
Matrix transpose on meshes with buses?

József Békési,Gábor Galambos

Department of Applied Informatics, Gyula Juhász Faculty of Education, University of
Szeged, Hungary

Abstract

In this paper we analyze the matrix transpose problem for 2– and 3–dimensional
mesh architectures with row and column buses. First we consider the 2-
dimensional problem, and we give a lower bound of approximately 0.45n for
the number of steps required by any matrix transpose algorithm on an n×n
mesh with buses. Next we present an algorithm which solves this problem
in less than 0.5n + 9 steps. Finally, we prove that the given lower bound
remains valid for the 3-dimensional case as well.

1. Introduction

The rapidly increasing computational demands of the applied sciences
pushed the computer systems progressively towards the higher computational
capacity. In the same time they required more effective algorithms. There-
fore, recently high performance computing is in the focus of computer science.
To make computers more efficient, developments were needed both on the
fields of hardware and software. Hardware developments resulted in multi-
core processors and connected computers with different architectures, while
the algorithms became more sophisticated step by step and they have been
analysed deeper than ever before. A good architecture or a more efficient
algorithm may decrease the processing time strongly in a parallel computa-
tional enviroment.

?The paper was supported by the Austrian-Hungarian Action Foundation (Project
number: 91öu2)

Email address: {bekesi,galambos}@jgypk.szte.hu (József Békési,Gábor
Galambos)

Preprint submitted to Elsevier January 31, 2022

On the hardware side the effectiveness of any parallel computation effort
vigorously depends on how fast we can send data from a source processor
to a destination one. Therefore different architectures were developed in the
last two decades. Hypercubes, tori and meshes are the architectures that
have been intensively studied. See eg. [8], [14], [17], and [22].

Routing, sorting, merging, and matrix transpose are the problems that
were investigated already in the early ages of parallel computation (see eg.
[2], [11], [12], [19]). These problems are among the basic ones, that often
appear in numerical computations. For example matrix transpose is one of
the basic operations in linear algebra. The speed of such computations can be
critical in some real time practical applications, like digital signal processing,
image processing, radar systems, etc (see [23], [3]). To exploit the increased
computational capacity on the software side parallel algorithms have been
developed, so in the last decade parallel processing has been further improved
by leaps and bounds. All of the investigated algorithms were accomodated to
a given architecture. The effectiveness of certain algorithms were investigated
extensively, see eg. [4], [6], [9], [13], [18], [21] and [20].

The effectiveness of a parallel computation effort strongly depends on
how fast we can send data from a source processor to a destination one.
Meshes are the architectures that are flexible, the processors can be connected
in different ways, and they are suitable to implement different algorithms
in an efficient way. Therefore among the different architectures the most
extensively studied ones are the mesh architectures. In the simplest, one
dimensional (1D) case a mesh is a linear array where the elements are the
processors and each processor is connected by a full duplex line with its
neighbors. In higher dimensions (2D, 3D) processors form an array, and
they are connected by communication links. Figure 1. shows some mesh
architectures.

Execution of any algorithm is performed in steps. In one step two con-
nected processors can change data. Normally, only the connected processors
can communicate with each other. There are different communication modes
which influence the speed of data transfer. MIMD, SPMD, SIMD and the
Weak SIMD are some examples for communication. (More details see in [7],
[15], and [16]).

In this paper we suppose MIMD communication among the processors,
i.e. processors choose their communication directions independently, and
they can communicate with all their neighbors in one step.

The efficiency of an algorithm is measured by the number of steps needed

2

to fulfill the given task. While routing from a source processor to a destina-
tion one, data may pile up at a processor. This may cause a bottleneck effect
if we do not have enough memory for storing these data. In this paper we
assume that all processors have sufficiently large memory to store the waiting
data – sometimes called as messages or items – in separate queues.

Grid Torus

Eight-neighbor mesh Hexagonal mesh

Figure 1: Some mesh architectures

If the processors can communicate with only their neighbors, then sending
data from a processor to a far one may take many steps. There are different
ways to avoid this situation. In [24] the so-called wormhole switched meshes
are considered. In case of whormhole routing the data transfer has two steps.
In the first one a circuit is established between the source and destination
processors facilitating a quick data transfer between the nodes, and in the
second step packets are sent over different paths independently from each
other. The advantage of this communication lies in the first step: although
it takes more time than the second one, it builds up a direct connection
between the processors, and the second step allows to send packages between

3

the processors saving much more time.

Figure 2: 1D mesh with bus

To speed up the communication between two far processors, it is possible
to use buses. Buses can be used in 1D meshes (see Figure 2.) and for 2D
meshes as well. We show different bus-configurations in Figure 3. Row and
column buses were used in [1]. If we use a bus then the processors connected
to the bus can communicate not only with their neighbors but also with the
ones that are connected to the same bus. In one step only one processor can
send data to a bus and one of the others can accept it in the same step. In
case of 2D meshes we can use row and column buses, and all processors in
the same row or column are connected to one bus. To a 2D mesh which has
both, row and column buses we will refer as 2RCB-mesh.

Snake like bus Row and column buses

Figure 3: Single (snake-like) bus, row and column buses

Depending on the considered problem we need to move the data in differ-
ent ways. In case of the permutation routing problem each processor should
send k(≥ 1) messages to the same processor. We call this the k − k permu-
tation routing problem. We say that the problem is solved, if each message
has arrived at its destination. Such problems were considered in [1].

A special permutation routing problem is the matrix transpose problem
(MTP) on a 2D mesh. In this case a message originally contained by the

4

processor (i, j) should be routed to the processor (j, i) for all i, j where 1 ≤
i, j ≤ n. We will call those two processors pairs. For 2D meshes with MIMD
processors and without buses Ding, Ho and Tsai [5] analyzed the MTP. They
denoted by TA(k, n) the number of steps needed to transpose k pieces of n×n
matrices by the algorithm A. For this k − k version their main result is the
following lower bound. For any MTP algorithm A,

TA(k, n) ≥ (1− 1/
√

2)kn ≈ 0.293kn.

Later Kaufmann, Meyer and Sibeyn [10] gave an algorithm which requires
0.301kn + O(n/k) steps. So, for any constant k the additive term is pro-
portional to n, therefore the gap is large between the upper and the lower
bounds.

A natural generalization of the (2D) matrix transpose problem to d-
dimensions (d ≥ 2) is to consider the permutations

(a1, . . . , ad)→ (ai, ai+1, . . . , ad, a1, a2, . . . , ai−1)

for some i, 1 ≤ i ≤ d. These permutations are also called transposes [10].
There are d transposes, one of them is the identity permutation. Especially
in 3D the two non–trivial transposes are (i, j, k) → (j, k, i) and (i, j, k) →
(k, i, j). An architecture of a 3D mesh with buses in each direction will be
denoted by 3RCB-mesh.

In this paper first we will show that in case of a 2RCB-mesh, we can
improve the efficiency of the matrix transpose algorithms. More precisely,
if we denote by TB

A (1, n) the number of steps needed to transpose a ma-
trix by the algorithm A on a 2RCB-mesh, then in Section 2 we prove that
limn→∞(TB

A (1, n)/n) > 0.4508 . . ., and we will define an algorithm – denoted
by MTB – for which TB

MTB(1, n) ≤ n
2

+9. We also investigate the 3D case, and
we prove that any solution of a matrix transpose problem with a 3RCB-mesh
architecture needs at least 0.45n steps. In our analysis we consider only the
1 − 1 version of the problem. Finally, in the conclusion we mention some
open problems.

2. Lower Bound in 2D

Let us consider the MTP on a 2RCB-mesh architecture, and let n be the
number of processors both in the rows and the columns. In this case the
following theorem is true.

5

x

A

A

B

B

C

y

x

y

Figure 4: Division of the n× n mesh

Theorem 2.1. Let A be an arbitrary algorithm and let TB
A (1, n) be the num-

ber of steps needed to solve the MTP on a 2RCB-mesh with n×n processors.
Then

lim
n→∞

TB
A (1, n)

n
≥ 2− 2

5

√
15 ≈ 0.450806 . . . (1)

Proof. The idea of the proof is that we compare the walking distances to the
total number of bus opearations required to send data to far processors and
calculate the optimal number of steps. Let us divide the n×n processors into
5 diagonal regions as shown on Figure 4. The regions denoted by the same
letters (A and B) contain equal number of processors in the corresponding
rows and in the columns as well. Furthermore, let us choose x so that n

2
<

x < n, and let y = 2x − n + 1. So we get that 0 < y ≤ x. Let P (Ai) and
P (Bi) be the number of processors in the i-th row in a region A and B,
respectively (1 ≤ i ≤ n). The regions are chosen so that x = P (B1) +P (A1),
and y = P (A1).
Let us denote the distance of a pair by |pi,j|, which means the minimum

6

number of steps while a message moves to a destination processor through
the connection lines. We will call a route that uses only communication lines
to reach the destination processor as walk. Then |pi,j| = 2|i − j|. We will
investigate the regions A, B, and C separately.

In the region C processors are close to each other, and

max
pi,j∈C

|pi,j| = |p(n−x),1| = 2(n− x− 1) (2)

The distance between any pair in the regions A and B is always longer
than 2(n− x− 1), which means that if we want to get a better result, then
each message must use a bus at least once in these regions. For the pairs in
regions A we get that

min
pi,j∈A

|pi,j| = |pn,y| = 2(n− y),

so we get that

2(n− y) = 2(2n− 2x− 1) > 4(n− x− 1). (3)

From (3) it follows that the messages in the region A must use bus twice to
reach their destinations in at most 2(n− x− 1) steps. This means that the
total number of steps that use bus operations while routing all the messages
is at least

4P (A) + 2P (B).

We get that

P (A) =

y∑
i=1

P (Ai) = 1 + 2 + ... + y =
(2x− n + 1)(2x− n + 2)

2
.

Similarly,

P (B) =
x∑

i=y+1

P (Bi) = 1 + 2 + ... + x− P (A) =

=
x(x + 1)− (2x− n + 1)(2x− n + 2)

2
.

Since the total number of buses is 2n, routing of all the 2(P (A) + P (B))
messages requires at least

TB
A (1, n, x) =

4P (A) + 2P (B)

2n
=

x(x + 1) + (2x− n + 1)(2x− n + 2)

2n
.

7

steps. Since TB
A (1, n, x) is an increasing function, while 2(n − x − 1) is a

decreasing function of x, we get the best possible choice for x by solving the
equation

TB
A (1, n, x) = 2(n− x− 1). (4)

The solution is

x = − 7

10
+

1

10

√
60n2 − 20n + 9.

Substituting this into (2) and using equation (4) we get the desired result.

3. Upper Bound in 2D

Now, we define an algorithm for solving the matrix transpose problem in 2–
dimensions. During the construction we will follow the ideas used in the proof
of the lower bound: those messages which are close to their destinations will
walk. We call these messages W-messages. For a longer distance a message
will be routed using one bus transfer and some walk. These are the BW-
messages. Those messages which are very far from their destinations will be
scheduled to use buses twice. We call them BB-messages. There are two
basic problems:

• How can we determine the regions which define the message-type during
the execution?

• Those pairs which are very far from each other are placed in the lower
left and upper right corners. This induce that they must be defined
as BB-messages. But, in this case message transfers for these pairs
require a heavy usage of the outer buses, while the center buses remain
idle. So, to make our algorithm more efficient we change the schedule
of some parts of these messages: first they will walk to reach one of
the buses which are closer to the center, and some steps later they will
”catch” one of the center buses. So, they become BW-messages. This
modification results in load-balancing among the buses.

We will call our algorithm the Load-Balancing Algorithm (LBA).

8

C

A

A

D

B

B

B

B

E

D

C

x

y

z

u

x

y

z

u

Figure 5: Division of the n× n mesh by algorithm LBA

3.1. Construction of LBA

Preparation step: Let

x = n−
⌊
bn2 c
2

⌋
− 1, y =

⌈
n
2

⌉
,

z =

⌊
bn2 c
2

⌋
+ 1, u =

⌈⌊
bn2 c
2

⌋
+1

2

⌉
and divide the processors into five diagonally symmetric disjoint setsA,B, C,D, E
as seen on Figure 5.
Step 1: Label the processors in the regions C and D by R and C as seen on
Figure 3. During the execution, processors labeled by R and C will use a row
bus or a column bus first, respectively. A message originated from a C-labeled
or a R-labeled processor will be called C-item or R-item, respectively. Notice
that if a processor is C-labeled then its pair is R-labeled.

9

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

RR

R

R

R

R

R

R

R

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

R

R
1 5

R
1

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Figure 6: Schedule of the row and column buses on a 15× 15 bused mesh

10

The next four steps (Step 2.1 - Step 2.4) are scheduled in parallel:

Step 2.1: Pairs in the region E walk by a greedy algorithm.

• Each element under the main diagonal first moves to its destination
column, turns up, and moves step by step to its destination processor.

• Each element above the main diagonal first moves to its destination
row, turns left and moves to its destination processor.

Step 2.2: Schedule the pairs of the regions C and D according to their
labels assigned in Step 1. A row bus transfers messages belonging to a R-
labeled processors using farthest first strategy, starting with the elements of
the regions D.

• Messages originated from the region D will walk along their destination
column.

• Messages from the region C will use column buses,so their transfers
require always only two steps.

The transfer of the items belonging to C-labeled processors is similar.

Step 2.3: Items of regions B in the positions (1, n−z+1), (z, n), (n−z+1, 1),
and (n, z) walk to the direction of the center until they arrive at positions
(1, y + 1), (n− y, n), (y + 1, 1), and (n, n− y), respectively.

Step 2.4: Schedule the newly arrived items (originated from the regions B)
into the region C to the corresponding row and column buses when the buses
become available. The items have been moved up or down will be scheduled
to row buses, the items moving left or right will be scheduled to column
buses. Whenever such an item is transferred by a bus, we always move a
new item to its former position to become transferable in the next step for
the bus. After the first bus transfer, these items will wait for the second bus
transfer in the processor buffers. To shorten the processor queues these items
even can move in the direction of their destinations.

Step 3: When the above steps are finished, the algorithm transfers the items
of regions A and those ones which are waiting in a buffer from Step 3.4 using
row and column buses. Since they do not require common buses, the transfer
of these two groups can be done in parallel.

11

3.2. Analysis of LBA
Lemma 3.1. Items of the region E can be routed to their destination in at
most n

2
steps.

Proof. Since maxpi,j∈E |pi,j| = 2(n− x− 1), using the definition of x we get
that

max
pi,j∈E

|pi,j| = 2(n− x− 1) = 2

⌊⌊
n
2

⌋
2

⌋
≤
⌊n

2

⌋
≤ n

2
.

Since all messages turn at the main diagonal, no items can delay each other.

Lemma 3.2. Items of the region D can be routed to their destination in at
most n

2
steps.

Proof. We give the proof only for the R-items. Similar argument can be
used for C-items. Step 2.2 uses farthest first strategy in the region D for the
R-items. Consider an arbitrary row of the mesh. Order the R-items of the
region D in this row by the distances from their pairs in decreasing order.
The distance of the i-th item in this order from its pair is 2(n−y− i). By the
schedule, the i-th item uses the bus in the i-th step, so for the total number
of steps S required we get that

S = (n− y − i) + (i− 1) + 1 = n− y = n−
⌈n

2

⌉
≤ n

2
.

Consider now those rows from the region C which are indexed by n − x +
1, ..., x, i.e. the central rows of the mesh and denote them by Rn−x+1, ..., Rx.
Let |Ri| be the total number of bus operations required to route all the R-
items in row Ri, n− x + 1 ≤ i ≤ x, including also those row bus operations
which route the C-items destined to the row Ri in the region C.

Lemma 3.3. maxi |Ri| < 3n
8

+ 4 where n− x + 1 ≤ i ≤ n− y.

Proof. By a simple calculation we get the following formula for |Ri| .

|Ri| =

⌈
i− n + x

2

⌉
+

⌊
x− y

2

⌋
+ 2

⌈
y − i + 1

2

⌉
≤

≤ i− n + x

2
+

x− y

2
+ y − i + 3 =

= x +
y

2
− n

2
− i

2
+ 3.

12

From this it follows that

max
i
|Ri| = x +

y

2
− n

2
− n− x + 1

2
+ 3 =

=
3x

2
+

y

2
− n +

5

2
=

=

3

(
n−

⌊
bn2 c
2

⌋
− 1

)
+
⌈
n
2

⌉
− 2n

2
+

5

2
≤

≤
n− 3bn2 c

2
+ n

2
+ 1

2
+

5

2
≤

≤
n− 3n

4
+ n

2
+ 5

2

2
+

5

2
<

<
3n

8
+ 4.

Lemma 3.4. |Rn−i+1| ≤ |Ri| + 1 where n − x + 1 ≤ i ≤ n − y. If n is odd
then |Rn−y+1| = |Rn−y|

Proof.

|Rn−i+1| =

⌊
i− n + x

2

⌋
+

⌈
x− y

2

⌉
+ 2

⌊
y − i + 1

2

⌋
≤

≤
⌈
i− n + x

2

⌉
+

⌈
x− y

2

⌉
+ 2

⌈
y − i + 1

2

⌉
≤ |Ri|+ 1

If n is odd then

|Rn−y+1| =
⌊
x− y

2

⌋
+

⌈
x− y

2

⌉
+ 2 = |Rn−y|

Corollary 3.1. maxi |Ri| < 3n
8

+ 5 where n− x + 1 ≤ i ≤ x.

Lemma 3.5. |Rn−y| > x− y.

13

Proof.

|Rn−y| =
⌈
x− y

2

⌉
+

⌊
x− y

2

⌋
+ 2

⌈
2y − n + 1

2

⌉
> x− y.

Corollary 3.2. The items at positions (1, n−z+1), (z, n), (n−z+1, 1), (n, z)
arrive at positions (1, y + 1), (n − y, n), (y + 1, 1), (n, n − y) in Step 2.3 of
LBA before the row and column buses in rows Rn−y and Ry+1 and in columns
Cy+1 and Cn−y finish their task defined in Step 2.2.

Lemma 3.6. Step 2.4 needs at most 3n
8

+ 6 steps.

Proof. From Corollary (3.2) it follows that the buses in rows Rn−y−i, where
1 ≤ i ≤ z − u can continue their work with Step 2.4 immediately after
finishing Step 2.2. We calculate the total number of operations defined in
Steps 2.2 and 2.4 for the buses in rows Rn−y−i. Denote again this number by
|Rn−y−i|. We get the following:

|Rn−y−i| =

⌈
x− y − i

2

⌉
+

⌈
x− y

2

⌉
+ 2

⌈
2y − n + i + 1

2

⌉
+ z − u− i + 1 ≤

≤ x + y + z − n− u− i

2
+ 5.

From this

max
i
|Rn−y−i| = x + y + z − n− u +

9

2
= y − u +

9

2
<

3n

8
+ 6. (5)

From Corollary (3.1) and (5) the statement of the lemma follows.

Notice that when Step 2.4 is finished, then all the items in the region C have
arrived at their pair.

Lemma 3.7. Step 2.2 finishes in at most n
8

+ 3 steps.

Proof. Since u < n
8

+ 2, the items in the region A and the waiting items
from Step 2.4 can be routed in at most n

8
+ 3 steps using bus operations.

Combining the statements of Lemmas (3.1),(3.2),(3.6),(3.7) we get the fol-
lowing theorem.

14

Theorem 3.1. Algorithm LBA solves the matrix transpose problem in less
than n

2
+ 9 steps.

The next table shows on which step the specific elements arrive at their
destinations on a 10x10 mesh. The second code presents the way of transfer
in the last step, which can be walking (W), row bus (R) and column bus(C).

0 2W 4W 5W 5W 5C 5R 5C 4R 4C
4W 0 2W 5W 5W 5W 3C 5R 4C 4R
4W 4W 0 2W 5W 5W 5W 3C 3R 4R
5W 4W 4W 0 2W 5W 4W 5W 5C 4R
5W 5W 4W 4W 0 2W 4W 4W 5W 5C
5R 5W 5W 4W 4W 0 4W 4W 4W 5W
5C 3R 5W 4W 4W 4W 0 4W 4W 4W
5R 5C 3R 5W 4W 4W 2W 0 4W 4W
4C 4R 3C 5R 5W 4W 4W 2W 0 4W
4R 4C 4C 4C 5R 5W 4W 4W 2W 0

Finally, we show some values of the upper bound on the required steps
and the corresponding lower bounds:

n 10 100 500 1000 4000
LB 5 45 226 451 1803

MTB 14 59 259 509 2009
Ratio 2.8 1.3111 1.1460 1.1286 1.1142

4. Lower Bound in 3D

Consider now the 3D MTP on a 3RCB–mesh architecture, and investigate
the transpose (i, j, k) → (j, k, i) for each possible triplet (i, j, k), where 1 ≤
i, j, k ≤ n. Because of symmetry the following analysis remain valid for the
other non–trivial transpose as well. Let n be the number of processors in
each directions. By definition the distance of the processor (i, j, k) from its
transpose (j, k, i) is

|i− j|+ |j − k|+ |k − i| . (6)

15

It is easy to see that

|i− j|+ |j − k|+ |k − i| = 2t (7)

for some 0 ≤ t ≤ n−1, and t = 0 iff the tree indices in the triplets are equal.

Lemma 4.1. The number of triplets for which the sum (6) is equl to 2t, 1 ≤
t ≤ n− 1 is 6t (n− t).

Proof. Consider an arbitrary triplet (i, j, k), 1 ≤ i, j, k ≤ n. Let

m = min(i, j, k)

and
M = max(i, j, k).

Then

|i− j|+ |j − k|+ |k − i| = 2(M −m),

Let us count the number of different triplets with maximum M and minimum
m and t = M −m for all t, 1 ≤ t ≤ n − 1. We can choose M and m with
this property by n− t different ways. The third component of the triplet can
be chosen by t different ways. We can permute these triplets 3! ways, so the
statement of the lemma is true.

Theorem 4.1. Let A be an arbitrary algorithm and let TB
A (1, n) be the num-

ber of steps needed for A to solve the MTP on a 3–dimensional n × n × n
3RCB–mesh architecture. Then

lim
n→∞

TB
A (1, n)

n
> 0.45. (8)

Proof. The idea is similar to the one we used in Theorem 2.1. First we
classify the processors into groups, depending on the distances between a
processor and its transpose. From Lemma 4.1 it follows that we get n dif-
ferent groups, each of them having the different values of m. Let us denote
the groups by A0, ...,An−1 and the corresponding number of processors by
P (A0), ..., P (An−1). Let us choose x so that 0 < x < n

2
, and let y = 2x.

As before, the items belonging to close processors will walk, some others
with farther transposes will use bus once, and those ones which belong to
processor pairs being far from each other will use buses twice. Suppose that

16

• items in the groups P (Ai), 0 ≤ i ≤ x will walk,

• items in the groups P (Ai), x < i ≤ y use buses ones, and

• items in the groups P (Ai), y < i use buses twice.

Based on Lemma 4.1 the total number OB of bus operations required is

OB =

y∑
i=x+1

P (Ai) + 2
n−1∑

i=y+1

P (Ai) = 6
2x∑

i=x+1

i(n− i) + 12
n−1∑

i=2x+1

i(n− i).

Because the total number of buses is 3n2, the OB bus operations requires at
least

TB
A (1, n, x) =

OB

3n2
=

2n3 − n (15x2 + 9x + 2) + 3x(6x2 + 5x + 1)

3n2

steps. On the other side, the longest walk in the first group is dominant for
the number of steps of any algorithm A, so

TB
A (1, n, x) = 2x. (9)

We have to minimize the length of the longest walk while we try to load the
buses uniformly. So, we need to solve the equation

2n3 − n (15x2 + 9x + 2) + 3x(6x2 + 5x + 1)

3n2
= 2x. (10)

Equation (10) has a root between 0.225n and 0.25n, so the proof is com-
pleted.

5. Conclusions

In this paper we considered the matrix transposition problem for parallel
machines, and we proved that using meshes with buses one can expect better
results than for those architectures where buses are not available. Although
the gap is very small between the lower and upper bound, we are not able
to narrow it, so the question remains open for the tight bound. Since we
analyzed only the case of 1 − 1, the k − k, (k ≥ 2) version is also unsolved
for those meshes which can use row and column buses.

17

References

[1] J. Békési, G. Galambos, P. Hajnal: Analysis of permutation routing al-
gorithms. EJOR, 125(2), pp. 249-256, 2000.

[2] A. Borodin, J. E. Hopcroft: Routing, merging and sorting on parallel
models of computation. J. Comput. System Sci., 30 (1985), pp. 130-145.

[3] Y. K. Chan and V. C. Koo: An Introduction to synthetic aperture radar
(SAR).Progress In Electromagnetics Research B, Vol. 2, 27–60, 2008

[4] S. Cheung, F.C.M. Lau: A lower bound for permutation routing on two-
dimensional bused meshes. Inf. Proc. Lett. 45(1993), pp. 225-228.

[5] K.S. Ding, C.T. Ho, J.J. Tsay: Matrix Transpose on Meshes with Worm-
hole and XY Routing. Proc. 6th Symposium on Parallel and Distributed
Processing, pp. 656-663, IEEE, 1994.

[6] S. Fujita and M. Yamashita: Fast gossiping on mesh-bus computers. IEEE
Trans. on Computers, 45(2002), pp. 1326-1330).

[7] A. Grama, A. Gupta, G. Karypis, V. Kumar: Introduction to Parallel
Computing. Pearson, 2003. ISBN: 978-0201648652.

[8] K. Iwama, E. Miyano and Y. Kambayashi: Routing problems on mesh of
buses, J. Algorithms, 20(1996), pp. 613-631.

[9] K. Iwama, S. Tajima, E. Miyano, and H. Tamaki: Randomized Routing
Algorithms on the Two-Dimensional Mesh of Buses. 4th Annual Interna-
tional Conference, COCOO, 2007.

[10] M. Kaufmann, U. Meyer, J.F. Sibeyn: Matrix Transpose on Meshes:
Theory and Practice. Computers and Artificial Intelligence 16, pp. 107-
140, 1997.

[11] M. Kaufmann, U. Meyer, J.F. Sibeyn: Routing on meshes with
buses.Algorithmica 18(1997), pp. 417-444.

[12] M. Kunde: Routing and Sorting on mesh-connected arrays. Proc. 3rd
Aegean Workshop on Computing:VLSI Algorithms and Architectures.
LNCS, pp. 411-422, 1988.

18

[13] T. Leighton: Average case analysis of greedy rooting algorithms on ar-
rays. in Proc. 1990 ACM Symp. on Parallel Algorithms and Architectures,
pp. 2-10.

[14] T. Nesson and S. L. Johnson: ROMM routing on mesh and torus net-
works. Proc. 7th Symp.on Parallel Algorithms and Architectures, ACM,
pp. 275-287, 1995.

[15] B. Parhami: Introduction to Parallel Processing, Algorithms and Ar-
chitectures. Series in Computer Science, Kluwer Academic Publishers,
ISBN: 978-0-306-45970-2, 2002.

[16] Algorithms and Theory of Computation Handbook, CRC Press LLC,
Vreda Pieterse and Paul E. Black, eds. 1999.

[17] A.A. Ravankar, and S. Sedukhin: Mesh-of thory:A novel interconnection
network for frontal plane cellular processors. 2013 International Confer-
ence on Computing. Networking and Communication (ICNC), pp. 281-
284.

[18] A.A. Ravankar, and S. Sedukhin: An O(n) time-complexity matrix
transpose on torus array processors. In ICNC, 2011, pp. 242-247.

[19] C.P. Schnorr, A. Schamir: An optimal sorting algorithm for mesh con-
nected computers. Proc. 18th Ann. ACM Symp. on Theory of Computing,
pp. 255-263, 1986.

[20] S. G. Sedukhin: An O(n) time-complexity matrix transpose on torus ar-
ray processor. Second International Conference on Networking and Com-
puting, ICNC 2011, Osaka, Japan

[21] S.G. Sedukin and M. Paprzycki: Generalizing matrix multiplication for
efficient computations on modern computers, in Parallel Processing and
Applied Mathematics (LNCS), vol. 7203, pp. 225-234, 2012.

[22] Q.F. Stout and B. Wagar: Intensive hypercube communication: Pear-
ranged communication in link-bound machines. J. Parallel and Distrib.
Computing, pp. 167-181, 1990.

[23] Texas Instruments. Multicore Fixed and Floating-
Point Digital Signal Processor, TMS320C6678.
http://www.ti.com/lit/ds/symlink/tms320c6678.pdf

19

[24] J-J. Tsay, K-S. Ding, and W-T. Wang: Optimal Algorithm for Matrix
Transpose on Wormhole-Switched Meshes. J. of Inf. Science and Eng.,
19(2003), pp. 167-177.

20

