution environment over time; and
preferred algorithm must extract ARs within a short period of time

rrespective of the length. In addition, two different environments — (𝑖)
Google colab pro or colaboratory pro and (𝑖𝑖) a PC with the specification
– Intel(R) Core(TM) i7-4600U CPU @ 2.10 GHz 2.69 GHz, 8 GB RAM,
64-bit Windows 10 Pro operating system – are selected for performing
the experiments. The justification for choosing two environments is that
even though the execution times on a PC may vary due to running
other background programmes and/or parallel programmes at that
time; however, in a cloud-based environment like the colab pro, these
constraints are generally absent.

The execution times for both the databases against different mini-
mum supports are plotted in Fig. 8a and 8b. It can be observed from
the figures is that, execution times of both the algorithms for both the
datasets increase with the decreasing number of minsupp. It happens
due to adding more number of nodes in the tree. As a result, a greater
number of frequent patterns are extracted, and hence, a greater number
of ARs are generated. Among the compared algorithms, FP-Growth
elapses several magnitude lower execution time than its ancestor for
lower minsupp for both the datasets as reported in Table 4. Thanks to
the link table that provides suffix lists instantly from the table unlike
FP-Growth, which has to generate these suffix lists employing the
header table and the respective singly linked lists. Since a significant
performance improvement is observed for the proposed FP-Growth

algorithm, it is selected to conduct the rest of the experiments.



Expert Systems With Applications 238 (2024) 121676S. Azad et al.

(
c
i
l
t
a

5

5

Fig. 10. Comparison of iBUST with other models for the CX attack against various indirect attacks.
r
m
f
i
m

p
t
b

Table 4
Execution times for the lowest minsupp for two datasets, two computing environments,
and two algorithms as reported in Fig. 8.

Dataset Minimum Algorithm Computing Execution
support environments Time (sec)

Kosarak 990 FP PC 19 788.26
FP colab pro 18 749.25
FP PC 4992.17
FP colab pro 4587.88

Accidents 136 073.2 FP PC 17 470.51
FP colab pro 14 361.11
FP PC 10 772.29
FP colab pro 11 222.82

5.3. Performance of BTM

Since trust evolves with time; it must be reflected in an experimental
design when evaluating the performance of a model. Consequently, for
capturing this phenomenon in our experiments, a cumulative approach
is utilised where the selected dataset is divided into 𝑀 segments
representing 𝑀 relearning (for FP-Growth and Apriori) or retraining
for SVM) intervals, which is set to 10 in this paper. Here, each
hronological segment is merged with other explored segments before
nitiating a new round of relearning or retraining process, and thus, the
ength of the dataset increased and the models evolve with time. For
he other experimental design issues, it follows the assumptions that
re mentioned in Section 3.

.3.1. Performance under CN attack
In this attack, for maintaining a good reputation, 𝑌 transmits 3 to

trustworthy requests consecutively followed by one untrustworthy
12

i

equest, and this cycle continues. The performance of the compared
odels is evaluated under 3 indirect attacks, namely BS, RO, and BM

or 3 performance metrics: 𝐴𝑐, 𝑆𝑒, and 𝐴𝑈𝐶; and the results are plotted
n Fig. 9a to 9i. From the figures, it can be observed that the BTM_SVM
odel is severely affected by both the indirect attacks for 𝐴𝑐 and 𝐴𝑈𝐶

metrics. For BS, it suffers due to multiplicate entries in the dataset,
which reduce the number of unique records; therefore, SVM is unable
to discover the most representative hyperplane for separating the trust
classes. On the other hand, for RO attack, it suffers since random
opinion sometimes assigns trustworthy entries to untrustworthy entries,
and vice versa; thereby, making it difficult for the BTM_SVM to dis-
cover a hyperplane that can precisely differentiate the classes. Same
observation is true in case of BM attack where trustworthy entities are
selected as untrustworthy entities due to negative or false information
disseminated by the other colleagues.

On the other hand, for BS, the lowest performances for 𝐴𝑐 and 𝑆𝑒
are received by the BTM_Apriori when the dataset length is 10%, 0.690
and 0.609, respectively; whereas, for 𝐴𝑈𝐶, BTM_SVM receives the
lowest performance of 0.5 for the lower volumes of dataset, i.e., 10%
to 40%. On the other hand, for RO, FP-Growth attains the lowest
performances for the lowest volume of dataset, which are 0.517, 0.391,
and 0.696 for 𝐴𝑐, 𝑆𝑒, and 𝐴𝑈𝐶, respectively. However, with increasing
direct interactions, the performance of FP-Growth recovers and in
several instances overpowers other compared models, which shows its
capability of trust evolution even in hostile environments.

On the other hand, both iBUST and BTM_Apriori exhibit a com-
arative performance in case of RO. Although, they struggle a bit at
he beginning, but they recover later with more direct interaction data
etween 𝑋 (trustor) and 𝑌 (trustee). It is because, with more direct

nteraction data, they were able to find out more accurate behavioural
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Fig. 11. Comparison of iBUST with other models for the TI attack against various indirect attacks.
signatures. Although, iBUST and BTM_Apriori exhibit comparable per-
formance for RO attack; however, in case of average performance the
proposed technique overpowers its ancestor for all three metrics.

5.3.2. Performance under CX attack
This attack is different from the CN attack since here 𝑌 performs

untrustworthy activities for one or multiple context(s) while performing
trustworthy activities for the rest of the contexts, and thus, maintains
a good reputation to 𝑋. For instance, 𝑌 acts untrustworthy for ‘‘E-
commerce’’ related activities in DIUD and acts trustworthy for the rest
of the contexts. The acquired results of this attack are presented in
Fig. 10a to 10i.

The results exhibit the dominance of iBUST over BTM_Apiori. As can
be observed from the figures is that the performance of the proposed
model is better for most of the instances over BTM_Apriori for any
indirect attack. For instance, the average 𝐴𝑐 receives by FP-Growth in
the case of BS, RO, and BM are 0.938, 0.850, and 0.984, respectively
in comparison to that of Apriori, which are 0.892, 0.845, and 0.955,
respectively. This shows that the behavioural signatures generated by
the FP-Growth algorithm are more accurate to identify context-aware
attacks over the other two models. However, analogous to the CN
attack, SVM shows relatively lower performance for both the indirect
attacks for the same reasons that are mentioned in Section 5.3.1.

5.3.3. Performance under TI attack
In TI attack, a user, 𝑌 would try to gain a good reputation to 𝑋

by alternating its behaviours between honest and dishonest after fixed
intervals. The acquired results of this attack are presented in Fig. 11a
to 11i.

It can be observed from the figures that the BTM_SVM model is
severely affected by both the indirect attacks for 𝐴𝑐 and 𝐴𝑈𝐶 metrics in
13
case of BS and RO attacks. Herein, for BS and RO, the SVM is unable to
find the most representative hyperplane for separating the trust class
due to altering the behaviour of the entities. However, it performs
comparable to other models in case of BM attack for all 3 metrics.

Conversely, even through the BTM_Apriori suffers in case of BM at-
tack, it demonstrates comparable results for other two attacks, namely
BS and RO. The average 𝐴𝑐s are: 0.903, 0.902, and 0.918 for BS, RO,
and BM, respectively. On the other hand, both iBUST exhibits compar-
atively better performance than the other models for all 3 attacks. For
instance, the average 𝐴𝑐s of the proposed model are 0.903, 0.915, and
0.971 for BS, RO, and BM, respectively. A similar trend is also observed
for other performance metrics, and hence, can be selected as the most
suitable model among the compared models.

6. Discussion

In general, from the results of sensitivity for any attack (direct or
indirect), it can be stated that BTM_SVM exhibits better performance,
which implies that it can detect true positives more accurately than
others. Again, between iBUST and BTM_Apriori, the former can detect
true positives more accurately than the latter; hence, in most of the
scenarios, the former shows better performance than the latter.

However, in BTM_SVM, the generated hyperplanes were unable to
separate true negative entities in most of the scenarios, and hence,
demonstrate relatively lower performance for 𝐴𝑐 and 𝐴𝑈𝐶. Conversely,
both association rule-based techniques demonstrate comparable perfor-
mance in detecting true negative entities for the CN attack for any
indirect attack. However, in case of a CX attack, BTM_Apriori fails
to detect true positive and true negative entities as accurately as the
proposed model, iBUST; and therefore, attains lower performance.

Based on the above analysis, it can be concluded that the proposed
model, iBUST overpowers other compared models. Hence, it can be a
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suitable alternative to the existing solutions for tackling various threats
and attacks in the CPPS networks.

6.1. Limitations and future directions

One of the limitations of this work is that due to the unavailability
(to the best of our knowledge) of the other relevant datasets for BTM,
the iBUST was evaluated with only one dataset, i.e., DIUD. Hence,
preparing a new dataset for BTM and analysing the performance of
the iBUST with that dataset remains an important issue to be dealt
n the future. Again, even though, the iBUST has embraced MEDF for
dapting trust evolution; however, an extensive analysis is required to
nderstand the trust evolution dynamics and propose adaptive models
y capturing these dynamics for responding quickly.

. Conclusion

In this paper, an intelligent BTM is proposed, named iBUST for
ecuring the CPPS networks. The proposed model incorporates FP-

Growth algorithm, which is a variant of the FP-Growth algorithm,
where the latter is enhanced by altering the internal data structures
for faster AR extraction time and by developing a modified exponential
decay Function or MEDF for calculating minsupp automatically in order
to facilitate the adaptation of trust evolution characteristics. In the
proposed model, the trust classes are classified by employing the Naïve
Bayes classifier. For evaluating the performance of iBUST with other
existing models, a trust evolution-supported experimental environment
is designed taking a benchmark dataset, called DIUD into consideration.
According to the acquired results, the proposed model outperforms
all its contenders and establishes its suitability among the compared
models for the CPPS networks.
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