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A B S T R A C T   

Problem-solving is an essential transversal and learning skill in the 21st century. To better support 
it, we need a deeper understanding of its processes, i.e., problem exploration, problem repre-
sentation and knowledge use. Understanding the mechanism behind the transitions between these 
processes plays an important role in supporting its development. With a sample of N = 1828 first- 
year university students, this study is the first to measure how students transition between the 
different problem-solving processes and how this influences their overall problem-solving per-
formance as well as how this is related to their other test-taking behaviours. Results indicate that 
mastering the first transition – correctly understanding and depicting the problem structure – 
plays a crucial role in problem-solving. Students who failed to master it regularly failed in the 
next transition. Problem complexity strongly influenced transitions during the entire problem- 
solving process. Based on students’ behavioural patterns, we distinguished four qualitatively 
different latent transition classes: expert transitioners, advanced transitioners, beginner transi-
tioners and non-transitioners. The number of interactions proved to be a more effective profile 
characteristic, especially on high-complexity problems, than time spent on the problem-solving 
process. The results of the current study provide important insights into how students’ transi-
tion between the different problem-solving processes and how their test-taking behaviour in-
dicates their transition skills.   

1. Introduction 

Education today does not focus solely on teaching specific academic disciplines. It also aims to foster essential transversal skills via 
the incorporation of educational technology and to prepare pupils for the future, for the unknown and for work as well as to solve 
problems in uncertain situations. In problem-solving, students have to formulate and analyse the problem by identifying relevant 
elements and facts in a given scenario (Hmelo-Silver, 2004). This aids in establishing a representation of the problem. As students’ 
understanding of the problem scenario grows, they start generating hypotheses about possible solutions and the specific sequence of 
actions needed to reach this solution. During this process, they identify knowledge deficiencies tied to the problem. These knowledge 
deficiencies form the basis of the learning process that students should research and acquire during their self-directed, enquiry-based 
learning. 

To better support students’ learning processes and learning outcomes, we need a deeper understanding of their thinking processes, 
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particularly when it comes to problem-solving. To this end, researchers have started applying the tools of learning analytics to in-
formation gathered and logged (Csapó et al., 2012) during the learning and assessment process (Zhang et al., 2019). Analysis of this 
information can contribute to a better understanding of the phenomenon under examination and help to explain the mechanism 
behind the score values of the variables observed, especially students’ thinking processes while learning and solving problems. For 
example, analysing students’ task completion and test-taking behaviour may inform us about where and when they have made 
mistakes and what type of mistake they have made (Nicolay et al., 2021; Stadler et al., 2020), which behaviour pattern results in 
success or failure (Eichmann et al., 2020a, b; Molnár & Csapó, 2018), how much learners engage in collaborative learning (Nasir et al., 
2021), what kind of exploration strategy they use during the problem-solving process (Molnár et al., 2022) and, based on this, how 
many qualitatively different exploration profiles can be distiguished (Eichmann et al., 2020a; Greiff et al., 2016, 2018; Molnár et al., 
2022; Mustafić et al., 2019; Wu & Molnár, 2021), how many interactions students engage in (Greiff et al., 2016; Molnár et al., 2022) 
and how much time they spend in the problem-solving process (Goldhammer et al., 2014). Researchers have also examined how 
cognitive factors, such as subject matter knowledge, and affective factors, such as engagement, influence students’ strategy efficacy 
and strategy selection (e.g., Newton et al., 2020) or pause time before problem-solving predicts effective strategy (Chan et al., 2022). 

Problem-solving and complex problem-solving represent a step-by-step process. Three steps, or processes, have been identified in 
the process of complex problem-solving: (1) problem exploration, (2) problem representation and (3) knowledge use (Fischer et al., 
2012; Molnár & Csapó, 2018). In the present study, problem exploration is operationalized as exploring a system to generate 
knowledge about a problem space by interacting with a problem scenario (i.e., engaging in trial and error). Problem representation is 
operationalized as building mental maps, and knowledge use is operationalized as using and putting the newly acquired knowledge 
into practice by managing learning goals. 

This study assumes that the transitions between these three problem-solving processes play an important role in understanding the 
overarching process of problem-solving. Beyond Nicolay et al. (2021), who focused on the transition from knowledge acquisition to 
knowledge application, no research has thus far examined the transitions that students encounter when working on complex problems, 
largely since these transitions are not directly visible in behaviour. With this gap in mind, the present study investigates two transitions 
and how success or failure with these transitions influences problem-solving and builds empirically distinguishable, qualitatively 
different latent profiles of students as they work on ten fictitious complex problems of increasing difficulty built within the MicroDYN 
approach. The second part of the paper focuses on the validation of the results in understanding the mechanism behind the two 
transitions and involves other process indicators of test-taking behaviour in the analysis, such as time-on-task and number of clicks. 

1.1. Understanding transitions in complex problem-solving 

As noted above, three processes are distinguished in solving complex problems: (1) problem exploration, (2) problem represen-
tation and (3) knowledge use (Fischer et al., 2012; Greiff et al., 2012; Molnár & Csapó, 2018). Problem exploration and problem 
representation are involved in the knowledge acquisition phase of the problem-solving process, while knowledge use, that is, finding a 
solution to a specific problem, defines the knowledge application phase as the second key problem-solving phase beyond knowledge 
acquisition (Greiff et al., 2013). We assume that by understanding the mechanism behind transitions between these three, empirically 
distinguished processes (i.e., the transition between (1) problem exploration and problem representation and that between (2) 
problem representation and knowledge use), we can advance our knowledge of students’ thinking processes in solving complex 
problems. With this gap in mind, the present study examines two transitions and how success or failure with them influences 
problem-solving. 

We examine the first transition students encounter between problem exploration and problem representation and the second one 
they meet between correct problem representation and knowledge use, independently of the first transition. Specifically, we go beyond 
monitoring problem-solving achievement as a single indicator and address the mechanism behind successful problem-solving and 
learning in uncertain situations by focusing on knowledge transition – from collecting relevant information via hypothesis formation to 
problem representation (first transition) and from problem representation to knowledge use (second transition) – in problem-based 
environments. Participants proved to be successful in the first transition if they were able to apply a theoretically effective explora-
tion strategy to generate knowledge about the problem space and if they were able to interpret and draw a cognitive representation of 
this mental map in the form of a concept map. Subsequently, participants proved to be successful in the second transition if they were 
able to put previously acquired knowledge from their mental model into practice (and/or interpret the right mental model presented 
on screen) by executing effective goal-directed manipulations to reach certain predefined goals. 

Nicolay et al. (2021) addressed the question of transitions using traditional achievement data between the two major phases of 
complex problem-solving: knowledge acquisition and knowledge application. They argued that a great proportion of students fails to 
engage in successful knowledge transition, whose rates vary according to item complexity. We go deeper and examine both of the 
transitions between the three complex problem-solving processes (problem exploration, problem representation and knowledge use) 
by analysing behavioural logfile data, and we investigate how success or failure with these transitions influences problem-solving. 

1.2. Test-taking behaviour might be a valid indicator of the construct under investigation 

Cognitive assessment provides information not only about a student’s problem-solving skills and functional capacities 
(Heinonen et al., 2011), but also about their test-taking behaviour (Meyer et al., 2001), which affects their cognitive test performance 
(Heinonen et al., 2011) as well as having potential implications for further academic outcomes (Blair & Razza, 2007). “If test-taking 
behaviour actually represents specific cognitive and metacognitive processes, individual differences in ability to solve a task should be 
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reflected in task behaviour” (Stadler et al., 2020. p. 1). That is, measuring test performance with behavioural observations provides 
more valuable information in planning interventions, while behavioural data may provide information about future cognitive 
achievement. 

Time-on-task, that is, time spent providing an answer, is amongst the most investigated behavioural data; it is a major characteristic 
of the task completion process which underlies different behaviours (Goldhammer et al., 2014). According to early studies, longer time 
relates to better performance (Schiffring & Schneider, 1977), and simpler tasks which allow the application of routine cognitive 
processing are related to shorter time; at the same time, more complex tasks allow for multiple ways of arriving at the same solutions 
(Stadler et al., 2020). This has also been confirmed by Alzoubi et al., (2013) and Eichmann et al. (2020a), who stated that more time 
allows participants longer planning and better planned solutions, which resulted in significantly higher achievement. In contrast, 
Greiff et al. (2016) argued that spending too much time on a task is associated with poor performance and suggested a U-shaped 
relation. Based on recent research results, Chan et al. (2022) interpreted extra time as a proxy indicator of thinking before 
problem-solving. They observed that pause time – including longer time-on-task – “may be an indicator of student thinking before 
problem-solving, and provide insights into using data from online learning platforms to examine students’ problem-solving processes” 
(Chan et al., 2022, p. 1). As a result of contradictory results obtained in the different cognitive domains, Naumann & Goldhammer 
(2017) suggested that time-on-task has no uniform interpretation but is a function of task difficulty and individual skill. 

Beyond time-on-task, number of clicks or number of interactions on an assessment task also supplies important information about 
students’ engagement, involvement and thinking processes, although less attention has been paid to this issue. Goldhammer et al. 
(2014) distinguished between interactions that aim to access information and those focused on the use of the information accessed. As 
regards problems requiring controlled processing, he and his colleagues concluded that low-achieving students typically engage in 
fewer interactions than high achievers. Eichmann et al. (2020a) confirmed the positive correlation between problem-solving 
achievement and number of interactions, while Lotz et al. (2017) and Stadler et al. (2020) reported on negative correlations be-
tween number of interactions and GPA. They argued that students with greater ability appear to spend more time while needing to 
engage in fewer interactions for successful problem-solving (Stadler et al., 2020). Based on all these research results that highlight the 
predictive power of process data on students’ achievement, we applied these variables as validation variables for results obtained on 
students’ transition skills. 

1.3. The present study 

The present study builds on the assumption that problem-solving is a step-by-step process that consists of (1) problem exploration, 
(2) problem representation and (3) knowledge use. The study also assumes that the transitions between these three processes (i.e., the 
transition between (1) problem exploration and problem representation and that between (2) problem representation and knowledge 
use) play an important role in understanding the overarching process of problem-solving. We also build on the research results, which 
suggest that behavioural indicators like time-on-task and number of clicks may also be good indicators of students’ success, which is 
strongly influenced by their transition skills. 

To our knowledge, this study is the first to measure how students’ transition between the different problem-solving processes and 
how this influences their overall problem-solving performance as well as how this is related to their other test-taking behaviours. Thus, 
we also used learning analytics to examine questions about the relation of test-taking behaviour to students’ latent class transition 
profiles investigated by sequential transition behaviour patterns. 

The goal of our study is to answer the following research questions (RQs): 

RQ1: Describing the transitions 
RQ1a: What is the proportion of first-year university students who master both, only the first, only the second or neither of the transitions in 
the problem-solving process? 
RQ1b: How does the number of successful transitions vary with the complexity of the problem? 
RQ1c: How many and what kind of latent class profiles can be distinguished based on students’ transition behaviour pattern analyses on the 
test level? 
RQ2: The relation of the transitions to test-taking behaviour 
RQ2a: How does students’ test-taking behaviour (i.e., time-on-task and number of interactions) differ depending on the number of successful 
transitions (theory-driven, problem-level transition-focused approach)? 
RQ2b: How do students’ latent transition profiles differ with regard to their real problem-solving behaviour characteristics (i.e., time-on-task 
and number of interactions; latent transition profile-based approach)? 

2. Research methods 

2.1. Participants 

Participants were students starting their studies at one of the largest and highest-ranked universities in Hungary. The university has 
twelve faculties (e.g., humanities and social sciences, science, medicine, law and economics), and students from all the faculties were 
involved in the assessment. A total of 1844 students, that is, 44.8 % of the target population, participated in the study (age mean =
19.8; SD = 1.74), 59.8 % of them being female. After data cleaning, that is, deleting all the students who did not reach the end of the 
test (less than 1 % of the sample), 1828 students remained in the sample. Students’ participation was voluntary, and they received one 
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Fig. 1. Screenshot of the MicroDYN task “Cat” Phase 1 – knowledge acquisition (processes: problem exploration and model building). The controllers of the input variables range from “- -” (value = -2) 
to “++” (value = +2). The model representation is shown at the bottom of the figure. 
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Fig. 2. Screenshot of the MicroDYN task “Cat” Phase 2 – knowledge application (process: knowledge use). The controllers of the input variables range from “- -” (value = -2) to “++” (value = +2). The 
correct representation of the mental model is shown at the bottom of the figure. 
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course credit for completion of the tests as an incentive. 

2.2. Instrument 

To test students’ problem-solving skills, specifically, their transition skills and the mechanism behind them, including the facets of 
knowledge acquisition and knowledge application, we searched for problems where the complexity of the problem can be defined, 
scaled and distinguished and where students’ domain-specific knowledge plays as little of a role as possible. Based on existing research 
results on problem-solving, we decided on a widely used and validated computer-based instrument for complex problem-solving (CPS), 
MicroDYN (Funke, 2001; Greiff et al., 2012). The computer-simulated problems contain up to six interrelated variables in uncertain 
problem situations. They capture three overarching processes of problem-solving: problem exploration and problem representation (in 
the first phase, labelled knowledge acquisition) and use of knowledge (in the second phase, labelled knowledge application). 

In the process of exploring the CPS problems (in phase 1), students were expected to generate knowledge about the elements and 
their relationships in the given problem space by interacting with the problem scenario. Effective interactions with the problem space 
formed the foundation of successful problem presentation. To do this, students first had to identify the type of variable (input or 
output). Second, they had to manipulate the values for the input variables – as many times as they liked within 180 s – and then test, 
identify and interpret the changes in the output variables to increase their understanding of the problem space (see Fig. 1). For 
example, in the first phase of a problem called “Cat” (see Fig. 1), students were expected to adjust the levels of two input variables, 
which represented fictitious cat foods (“Miaow” and “Catnip”) and observe changes in the output variables, which represented the cats’ 
level of movement and purring. Students were asked to adjust the level of the cat foods and their combinations in any way to discover 
their impact on the cat’s movement and purring. To test the different settings for the amount and combinations of cat food, they were 
expected to click the Apply button. As students’ knowledge of the problem scenario grows, they can start building a mental model of 
the structure of the problem and identify knowledge deficiencies tied to the problem, which requires additional interaction with and 
learning about the problem space. After exploring, they were asked to present the cognitive representation of the newly built mental 
map in a model presented on screen. To do this, they were expected to draw the detected relations in the form of arrows between the 
variables presented on screen (Fig. 1), that is, in the given example, between the different cat foods (Miaow and Catnip) and the cat’s 
different behaviours (purring and other activity). Thus, in the first phase, two problem-solving processes, problem exploration and 
problem representation, are measured. 

In the second phase (see Fig. 2) of the problem-solving process, students build the correct representation of the mental model (the 
knowledge they had to explore and acquire in the first phase of the problem-solving process), and they apply it by managing the 
learning goals and reach the given target values of the output variables within a given time frame (90 s) in no more than four com-
binations of input variable settings. In the case of the Cat problem, students received the correct relation between cat food and 
movement/purring in the form of the correct concept map, and they are expected to change the levels of two different cat foods to 
reach the target values given for movement and purring in no more than four steps (clicking four times on the Apply button). Thus, in 
the second phase, one additional problem-solving process, knowledge use, is measured. Based on empirical evidence (see, e.g., Greiff 
et al., 2013; Molnár et al., 2021; Molnár & Csapó, 2017; Schweitzer et al., 2013), these scenarios are good measures of different phases 
of the whole problem-solving process. 

In total, the CPS test consisted of ten problems with fictitious cover stories and increasing item complexity. CPS items can be 
described with six item characteristics (Stadler et al., 2016): (1) the number of input and (2) output variables and (3) the number and 
(4) type of relations (i.e., direct, autonomous) and the number of (5) irrelevant input (i.e., manipulating these variables has no impact 
on the system) and (6) irrelevant output variables (not related to any input variables). In the case of the Cat problem, both the number 
of input and output variables and the number of relations are two, the type of relation is direct, and the problem scenario contains one 
irrelevant input variable. With regard to item complexity and based on earlier studies (Molnár et al., 2022; Nicolay et al., 2021) on the 
number and type of variables and relations, we distinguished between low-, medium- and high-complexity problems. That is, 
problem-solving tasks became more complex with the growing number of variables and relations and with the use of autonomous 
changes beyond direct relations. MicroDYN problems of low complexity (two problems on the test) involved two input and two output 
variables with two relations (direct effect with no autonomous changes in variables – such as the “Cat” problem in Figs. 1 and 2). 
Medium-complexity items (four problems on the test) consisted of five or six variables altogether (three input and two or three output 
variables) with three or four direct effects. The difference between medium- and high-complexity items (four problems on the test) was 
that the latter also contained indirect effects (Greiff et al., 2013), that is, autonomous changes in output variables without changing the 
values of the input variables beyond the direct relations. Irrelevant variables were also typical of high-complexity items. Appendix 1 
provides examples of structural relations and equations for low-, medium- and high-complexity problems. 

The reliability of the test was good. Based on dichotomous scoring, that is, the traditional CPS indicators (Greiff et al., 2013) for 
phases 1 and 2 (phase 1 for knowledge acquisition and phase 2 for knowledge application), reliability proved to be α = 0.882; using the 
process-oriented approach and splitting phase 1 into two distinguishable processes, Cronbach’s alpha proved to be 0.944 for problem 
exploration, 0.858 for problem representation and 0.758 for knowledge use using binary scores. 
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2.3. Procedures 

2.3.1. Data collection 
The data collection was carried out in a large computer room at the university learning and information centre during the first four 

weeks of the semester. The test was administered using the eDia online platform (Csapó & Molnár, 2019). Students had 60 min to finish 
it and the related background questionnaire. The whole research project involved two testing sessions of two hours each consisting of 
measures of problem-solving, mathematical reasoning, reading comprehension, working memory and an additional domain, which 
was chosen by the dean of each of the faculties (e.g., ICT literacy, learning strategies, inductive reasoning, financial literacy, social 
sciences and science). At the beginning of the test, participants were provided instructions on the user interface, including a warm-up 
task. Students received immediate feedback on their average achievement after completing the test and additional, detailed feedback 
with normative comparative data on their performance a week after the testing was closed. 

According to the national and institutional guidelines, ethical approval was not required for this study. The assessments which 
provided data for this study were integrated parts of the educational processes of the participating university. Participation was 
voluntary, and participants received a course credit for active participation. All of the students in the assessment had turned 18 by the 
time of the assessment. That is, it was not required or possible to request and obtain written informed parental consent from the 
participants, but all of them confirmed with their signature that their data could be used for educational and research purposes at both 
the faculty and university levels. 

2.3.2. Dataset 
We built a dataset consisting of the scored answer data for the three processes, problem exploration, problem representation and 

knowledge use, and the log data (interaction data, which describe the manipulation behaviour of the students, such as number of 
interactions and time-on-task). All these actions are nested on the individual level, as each student was expected to solve ten CPS 
problems as well as provide data for the three processes and log data for each problem scenario. That is, each student has multiple 
observations that are not independent but rather correlated because they are associated with the same students, thus offering the 
possibility to go beyond a single observation and learn about student’s transition behaviour in multiple cases and in a learning 
environment. 

2.3.3. Scoring and labelling the log data 
In the first problem-solving phase during the first CPS process, we scored the effectiveness of problem exploration, that is, the 

interaction behaviour of the students, based on the collected logfiles. In order to map and describe the exploration strategy of the 
students, we used the labelling procedure developed by Molnár and Csapó (2018), which has also been used in international as-
sessments (e.g., Molnár, 2021, 2022; Wu & Molnár, 2021). If the interaction behaviour provided all the information about the detected 
relations, it was considered as a theoretically effective strategy and assigned a score of 1; otherwise, the manipulation behaviour was 
considered ineffective, and students earned a score of 0. For example, on the “Cat” problem, if the participant tested the effect of the cat 
foods on the cat’s behaviour by manipulating both cat foods (both input variables) at the same time (that is, feeding the cat a mixture of 
the two foods), thus finishing the first part of the problem, they received a score of 0. This type of manipulation cannot provide 
sufficient information on the separate effect of each of the cat foods on the cat’s behaviour (described by the output variables). 
However, if participants first tested the effect of Miaow on the cat’s behaviour and then separately tested the effect of Catnip, they 
received a score of 1. This is because this type of manipulation proved all the information about the effects of the cat foods on the cat’s 
behaviour. Across all ten problems, each student received ten binary (correct/incorrect) scores on their problem exploration based on 
the strategies they applied (for a more detailed description, see Molnár & Csapó, 2018). 

In addition to this and also taking place during the first phase but related to the second process, we scored the visualized cognitive 
representation of their mental map of the problem space, which indicated the detected relations in the form of arrows between the 
variables presented on screen (see Fig. 1). A completely matching problem structure was assigned a score of 1 (e.g., on the “Cat” 
problem, if students draw one arrow from the Catnip cat food to purring and another arrow from Catnip to movement but no other 
arrows); otherwise, the response was considered incorrect and earned a score of 0. Thus, across all ten problems, each student received 
ten binary (correct/incorrect) scores on their visualized cognitive mental map representation of the problem space. 

Finally, in the second phase, after receiving the correct representation of the mental model, we scored the third CPS process, 
students’ knowledge use. The answers were marked correct (“1”) if students managed to reach the given target values of the output 
variables within the given constraints (e.g., within a pre-specified number of steps; in the example, if students managed to increase the 
level of the cat’s movement and purring from 10 to 21–23); otherwise, the solution was considered incorrect and assigned a score of 0. 
Thus, across all ten problems, each student received ten binary (correct/incorrect) scores on their knowledge use. 

Beyond the three processes outlined above, log data indicating time-on-task and number of interactions were marked separately for 
each problem and for each student. Thus, in total, five measures were available for each problem targeted by each student: problem 
exploration (binary), problem representation (binary), knowledge use (binary), time-on-task (continuous) and number of interactions 
(continuous). The latter two were used to investigate differences in other variables related to the different combinations of successful 
and unsuccessful transitions. 
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2.3.4. Analysis 
The main goal of this paper is to examine the transitions between the three processes, that is, how the students transition (1) from 

problem exploration to problem representation and (2) from problem representation to knowledge use. To test the transition of the 
amount of extracted information (use of a theoretically right or wrong strategy) to problem representation and from the right problem 
representation or from the right exploration to its direct or indirect use, we used a decision tree-based approach (see Fig. 2). In this, we 
can form four artificial groups of students on the problem level: (1) students who succeeded in both transitions (i.e., they were suc-
cessful in the transitions from problem exploration to problem representation and from problem representation to knowledge use) 
(Group A; score: 1 – 1 – 1); (2) students with partly successful transitions who succeeded in the first but failed in the second (i.e., they 
were only successful in the transition from problem exploration to problem representation) (Group B; score: 1– 1 – 0); (3) students with 
partly successful transitions who failed in the first but succeeded in the second (i.e., they were only successful in the transition from 
problem representation to knowledge use) (Group C; score: 0 – 1 – 1); and, finally, (4) students with no successful transitions (i.e., they 
were successful in neither of the transitions) (Group D; score: different patterns: 1 – 0 –1, 1 – 0 – 0, 0 – 1 – 0, 0 – 0 – 1, 0 – 0 – 0). 
However, Group D proved to be a heterogenous group and was split up further into five different sub-groups using the decision tree 
approach (see Fig. 2):  

• Students in Sub-group D1 applied the right exploration strategy but failed to build and visualize their mental map on the concept 
map presented on screen. After building the proper concept map, which they needed to do to solve the problem, they were able to 

Fig. 3. Integrated model: decision tree with the different categories of students.  
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transfer the knowledge they had retrieved from the first to the third phase of the problem-solving process (score: 1 – 0 – 1). They 
were partly successful in the transition but in a different way than students in Group B or C. They managed an indirect transition 
between the first (problem exploration) and third (knowledge use) problem-solving processes;  

• Students in Sub-group D2 applied the correct exploration strategy but failed in both the transition processes (score: 1 – 0 – 0);  
• Students in Sub-group D3 also failed in both the transition processes but in a different way than those in Sub-group D2. Similarly to 

students in Group C, they failed in the exploration phase but managed to build the right concept map, that is, representing the 
problem as a result of guessing or misinterpreting their exploration. After building the right concept map, they were not able to 
transfer the guessing-based knowledge to the knowledge use part of the problem (score: 0 –1 –0);  

• Students in Sub-group D4 also failed in both the transition processes but in a qualitatively different way than those in Sub-groups 
D2 and D3. They failed completely in the first transition process without demonstrating any understanding of the problem 
structure. However, after building the right concept map, they solved the application part of the problem most likely as a result of a 
trial-and-error strategy or very quick understanding but not as a result of any transition procedures from earlier phases of the 
problem-solving process (score: 0 – 0 – 1);  

• Students in Sub-group D5 failed in the exploration phase and in both the transition processes, including all subsequent problem- 
solving processes (score: 0 – 0 – 0). 

Fig. 3 synthesizes the transition-based approach and shows the transition-based groupings of the students on the problem level. This 
approach allows us to look behind the mechanisms of the students’ learning and thinking processes during the problem-solving process 
on a very fine-grained level by providing more detailed pictures of the students’ problem-solving behaviour via behavioural log data. 

3. Results 

3.1. The proportion of first-year university students who master both, only the first, only the second or neither of the two transitions in 
solving complex problems (RQ1a) 

We analysed the relative frequencies of students in each problem scenario who belong to the four different groups of students based 
on their transition capabilities. Please note, because of the nested structure of the data (log data are nested in students) beyond the 
summative data describing the tendencies we provided problem-level results too. On average, one-third (31.9 %) of the university 
students mastered both transitions successfully (Group A, both transitions); however, the variance proved to be great between the 
different items. A total of 29.0 % of the students only had success with the first transition (Group B), and 0.2 % only managed the 
second transition (Group C). That is, there were almost no students who only mastered the second transition without mastering the 
first. 38.9 % of the students did not manage either of the transitions in their problem-solving (Group D – Sub-groups D1–D5). That is, 
mastering the first transition – correctly understanding and depicting the problem structure – played a crucial role in the problem- 
solving process, independently of any features (i.e., complexity, difficulty and position) of the problem. Most of the students who 
did not manage it failed in the following transition despite additional help (such as the presentation of the correct model in the 
knowledge application phase). The rate of successful transitions proved not to be stable across the problems (see RQ2), and it strongly 
varied by problem complexity and item position. 

Table 1 
The number of successful transitions by problem complexity.  

Item/position/problem complexity* Both transitions (Group 
A) 

First transition only 
(Group B) 

Second transition only 
(Group C) 

No transitions (Group 
D) 

Low 63.5 14.5 0.9 21.1 
Item 1: 2 + 2+(2 + 0) [0, 0] 62.0 14.5 1.6 21.9 
Item 2: 2 + 2+(2 + 0) [1, 0] 65.0 14.5 0.2 20.3 
Medium 36.8 43.0 0.0 20.2 
Item 3: 3 + 2+(3 + 0) [0, 0] 31.4 49.0 0.1 19.6 
Item 4: 3 + 3+(3 + 0) [0, 0] 26.0 55.4 0.0 18.6 
Item 5: 3 + 3+(4 + 0) [0, 0] 48.5 29.0 0.0 22.5 
Item 6: 3 + 3+(4 + 0) [0, 0] 41.4 38.8 0.0 19.8 
High 11.1 22.2 0.0 66.7 
Item 7: 3 + 2+(2 + 1) [1, 0] 17.1 10.2 0.0 72.7 
Item 8: 3 + 3+(3 + 1) [0, 1] 20.7 17.4 0.0 61.9 
Item 9: 3 + 3+(3 + 1) [0, 1] (non-linear 

relation) 
1.9 33.3 0.0 64.7 

Item 10: 3 + 3+(3 + 1) [1, 0] (non-linear 
relation) 

4.8 27.8 0.0 67.5 

Note. 
* Problem complexity includes number of input variables + number of output variables + (number of relations divided by number of direct re-

lations + autonomous change) [number of irrelevant input variables + number of irrelevant output variables]. 
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3.2. The number of successful transitions varies substantially with problem complexity (RQ1b) 

The level of successful transitions proved to be quite stable on problems with similar complexity and varied substantially with 
problem complexity. Almost 64 % of the students mastered both transitions on problems of low complexity. This proportion dropped 
on problems of medium complexity (26–48 %), depending on item position, and dropped further on problems of high complexity. We 
have recognised major differences in transition capabilities amongst problems of high complexity. One-fifth of the students proved to 
be successful on highly complex problems with linear, autonomous changes, but just 2–5 % of the students were able to manage both of 
the transitions on problems with non-linear, autonomous changes. In contrast, almost 67 % of the students failed on both transitions on 
problems of high complexity, independently of the type of relations, one-fifth of them had no success on problems of medium 
complexity, and another one-fifth were unsuccessful on problems of low complexity (see Table 1). Thus, we can conclude that item 
complexity strongly influenced transitions throughout the problem-solving process, including all three processes, and we cannot 
expect that students behave the same way in each problem scenario, independently of its complexity and position. 

3.3. Students’ latent class transition profiles in complex problem-solving (RQ1c) 

After theory-driven problem-level analyses of the different transition behaviours, we used the advantages of the nested structure of 
the data and monitored students real behaviour patterns on the test level. We used latent profile analyses to cluster students’ transition 
behaviour as they worked with ten increasingly difficult complex problems. We assessed model specification for four latent class 
models. The information theory criteria used (AIC and BIC) indicated a continuous decrease in a growing number of latent classes. The 
likelihood ratio statistical test (Lo–Mendell–Rubin Adjusted Likelihood Ratio Test) showed the best model fit for the 4-class model. The 
entropy-based criterion reached the maximum values for the 3-class solutions, but it was also significant for the 4-class solutions. Based 
on the L–M–R test, we decided on the 4-class model to categorize 85 % of the first-year students into qualitatively different latent 
classes (Table 2) based on their transition capabilities while working on increasingly complex problems. 

Fig. 4 shows the transition probabilities on the problem level and how they change during the ten, increasingly complex fictitious 
problems for students in different latent classes. Fig. 5 shows the rate of two, just one (the first) or no transitions problem by problem in 
each latent class. Based on Figs. 4 and 5, we can empirically distinguish students who are (1) expert transitioners, who manage to apply 
both of the transitions with the highest probability, almost independently of problem complexity; (2) advanced transitioners, who 
proved to be effective on low- and medium-complexity problems, but completely failed on problems of high complexity; (3) beginner 
transitioners, who generally managed to apply just the first transition but completely failed on the most complex problems; and (4) 
non-transitioners, who failed with regard to transitions with the highest probability on all of the problems, independently of problem 
complexity. 

3.4. Characteristics of students’ test-taking behaviour (i.e., time-on-task and number of interactions) vary according to the complexity and 
item position of the problem depending on the number of successful transitions (RQ2a) 

For RQ1, we compared students’ test-taking behaviour depending on their level and type of successful transition on each problem 
and built latent class profiles based on their transition behaviour pattern while working on ten complex problems. For RQ2, we 
examined how transition behaviour on both the problem (theory-driven approach) and test levels (latent transition profile-based 
approach) might additionally differ in the way students explore and attempt to solve complex problems. 

As there were almost no students in Group C on any of the problems, we focused on Groups A, B and D on the problem level, that is, 
on the actual behaviour of students who mastered both transitions, only the first transition or no transitions on the problem level. The 
very first problem proved to be a “warm-up” task. Based on the ANOVA analyses, students’ time-on-task behaviour showed the same 
pattern on all four problems of medium complexity, and they used almost the same amount of time, independently of their transition 
capabilities; however, there was a changing pattern that could be detected with regard to their interactions. The most successful 
students tended to engage in fewer interactions with more success than their peers after a learning process on the first two problems of 
medium complexity. The most complex problems changed students’ transition behaviour pattern. Students in Groups A and B engaged 
in more interactions than those in Group D, independently of the type of relation (linear or non-linear), but they also used more time to 
do so on problems with non-linear, autonomous changes (see Appendix 2). 

After closely examining Group D, whose members did not master any of the transitions successfully, we can distinguish between 
two statistically different test-taking behaviour profiles based on time-on-task and number of interactions, independently of problem 

Table 2 
Fit indices of the latent class models with differences in the specified number of latent profiles.  

Index Two Three Four Five 

Log likelihood -13,566.64 -12,705.78 -12,484.42 -12,331.42 
Free parameters 41 62 83 104 
AIC 27,215.28 25,535.57 25,134.84 24,870.84 
BIC 27,439.40 25,874.47 25,588.53 25,439.33 
Entropy .860 .903 .854 .826 
LRT test (p) 4671.65 (0.00) 1710.80 (0.00) 439.00 (0.00) 304.05 (0.76)  
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Fig. 4. Transition probabilities of expert, advanced, beginner and non-transitioners.  
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complexity (Appendix 3). Students who were effective in their problem exploration but failed in their interpretation and/or transition 
from problem exploration to problem representation (Sub-groups D1 and D2) behaved significantly differently than their peers who 
were not effective in their problem exploration (Sub-groups D3, D4 and D5). Students in the latter group – independently of problem 
complexity – spent significantly less time and clicked significantly less than students in D1 and D2 (see Appendix 3). That is, Group D is 
not a homogeneous group of test-takers. Students in the second set of sub-groups spent the least time and clicked the least throughout 
the problem-solving process, while students with an effective exploration strategy clicked more and spent more time solving problems 
than their peers in Groups A and B. 

Fig. 5. The rate of both, just the first and neither of the transitions on the problem level in each latent class profile.  

Fig. 6. The trends for time spent on the problem scenario by students with different latent class transition profiles.  
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3.5. Characteristics of students’ test-taking behaviour (i.e., time-on-task and number of interactions) vary according to the latent class 
membership based on their transition capabilities (RQ2b) 

Expert transitioners typically spent the shortest time solving the low- and medium-complexity problems, then they tended to use an 
increasing amount of time in parallel with the increasing complexity of the problems, and, finally, they devoted the longest time 
solving the last two, most complex problems. Advanced transitioners behaved like expert transitioners; that is, they typically spent less 
time on the less complex tasks and more time on the more complex ones. Apart from the two most complex problems, they spent more 
time on each problem scenario than their more successful peers. In contrast, members of the less successful groups typically spent the 
same amount of time on average on each problem scenario – after the warm-up task – independently of their complexity. This time 
proved to be the longest on the less complex problems and the shortest on the most complex ones compared to the trends detected in 
the three other latent transition class profiles. The behaviour pattern of the beginner transitioners was very similar to that of the non- 
transitioners on the low- and medium-complexity problems, but they tended to spend an increasing amount of time on the high- 
complexity items. To sum up, time spent on the problem scenario proved to be inversely proportional to the low-complexity prob-
lems and linearly proportional to the most complex problems with regard to latent class profile characteristics (Fig. 6). 

The average number of interactions was very similar on the low- and medium-complex problems in each of the four latent classes 
but immensely different on the most complex problems. The number of interactions proved to be linearly proportional to the number of 
successful transitions (Fig. 7). That is, expert transitioners engaged in the most interactions, followed by the advanced, beginner and 
non-transitioners. 

4. Discussion 

The overarching aim of the study was to make knowledge transitions between the three problem-solving processes visible – i.e., the 
transition between (1) problem exploration and problem representation and that between (2) problem representation and knowledge 
use – and to determine the number and type of student’s transition profiles based on their successful or unsuccessful transitions. In 
addition, we also monitored the characteristics of students’ other test-taking behaviour process indicators, such as time-on-task and 
number of clicks, on students’ transition skills as they solved problems in uncertain situations. 

4.1. The magnitude and role of the transitions in solving complex problems of varying difficulty 

The initial analysis showed that mastering the first transition – correctly understanding and depicting the problem structure – 
played a crucial role in the problem-solving process. Students who failed to master it regularly failed in the next transition. Results also 
indicated that problem complexity strongly influenced the transitions throughout the problem-solving process. 

These results are consistent with previous research results that highlight the key role of the mental model transfer in knowledge 

Fig. 7. The trends for interactions engaged in by students with different latent class transition profiles.  
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transition between the knowledge acquisition and knowledge application phases during problem-solving and the varying rates of 
successful knowledge transition and problem complexity (Nicolay et al., 2021). If we examine the transition processes more deeply, 
our results show that with the first knowledge transition, the effectiveness of the problem exploration and problem representation 
plays the most important role in problem-solving. That is, the correct understanding of the problem space and its representation in the 
form of the right mental model constitute one of the most vital steps in the problem-solving process, independently of problem 
complexity. Without a successful knowledge transition between problem exploration and problem representation – independently of 
problem complexity – it is not possible to make the second transition, the one between problem representation and knowledge use. 

Using the nested structure of the data, based on students’ real transition behaviour and behaviour pattern analyses, we have 
identified four latent transition class profiles, which describe students’ transition behaviour more precisely and validly than an 
artificial grouping based on theory. As noted above, the four latent classes were: (1) expert transitioners, who mostly (not always) 
apply both transitions; (2) advanced transitioners, whose behaviour was similar to the effective transitioners on the low- and medium- 
complexity problems but failed on the most complex ones; (3) beginner transitioners, who mostly just used the first transition; and (4) 
non-transitioners. 

4.2. The relation of the transitions to test-taking behaviour explains previous contradictory results on time-on-task, number of interactions 
and problem-solving achievement 

First, we compared students’ test-taking behaviour depending on their level and type of successful transition on each problem and 
on the test level. For RQ2, we examined how students in the different groups might additionally differ in the way they explore and 
attempt to solve complex problems. Specifically, we analysed features of students’ test-taking behaviour (i.e., time-on-task and number 
of interactions) with respect to the number of successful transitions on the problem level and with respect to their complex behaviour 
patterns, that is, their latent transition class profile characteristics on the test level. 

First, we focus on students’ transition-level behaviour pattern and monitor their behavioural characteristics in terms of whether 
they manage to apply both, just the first or neither of the transitions. We concluded that students who managed to apply both tran-
sitions tended to engage in fewer interactions in less or the same amount of time with more success than students with less successful 
transitions in the same problem scenario. However, students’ behaviour pattern changed on the most complex problems: to execute 
successful transitions, students needed more interactions and used more time than students who engaged in unsuccessful actions. The 
theory-based artificial Group D, which includes behavioural data for students who did not master any of the transitions successfully, 
proved to be a heterogeneous group based on their behavioural characteristics. Students who were effective in their problem 
exploration but failed in their transitions behaved significantly differently than their peers who were not effective in their problem 
exploration on a given problem. Students in the first set of sub-groups spent more time on problem-solving than their peers in the most 
successful group, while students in the second set of sub-groups spent the least time and clicked the least throughout the problem- 
solving process. That is, the number of interactions proved to be consistent with successful behaviour in their problem exploration, 
independently of their final achievement and transition skills. Students who applied a theoretically right exploration strategy in the 
problem exploration phase and succeeded or even failed in its interpretation typically engaged in more interactions than those who 
used a non-effective exploration strategy, independently of the problem environment. This indicates that number of interactions may 
be a good indicator of engagement and willingness to understand the problem space, but it provides less information about success in 
knowledge transition and problem-solving achievement. 

The characteristics of the latent transition class profiles based on students’ real behaviour patterns while solving all ten problems on 
the test validated and extended research results obtained on the transition and problem levels. Time spent on the problem scenario 
proved to be inversely proportional on the low-complexity problems and linearly proportional on the most complex problems; that is, 
effective transitioners typically spent the shortest time solving the low- and medium-complexity problems but the longest time solving 
the most complex problems. In contrast, members of the less successful groups typically spent the same amount of time, independently 
of their complexity. The average number of interactions proved to be a distinguishing characteristic on the most complex problems, 
where the number of interactions proved to be linearly proportional to the number of successful transitions. 

These results partially explain previous contradictory research findings on time-on-task and number of interactions with problem- 
solving achievement and are consistent with Goldhammer et al. (2014) and Greiff et al.’s (2016) conclusions. Goldhammer et al. 
highlighted that even though time-on-task is a straightforward measure, the same amount of time may involve different behaviours. 
Greiff et al. (2016) argued that spending too much time on a task is associated with poor performance and suggested a U-shaped 
relation between time-on-task and problem-solving achievement. 

Taking problem complexity into account, we concluded that students who managed to complete both transitions with the highest 
probability engaged in fewer interactions and spent less time on the low- and medium-complexity problems than their peers. They 
were fully aware of their interaction behaviour in their problem exploration and the meaning of the feedback provided by the system 
and did not need to use the trial-and-error strategy (Molnár & Csapó, 2018). This result was consistent using both theory-driven and 
profile-based approaches, as most of the students are expert transitioners, who managed to apply both transitions with high proba-
bility. In contrast, on the high-complexity problems, expert transitioners engaged in more interactions and spent more time in the 
problem-solving process, even if they failed at the very end. (Please note that expert transitioners had the highest probability of 
applying both transitions, but they did not manage to do so all the time in line with their profile characteristics.) They needed to use the 
trial-and-error strategy, which was time-consuming and called for more interactions. 

The results of this study confirm that problem exploration and its successful interpretation and visualization in the form of a correct 
concept map play a crucial role in the transition between knowledge acquisition and knowledge application. For future problem- 
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solving training programs, this means that supporting students’ efforts in problem space exploration and spending time on the rep-
resentation and visualization of their ideas about the structure of the problem space in the form of a mental model represent a key 
factor in developing problem-solving skills. This can be done in a number of ways, for example, by using the Kluge (2008) approach 
with only marginal guidance during problem space exploration and/or following Gopher et al., (1989) emphasis manipulation 
approach combined with Barrett et al. (2013) think-aloud protocol. 

Another aspect of these results raises issues about the instrument used. To make the knowledge acquisition and the knowledge 
application phases independent, after the first phase, that is, after the processes of problem exploration and problem representation at 
the beginning of the application phase (process of knowledge use), students build the correct model, the correct problem represen-
tation in the form of a concept map. One can expect that this operation made the two transition processes independent. According to 
our results, the question can be raised whether it makes sense to actually present the correct model at the beginning of the application 
phase to the students because those who fail to master the first transition also fail to master the second one. They thus seem not to be 
able to make use of the model. 

5. Limitations 

The study used artificial, but, for measurement purposes, reliable and appropriate, problems developed with the MicroDYN 
approach; that is, results cannot be generalized to all kinds of everyday, complex and dynamic problems in real situations (see Funke, 
2021). The study sample may lead to limitations and generalizability of the results on a population level. We used a non-representative 
convenience sample from one of the highest-ranked universities in Hungary. The study is basically a correlational study, so further 
research is needed on cause and effect. A further limitation of the results is that the data are nested in the students; that is, the ob-
servations in the different problem scenarios are not independent, but rather correlated on the student level. 

6. Conclusion 

The results of the current study provide important insights into how students transition between the different problem-solving 
processes – problem exploration, problem representation and knowledge use – and how this influences their overall problem- 
solving performance. For validation purposes, we also used learning analytics to investigate questions of the indicative power of 
test-taking behaviour on students’ transition skills. As for the educational implications of developing problem-solving skills, sup-
porting students’ efforts in problem space exploration and spending time on visualizing their ideas about the problem structure, that is, 
supporting the first transition, the transition between problem exploration and problem representation, proved to be a key factor. 
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Appendix 1. Examples of task descriptions and linear structural equations for low-, medium- and high-complexity 
problems  

Complexity Input Output Relations Eigen dynamic Linear structural equations 

Low 2 2 2 no Xt + 1 = 1 × Xt + 2 × At + 0 × Bt 
Yt + 1 = 1 × Yt + 0 × At + 2 × Bt 

Medium 3 3 4 no Xt + 1 = 1 × Xt + 2 × At + 0 × Bt + 0 × Ct 
Yt + 1 = 1 × Yt + 0 × At + 2 × Bt + 2 × Ct 
Zt + 1 = 1 × Zt + 0 × At + 2 × Bt + 0 × Ct 

High 3 3 4 yes Xt + 1 = 1 × Xt + 0 × At + 2 × Bt + 0 × Ct 
Yt + 1 = (1 × Yt + 2 × At + 0 × Bt + 0 × Ct) + 3 
Zt + 1 = 1 × Zt + 0 × At + 0 × Bt + 2 × Ct  

Appendix 2   

Group A Group B Group D ANOVA 
Time Mean SD Mean SD Mean SD  

Item 1: 2 + 2+(2 + 0) [0, 0] 91.53 37.68 114.28 44.75 120.93 52.57 {A} < {B, D} 
Item 2: 2 + 2+(2 + 0) [1, 0] 66.16 29.17 74.43 34.08 90.40 47.83 {A, B, D} 
Item 3: 3 + 2+(3 + 0) [0, 0] 97.50 35.27 106.48 38.00 108.71 53.17 {A, B, D} 
Item 4: 3 + 3+(3 + 0) [0, 0] 107.64 27.34 110.58 41.05 106.96 50.62 {A, B, D} 
Item 5: 3 + 3+(4 + 0) [0, 0] 90.25 31.89 98.09 36.32 105.36 50.46 {A, B, D} 
Item 6: 3 + 3+(4 + 0) [0, 0] 88.21 25.09 100.97 36.65 100.19 46.54 {A} < {B, D} 
Item 7: 3 + 2+(2 + 1) [1, 0] 111.94 32.99 121.06 43.35 112.17 47.57 {A, D} < {B} 
Item 8: 3 + 3+(3 + 1) [0, 1] 112.91 32.03 114.31 38.27 112.73 45.80 {A, B, D} 
Item 9: 3 + 3+(3 + 1) [0, 1] (non-linear relation) 121.38 28.06 126.79 39.15 109.42 45.47 {D} < {A, B} 
Item 10: 3 + 3+(3 + 1) [1, 0] (non-linear relation) 111.59 36.91 110.50 36.80 95.84 40.92 {D} < {A, B} 
Complexity low 78.54 35.90 94.36 44.46 106.24 52.57 {A} < {B} < {D} 
Complexity medium 94.29 30.94 105.15 38.87 105.27 50.29 {A, B, D} 
Complexity high 112.77 32.79 118.58 39.38 107.50 45.55 {D} < {A} < {B} 
Interactions_total        
Item 1: 2 + 2+(2 + 0) [0, 0] 7.70 3.64 9.61 4.73 8.51 5.37 {A, B, D} 
Item 2: 2 + 2+(2 + 0) [1, 0] 7.54 3.77 8.68 4.50 8.41 6.08 {A, B, D} 
Item 3: 3 + 2+(3 + 0) [0, 0] 8.37 3.58 8.51 3.48 8.23 4.71 {A, B, D} 
Item 4: 3 + 3+(3 + 0) [0, 0] 7.02 1.88 7.20 3.02 6.76 3.44 {D} < {A, B} 
Item 5: 3 + 3+(4 + 0) [0, 0] 6.37 2.55 6.84 3.07 7.07 4.14 {A} < {B, D} 
Item 6: 3 + 3+(4 + 0) [0, 0] 6.13 1.89 6.79 2.77 6.50 3.24 {A} < {B, D} 
Item 7: 3 + 2+(2 + 1) [1, 0] 10.02 3.12 10.92 4.41 7.85 3.73 {D} < {A, B} 
Item 8: 3 + 3+(3 + 1) [0, 1] 9.99 3.54 9.76 3.89 8.24 3.84 {D} < {A, B} 
Item 9: 3 + 3+(3 + 1) [0, 1] (non-linear relation) 10.26 3.85 10.83 3.63 7.89 3.70 {D} < {A, B} 
Item 10: 3 + 3+(3 + 1) [1, 0] (non-linear relation) 10.23 3.66 10.00 3.61 6.69 3.41 {D} < {A, B} 
Complexity low 7.62 3.71 9.15 4.63 8.46 5.72 {A, D} < {D, B} 
Complexity medium 6.84 2.68 7.42 3.19 7.14 3.99 {A, B, D} 
Complexity high 10.04 3.41 10.37 3.80 7.66 3.25 {D} < {A} < {B}  

Appendix 3   

A B D1 D2 D3 D4 D5 ANOVA 

Time_total 90.59 108.15 113.72 111.57 75.37 81.75 75.35 {D3, D5} < {A, D4}<{B, D1, D2} 
Item 1: 2 + 2 + 2 91.53 114.28 119.40 137.00 78.20 89.71 94.46 {A, D3, D4, D5} < {B, D1, D2} 
Item 2: 2 + 2 + 2 66.16 74.43 97.96 96.94 – 59.57 65.79 {A, B, D1, D2, D4, D5} 
Item 3: 3 + 2 + 3 97.50 106.48 122.65 119.95 69.73 – 81.39 {A, D3, D5} < {B, D1, D2} 
Item 4: 3 + 3 + 3 107.64 110.58 151.00 118.89 73.12 79.84 79.84 {D3, D5} < {A, D4} < {B, D1, D2} 
Item 5: 3 + 3 + 4 90.25 98.09 114.09 111.13 – 93.50 79.04 {A, D4, D5} < {B, D1, D2} 
Item 6: 3 + 3 + 4 88.21 100.97 106.22 107.99 – 68.25 82.22 {A, D4, D5} < {B, D1, D2} 
Item 7: 3 + 2+(2 + 1) 111.94 121.06 118.06 114.07 – 99.56 74.65 {D5} < {A, B, D1, D2, D4} 
Item 8: 3 + 3+(3 + 1) 112.91 114.31 122.01 115.05 – – 74.88 {D5} < {A, B, D1, D2} 
Item 9: 3 + 3+(3 + 1) 121.38 126.79 110.40 112.93 – – 73.69 {A, B, D1, D2, D5} 
Item 10: 3 + 3+(3 + 1) 111.59 110.50 98.74 99.94 – 86.50 61.90 {D4, D5} < {A, B, D1, D2} 
Complexity low 78.54 94.36 110.07 117.05 76.05 68.18 77.66 {A, D3, D4, D5} < {B, D1, D2} 
Complexity medium 94.29 105.15 114.92 115.32 71.47 86.30 80.60 {A, D3, D4, D5} < {B, D1, D2} 
Complexity high 112.77 118.58 115.64 110.30 91.22 97.67 70.57 {D3, D4, D5}<{A, D1, D2} < {B} 
Interaction_total         
Item 1: 2 + 2 + 2 7.70 9.61 8.92 9.83 3.27 4.29 3.75 {D3, D4, D5} < {A, B, D1, D2} 

(continued on next page) 
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(continued )  

A B D1 D2 D3 D4 D5 ANOVA 

Item 2: 2 + 2 + 2 7.58 8.92 8.38 9.04 – 5.29 5.21 {D3, D4, D5} < {A, B, D1, D2} 
Item 3: 3 + 2 + 3 8.30 9.39 8.39 8.89 4.93 – 5.62 {D3, D5} < {A, B, D1, D2} 
Item 4: 3 + 3 + 3 7.03 7.40 7.36 7.60 3.40 4.64 4.33 {D3, D5} < {A, B, D1, D2, D4} 
Item 5: 3 + 3 + 4 6.56 7.12 7.04 7.06 – 5.07 5.04 {D5} < {A, B, D1, D2, D4} 
Item 6: 3 + 3 + 4 6.35 7.12 6.63 6.70 – 5.43 4.75 {D5} < {A, B, D1, D2, D4} 
Item 7: 3 + 2+(2 + 1) 9.10 8.40 7.60 7.19 – 6.07 5.46 {D5} < {A, B, D1, D2, D4} 
Item 8: 3 + 3+(3 + 1) 9.35 8.61 8.39 8.00 – – 5.00 {D5} < {A, B, D1, D2} 
Item 9: 3 + 3+(3 + 1) 9.67 8.05 8.09 7.76 – – 4.50 {D5} < {A, B, D1, D2} 
Item 10: 3 + 3+(3 + 1) 8.51 7.00 6.83 6.60 – 3.71 4.67 {D5} < {A, B, D1, D2, D4} 
Complexity low 7.62 3.71 9.32 9.68 3.05 3.45 3.81 {B, D3, D4, D5} < {A, D1, D2} 
Complexity medium 6.84 2.68 7.40 8.53 4.25 4.19 3.99 {B, D3, D4, D5} < {A, D1, D2} 
Complexity high 10.04 3.41 8.49 7.98 5.78 5.35 3.67 {B, D3, D4, D5} < {A, D1, D2}  
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