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ABSTRACT
This article presents a neural network-based method to help
physicians diagnose and monitor asthma and other chronic
respiratory diseases. The method is based on capnography,
using measurement data from a specially developed hand-
held device.

After proper preparation, various parameters are calculated
on the capnographic curve from which healthcare profession-
als can conclude the condition of the patient’s respiratory
system.

Another purpose of using the calculated parameters is to
serve as a learning base for an artificial intelligence applica-
tion that can be used in the decision support of physicians.
The shape of the capnogram obtained from the gas sample
exhaled by the patient and thus the parameters calculated
from it are different for healthy people and those with res-
piratory diseases.
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1. INTRODUCTION
Capnography is a non-invasive method for the numerical
and graphical analysis of exhaled CO2 concentration. Time-
based capnography is part of routine daily patient monitor-
ing during mechanical ventilation and anesthesia. For spon-
taneously breathing patients, the method has the advantage
that it does not require the patient to carry out any special
breathing maneuvers, the measurement is easy to perform,
and therefore requires minimal cooperation. It also holds
the potential for the diagnosis of obstructive airway disease,
as bronchospasm severity can be quantitatively assessed [4,
6]. The feasibility of non-invasive examinations is essential
in pediatrics, so it also opens up new areas of application for
capnography [7, 9, 10]. Although the analysis of capnogram
shape parameters is not yet a standard part of patient mon-
itoring, it appears promising in the monitoring of chronic
respiratory diseases, as it provides useful information on the
pathophysiological processes of pulmonary ventilation, such
as airway patency and lung recoil tendency.

In capnographic studies, the carbon dioxide content of ex-
haled air can be considered as a function of time or plotted
against the exhaled gas volume. In the former case, we are



talking about time-based, while in the latter case we are
talking about volumetric capnography.

In the first part of the article, we examine the formal prop-
erties of time-based capnograms. Possible parameters de-
scribing the shape of the curve are presented. In the second
part we introduce a neural network based method that uses
these parameters to help physicians in diagnosing patients.

2. THE CAPNOGRAMS AND THEIR PARAM-
ETERS

The capnogram curve plots the partial pressure of the CO2

content of the exhaled gas against time or volume. The par-
tial pressure of a given gas in a gas mixture is the pressure
that a gas in question would create alone if it filled the avail-
able space alone. The partial pressure of CO2 is denoted by
PCO2.

The capnogram consists of an exhalation segment and an
inhalation segment. In this study we focused only on the
shape indices of the exhalation section. The three phases of
the exhalation segment (Phases 1-3) contain different slopes,
angles and other parameters which are described in many
articles and textbooks (e.g. [2, 3, 8]).

Figure 1: General form of time-based capnograms

Figure 2: Phases of a capnogram with End-tidal
CO2(ETCO2)

2.1 The calculated parameters
The various morphological parameters are calculated using
mathematical methods, which are presented in this subsec-
tion. The resulting capnographic indices - in the knowledge
of the patients’ condition - provide an opportunity to assess
the characteristics of healthy and chronic respiratory pa-
tients (see [12] for more details). We aim to calculate these
parameters as accurately and objectively as possible. This

creates the opportunity to apply learning algorithms and au-
tomatically determine the condition of the patients studied.
As a first step, faulty respiratory cycles were filtered out
based on physiological rules that were supported by mea-
surement techniques.The parameter calculator smoothed the
points of the raw curve using the moving average method. In
this case, each point was replaced by an average calculated
from a specified number of adjacent points. For the 100Hz
sampling frequency used for recording, we found the 9-point
moving average to be the most suitable. Then, for each
point of the smoothed curve, we calculated the first-order
derivatives using the standard differential quotient. Since
the curve containing the first derivatives can also be slightly
noisy, we performed the previous smoothing algorithm for
this as well. Then, following the same method, we calculated
the curve containing the second derivative and its smoothed
version. Finally, using the smoothed derivative 2 curve, the
starting point of Phase 2 (local maximum) and the end point
of Phase 3, i.e. the end of exhalation (local minimum) can
be determined. It should be noted that the starting point of
the exhalation cannot be precisely determined only from the
time capnogram curve. However, before the start of Phase
2, we can find the point where the curve still takes approxi-
mately a value of 0, and then this point can be considered as
the starting point of the fitting algorithm described below.
We then fit a function to the exhalation sections obtained as
previously described using the method introduced by Tus-
man et al. in [11]. The beginning of Phase 2 and the end of
Phase 3 have already been determined as described above,
and its post-fitting correction is not necessary. However, af-
ter fitting, the first, second, and third derivatives must be
re-determined (now on the fitted curve). The end point of
Phase 2 (the starting point of Phase 3) is obtained from the
local maximum of the calculated third derivative.

2.1.1 The slopes of Phases 2 and 3 (S2, S3)
To determine the inflection point of Phase 2, we use the first-
order derivative values, which mathematically represent the
slope of the line drawn at a given point on the curve. The
slope at the inflection point will be the largest. The slope of
Phase 2 (S2) is the maximum slope that can be read at this
inflection point [11]. The slope of Phase 3 (S3) is the slope
of the line fitted to the middle third of Phase 3, which is a
simplified but not significantly different modification of the
method used by Tusman et al [11].

Figure 3: The slopes of time-based capnograms

2.1.2 End-tidal CO2 (ETCO2)



The carbon dioxide concentration increases throughout Phase
3, so it normally peaks at the end of the phase. This is the
final exhalation CO2 concentration (ETCO2, PETCO2),
which is equal to the carbon dioxide partial pressure read at
the end of Phase 3.

2.1.3 The normalized slopes of Phases 2 and 3 (Sn2,
Sn3)

The normalized slopes of Phase 2 (Sn2) and Phase 3 (Sn3)
are obtained by dividing the slopes of the second and third
phases (S2, S3) by the value of ETCO2.

2.1.4 Sn3/Sn2
The quotient of the Sn3 and Sn2 values.

2.1.5 D2min and D2max
The maximum and minimum of the second derivative, the
rate of change of the start and end points of Phase 2 (the
lower and upper curves).

2.1.6 The α angle (Q)
The angle enclosed by the slopes of Phases 2 and 3.

2.1.7 The area ratio (AR)
The area ratio in the section between the inflection point
and the beginning of Phase 3 is the quotient of the area
under the curve and the area of the entire rectangle. It is
practically the shape of the transition from Phase 2 to Phase
3.

2.1.8 Squared difference (R2SUM)
The sum of the squares of the differences between the points
of the raw, original curve and the fitted one. As previously
described, the original capnogram curve contains higher fre-
quency noises, which may have physiological reasons. There-
fore, these sums of squares are used to examine the differ-
ences in the curves of the patients in each group.

2.1.9 Respiratory rates (RR)
In the absence of flow data, the exact length of respiratory
cycles cannot be determined from the time capnogram alone.
Thus, the length of the given respiratory cycle can be esti-
mated from the combined length of Phases 2 and 3. Exam-
ining the measurements in parallel with the flow measure-
ment, we found that the combined length of Phases 2 and 3
is about 65 percent of the respiratory cycle. Currently, we
use this ratio to estimate respiratory length, from which we
calculate the actual respiratory rate.

3. THE INPUT DATA AND THE STRUCTURE
OF THE NETWORK

The data used for teaching the network were as follows:

• All time-based parameters calculated from mainstream
measurements: S2T, S3T, ETCO2, Sn2, Sn3,
Sn3/Sn2, D2min, D2max, Q, AR, R2SUM, RR (Sep-
arate records for each breathing cycle).

• Gender of the patient.

• Class of the patient’s age at the time of examina-
tion. (The patient’s age was divided into 10-year-long
classes. For example: 13 years old, 17 years old ->
class: 1, 33 years old -> class: 3, 60 years old, 62
years old -> class: 6, etc. This was necessary because
without classification only a few measurements would
belong to some ages, which would impair the effective-
ness of learning.)

• Class of the patient’s body weight at the time of exam-
ination. (The patient’s body weight was divided into
classes of 10 kilograms, in the same way as for age.)

We used one label for teaching, which was a manual medical
diagnosis of the patient for the test. (One test could include
several measurements. One measurement could only belong
to one test. One test could only have one diagnosis.) We
only used measurements with a ”healthy” or ”asthmatic” di-
agnosis. We omitted from teaching the load measurements
and the measurements marked as incorrect.

The method was implemented in Java and relied on the
Deeplearning4j library [1]. The training of the neural net-
work and the diagnosis prediction with the trained neural
network ran on the following configuration: Intel Core i7
10700K CPU, 32GB DDR4 RAM, 256GB SSD, 2TB HDD,
Nvidia GeForce 8500 GT video card.

The neural network had 3 hidden layers, each with 50 neu-
rons. For each hidden layer, the activation function was the
TANH function. The activation function of the output layer
was the SIGMOID function. We gave 6000 epochs for teach-
ing, but according to the log files, no significant learning took
place after the 652nd epoch. The training was performed on
a record of 3141 healthy and 16670 asthmatic breathing cy-
cles, which lasted 2169 seconds on the configuration given
above.

4. RESULTS
Since the training was done per respiratory cycle (the pa-
rameters are also calculated separately for each cycle), the
diagnosis prediction with the trained neural network is also
done per respiratory cycle. For each measurement, we cal-
culated how many cycles of the measurement were ”healthy”
and how many cycles were ”asthmatic”. (The prediction is
not performed for cycles marked as incorrect.) If the num-
ber of healthy predictions is lower than the number of asth-
matic predictions, then the entire measurement is considered
asthmatic. Otherwise, the entire measurement is considered
healthy. The number of measurements used in the predic-
tion was 648. Considering the ”asthmatic” diagnosis as pos-
itive and the ”healthy” diagnosis as negative we found the
followings:

• True positive (TP): 517 (79.78%)

• True negative (TN): 107 (16.51%)

• False positive (FP): 23 (3.55%)

• False negative (FN): 1 (0.15%)

TP: The number of measurements for which the manual
diagnosis of the test is ”asthmatic” and the diagnosis ob-
tained with the neural network is also ”asthmatic”. TN:



The number of measurements for which the manual diagno-
sis of the test is ”healthy” and the diagnosis obtained with
the neural network is also ”healthy”. FP: The number of
measurements for which the manual diagnosis of the test is
”healthy”, but the diagnosis obtained with the neural net-
work is ”asthmatic”. FN: The number of measurements for
which the manual diagnosis of the test is ”asthmatic”, but
the diagnosis obtained with the neural network is ”healthy”.

The metrics calculated from these are:

• Accuracy: 0.96,

• Precision: 0.96,

• Recall: 1.00,

• F1 Score: 0.98.

Here we used the usual metrics of classifiers, based on the
following formulas [5]: Accuracy: (TP + TN) / (TP + FP
+ TN + FN) Precision: TP / (TP + FP) Recall: TP / (TP
+ FN) F1 score: 2* precision * recall / (precision + recall)

All of the above metrics must fall within the interval [0.0,
1.0]. The closer the value is to 1.0, the better the result.
The total running time of the diagnosis prediction was 240
seconds for 1361 measurements, so the prediction takes an
average of 0.1763 seconds per measurement. Comments:

1. The evaluation is somewhat distorted by the fact that we
have fewer healthy subjects than asthmatics.

2. It is similarly distorted by the fact that we used all the
measurements of all asthmatic and healthy tests from the
database for teaching. This is due to the limited number
of measurements. In the case of several measurements, we
could use only a small part of the measurements during
teaching, and test the neural network on the larger part.
That way we would get more objective test results.

5. CONCLUSIONS
In this research we developed a neural network based ap-
plication that uses capnography measurements to help the
diagnosis of asthma. Possible future works are the follow-
ings:

1. Training the neural network with the raw measure-
ment data as well, not only with the calculated pa-
rameters. This is expected to require more hardware
resources and time. An advantage may be that the
neural network can also learn useful information that
is lost during the parameter calculation.

2. Training the neural network with the volumetric pa-
rameters or together with volumetric and time-based
parameters. The disadvantage here may be that there
are no volumetric parameters for purely time-based
measurements without flow data.

3. Teaching the neural network for the different severities
of asthma, and using the trained neural network to
distinguish between them.

4. Teaching the neural network for other diseases, e.g.
COPD (and its sub-conditions), ACOS (and its sub-

conditions), COVID, etc. Distinguishing these diseases
with the help of a trained neural network.
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