Adaptive levy flight distribution algorithm for solving a dynamic model of an electric heater

Nasir, Ahmad Nor Kasruddin; Jusof, Mohd Falfazli Mat; Ahmad, Mohd Redzuan; Razak, Ahmad Azwan Abdul; Ghani, Normaniha Abd ^a Universiti Malaysia Pahang, Faculty of Electrical & Electronics Engineering Technology, Pahang, Pekan, 26600, Malaysia

ABSTRACT

This paper presents an improved version of Levy Flight Distribution (LFD) algorithm. The original LFD is formulated based on the random walk strategy. However, it suffers a premature convergence due to imbalance exploration and exploitation. Consequently, the algorithm produces unsatisfactory performance in terms of its final accuracy achievement. As a solution to the problem, an adaptive scheme of search agents step size is incorporated into the original LFD algorithm. Moreover, a mating strategy is also adopted to improve its stochastic nature throughout the search process. The algorithm is applied to optimize a nonlinear dynamic model of an electric water heater. A fuzzy-based Hammerstein structure is adopted to represent the heater model. It comprises a combination of both linear and nonlinear equations so that it can capture the dynamic behavior of the heater satisfactorily. The proposed adaptive LFD algorithm has attained a better accuracy. It also has captured the dynamic behavior of the heater more adequately.

KEYWORDS

Adaptive levy flight distribution; Dynamic modelling; Electric water heater; Fuzzy Hammerstein

ACKNOWLEDGMENT

The work has been financially sponsored by the Fundamental Research Grant Schemes FRGS/1/2021/ICT02/UMP/03/2 with the university reference number as RDU210116 and FRGS/1/2019/ICT02/UMP/02/10 with the university reference number as RDU1901196. The grants have been awarded by the Ministry of Higher Education Malaysia (MOHE) via Research and Innovation Department, Universiti Malaysia Pahang, UMP.