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Abstract
Two-dimensional (2D) materials have unique band structure and show a great promise for optoelectronic and solar energy 
harvesting applications. Photoelectrochemical (PEC) processes are intensively studied employing these materials, due to 
their high specific surface area, and the possibility of surface modification by defect engineering/catalyst deposition. The 
PEC activity of different 2D and layered materials was scrutinized for water oxidation/reduction and for inorganic ion oxida-
tion by a statistical analysis to reveal any specific trends. Furthermore, some frequently studied performance improvement 
strategies (i.e., heterojunctions, tunnelling, and co‒catalysts) are also discussed. Overall, exploring novel materials of 2D 
family, and new directions are both needed to initiate further discussions and additional research activity, which might enable 
to harness the full potential of these exciting materials.
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Introduction

Conversion of solar energy to valuable chemicals or fuels is 
a promising approach to contribute solving the problems of 
global climate change and the depletion of fossil resources. 
Photoelectrochemical (PEC) methods are feasible for the 
conversion of basic chemical feedstocks (i.e., water, carbon 
dioxide, and nitrogen) to clean chemicals or alternative fuels 
such as, hydrogen, hydrocarbons, and ammonia, while har-
nessing solar energy [1–6]. The main element in this pro-
cess is a semiconductor, which absorbs photons to generate 
charge carriers (electron‒hole pairs), and thus requires to 
possess a high light absorption coefficient  (104–105  cm−1) 
over a broad wavelength range. Two-dimensional (2D) 
semiconductors have unique properties, such as high car-
rier mobility  (102–105  cm2  V−1  s−1), tunable bandgap [7, 8], 
anisotropic carrier transport, and high specific surface area, 
making these materials attractive for PEC applications. From 

a practical perspective, 2D materials can be produced in a 
scalable manner at low cost [9–13], and they possess ele-
mental abundance and remarkable stability against (photo)
corrosion [14].

Research on transition metal dichalcogenide bulk sin-
gle crystals dates back to the early 1980s, achieving high 
photocurrent density (in the range of 10 mA  cm–2) for the 
water splitting [15–19]. Since the discovery of graphene [20] 
more attention is dedicated to i) synthesis (‘bottom‒up’) and 
preparation (‘top‒down’) methods to obtain 2D materials, 
ii) seeking of novel 2D semiconductor materials, iii) novel 
PEC processes. Corresponding members of 2D materials 
family with PEC applications highlighted in Fig. 1.

In this review, we summarize the recent progress on the 
fundamental understanding and applications of 2D and lay-
ered semiconductors in PEC processes. Firstly, we inves-
tigate the 2D nature of such materials, and define some of 
their unique advantages, mostly in terms of the optoelec-
tronic properties. Then, we discuss some preparation meth-
ods, and summarize their application in PEC processes. We 
cover both model reversible redox reactions and practically 
interesting processes, such as water splitting,  CO2, and  N2 
reduction reactions. Finally, recently developed strategies for 
enhancing the performance of 2D semiconductors are pre-
sented: i) increase the number of active sites (alignment of 
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nanoflakes, defect passivation), ii) tuning the band structure 
(heterostructures, alloying, doping).

Definition of 2D materials

2D materials are atomically thin sheets with a high aspect ratio 
between their lateral size (μm-sized) and thickness (< 1 nm) 
[21]. In the corresponding bulk crystals with layered structure 

the neighboring layers are connected by van der Waals forces 
[22]. 2D materials include transition metal chalcogenides 
(TMCs), metal oxides, transition metal carbides, nitrides, 
carbonitrides (MXenes), and other materials. 2D TMCs with 
narrow bandgaps (1.09–1.89 eV) have suitable light absorp-
tion in the visible region and their bandgap can be tuned by 
changing the number of layers [23–25]. 2D TMCs with thin 
layers (few‒to‒monolayer) have a high specific surface area 
and a large portion of surface atoms, which could effectively 
reduce the distance of charge transport and accelerate PEC 
processes [26]. The monolayer nature can further assist the 
photogenerated carriers to reach the active sites and therefore 
reduce recombination. MXenes are a new type of 2D materi-
als, composed of transition metal carbides and carbonitrides 
[27]. They have attracted notable attention and are widely stud-
ied in many fields, including catalysis, energy storage, and 
adsorption since their discovery in 2011 [28]. Figure 2A–F 
presents the morphology of nanoflakes, nanosheets and the 
film constructed from TMC sheets and metal oxides [29–32]. 
The optoelectronic properties (i.e., electronic band structure) 
of most 2D materials are thickness-dependent, because of the 
strong interlayer coupling and quantum confinement [33–37]. 
Figure 2G shows the bandgap change of SnSe as a function of 
the employed centrifugation speed during the synthesis [35], 
generally obtaining thinner flakes with higher centrifugation 
speed [38] (i.e., the bandgap is increasing with decrease of 
flake thickness). Additionally, Fig. 2H gives the same conclu-
sion on the example of few-layer phosphorene with the number 
of layers (from 1 to 5L). In this case, the valence and conduc-
tion band edge positions are changing with the number of lay-
ers in the phosphorene few-layers [39].

Fig. 1  Simplified overview of 2D materials and PEC applications cov-
ered by this review article

Fig. 2  Some examples of morphology of nanoflakes. A  WSe2, B 
 SnS2, C  MoS2, D  In2S3, E CoV, F ZnO. G The change of SnSe band-
gap as a function of the centrifugation speed. H Variation of valence 
band maximum (VBM) and conduction band minimum (CBM) posi-
tions of the 1L, 2L, 3L, 4L, and 5L of phosphorene determined from 
HSE06 calculation. Figures adapted with permission from: A [9]  © 

2017 American Chemical Society; B [29] © 2019 American Chemi-
cal Society; C [30] published by AIP Publishing under CC BY 4.0 
license; D [31] © 2022 Elsevier; E [37] © 2022 John Wiley and Sons; 
F [32] © 2022 Elsevier; G [35] © 2019 John Wiley and Sons; H [39] 
published by Springer Nature under CC BY-NC-SA 4.0 license
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Preparation methods for 2D nanoflakes 
and thin films

A variety of preparation methods have been developed 
towards the size and crystallinity control of 2D materials, 
and they can be categorized as bottom‒up or top‒down 
methods [40]. During the bottom‒up approaches, the 
2D materials are built up from either atoms or clusters to 
nanoscale structures [41]. For example, chemical vapor 
deposition, hydrothermal, and spray pyrolysis, can be used 
for producing 2D materials for commercial and research 
purposes, but at high cost, because of the required high 
temperature and vacuum [42–44]. In top‒down methods, 
the 2D materials are obtained from their bulk counterparts, 
using mechanical, liquid-phase, or chemical exfoliation [41]. 
The materials yield and quality, however, highly depends on 
the exfoliation method. Mechanical exfoliation can produce 
high-quality nanosheets at low cost, but the yields are low, 
whereas liquid-phase exfoliation (LPE) gives a higher yield 
but at a higher cost [35, 40, 45].

In this review, we discuss 2D and layered semiconduc-
tors in two different configurations: i) nanoflakes prepared 
by any kind of exfoliation from the bulk counterpart, with 
lateral size of a few µm and the thickness in the range of 
several nm (e.g., mechanically exfoliated few-layer  MoSe2 
flakes with ca. 11 nm thickness and hundred µm lateral 
size [46]), and ii) nanosheets or thin films, where the film 
is composed of the same material with large area  (mm2 or 
 cm2) and its thickness lies in the few‒tens of nm range 
(e.g., 5 nm thick  MoS2 film deposited by thermolysis on 
p-Si wafer [47]). Table 1 summarizes the commonly used 
synthesis methods and the application of the as prepared 2D 
materials with some representative references [30, 48–50].

From a practical point of view, it is desirable to fabricate 
large‒area and continuous thin films of 2D materials to further 

develop solar energy conversion devices. The Langmuir‒
Blodgett technique offers a versatile way to prepare layers/films 
in this regard. It consists of the transfer process of a water‐
insoluble material from the air‒water interface onto a solid 
substrate, by dipping of the solid in the Langmuir monolayer 
[57]. Adding a stirring procedure during the film preparation 
[58], or depositing the film without Langmuir‒Blodgett trough 
and film compression [59] can further extend the opportunities. 
Spin-coating is another conventional technique to fabricate thin 
layers of 2D materials [60]. As shown in Fig. 3A, first black 
phosphorus flakes were obtained by using electrochemically 
exfoliated bulk black phosphorus, and the flakes containing ink 
was spin-coated on indium tin oxide electrode [61]. A heating 
step was also introduced, which helps to remove solvent and 
eliminate the interlayer strain [45]. The film parameters, such 
as thickness and coverage, can be varied by the spin speed, 
spin-coating time, substrate size, and the amount of the ink [62].

Bottom‒up methods can be employed to either directly 
grow film on substrate or to form the bulk material [42, 
51, 54, 63]. For example, a  CuInS2 nanosheet was grown 
on a fluorine-doped tin oxide (FTO) coated glass, to form 
nanosheet films via the hydrothermal reaction, by putting 
clean FTO substrate into Teflon-lined stainless steel auto-
clave before starting the reaction [54].

Figure 3B shows that bulk  MoSe2 powder was obtained 
with direct vapor transport method, and subsequently was 
converted to multi‒layer nanosheets by liquid-phase exfolia-
tion, and then formed a  MoSe2 film on FTO by electropho-
resis [12]. Chemical vapor deposition (CVD) is a commonly 
used approach to prepare 2D materials and films, because of 
the high-quality and yield of the forming products [31, 51, 
52]. Another chemical vapor-phase approach is the atomic 
layer deposition (ALD), which can be employed to synthe-
size 2D materials using layer‒by‒layer growth with good 
thickness and uniformity control [55, 56, 64].

Table 1  The preparation methods of 2D materials

Strategy Methods Flakes Yield Cost Resulted Materials Application References

Top‒down Liquid-Phase Exfoliation High Moderate-high TMCs/Oxides Research/
commercial

[35, 45]

Chemical Exfoliation High Moderate-high Oxides/TMCs/MXenes Research/
commercial

[41, 48]

Mechanical Exfoliation Low Low TMCs Research [26, 46]
Bottom‒up Chemical Vapor Deposition High High TMCs/Oxides Research/

commercial
[51, 52]

Spray Pyrolysis High High MXenes/Oxides Research/
commercial

[50, 53]

Hydrothermal Synthesis High Moderate-high TMCs/Oxides Research/
commercial

[3, 54]

Atomic Layer Deposition High High TMCs Research/
commercial

[55, 56]
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Spray coating is a widely employed technique to prepare 
films, allowing fast deposition of functional inks onto both 
rigid and flexible, large-area substrates [65–67]. Figure 3C 
shows the spray-coating of GeSe nanoflake suspension on 
a graphite paper [65] using an airbrush. A hotplate was 
employed to hold the substrate and evaporate the solvent, 
while also eliminating the interlayer strain during the spray-
ing [45]. The material loading and the film thickness can be 
tuned by the number of spray coating cycles [68]. The right 
panels in Fig. 3C show the photograph of a GeSe photoelec-
trode and the morphology of GeSe film on graphite paper 
substrate. Notably, the parameters of the electrode preparation 
techniques determine the thickness, coverage, and orientation 
of nanoflakes in the film, also dictating their PEC activity.

To obtain 2D materials with specific properties, computa-
tional methods are frequently employed. For example, a series 
of 2D pentagonal transition metal dichalcogenides (2D sheets 
with pentagonal configuration), namely penta-MS2 (M = Mn, 
Ni, Cu/Ag and Zn/Cd) monolayers were predicted using den-
sity functional theory [69]. Additionally, 2D structures were 
studied by theoretical calculations for  CO2 photoreduction 
[70]. In the case of stable monolayers, the proper bandgap, 
band edge positions, and surface reactivity have been pre-
dicted. Further theoretical work is needed to understand how 
defect engineering and surface treatments can be used to tune 
the PEC performance and enhance the reactivity.

Photoelectrochemical processes

The concept of PEC water splitting to produce hydrogen has 
been investigated for decades since the famous experiment of 
Fujishima and Honda in 1972 [71]. Semiconductors generate 
electron‒hole pairs (charge carriers) when the illumination 
power is equal to or higher than their bandgap. In the case 

of photocathodes (p-type semiconductors), photoelectrons 
can transfer from the electrode surface driving the water 
reduction process (hydrogen evolution reaction—HER). The 
remaining holes go to the counterelectrode to perform the 
oxidation reaction. For n-type photoanodes, the charge car-
riers transfer occurs in the opposite direction, the holes can 
take part in the water oxidation reaction and electrons move 
to the counterelectrode to facilitate the reduction process 
[72, 73]. PEC  CO2 and  N2 reduction processes are similar to 
water reduction, but there are also considerable differences 
[2, 3, 74]. In  CO2 reduction, more products (CO, methane, 
ethylene, ethanol, etc.) are produced, and the product selec-
tivity is mainly dependent on the selected catalysts and oper-
ating reduction potentials [75]. Additionally, inorganic ion 
oxidation, namely  I−,  Br−,  S2−,  SO3

2− oxidation reactions 
have lower standard redox potential than water oxidation [13, 
44, 76, 77]. Figure 4 shows the histogram of the maximum 
photocurrent density values (recorded under 1 Sun irradia-
tion) collected from the literature for  H2O reduction [51, 
78–93],  H2O oxidation [31, 42, 86, 94–109], and inorganic 
ion oxidation reactions [13, 44, 63, 76, 77, 110, 111]. Only 
studies reporting photocurrent densities over 1 mA  cm−2 
were considered in our detailed analysis (see Fig. 4). As just 
a few reports were found on using 2D materials for PEC  CO2 
and  N2 reduction [2–4, 37, 61, 74, 112–114], those are not 
analyzed here. Compared to the  H2O oxidation and inorganic 
ion oxidation reactions, the photocurrent densities recorded 
for the  H2O reduction reaction showed much broader distri-
bution. The highest photocurrent value (i.e., 60 mA  cm−2) 
was obtained for  MoS2 in PEC water oxidation and reduction 
reactions under ca. 6 Sun illumination [115]. These results 
indicate that 2D materials can be applied for different PEC 
applications, both in oxidative and reduction reactions, and 
have ability to give higher performance in water reduction 
process than in the other ones.

Fig. 3  A Illustration of the synthesis of black phosphorous nanosheets 
electrodes. B Schematic diagram of film formation on FTO prepared 
from bulk materials. C GeSe film produced by spray coating deposit-
ing the GeSe nanoflakes onto a graphite paper substrate, photograph of 

a GeSe photoelectrode, and its corresponding top‒view SEM image. 
Figures adapted with permission from: A [61]  © 2020, John Wiley and 
Sons; B [12] © 2019 American Chemical Society; C [65] published by 
American Chemical Society under CC BY 4.0 license
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Microelectrodes‑based PEC studies

When applying 2D semiconductors in a photoelectrocataly-
sis, we have to consider the role of defects: steps, edges, 
cracks, atomic vacancies, anything, where the uniform 
crystal structure is missing or is modified. The importance 
of such defects has long been recognized in dictating the 
electrochemical (EC) behavior of layered materials. The 
general consensus assumes an increased EC activity of the 
edge (side or defected part of the 2D sheet) in comparison 
to the basal plane (smooth, uniform, defect-free part of the 
2D sheet), although the exact reason of these differences 
is still being challenged [25, 46, 116–118]. In the case of 
bulk transition metal dichalcogenides, the basal plane and 
edge activity was studied extensively in the 1980s and 1990s 
[15, 16, 18, 19, 119]. Higher edge plane EC activity and 
lower PEC activity was found, compared to the basal plane 
of molybdenum and tungsten disulfides/diselenides. This 
trend was explained as defects, edges, which create surface 
states in the bandgap, act as recombination centers for the 
photogenerated charge carriers.

The revolution of 2D materials began in 2004 opened new 
avenues to understand the effect of structural domains for 
PEC activity, and to enhance the performance of these 2D 
semiconductors in photocatalytic processes. The heteroge-
neous electron transfer rate, the interfacial capacitance, and 
external quantum efficiency (EQE) have been studied using 
microscale EC/PEC approaches, including the scanning 
electrochemical microscopy, scanning electrochemical cell 
microscopy or microdroplet-based methods demonstrated 
the role of layer thickness, and structural domains (defects, 
terraces, edges) on their EC and PEC properties [26, 118, 

120–128].  WSe2 nanoflakes for example, have been inves-
tigated by scanning photocurrent microscopy in an elec-
trochemical flow cell, and the photoconversion efficiency 
decreased on the edge sites because of the increased recom-
bination of photogenerated charge carriers (Fig. 5A–D). LPE 
increases the defect density, and mostly, these defects refer 
to the increasing edge density. This trend can be explained 
by the increasing number of flakes and their decreasing lat-
eral size as a result of the LPE process [118]. The spatial 
variation of the PEC performance of bare and Pt-decorated 
p-type  WSe2 photocathodes has also been studied, using 
in situ scanning photocurrent microscopy. This variation 
was attributed to a non-uniform distribution of surface and 
bulk defect states among terraces, particularly chalcogenide 
vacancies (Fig. 5E–H).

Notably, 2D materials produced by mechanical exfo-
liation have a large flake size with high purity, while the 
reproducibility is poor. Both flake and structural fea-
tures − e.g., defect density − formation occur randomly, 
therefore a more precise synthesis method is needed. The 
effect of growth conditions during a chemical vapor-phase 
deposition of  MoS2 monolayers was studied, focusing on the 
defect formation. It was also scrutinized how these struc-
tural defects − point defects, dislocations, grain boundaries, 
and edges − could influence the electronic properties of the 
material [129]. These studies highlight the role of defects, 
and the use of activating agents (i.e., co-catalysts) to enhance 
the photocurrent density and incident photon‒to‒current 
efficiency (IPCE) values. They also help to uncover the 
mechanisms of charge carrier transfer and recombination in 
2D semiconductors in a micrometer-scale.

Another body of knowledge accumulated on the effect 
of edges of  MoS2 monolayer on their EC HER properties 
[121, 130]. Significantly less attention has been dedicated to 
the PEC performance of 2D materials as a function of their 
structural features (Fig. 6A, B). The electron transfer kinet-
ics on  MoS2 basal planes was accelerated with the growing 
number of layers, which was explained by the band structure-
dependent photogeneration of charge carriers (Fig. 6C) [26].

We have recently observed the spatial variation of the 
PEC performance of  MoSe2 and  WSe2 photoanodes in 
the oxidation of a model redox couple (Fig. 6D–F) [46]. 
We have also shown that Pt nanoparticles obtained on 
p-WSe2 nanoflakes by ALD result in a very high PEC 
activity in HER. Bulk defects and their migration to the 
surface were found to play an important role in the PEC 
activity enhancement. The W(VI) defects generated by 
heat treatment during the ALD process cause a decrease 
in the density of states near the valence band of  WSe2. 
The ALD deposited Pt nanoparticles i) nucleated pri-
mary on the W(VI) defects migrated to the surface, ii) 
their electron density compensates the decrease in the  
DOS of  WSe2 (Fig. 6A, B) [131].

Fig. 4  Statistical analysis of maximum photocurrent density distribu-
tion (under 1 Sun)
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Macroelectrode‑based 
photoelectrochemical studies

In general, the increase of the photoelectrode area from 
micrometer-scale to  mm2 or  cm2 size causes a dramatic 
decrease in the photocurrent (to the µA  cm–2 range) because 
of the abundant defects [24, 90, 132]. At the same time, 
regarding to the eventual development of solar energy 
conversion devices based on 2D materials, it is needed to 
prepare macroelectrodes. In this regard, a  MoS2/DHA-PDI 
(dihexanoic acid-perylene-diimide) hybrid bilayer film was 
synthesized on FTO using spin-coating [133]. The TEM 
image in Fig. 7A shows the fiber-like morphology of DHA-
PDI, and a flakey structure of exfoliated  MoS2. The films 
are optically homogeneous over a large area (Fig. 7B). Bare 
DHA-PDI and  MoS2 electrodes displayed low anodic pho-
tocurrent (0.25 − 0.45 mA  cm−2) with gradually increasing 
dark current towards anodic potentials in  I−/I3

− electro-
lyte. Subsequently, by combining  MoS2 with DHA-PDI, 
higher photocurrents were achieved reaching a maximum 
of 2.6 mA  cm−2. The IPCE was also measured to investi-
gate the light harvesting ability of electrode film (Fig. 7D). 
The hybrid electrode exhibited higher IPCE values than the 
single-component electrodes in the visible light range, and 
the highest efficiency of 8% was observed at 400 nm.

An SnS film was fabricated on FTO via plasma-enhanced 
CVD method, and it showed 100 nm thickness measured 
from cross-sectional field‒emission scanning electron 

microscopy (Fig. 7E). The photovoltammogram, recorded 
in 0.5 M  Na2SO4 under chopped light, suggested that SnS 
can show both n-type and p-type semiconductor character-
istics depending on the applied potentials (Fig. 7F) [86]. 
Exfoliated  WS2 nanosheets were deposited on  TiO2 nanorod 
arrays  (TiO2 NAs), wherein  TiO2 was first deposited on FTO 
substrate by hydrothermal method, then exfoliated  WS2 was 
drop-casted on it [99]. As shown in Fig. 7G,  WS2 nanosheets 
are uniformly deposited on the top of  TiO2 NAs, and the 
 TiO2 NAs are highly ordered with the length of about 3 μm 
(inset of Fig. 7G). The  WS2/TiO2 composites had a better 
PEC activity than the bare  TiO2 electrode towards the water 
oxidation reaction (Fig. 7H).

Photoelectrochemical  CO2 and  N2 reduction 
reaction on 2D materials

2D materials have been widely studied in PEC applications, 
however, only a few papers reported on the PEC  CO2 reduc-
tion reaction (CO2RR) and  N2 reduction reaction (NRR) 
[3, 5]. In theory, the higher  CO2 adsorption capacity, the 
better electron transport, and the higher density of active 
sites make 2D materials better suited for PEC CO2RR com-
pared to their bulk counterparts [134]. CdSeTe nanosheets 
(CdSeTe NSs) were deposited on  TiO2 nanotubes by a 
hydrothermal method [3]. All linear sweep voltammetry 
(LSV) curves show a significant increase in the current 

Fig. 5  A Bright‒field transmission image of a single  MoSe2 nano-
flake; B) EQE map for the nanoflake in (A), the red and green pixels 
represent perimeter edges and interior steps, respectively. The vector 
r represents the distance from a pixel in the EQE map to the near-
est perimeter edge; C Plot of EQE vs. r for the nanoflake in (A). D 
Current‒potential curves of a 1.3  mm2 sized  MoSe2 single crystal in 
1.0 M NaI, 1 mM  I2 electrolyte under dark (black line) and chopped 
20 mW  cm−2 532 nm laser illumination (red line). E Optical image of 

a p-WSe2 electrode; F Photocurrent measured as a function of beam 
position during a line scan as indicated by the white arrow in (E); 
G Linear sweep voltammograms obtained at locations A and B spots 
as indicated in (E) before and after platinization; H Two-dimensional 
map of EQE for area marked by the dotted rectangle in (E) [120]. 
Figures adapted with permission from: A–D [118]  © 2018 American 
Chemical Society; E–H [120] published by Royal Society of Chemis-
try under CC BY-NC 3.0 license
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density after − 0.8 V because of the competitive water reduc-
tion reaction (Fig. 8A).

After coupling the CdSeTe NSs, the current density 
was higher than in the case of bare  TiO2 electrode in the 
 CO2 saturated solution, which suggested that PEC reduc-
tion performance for  CO2 was improved upon the intro-
duction of the CdSeTe NSs. This improvement can be 
credited to the flaky structure, which had an excellent 
electrical conductivity performance [26]. The composite 
showed smaller resistance (2.21 kΩ) than bare  TiO2 elec-
trode (31.19 kΩ). The main product was methanol and its 
yield increased firstly and then decreased when the potential 
was varied from − 0.6 V to − 1.2 V, and it reached the peak 
at − 0.8 V. The CO2RR was dominant at potentials more 
positive than − 0.8 V. When the potential was more negative 
than − 0.8 V, the water reduction became dominant, which  
decreased the yield of methanol (Fig. 8B, C).

Various 2D materials were employed for PEC NRR, such 
as  MoS2 [2],  WO3 [6], BiOBr [4] and black phosphorus 
[61]. A black phosphorus electrode was fabricated by the 

layer‒by‒layer assembly of electrochemically exfoliated 
black phosphorus nanosheets, for PEC NRR [61]. Black 
phosphorus electrode exhibited better PEC performance than 
EC performance, and the difference was more significant at 
more negative potentials, as demonstrated in Fig. 8D. The 
optimal potential was found at − 0.4 V vs. RHE, where the 
highest  NH3 yield of 102.4 µg  h−1  cm−2 and Faradaic effi-
ciency of 23.3% were obtained (Fig. 8E). Long-term meas-
urement suggested that black phosphorus electrode can give 
excellent stability under illumination for 12 h (Fig. 8F).

The fewer reports for 2D materials on PEC CO2RR and 
NRR (compared to water reduction/oxidation) could be 
rooted in the following reasons. 1)  CO2 and  N2 reductions 
are complex multi‒electron processes, which are more dif-
ficult to occur than HER (only 2 electrons needed). 2) The 
measurement setup for PEC CO2RR and NRR requires more 
difficult arrangement than the other PEC applications, and 
the quantitative analyses of products is also rather challeng-
ing. Therefore, there is a need to further explore the applica-
bility of 2D materials in PEC CO2RR and NRR.

Fig. 6  A Scheme of a microdroplet-based PEC setup; B Bar chart of the 
photocurrent values, recorded in 1 M HCl/6 M LiCl solution for the illu-
minated droplets deposited on various  WSe2-Pt-cycle-1 nanoflake sam-
ples of different thickness. The irradiance was 217 mW  cm−2. C Opti-
cal micrograph of  MoS2 flake on PMMA-coated Si substrate. D optical 
micrograph of a few-layer  MoSe2 nanoflake, the edges are marked with 
white dashed lines; E PEC behavior of layered  MoSe2 specimens (basal 
planes), LSVs recorded for the illuminated droplets deposited on mon-

olayer, few-layer, and bulk flakes in 6 M LiCl solution; the sweep rate 
was 5  mV   s–1; F absorbed photon‒to‒current efficiency profile, con-
structed using IPCE data and the estimated absorbance of the flakes. 
Figures adapted with permission from: A, B [131] published by John 
Wiley and Sons under CC BY 4.0 license; C [26] published by Ameri-
can Chemical Society under CC BY license; D–F [46] published by 
American Chemical Society under CC BY 4.0 license
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Fig. 7  A Morphology of  MoS2/DHA-PDI hybrid bilayer film shown 
by TEM; B photograph of the hybrid and control film deposited on 
FTO; C Current density‒potential curves measured with an  I−/I3

− 
redox couple under intermittent (1 Sun) illumination; D IPCE traces 
measured at + 0.1  V vs Ag/Ag+ for solution-processed DHA-PDI, 
 MoS2, and  MoS2/DHA-PDI hybrid bilayer electrodes. E Morphology 
of SnS surface visualized by cross-sectional field‒emission scanning 

electron microscopy image; F LSV in 0.5 M  Na2SO4, chopped light 
for the SnS nanosheet photoanode at 50 mV   s−1. G SEM images of 
 TiO2 NAs/WS2 composite; H photocurrent density under chopped AM 
1.5 G illumination (100 mW  cm−2). Figures adapted with permission 
from: A–D [133]  © 2017 American Chemical Society; E, F [86] pub-
lished by MDPI under CC BY 4.0 license; G, H [99] © 2019 Elsevier

Fig. 8  A Current density vs. potential curves of CdSeTe NSs/TiO2 nano-
tubes and  TiO2 nanotubes under 1 Sun irradiation; B The time-dependent 
curves of the methanol concentration at different potentials using CdSeTe 
NSs/TiO2 nanotube photoelectrodes; C The electrochemical impedance 
spectra of  TiO2 nanotubes and CdSeTe NSs/TiO2 nanotubes. D Electro-
chemical NRR and PEC NRR current–time curves of the black phos-

phorus electrode at various potentials; E PEC ammonia yield rates and 
Faradaic efficiency; F Current–time curve of the black phosphorus elec-
trode recorded at − 0.4 V in a  N2 atmosphere under 1 Sun illumination. 
Figures adapted with permission from: A–C [3]  © 2014 Royal Society 
of Chemistry, permission conveyed through Copyright Clearance Center, 
Inc; D–F) [61] © 2020 John Wiley and Sons
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The passivation of defect states in 2D materials

Despite the 2D semiconductors are widely studied in PEC 
applications, the pristine materials generally show low PEC 
performance. So far, several approaches have been developed 

to improve PEC activity, for example the defects passivation, 
doping [98], loading co-catalysts [87, 88], and constructing 
heterojunctions [31, 54, 85]. Defects of 2D materials can 
act as recombination centers of charge carriers, which is 
detrimental to the PEC performance. Defect passivation by 

Fig. 9  A Schematic illustration of the multistage track-etched mem-
brane separation column; B LSV curves of bare  WSe2 electrodes (elec-
trodes A−D, green curves) and  Al2O3-coated electrodes (Electrodes 
A*−D*, colored curves) taken at 10 mV  s−1 under intermittent (1 Sun)  
illumination; Scanning probe microscope amplitude images of a  WSe2 
electrode before (C) and after (D) ALD of  Al2O3. E Schematic visu-
alization of the  WSe2 flake treatments and their proposed effect on 

defects; F  PEC characterizations of Pt-Cu-modified  WSe2 electrodes 
with preheating or post-passivation treatments or both, LSV curves 
scanned from positive to negative potentials (10 mV  s−1) under inter-
mittent (1 Sun) illumination. Figures adapted with permission from: 
A–D [24]  © 2017 American Chemical Society; E, F [9] © 2018 Ameri-
can Chemical Society
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chemical methods have been explored. A flake size separa-
tion method has been employed successfully to isolate the 
obtained solvent-exfoliated  WSe2 flakes to 4 different frac-
tions (fractions A−D, largest to smallest, Fig. 9A).

WSe2 electrodes were subsequently prepared, using a 
modified space-confined self-assembly method [24]. They 
found that significant recombination happened at flake edge 
sites and the flake size played a critical role on the extraction 
of photogenerated charges. ALD-coated  Al2O3 was used to 
passivate the defects of the  WSe2 flakes. After passivation, 
all electrodes  (A⁎−D⁎ in Fig. 9B) displayed significantly 
higher photocurrent density. The scanning probe microscopy 
in Fig. 9C, D suggests that the  Al2O3 was selectively depos-
ited on the edges of the  WSe2 flakes. The effect of intraflake 

and edge defects has been investigated on PEC HER perfor-
mance, by applying two treatments separately: a pre-annealing 
before exfoliation and a post-deposition surfactant attachment, 
as demonstrated in Fig. 9E [9]. LSVs in Fig. 9F showed that 
exfoliated (Ex-AR)  WSe2 and pre-annealed (Ex-PA)  WSe2 
had similar performance, which suggests that pre-exfoliation 
annealing alone was not effective to improve the PEC perfor-
mance. After post-deposition surfactant attachment was per-
formed, however, higher PEC performance was achieved in 
both cases. These results suggest that the pre-annealing treat-
ment is indeed effective at improving the PEC performance 
when edge states can be passivated.

Fig. 10  A Current density vs. potential (vs. RHE) for CVD-grown 2H- 
MoS2/Si photocathode (CVD 2H), a CVD-grown 1 T-MoS2/Si photocath-
ode (CVD 1 T), and a drop-casted 1 T-MoS2/Si photocathode (dropcast 1 T) 
measured in 0.5 M  H2SO4 under AM 1.5G irradiation (100 mW  cm−2).  
B LSV curves of  SnS2 and  SnS2-P (Ar plasma-treated sample) electrodes. 
C Chopped LSV curves for pure α-Fe2O3, 0.5% W:α-Fe2O3, and 0.5% W:α-

Fe2O3/MoS2 under 100 mW  cm−2 illumination. D LSV curves of ZnO and 
ZnO/Au–n (n = 12, 35, 55, and 135 nm) under chopped 100 mW  cm−2 illu-
mination conditions. Figures adapted with permission from: A [51]  © 2014 
American Chemical Society; B [95] © 2021 American Chemical Society; 
C [98] © 2019 John Wiley and Sons; D [97] © 2020 American Chemical 
Society
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Co‑catalysts/heterojunctions/multilayers

The Ti- and Mo-doped  WS2 was synthesized by CVD 
method on FTO substrate [42]. The  WS2 electrode with 
Mo-doping and Ti-doping showed more than two times 
higher PEC performance than the electrode without dop-
ing, which is because of the metal ion doping increases the 
donor density in the  WS2 structure and enhances the elec-
trical conductivity, leading to better charge transport and 
enhanced photocurrent density. Transition metal dichalco-
genides (i.e.,  MoS2,  MoSe2,  WS2, and  WSe2) were deposited 
on a pre-grown Si nanowire array as co‒catalysts for HER 
[80]. The CVD-grown 1 T-MoS2/Si showed a maximum of 
26 mA  cm−2 photocurrent density at − 0.4 V vs. RHE in 
0.5 M  H2SO4, and 17.6 mA  cm−2 at 0 V vs. RHE (Fig. 10A).

The enhanced catalytic activity was attributed to the chalco-
gen vacancies. Hematite is one of the most promising semicon-
ductors for PEC water oxidation reaction, however, the high 
charge carrier recombination rate limits its performance [111]. 
Therefore,  MoS2 nanosheets were synthesized by LPE method, 
and then drop-casted on the surface of W-doped  Fe2O3 elec-
trodes constructing W-doped  Fe2O3/MoS2 core‒shell nano-
structures [98]. The PEC behavior displayed in Fig. 10B indi-
cated that the heterojunction electrode had three times higher 
activity than the W-doped  Fe2O3 electrode. The improvement 
was ascribed to the efficient electron‒hole separation due to 
the formed heterojunction [94, 135]. An Ar plasma-assisted 
strategy was used to treat  SnS2 nanosheets, which resulted in 
the partial reduction of  Sn4+ to  Sn2+, and a SnS/SnS2 p‒n 
junction was formed [95]. After the Ar treatment electrode 
showed significantly enhanced photocurrent (Fig.  10C). 
Besides, the small amount of residual oxygen interacted in 
Ar plasma chamber with SnS/SnS2 to form O-S bonds, which 
greatly reduced the overpotential of PEC water oxidation and 
enhance carrier transfer, boosting the PEC performance.

Decoration of semiconductor photoelectrodes with metal 
co-catalysts such as Pt [9, 87], Au [136, 137], and alloy [9, 
81], is another viable approach to enhance PEC performance. 
Au nanoparticles with different sizes were dip-coated on ZnO 
nanosheets, and studied as photoanodes for PEC water oxida-
tion reaction [97]. The PEC activity was dependent on the Au 
size (Fig. 10D). The ZnO deposited with 55 nm in diameter 
Au gave the highest photocurrent density, resulting from the 
fact that Au nanoparticles with 55 nm on ZnO increased the 
light absorbance of the material through the scattering effect.

Conclusions

The development of solar energy conversion devices based 
on 2D materials needs macroelectrodes, therefore the scale-
up of electrode preparation is necessary. Unfortunately, the 

TMCs and other layered materials suffer from a dramatic 
decrease in the photocurrent, with the increase of the pho-
toelectrode area from micrometer‒scale to  mm2 or  cm2 size. 
In this review article, we have scrutinized different PEC pro-
cesses, where 2D materials based electrodes were employed. 
These include both reversible model redox reactions and 
practically interesting processes (i.e., water splitting,  CO2, 
and  N2 reduction reactions). Both single crystal-based and 
microscopic approaches-based PEC techniques revealed 
the role of structural features in determining the PEC per-
formance. In general, pure 2D semiconductors show low 
PEC performance, therefore different approaches have been 
developed to improve PEC activity (i.e., defects passiva-
tion, doping, co-catalysts, and heterojunctions). Both mono- 
and dichalcogenides of transition metals, and metal oxides 
have been studied intensively during the past decades (as 
discussed here), but importance of novel members of 2D 
family (i.e., MXenes, and double layer hydroxides) was also 
highlighted in this review article.
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