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Abstract

Calculations of NOJ at HF, CBS-4, CASSCF, MBPT(2), MBPT(3), and MBPT(4) theory levels, using 3-21G and
6-31G(d) basis sets, found two C,y structures along with the linear geometry. Computations using MBPT(2) and
CCSD(T) approaches and the aug-cc-pvtz basis set confirmed these results. Harmonic vibrational frequency calcula-
tions, performed with MBPT(2) and CCSD(T) theories, indicated that the linear structure was the global minimum
while one of the bent structures (ZONO = 80°) was a higher energy local minimum. The second C,y structure
(ZONO = 45°) exhibited a large imaginary vibrational frequency along the asymmetric stretching (B,) mode, indicating
its saddle point nature. © 2001 Elsevier Science B.V. All rights reserved.

Based on spectroscopic data, obtained in the
middle of the 20th century, NOj is regarded as a
linear molecule [1]. The description of the elec-
tronic structure of this linear molecule is straight-
forward, both in terms of qualitative valence bond
theory (structure I in Fig. 1) and in terms of
qualitative molecular orbital representations (see
Fig. 2). Numerous ab initio computations support
[2-16] the linear structure. This, however, does not
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exclude the possibility of other isomeric forms. For
instance, qualitative valence bond structures can
be written for cyclic NO; involving either 4n
(structure II in Fig. 1) or 67 (structure III in Fig. 1)
electrons. One can also construct a bent valence
bond structure (structure IV in Fig. 1) with four
electrons. This suggests that bent or cyclic struc-
tures could perhaps exist on the potential energy
surface (PES) as local minima. This implication
would be particularly significant for understanding
reactions where the nitronium ion interacts with
nucleophiles, such as in nitration, and where it
must go from its initial linear form into a bent one
during the reaction process. Such a bending
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Fig. 1. Qualitative valence bond structures of NO; .
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Fig. 2. Qualitative molecular orbital description of linear NO; .

motion, without the presence of a reacting nucle-
ophile, may be regarded as a reference process to
which the effect of various nucleophiles may be
compared. In addition to this, while bent forms of
the isoelectronic CO, have been known for quite
some time [17], a full study of the NO; PES has, to
our knowledge, not yet been done and hence this
paper is presented with the aim to do this.

Spectroscopy [18-25] and reaction kinetics [26—
31] of NO; have been studied previously. Howev-
er, no optimized bent or cyclic NO; structure has
been reported in the literature, even though on the
basis of four single point calculations (x = 110°,
100°, 90° and 80° at » = 1.1205 A, where « is the
ONO bond angle and r is the NO distance), Hop-
per has suspected [5] the existence of a high energy
cyclic minimum in the vicinity of a = 90°.

In order to test this possibility, the potential
energy curve, E = E(a), where « is the ONO bond
angle, was scanned using ab initio computations,
at various levels of approximation. A preliminary
scan at the Hartree—Fock (HF) level of theory
using a 3-21G basis set yielded three potential
energy curves, each of which originated from a
totally symmetric wave function (see Fig. 3).
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Fig. 3. The crossing of three potential energy curves associated
with three different electronic configurations, as computed at
the HF/3-21G level of theory. The horizontal axis corresponds
to the ONO bond angle (o, in degree); the vertical axis describes
the total energy (E, in hartree). The three curves correspond to
the following 'A; electronic configurations: A: ...a3b3a"b";
B: ...a&3b3alby; C: ... a3bSalb}. The C,, symmetry is employed
throughout.
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Table 2
The MBPT(2)/aug-cc-pvtz geometries and harmonic vibrational frequencies
Parameter®® Linear Bent Cyclic
1.1377 1.2690 1.6104
180.0 81.3 46.5
—204.46673380 —204.29123176 —204.09150732
0.0 110.13 235.46

602.2 (I1,, bend)
1306.7 (%4, sym)
2536.6 (X, asym)

FEEpme s

759.7 (A;, bend)
1371.7 (B, asym)
1542.5 (A, sym)

845.41 (B,, asym)
720.3 (A1, bend)
1014.4 (A, sym)

#The NO bond length (r) in A, the ONO bond angle («) in degree, the total energy (E) in hartree, the relative energy (AE) in kcal/mol,

and the harmonic vibrational frequencies (vi, vy, v;) in cm™'.

®sym = symmetric stretch, asym = asymmetric stretch.

Table 3

The CCSD(T)/aug-cc-pvtz geometries and harmonic vibrational frequencies
Parameter® " Linear® Bent Cyclic?
r 1.1253 1.2739 1.7046
o 180.0 80.0 41.2
E —204.47063267 —-204.31612455 —204.13292431
AE 0.0 96.96 211.91
v 626.2 (I1,, bend) 682.5 (A1, bend) 518.4i (B,, asym)
v 1382.4 (Z,, sym) 748.4 (B,, asym) 596.5 (A, bend)
V3 2389.9 (%,, asym) 1461.6 (A, sym) 1418.4 (A, sym)

#The NO bond length (r) in A, the ONO bond angle () in degree, the total energy (E) in hartree, the relative energy (AE in kcal/mol,

and the harmonic vibrational frequencies (v, v, v3) in cm™'.
b sym = symmetric stretch, asym = asymmetric stretch.

¢ Experimental values from [21,25]: v; = 626.90, v, = 1386.84, v; = 2362.0 cm™.

4The O-O distance in the cyclic structure of 1.1995 A is virtually identical to the O—O distance in the isolated O, molecule (1.20752 1&).

Table 4

The CCSD(T)/aug-cc-pvtz geometries and harmonic vibrational frequencies of dissociation products N*, O,, N, O3
Species® E R, v

(hartree) (A) (cm™h)

N(*S) —54.51692394 n/a n/a
N(D) (x) —54.41750320 n/a n/a
N*(CP) (%) —53.98500355 n/a n/a
02(32;) —150.14102005 1.2132 1574.7
05 (*IL,) (x) —149.69922259 1.1215 1907.0

4 The species denoted with (*) requires a multi-reference description. The expected quality of these data is lower than in the remaining

cases.

Table 5
The CCSD(T)/aug-cc-pvtz dissociation energies for the linear
NO; corresponding to the dissociation channels of the

(N+ Oz)+ type

D. Dy
(kcal/mol) (kcal/mol)
N(’D) + Of (*I1,) 222.08 218.52
N*(°P) + 0,(’%,) 216.25 212.21
N(*S) + 07 (°11,) 159.69 156.13

in this study, the core orbitals (three lowest orb-
itals in NO;, two lowest orbitals in O, and O5,
and the lowest orbital in N and N¥) were kept
frozen. The CCSD(T) calculations for the open-
shell dissociation products (O, O7, N, and N¥)
were performed using the unrestricted HF (UHF)
reference (we tried the restricted open-shell HF
(ROHF) reference, too, but the results turned out
to be virtually identical). It is necessary to point
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out that some of these species are not properly
described by a single determinant; the calcula-
tions of dissociation energies are therefore only
semi-quantitative. The CCSD(T) and MBPT(2)
calculations for NO; (a closed-shell species) used
the restricted HF (RHF) reference. All MBPT(2)
and CCSD(T) calculations employing the aug-cc-
pvtz basis set (geometry optimizations and har-
monic frequency calculations) were performed
with GAuUssiAN 98 [34] (the MBPT(2) and
CCSD(T) calculations) and Aces II [35] (the
CCSD(T) calculations). The CCSD(T) analytic
gradient capability of Aces II turned out to be
very useful and greatly facilitated our optimiza-
tion efforts.

We characterized three stationary points on a
C,,-symmetric PES, referred to as the linear,
bent, and cyclic structures. In spite of numerous
efforts, we were unable to locate any asymmetric
minimum. All our attempts to locate the asym-
metric structures failed, giving us the bent, C,,-
symmetric structure. We cannot rule out the
existence of an asymmetric local minimum, but
it is likely that if such a minimum exists, it is
very shallow or high lying or has both these
features.

The main findings of our calculations are col-
lected in Tables 2 (MBPT(2)/aug-cc-pvtz results)
and Table 3 (CCSD(T)/aug-cc-pvtz results). Table
4 lists the CCSD(T)/aug-cc-pvtz results for the
dissociation products of the (N 4+ 0,)" type and
Table 5 provides information about the energetics
of dissociation of the linear NO; into the spin-
allowed N(°D) + O; (*ITy) and N*(C'P) + 0,(’%;)
channels and spin-forbidden N(*S) + O; (°II,)
channel.

The harmonic vibrational analysis for the sta-
tionary points reveals that while all three struc-
tures represent minima within the C,, symmetry,
only the linear and bent structures are true local
minima. The saddle-point nature of the cyclic
structure, observed initially at the MBPT(2)/aug-
cc-pvtz level, was confirmed in the subsequent
CCSD(T)/aug-cc-pvtz calculations. The cyclic
structure is a saddle point dividing two mirror-
image C, valleys representing asymmetric bent
NO; geometries (notice that the imaginary fre-
quency corresponds to asymmetric stretch). Fol-

lowing the coordinate corresponding to the
negative eigenvalue of the Hessian leads to the
lowering of the symmetry of the C,, structure to
C;. Consequently, both HOMO and LUMO be-
come the «” orbitals and the path between the
cyclic and bent structures, which is forbidden in
Woodward-Hoffmann sense when the C,, sym-
metry is preserved, becomes allowed when the C,,
symmetry is broken. Since the cyclic structure
seems to represent the N'...O, configuration,
the above described process of going from the
cyclic saddle point to the bent minimum structure
of NO; may play a role in the reaction
N* + 0, — NO;.

Both the linear and bent local minima are
located below all dissociation channels of the
(N +0,)" type listed in Table 5. Finally, we
should note that our CCSD(T) geometries and
frequencies of the linear NOj molecule agree
remarkably well with the experimental [24,25]
and theoretical [14,16] results reported earlier.
Also, our results are similar, although not iden-
tical, to the findings of Xantheas et al. [17] on
the isoelectronic CO,. They found a bent 7*(Cay)
local minimum for o = 70° and a C,,-symmetric
transition state for o =2 95°, the latter dividing
the former from the linear minimum. This ex-
ploratory work on the bent and cyclic isomers of
the otherwise linear triatomics is now being ex-
tended to the isoelectronic CO, and BO, sys-
tems.
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