Internet of Things 24 (2023) 100955

Contents lists available at ScienceDirect

Internet of Things

journal homepage: www.elsevier.com/locate/iot

Check for

Distributed scalability tuning for evolutionary sharding wisied
optimization with Random-equivalent security in permessionless
Blockchain

Hamza Baniata®", Ahmad Anaqreh ", Attila Kertesz ?

a Department of Software Engineering, University of Szeged, Hungary
b Department of Computational Optimization, University of Szeged, Hungary

ARTICLE INFO ABSTRACT

Keywords: In spite of multiple advantages of the adoption of blockchain (BC), it still faces some integration
Blockchain challenges in modern applications, such as the Internet of Things. These challenges include low
Opti"_lization throughput rates in permissionless settings. To solve this challenge, several state-of-the-art works
:Ec‘:gz proposed sharding (i.e., partitioning) the BC infrastructure. Sharding the network into smaller
Sc:labiliy shards improves the total system throughput, regardless of the node-shard assignment criteria.

Most previous work applied a Random Sharding (RS) approach, i.e., randomly allocating nodes
into predefined shards, to satisfy the required unpredictability property of node-shard allocation.
In this paper, we propose a Blockchain Optimized and Secure Sharding (BOSS) protocol that
aims to optimize the node-shard allocation resulting in increased throughput using a variant of
the evolutionary Genetic Algorithm. The RS-equivalent levels of security and unpredictability
are guaranteed by deploying a distributed random tuning mechanism for the intra-shard weight.
We designed BOSS as an extension of the well-defined RS-based RapidChain protocol. We show
that the proposed methods can be adapted to other sharding protocols that originally used RS
techniques. We implemented and tested our protocol with more than 362,880 cases that covered
seven configurable system and optimization parameters. Our evaluation revealed ~17% average
enhancement in scalability, along with a negligible <0.5% mean absolute difference in security
levels. To the best of our knowledge, this is the first work that optimizes inter- and intra-
shard scalability, with publicly verifiable solutions in permissionless BCs, while maintaining
RS-equivalent security and unpredictability.

Genetic algorithms

1. Introduction

Blockchain (BC) is a Distributed Ledger (DL) technology that is used to replicate, share, and synchronize data spread over
different geographical locations such as multiple sites, countries, or organizations [1]. The permissionless category of BCs implies
a main property of no central administrator or data storage mechanism. Starting in 2009, several variants of a reliable consensus
algorithm were proposed to govern this peer-to-peer decentralized BC network, namely Proof of Work (PoW) [2]. Numerous benefits
and applications of BCs have promoted their popularity among a broad spectrum of businesses, including governance, industry,
decision-making processes, management, the Internet of Things (IoT), information security, and energy [3]. The advantages of BC
utilization in these businesses include reliability, complete and secure decentralization, traceability, and immutability [4]. However,

* Corresponding author.
E-mail address: baniatah@inf.u-szeged.hu (H. Baniata).

https://doi.org/10.1016/j.i0t.2023.100955

Received 15 June 2023; Received in revised form 22 August 2023; Accepted 23 September 2023

Available online 25 September 2023

2542-6605/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://www.elsevier.com/locate/iot
http://www.elsevier.com/locate/iot
mailto:baniatah@inf.u-szeged.hu
https://doi.org/10.1016/j.iot.2023.100955
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iot.2023.100955&domain=pdf
https://doi.org/10.1016/j.iot.2023.100955
http://creativecommons.org/licenses/by-nc-nd/4.0/

H. Baniata et al. Internet of Things 24 (2023) 100955

the adoption of BC-related technologies also posed several challenges, related to, for example, scalability [5] and latency [6].
Specifically, the throughput of a BC system, defined as the number of processed transactions per second (TX/s), is far from current
practical requirements. Thus, throughput has become a crucial limitation that prevents BC from being adopted in applications that
require real-time response [7].

Sharding is a type of database/network partitioning technique that separates a very large set of operating elements into smaller,
faster and more easily managed parts called shards [8]. These shards process disjoint sets of data in parallel. The very act of
partitioning the network into such smaller shards results in a higher throughput level of the network compared to its non-sharded
version. That is, each node does not have to store and validate the entire BC, but only a subset of it. Thus, sharding can reduce
network congestion and increase transaction speed, as well as lower the storage and computational requirements for each node.
The increasement in throughput and scalability levels is guaranteed, regardless of the node criteria used during its assignment to
its shard(s).

Since, by definition, permissioned BCs consist of trusted parties, sharding can be easily adopted/integrated in such systems. These
trusted parties are expected to perform data/node partitioning, propose trusted data configurations, and act as PKIs. In permissionless
BCs, however, sharding is not an easy task to do, as several issues challenge its integration. For instance, untrusted leaders, or
groups of nodes, must be anonymously elected in a costly distributed fashion. The election methods deployed must be formally
proven correct and safe in a strictly challenging trustless environment. On the other hand, objectives, including communication
costs, should be considered during BC sharding as they would increase the total scalability [9].

Few proposals could prove the applicability of proper methodologies providing secure and scalable BC-based permissionless
systems. Specifically, interesting yet highly complex hybridization approaches (e.g. of different consensus mechanisms, each of
which is utilized for a different layer of data) were proposed. The computational or communications costs associated with the
identity establishment phase in permissionless BC sharding protocols play an important role in calibrating the security-scalability
trade-off. In particular, this leads to either overly unscalable or insecure systems [10].

Since sharding provides higher scalability regardless of node-shard assignment criteria [11], Randomized Sharding (RS) was
used by all previous works that addressed sharding in permissionless BCs (e.g. Elastico [12], Omniledger [13], RapidChain [14]
and Ethereum 2.0). That is, RS was found to be the most secure approach against adaptive adversaries, potentially performing
Sybil-attacks [13,15]. This is because RS satisfies the critical needed unpredictability property.

The aforementioned scalability and energy efficiency needs can be neglected when using unrestricted (i.e., in terms of
e.g. computational or communications costs) BC infrastructure. That is, high security guarantee with non-optimized scalability
is usually considered more acceptable than lower security guarantees with optimized scalability. This is true as long as the
system can tolerate high computational and/or communications costs. However, in the case of real-time application requirements
(e.g. Internet of Vehicles (IoV)) or very limited computational abilities (e.g. IoT), scalability and network optimization methods
must be considered.

Genetic Algorithm (GA) is a type of evolutionary computation that uses natural selection and genetic operators to search for
optimal solutions in a given problem domain. Genetic algorithms can be applied to various types of problems, such as optimization,
feature selection, machine learning, and artificial intelligence. However, GA faces some challenges when dealing with large and
complex problems, such as high computational cost, slow convergence, premature convergence, and loss of diversity. These
challenges can limit the scalability of GAs and affect their performance and quality of solutions. Therefore, researchers have proposed
various techniques and strategies to improve their scalability, such as parallelization, distributed computing, hybridization, niching,
elitism, adaptive parameters, and problem decomposition.

In this paper, we address these complexities in permissionless BCs targeting the provision of secure and scalable node-shard
assignments. Specifically, we propose a novel Blockchain Optimized and Secure Sharding (BOSS) protocol as our main contribution,
in which we implement distributed scalability tuning for a niched Pareto GA-based optimization. The designed distributed tuning
mechanism of the GA variables results in secure assignments in terms of RS-equivalency, unpredictability, and public verifiability.

In particular, we collectively show that our proposed BOSS protocol provides:

1. RS-equivalent security (i.e., in terms of shard-level security and unpredictability of node-shard assignments),
2. Higher scalability (i.e., in terms of average intra-shard data propagation),
3. Public verifiability of node-shard assignments.

The remainder of this paper is organized as follows: Section 2 discusses state-of-the-art solutions that attempt to address sharding
problems in permissionless BCs. Section 3 provides the necessary background information related to the methods we use, the
formal definitions, problem statement, and threat models. In Section 4, we explain the proposed methods, including the niched
Pareto evolutionary sharding optimization, the distributed scalability tuning mechanisms, and the experimental setup. After that,
we present, analyze, and discuss the scalability and security results of our proposed protocol in Section 5. Finally, we conclude our
work in Section 6.

2. Related work

Several state-of-the-art works utilized different sharding mechanisms in BC-IoT integrated systems. However, critical security
limitations of those proposals can be found. For example, Wang et al. [16] proposed sharding satellite-based IoT devices and Gao
et al. [17] proposed sharding Industrial IoT devices. Both works provided security analysis for double-spend attack tolerance, yet
failed to show their tolerance against the shard compromisation attack (aka 1% Attack) [18]. This attack could be addressed for

H. Baniata et al. Internet of Things 24 (2023) 100955

permissionless BC-IoT integrated systems by Cai et al. [19] only with unrealistic assumption that adversary nodes are known prior
to running the sharding protocol.

Halgamuge and Mapatunage [20] assumed a TTP was present for the IoT system to perform the sharding tasks, which deviates
from the claimed permissionless BC-based system towards centralization. Nevertheless, the proposed sharding protocol was also not
evaluated against the shard compromisation attack. Mehraein et al. [21] used PoW to determine the members of a parent shard that
runs the sharding protocol. Using such an approach, the authors could guarantee the tolerance of the parent shard against the shard
compromisation attack. However, for other shards, they proposed a reputation-based mechanism according to which, the nodes are
identified as honest or adversary.

As detailed in the full details in [11], Elastico, Omniledger, RapidChain, and Zilliqa all satisfy allocation-randomness, as all
nodes are shuffled for each epoch. Furthermore, all of these protocols assume no trusted component. However, Omniledger and
RapidChain were found to be the most satisfying of the unbiasibility property. To validate our approach, we compare the proposed
protocol with the RapidChain sharding protocol [14] to represent previously proposed RS-based protocols. The reason we specifically
selected RapidChain from other available protocols is its usage of the Commensal Cuckoo rule [22] which does not satisfy the public
verifiability property [11].

2.1. Randomized sharding in RapidChain

RapidChain [14] is a recently proposed solution that hybridizes an improved version of the communication-based PBFT [23]
consensus algorithm and the computation-based PoW [2] consensus algorithm. Specifically, it uses an expected constant-round
algorithm for Byzantine intra-shard consensus in a synchronous, authenticated network, claiming a tolerance of up to ¥, = 1/2
fraction of shard nodes to be corrupt. Furthermore, RapidChain provides a relatively high inter-shard fault-tolerance (up to ¥ = 1/3
fraction of its network nodes) with reduced communication costs and decreased bootstrapping complexities.

In RapidChain, a reference committee in the protocol partitions the set of all nodes at random. This partitioning method
(i.e., Randomized-Sharding (RS)) is claimed to guarantee a majority of honest nodes per shard, resulting in leaders (individually
elected later in shards) being corrupt with a probability less than 1/2. However, this guarantee was not supported by evidence and
was only claimed arbitrarily.

To address this issue, a reliable mechanism is proposed to solve the probably corrupt elected leaders. That is, randomly elected
leaders of later iterations are asked to verify similar blocks previously proposed by their former leaders. Additionally, the intra-shard
protocol was designed such that a Byzantine leader can prevent progress but cannot violate safety, meaning that some honest nodes
might not terminate at the end of the iteration but all honest nodes who terminate in that iteration will output the same value,
called the safe value. Those two mechanisms, indeed, solve a corrupt intra-shard leader issue even with no solid guarantee of an
honest intra-shard majority. A side effect of these mechanisms has been reported to be a reduction in throughput by roughly half.!

In summary, RS is used in permissionless RapidChain BCs to achieve ¥y = 1/2 with high probability but not always, which we
have experimentally proven in [24]. However, there are ways around this limitation that would still guarantee the safety of the
system, such as the measures described above. Since having an insecure shard is solvable but costly, it is preferred to use RS, which
still gives a much better scalability compared to the non-sharded version. Meanwhile, RS provides the lowest probability of cases
where costly safety maintenance measures are required.

We list below the main steps of the classical RapidChain protocol to be able to precisely indicate where BOSS modifies:

1. The reference committee generates fresh random numbers to be used as seeds of PoW-based new public IDs of nodes wanting
to participate in the following epoch. Furthermore, fresh random numbers are used later by the reference committee itself as
seeds to randomly allocate the final list of nodes into shards using the Cuckoo rule.

2. Once nodes receive the new random seed, they start working individually on their new PoW-based public IDs. If a valid PoW
is found by the cutoff time, nodes send their new IDs to the reference committee. Otherwise they wait for the next seed which
will be used to generate new PoW IDs for the next epoch.

3. Once a cutoff time is reached, the reference committee uses the available valid IDs to allocate the nodes into shards using
the Cuckoo rule.

4. Once the node-shard allocation scheme is agreed on by the members of the reference committee, it is shared with all nodes
using the inter-shard communication protocol.

5. Accordingly, shard members send their TXs (which have been submitted by end-users during the past epoch) to the Output
Committee which is elected by all shards during the ID generation phase. The output committee is elected using another
random number generated earlier by the reference committee specifically for this purpose.

6. The output committee generates a valid block after verifying all TXs within, and saves this new block into its ledger.

7. Once the block is added to the ledger, go back to step 1.

The Cuckoo rule states that when a new node wants to join the system, place it at a random x € [0, 1) and move all nodes in a
unique region containing x to other random locations in [0, 1). Obviously, this rule randomly allocates new nodes to given shards
and relocates other similar nodes from their current shards to other randomly selected shards. The specific technical details, on how
this rule is adapted into RapidChain, are out of the scope of our research, as we suggest to partially eliminate it.

1 See Section 4.2.3 in the full RapidChain paper [14]

H. Baniata et al. Internet of Things 24 (2023) 100955

Table 1
Key symbols used in our formulations.
Symbol Description
G(V,E) Undirected graph representing a network
14 Set of nodes in a graph G
N Number on nodes in the set V'
E Set of edges in a graph G
w;; or w, Weight on e € E connecting nodes
i,jeG
K Faulty/Adversary nodes in G
b4 The upper bound fraction of faulty

nodes tolerated by a named distributed
system to maintain its security

Set of network shards

d Number of shards in the set R
r Shard number i

n, Nodes in the ith shard

k., Adversary nodes in the ith shard
a,; Min. no. of nodes in r;

B.i Max. no. of nodes in r;

A intra-shard weight importance

P Pearson correlation coefficient

2.2. Optimum sharding using linear programming

Following the notations described previously, and the Mixed Integer Program (MIP) model proposed in [25], we can model
the BC network sharding as an MIP problem with the objective of minimizing the total weights only at the intra-shard level. The
mathematical formulas of this program are provided in Appendix A. We can also find other graph partitioning approaches that only
targeted the inter-shard optimization, such as [26]. Formulated as such, we obtain standard LP problems that have been well studied
and can be solved by, e.g., branch-and-bound type of algorithms [27]. However, solving this problem to achieve optimal solutions
is much more costly as the problem is NP-Complete [28]. Furthermore, our goal is to provide slightly optimized, yet still readable as
randomized solutions. That is, whenever optimum solutions are targeted by a given sharding protocol, the unpredictability property
cannot be fulfilled, as an attacker can reverse-engineer the sharding algorithm.

3. Model

In this section, we elaborate on the preliminary information, from which we build up our proposal. Specifically, we give a brief
formal description of the BC and Sharding foundations. Furthermore, we state our research problem and the accompanying threat
models considered in the later discussion. To facilitate the comprehension of our manuscript, we define the key symbols we used
in Table 1. Further notation will be defined and introduced whenever necessary along the manuscript.

3.1. Blockchain

A BC-based system is characterized by its infrastructure, data structures, networking model, and Consensus Algorithm (CA).
The infrastructure can be formally described as follows: Let G = (V, E,w) be connected, undirected and weighted graph, where
V ={l1,..., N} is the set of nodes, usually termed as miners. Each edge e € E = {(i,j) : i,j € V,i # j} is associated with a distinct
non-negative real value w : E — R*, namely weight. Weights can be defined in several ways depending on the model application.
For example, weights can represent the transmission time needed to deliver 1 bit of data from node i to node j or vice versa,
computed in ms.

Data shared between elements of the set V' is described according to the application of the system. For example, TXs are submitted
by end users to the BC network so that they are processed and added to its DL. Usually, TXs are shared with all miners triggering
them to generate new blocks of data. A block usually consists of a header and a body. The header may consist of data such as the
type of block, the type of CA, the timestamp, the hash of the body and, most importantly, the proof of block validity. The body, on
the other hand, usually includes a group of TXs and the hash of the previous block body.

As BC nodes form a distributed system, these nodes exchange data through a P2P network and communicate by message passing
via directly connected lines. The described graph consists of at least one sub-graph G’ € G : (V', E’,w’), such that V' C V and
E' C E. G is also undirected and weighted as it inherits these properties from the original graph.

Every BC-based system must operate a CA in order to maintain the consistency of its DL. As tens of CAs were proposed in
the literature, a CA is usually considered valid if it was proven secure under specific formalized circumstances. One of the main

H. Baniata et al. Internet of Things 24 (2023) 100955

benchmarks used to describe the security level of a given CA is its tolerance for K faulty/adversarial nodes where K < N. For
example, the most famous CA, known as Proof-of-Work (PoW) algorithm, was proven secure” as long as K < N /2. Similarly, the
Delegated Byzantine Fault Tolerance (dBFT) algorithm was proven secure as long as K <= NT_I The upper bound fraction ¥,
tolerated by a given CA in order to maintain the system secure, is formalized in Eq. (1).

lyN = N (1)

3.2. Blockchain sharding

Sharding is a type of database partitioning technique that separates a very large database into much smaller, faster, more easily
managed parts called data shards [8]. Technically, sharding is a synonym for horizontal partitioning, which makes a large database
more manageable and efficient. The key idea of BC sharding is to assign each node in the set V, to a partition. We can simply
assume that all nodes are initially assigned to one giant shard if the network is not sharded. Let d be an integer representing the
exact number of shards to partition the graph, where R = [d] is the set {r,r,,..ry}. Each shard r;, i <= d consists of n, € N nodes
until Eq. (2) is satisfied.

Yo, =N)

d
i=1
Furthermore, let « be the minimum number of nodes in each shard, and g is the maximum number of nodes in each shard. f

can be either fixed or dynamically defined as in Eq. (3).
p=N-(d-1a. 3

Each shard processes a disjoint set of TXs, yet all shards utilize the same CA, leading to increased overall system throughput. As
described in [29], d grows linearly with both the total computational power of the network, and with N.

Assume all v; € V have the same computational power, and a fraction ¥, of which is controlled by a Byzantine adversary. All
nodes have access to an externally specified constraint function(s) C — {0, 1} to determine the validity of each TX submitted to or
confirmed by the network. A sharding protocol outputs a set R where each shard r; € R is trivially expected to contain a subset
k, € K adversary nodes leading to a state represented by Eq. (4).

k, =K “@

-

i=1

Subconsequently, a shard r; € R is considered secure if k,, /n, <= ¥g, where ¥y is the upper bound fraction of adversary/faulty
nodes, tolerated in each shard, to maintain the correctness of the shard consensus. In the case where the CA used between shards
to agree on a piece of data is the same as the CA used within shards, the intra-shard tolerance ¥ should be equal to inter-shard
tolerance ¥ . Otherwise, each will have a different value.

Studying the literature, we can find several works that attempted to address the need for secure sharding in permissionless BCs.
For example, Zhang et al. [30] and Huang et al. [31] assume a leader in each shard, while Manuskin et al. [32] and Naresh et al.
[33] used external coordinators (TTPs) to perform the sharding tasks of the BC network. Both [30,31] assumed that ¥, =¥ = 1/3.
However, Zhang et al. [30] deploys a BFT-like method to elect a leader, while Huang et al. [31] uses a reputation-based approach
for election. Luu et al. [12] built on even stricter assumptions, specifically that ¥, = 1/4 and ¥y = 1/3.

SSHC [34] adopts a sequential committee selection instead of a concurrent method and claims that ¥, < 1/3 by design. That
is, each shard consists of an elected leader and the set R is generated by an elected shard r,,,,,,. Additionally, digital signatures
and verification were used to verify the honesty of nodes. Alon et al. [35] claimed a tolerance of ¥, < 1/2 under the condition
that this system only works in very large systems. Some other works did approach the problem only for permissioned BCs or with
further relaxed initial assumptions. For example, Zhang et al. [36] assumed that all nodes were honest, and evaluated the proposed
scheme on the inter-shard level while varying d. We encourage the reader to refer to our comprehensive survey [24], which provides
detailed technicalities related to state-of-the-art sharding solutions in permissionless BCs.

3.3. Problem statement

By definition, a BC sharding protocol enhances the BC-based solution, in which the BC is deployed, in terms of scalability. That
is, the scalability of a BC-based solution is usually benchmarked by the overall throughput of the system, while increasing N. On
the other hand, the security-related agreement property is benchmarked with reference to a security parameter which is satisfied in
a sharded BC if Condition (5) holds:

k,.
Vr,€R: — <=W, 5)

n,

2 Assuming all nodes control equal computational powers. Otherwise, ¥ is represented as g < T/2, where ¢ is the max collective computational power
controlled by the adversary and T is the total hash power of the network.

H. Baniata et al. Internet of Things 24 (2023) 100955

That is, each shard consists of a fraction of at most ¥y faulty/adversary nodes out of all nodes belonging to that shard. Each
shard, then, shall provide a level of agreement that is equivalent to the level of agreement of the same BC if it were not sharded.

In most sharding protocols, RS is run regularly in order to maintain a high probability that Condition (5) holds. However, such
a sharding approach takes away the optimal data propagation within, and among, shards. Specifically, this approach results in
relatively low throughput in exchange for a high level of security.

The trade-off between scalability and security in sharded permissionless BCs is an open optimization problem [37]. Our research
goal is to propose a BC sharding protocol that addresses this problem. Specifically, we target a protocol that always results in one
of the following two objectives:

1. Find optimal distribution of ¥V among R in terms of scalability, such that Condition (5) is equivalently satisfied as in RS
protocols, OR

2. Find RS-equivalent distributions of ' among R in terms of scalability, such that Condition (5) is satisfied with higher
probability compared to RS protocols.

We assume that Condition (5) is always satisfied when d = 1 (i.e., the BC is not sharded). Note that if the adversary nodes were
known prior, or while sharding, they must be distributed equally among shards. A protocol such as MaOEA-DRP [19] even optimized
the distribution of adversary nodes assuming that they are known before sharding. In our case, we assume that adversary nodes
are not known to the system prior to or while sharding. However, we assume that an adversary/faulty node can be detected and
immediately reported by honest nodes, which might trigger a new round of BC sharding (as Condition (5) may not hold anymore).
The detection mechanism of adversary nodes is trivially dependent on whether the proposed solutions are reliably verifiable, a
property that we show later to be satisfied in BOSS.

3.4. Overview of the BOSS protocol

Referring to the RapidChain protocol (see Section 2.1), the proposed BOSS protocol adds/modifies two main sub-steps to the
original steps as follows:

» First, the reference committee is asked to generate an additional random float number between 0 and 1, namely (1), during
step 1. Note that generating several random numbers during each epoch is a main step of the classical RapidChain protocol.
Thus, there is no overhead caused by generating A.

» Second, 4 is used in Step 3 by the reference committee itself to assign nodes to shards using the GA algorithm instead of the
Cuckoo rule. To guarantee the public verifiability property, 4 is shared with all nodes at the beginning of each epoch so that
the node-shard allocation scheme (later generated in step 4) becomes reproducible, i.e. verifiable.

We can highlight the difference between the original Rapidchain approach and the proposed BOSS approach as follows. A new
optimization target (either inter- or intra-shard scalability, represented by the value of 1) is randomly selected in a distributed
unpredictable way. This value is integrated into a niched Pareto GA-based algorithm, along with other variables such as the weights
on the connection links between nodes, that optimizes the new network. The advantage of such approach is enhancing the scalability
of the sharded network in terms of data propagation on the inter or intra -shard level. Meanwhile, the proposed BOSS protocol
maintains an unpredictable output as the randomness requirement of sharding protocols is delegated from the node-shard allocation
step in RapidChain to the selection of A step in BOSS.

In the case of BOSS, if we fix the parameter A an attacker can collect all its nodes either the closest (in case the target is announced
to be intra-shard scalability optimization) or the farthest (in case the target is announced to be inter-shard scalability optimization)
from each other.

However, running only a few generations of the GA algorithm by a few nodes is sufficient to address our optimization target.
The key security ingredient in our protocol is not hiding A, nor fixing its value as a function of N. Rather, only the property of 1
value being randomly selected for each round oscillates the protocol’s goal between inter and intra -shard optimization. This shall,
trivially always, produce an optimized sharded network with higher scalability compared to non-sharded and RS-based sharded
networks with unpredictable optimization target for any given attacker.

In summary, BOSS could combine the advantages of both RS- and LP-based sharding, namely, the unpredictability and the
optimization, respectively. Meanwhile, it could address the sharding problem in permissionless BCs without the limitations of RS
and LP, namely the high data propagation in the sharded network and the high costs to compute the sharded network, respectively.

3.5. Threat models

As described earlier, a reference committee in RapidChain is responsible for sharding the network. Participants in this committee
are regularly changing using a network-level permissionless voting that we consider secure. That is, the initial assumption is that
¥, does not exceed the tolerated level (i.e., 1/3) and thus the participants of the reference committee are guaranteed randomly
elected. Specifically, the system nodes will keep terminating with the so-called safe-value, until all nodes agree on the same value,
indicating a correct random election result.

As a proof-of-concept, we extend the original RapidChain protocol. Thus, our protocol inherits the RapidChain correctness
properties of Fairness, Liveness, and Unbiasibility. However, we still need to show the correctness of our protocol in terms of Verifiability
and Unpredictability. To address this, we consider two threat models as follows:

H. Baniata et al. Internet of Things 24 (2023) 100955

Table 2
Parameters used in our experiments, with the corresponding minimum and maximum tested configurations, and number of test cases per each parameter.
Index Parameter Min. Max. Step No. of test cases Accumulated total
1 No. of Generations 10 100 10 9 9
2 Population size 10 50 10 4 36
3 Nodes to be mutated(%) 0.1 0.5 0.1 4 144
4 Allowed sol. repetitions 3 10 1 7 1008
5 Net Size 10 50 10 5 5040
6 A 0.1 1 0.1 9 45360
7 K/N 0.1 0.45 0.05 8 362880

3.5.1. Reference committee is compromised by an adversary

In this case, correctly and randomly electing the members of the reference committee resulted in the majority of these members
being already controlled by an adversary. Accordingly, the adversary can generate the set R so that at least one shard consists of a
majority of dishonest nodes. This might obviously lead to manipulated TXs being appended correctly to this shard’s chain, accepted
by other shards and, consequently, appended to the public DL. This threat is not addressed in the original RapidChain protocol
because the resulting set R is not publicly verifiable [11]. We show in our security analysis that our protocol addresses this threat
as the reference committee is enforced to propose a publicly verifiable R.

3.5.2. Node-shard assignment is predictable

The node-shard assignment criteria in the original RapidChain protocol is purely random. This means that an adversary that
controls K cannot predict or control the next assignment of its nodes. The case of a shard consisting of more than ¥y, due to the
randomness unpredictability, was solved in RapidChain with the exchange of halving the throughput (as described in Section 2.1).

Our protocol, however, modifies on this RS criterion as it prefers node assignments that provide either optimized inter- or
intra-shard propagation delay. Accordingly, the adversary can manipulate the algorithm to have all its K nodes in one shard, if the
protocol strictly prefers minimized inter- or intra-shard propagation delays. That is, K can be located very close to each other (in
case strictly intra-shard propagation was preferred to be minimized), or very distant from each other (in case strictly inter-shard
propagation is preferred to be minimized).

Assuming realistic slowly-adaptive faulty/adversary nodes, we show in our analysis that the adversary may be able to predict
the outcome of the protocol, once 4 is published, but cannot manipulate it. Furthermore, we show that our protocol satisfies the
unpredictability property of the set R. That is, the adversary may be able to change the characteristics of its K nodes, yet it would
be impossible for it to predict the outcome of the protocol before the generation of the next A value. Therefore, changing the
characteristics of the nodes in K would be only arbitrary.

4. Optimization methods & algorithms
4.1. Evolutionary sharding optimization

In this paper, we implement a Genetic Algorithm (GA) for solving the underlying MIP problem, as such approach has several
advantages in the context of our research. First, GA is inherently heuristic and is not guaranteed to produce globally optimal results.
Since we are not seeking such results, there is no need to waste much lengthy time for optimization using LP. At the same time, GA
has been proven to provide good enough results for practical use. Second, GA can be designed to run for a predefined number of
iterations or a predefined amount of time. Thus, GA is controllable in terms of computational costs. Third, and most importantly,
we can improve on the classic GA approach to tune up and down the optimization level, which is the core security factor in our
proposal as will be discussed later in the manuscript.

Specifically, GAs work on generations of individuals [38]. In our case, an individual is a list of lists, each list corresponds to a
shard. Each generation has predefined number of individuals, where it is a system-wide configurable parameter, namely population
size. Computation proceeds in iterations, where both the input and output of each iteration is a generation consisting of the
configured population size. There are several other implementation details to fill in the basic algorithm, such as the crossover
strategy and mutation strategy. Since these parameters depend on each other non-linearly, making the optimal choices is a highly
non-trivial task.

For our experiments, we ran tests with the configurations provided in Table 2. Specifically, we used a simple nested FOR loop
to test all cases with each other. We tested for different numbers of generations, or iterations per test case, from 10 to 100. In each
iteration, we tested for different population sizes from 10 to 50. We applied only crossover operations under two strict conditions.
First, relocating the selected nodes (i.e., each into the other’s shard) should result in the mutated shards to be connected. Otherwise,
the crossover is reverted. Second, the selection criteria of nodes to be relocated is defined as the first node(s) in a sorted set of node
IDs. For instance, if the number of nodes to be relocated per shard per mutation operation is 2, nodes 1, 5 in a shard r; with the
nodes 1, 5, 29, 51 will be tested for mutation. They will be relocated into shard r; ;. The node(s) that satisfy the first condition will
remain in their new shards. We further tested for different numbers of nodes to be relocated per shard per mutation operation. This
configuration is calculated as a percentage of nodes in the shard. We tested percentages ranging from 0.1 to 0.5.

H. Baniata et al. Internet of Things 24 (2023) 100955

Note that uniform selection between parent genes is rather easy to achieve by generating random selection vectors. This is
typically used to satisfy the unpredictability requirement. However, this would lead to unverifiable solutions as seen in the original
RapidChain protocol.

As we propose a different approach to solve for the unpredictability requirement, there was no need to adopt the original node
selection strategy. The crossover of a population terminates once the end of the specified number of iterations is reached, or if
the same similar solution was obtained for a specific number of allowed repetitions. We tested for different allowed repetitions
configurations from 3 to 10.

There are three more configuration parameters that we oscillated in our experiments: Network size, for which we tested sizes
ranging from 10 to 50, with a moving d = max([N/10], 1). The intra-shard weight importance A will be discussed and justified
in the following subsection. Finally, the adversary fraction K/N to be tested against the RapidChain’s fixed ¥, = 1/2, Vr; € R.
This was necessary to evidently evaluate our approach, against the RS approach, under different compromising scenarios. Note that
RapidChain claimed a system-level tolerance of adversary/faulty nodes ¥,y = 1/3, resulting in a shard-level tolerance ¥, = 1/2.
However, we configured our experiments to test system-level adversary fractions ¥, ranging from 0.1 to 0.45, and later assisted
the shard-level security with reference to the original ¥, = 1/2.

4.2. Scalability tuning

To understand the proposed intra-shard weight importance (notated as 1), one should notice that the previously described MIP
model takes into consideration only the total weight of the connections within shards. That is, the program will optimize, such that
nodes with the least weights on their connection links will be allocated in similar shards. This would lead to predictable allocations
and the adversary can place its K at one geographical location to guarantee that all its nodes will be assigned into one shard.

We propose that the importance of such allocation strategy can be varied. That is, the importance of the scalability on the
inter-shard level can be, more or less, than the importance of the scalability on the intra-shard level. Note that both directions
of scalability enhancements improve the collective system throughput as data is indeed being shared on the shard level (e.g. TXs
assigned to this shard) and the network level (e.g. Blocks to be verified and permanently appended to the DL). To address this need,
we add one binary variable to the previously described MIP model, namely gl.c.’ . This variable takes the value of one if the edge
(i, j) connects nodes i, j € V, which are assigned into different shards ¢,/ € R, and zero otherwise. Accordingly, we modify on the
Objective Function (A.1) leading to a niched Pareto [39] Objective Function (6).

min Z (1 = Dw;;g; + Aw;;x;; (6)
(i,j)EE

Using Objective Function (6) instead of (A.1) as a fitness function for our GA, equal optimization opportunities to the traded-off
inter- and intra-shard scalability can be obtained. That is, increasing the importance of one results in instant increment in the
importance of the other. Using such approach, we gain several benefits. First, we achieve a fair scalability optimization between
inter- and intra-shard connectivity. Second, in both cases, the scalability level is controllable. Meaning that on the intra-shard
level, we can drastically increase/decrease the optimization direction. We can also simply define 4 = 0.5 which would lead to
an equal optimality on both levels, or define 4 = 1 to obtain a maximum intra-shard optimization. Third, if A is guaranteed to
be unpredictable, an adversary may in no means predict how the optimization algorithm would behave and, thus, satisfying both
scalability optimization and solution unpredictability.

We need to highlight the Pareto optimality that our objective function is targeting. Assuming that w;; represents the connection
latency in ms, utilizing the highest value of A (i.e., A = 1) results in shards mostly consisting of miners with very low connection
latency. Meanwhile, this latency between shards would be maximized. Accordingly, scalability in terms of data propagation within
shards would be near optimum, resulting in the highest throughput possible on the shard level. Data propagation between shards
would then be at its worst, resulting in the lowest throughput possible on the network level.

Taking the lowest value of A (i.e., 4 = 0) would, similarly, result in the highest possible inter-shard throughput with the
lowest possible intra-shard throughput. In other words, the spectrum of A values (i.e., 1 € [0, 1]) practically defines our algorithm’s
optimization convergence direction (i.e., Pareto optimality) towards a best shard level or network level throughput, which solves
for the trade-off between the two objectives.

4.3. Distributed scalability tuning

Following the so far described methods, we still need to define a secure, unpredictable, and distributed tuning mechanism for
A. That is, the scalability tuning approach integrated into the evolutionary GA-based sharding optimization can be used in both;
permissioned and permissionless BCs. However, such sharding approach is unnecessarily too complex for permissioned BCs as a
trusted entity is assumed. Thus, only faulty (instead of adversary) nodes can appear throughout the network. As a result, the trusted
entity(s) are able to securely optimize the node-shard allocation without concerns of an adversary compromising the network.

Generating 4 in a permissionless setting is critical yet simple task. As can be found in the literature, there are several approaches
to generate random seeds in a distributed permissionless settings with sufficiently high security guarantees. For example, we can use
the RandHound [40] for permissionless BCs and RandHerd [40] or RANDCHAIN [41] for permissioned BCs. High security guarantees
include formal proofs that those protocols satisfy the consistency, liveness and unpredictability requirements [42].

In RapidChain, the RandHound protocol is used to securely generate agreed-on random seeds, which in turn are used for building
the set R. Since the set R is the output of the proposed GA-based protocol, there would be no need for the classical random seed.

H. Baniata et al. Internet of Things 24 (2023) 100955

That is, we can instead configure the RandHound sub-protocol to generate random A values that range between 0 and 1. This value
is assumed public and can be accessed by any entity in the network, including an adversary that does not belong to the reference
committee. Using this value, reference committee members can work in two ways. They can either wait for an elected leader to
canonically optimize the set R, and then verify its output is correct even if the leader was compromised. The other way is performing
a Distributed Genetic Algorithm (DGA) [43-45] optimization operations to collaboratively propose the next set R. In both cases, all
the algorithm parameters are predefined except for A.

DGA means that distinct optimization nodes are maintained. Search proceeds in each of these distinct nodes, similarly to any other
canonical version. However, in addition to running several independent genetic searches in parallel, copies of the best individuals in
each of the sub-populations are migrated to selected neighboring sub-populations. Accordingly, the distributed populations maintain
some independence yet occasionally get affected by other solutions, which is the expected case in the centralized version. Several
researchers, such as Belding [46] and Patel et al. [47], showed that even with a massive amount of migration, DGA performs
better than a canonical GA version. On the computational efficiency and quality of search issues, Adeli and Kumar [48] showed
that similar to canonical results can be obtained using DGA in a smaller number of population generations or design iterations.
However, we perform our experiments using a canonical approach for simplicity. Further investigations are required regarding the
secure utilization of DGA, in particular, which we leave as an open issue for future research.

4.4. Experimental setup

We specified previously the exact values of parameter configurations that we tested using RS and the proposed BOSS protocol.
We implemented our code using Python 3.9 and we made it publicly available.®> Our experiments were carried out on a DELL PC
with an Intel i5-8265U CPU (8-Cores, 3.8 GHz) with 12 GB DDR4-SDRAM, 500 GB of SSD and Windows-10 OS. As provided in
Table 2, we ran a total of 362880 different test scenarios. With each loop, only one parameter is increased by its corresponding
‘step’. Thus, we could abstractly track and capture the general effect of each parameter on both the scalability and security. We used
the Networkx library* to build random graph connection models in our experiments, namely Erdos-Renyi model [49]. To realize
the attack scenario mentioned in Section 4.2, we configured adjacent nodes with the least weights on their connection edges, as to
be controlled by an adversary. The number of nodes to be defined as such is determined according to the parameter K/N of the
running scenario. To reliably emulate the RS in RapidChain, we used the well documented pymetis®® library.

For each test case, our code shards a randomly generated network twice, once using RS and once using our proposed BOSS
protocol (i.e., generates two solutions Rpg and Rp,gs). Then, it calculates the percentage of scalability enhancement and the
security level of each resultant set R using Egs. (7) and (8), respectively.

Avg_Shard_Diameter

Scalability = (1 — xd 7
calability = (Network_Diameter) @

N
Security_Level = umber_Of_Zecure_Shara’s 8)

Note that in both cases, we only consider the intra-shard status as we aim to analyze the generated R sets from the perspective of
the adversary (i.e., to show if the adversary can capture a difference between RS results and GA-based sharding results). We assume
that a shard is secure if k,, /n, <=, and insecure otherwise.

5. Results & discussion

The full database of test cases, along with their corresponding individual scalability and security results, is publicly accessible
at [50]. In this section, we analyze this database in order to evaluate the scalability enhancement and the security of the proposed
protocol.

5.1. Scalability

To simplify the demonstration of the obtained measures, we present in Fig. 1(a) the upper part of a full scalability comparison
figure, for all test cases, starting from the enhancement value ‘200%’. The minimum enhancement in the full figure is trivially
zero. In Fig. 1(b), we provide all scalability enhancement differences (i.e., Rppss — Rpg) for all test cases. We can notice that
the differences mostly fluctuate between approximately —50% and 80%, leading to an expected average scalability enhancement
difference of about (80 + (—50))/2 = 15%. Indeed, averaging the difference in scalability enhancement between Rpo¢g and Ry, for
all test cases, revealed a positive average intra-shard scalability enhancement > 16.9%.

From our full database, we selected the fields at which parameters 1, 2, 3, 4, and 7 are fixed to 50, 20, 0.2, 7, and 0.45,
respectively, while parameters 5 and 6 change in their ranges (see Table 2). As discussed previously, network size (N) determines
the number of shards (d), which in turn justifies the observed direct correlation of the scalability enhancement with N throughout

https://github.com/HamzaBaniata/Sharding
networkx.org

metis.readthedocs.io/en/latest
Github.com/inducer/pymetis

o oA ow

https://github.com/HamzaBaniata/Sharding

H. Baniata et al. Internet of Things 24 (2023) 100955

. 4o
it i s
20 Bl o -l ‘n .|||,|. i" :,,;‘ .”!ii’l |n|||l o 4;‘ -‘r '1 I'w || |]

Scalability Enhancement (%)
B

20 SRS 4 > o . -‘ ""I '
210 : .

3. : b ¥ P .

W Scalability_of_GA(%) ® Scalability_of_random(%)

(a) Scalability enhancement measures of our GA-based sharding protocol (BOSS) and the RS protocol, relatively to the scalability of the corresponding non-sharded version of the tested
network.
150

Difference in Scalability Enhancement

(b) Scalability enhancement differences

Fig. 1. Scalability enhancement measurements (compared to non-sharded) of the proposed GA-based sharding protocol (BOSS) and the RS protocol (a), and
individual differences between those scalability measures (b).

& 250 1
=
s 0.9
£
2 200 0.8
©
=
u=4 0.7
>
£ 150 0.6
=
= '\ 0.5 =
o | |
v
- 100 { 0.4
s :
- 0.3
3 l
e ‘ 0.2
o
H III\HII HI| IIII\H IIIIHII HIII II \III IIH\III" 0
=2 o0
H Q Iﬂ (ﬂ l\ m H N N m g wn
H - H H rl H H H H H H H N N N N N ~N N N NN N N ~N lﬂ Mm mnon mn o0
Test Case
BN Network Size Scalability_of_random(%) === Scalability_of_GA(%) === A

Fig. 2. Scalability enhancement measures, while changing the network size and the intra-shard weight importance (1), of Randomized Sharding (RS) and our
proposed Evolutionary sharding protocol (BOSS). (All values are correlated with the main y-axis on the left, except for A which is correlated with the secondary
y-axis on the right).

our results. This can be seen in Fig. 2, in which we present the scalability enhancements of Rpog¢ and Rpg compared to the
corresponding, randomly generated non-sharded network at each case. Our statistics showed that BOSS positively enhanced the
scalability of the tested networks in 83.3% of the test cases (304,276 out of 362,880).

We also expected that, in theory, decreasing 4 should result in lower intra-shard scalability enhancement. However, we could
not easily observe, throughout our results, an obvious correlation between the selected value of A and the intra-shard scalability
enhancement. As can be observed in Fig. 2, the average (and pattern) of intra-shard scalability enhancement using our proposed
protocol remains unchanged regardless of the value of A. We speculated that the expected decrement in scalability was compensated
by the effect of another parameter in the experiment. To accurately respond to this speculation, we systematically investigated the
correlation between our inputs and results as follows.

10

H. Baniata et al. Internet of Things 24 (2023) 100955

Table 3

Pearson correlation coefficient (p) between each of the input variables and our resultant scalability and security measures.
- Output ‘ Scalability BOSS ‘ Scalability RS ‘ Scalability diff H Security RS | Security BOSS | Security diff
Net Size (N) 0.799486607 0.791243778 0.126345923 0.080064283 0.05869829 —0.018550198
A 0.150089933 N/A 0.410773345 N/A —0.073728401 —0.067350578
No. Generations —0.001022806 N/A —0.00130156 N/A —0.000651157 —0.001110344
Nodes to be mutated(%) 0.00381835 N/A 0.012262811 N/A 0.000985198 0.000286706
Population size 0.032441252 N/A 0.088256124 N/A —0.004183775 —0.002124442
Allowed sol. repetitions 0.000390606 N/A 0.002407999 N/A 0.000325748 0.000841723
K/N —0.000108202 —0.000705094 0.001534178 —0.485068285 —0.501122788 —0.022353882
Number of Shards (d) 0.853833329 0.838531281 0.151793186 0.041397203 0.025334008 —0.01423635

We calculated the Pearson correlation coefficient” (notated as p) between each of the input variables and our resultant scalability
and security measures.® The closer the calculated coefficient to zero, the lower the correlation between the tested variables. On the
other hand, the further the coefficient is from zero, the better the fit and the greater the correlation. Specifically, the values can
range from —1 (perfect negative/inverse correlation) to +1 (perfect positive/direct correlation). The calculated correlation results
are provided in Table 3. As it can be seen in the table, the parameters that majorly affect the scalability enhancement of our protocol
are the network size, with a positive p ~ 0.8, and the number of shards (d), with a positive p ~ 0.85. Additionally, 4 with a positive
p ~ 0.15 does indeed affect the scalability of our protocol as expected, yet not as strongly as d and N. Note that our protocol’s
correlation coefficients with these parameters is almost equal to the correlation coefficients between these parameters and the RS
protocol.

Since a value of p < 0.2 typically indicates a low level of correlation, one can argue that it might be probable that such correlation
with A (i.e., p ~ 0.15) is purely related to the, generally uncontrollable, grade of unexpected randomness in GA [51,52]. However,
the highest correlation coefficient value for the difference (Rgys5— Rgs) is p = 0.41, which relates it with A. This trivially refutes the
argument. To clarify, increasing A will lead to higher scalability on the intra-shard level. Since we do not consider the inter-shard
scalability level in calculating the scalability enhancement (check Eq. (7)), with the intra-shard scalability using the RS protocol
being almost constant, the difference is indeed expected to increase while increasing A.

We highlight that this unexpected weakness in the correlation between the scalability enhancement and 4 is a beneficial property
as it gives two main advantages. First, this observation is an experimental proof that our protocol could successfully utilize GA to
almost always generate higher scalability than RS, regardless of the randomly selected value of A. Second, even with guaranteed
higher average scalability enhancement, high A values do not imply that nodes with the lowest weights on their adjacency connection
links would be allocated in similar shards. The first advantage is beneficial in terms of scalability, while the second is beneficial in
terms of security. We will further analyze the security of our protocol in the following subsection.

It is also worth noting that p between the scalability difference and both the network size N and the number of shards d is
p < 0.15. This indicates that increasing the network size will not majorly increase the difference in scalability between Rp,¢g and
Rys. However, if it did, our protocol is expected to provide better scalability enhancement compared to RS since p is positive.

Lastly, regarding the time overhead of the adopted GA over the Cuckoo rule, we could not find specific benchmark of the number
of reallocated nodes to compare our GA with. This is because this number is flexibly configurable at the time of deployment.
However, there are similar parameters in the BOSS protocol, which are the number of generations, the population size, the
percentage of nodes to be mutated, and the allowed solution repetitions. Those parameters have the same effect on the time overhead
as the number of reallocated nodes in the Cuckoo rule. As our results showed that all of those parameters imply no practical effect
on the scalability and security of the protocols’ outputs (see Table 3), we can set these parameters to the minimum values stated in
Table 2. During our experiments, we found the time overhead using such minimum configuration to be negligible (i.e., less than a
second for a typical PC) compared to the total epoch time (i.e., >600 s).

5.2. RS-equivalency

Referring to the data presented in Table 3, both our protocol and the RS protocol, are mainly, and almost equivalently, affected
by K /N, which is a trivial expected observation. That is, regardless of the network size or the number of shards, the more nodes
controlled by an adversary in a given network, the higher the probability that the set R will consist of non-secure shards. On the
other hand, the correlation coefficient between A and the security level of the proposed BOSS protocol is very close to zero. This
practically means that the value of 4 contributes negligibly to the level of security in our protocol.

We demonstrate these observations in Fig. 3, where we plot the security level measurements of both protocols, which we obtained
from our tests, while 4 and K/N values were changing. Obviously, it is very hard to determine a major difference in the resulted
security levels while changing A and fixing K/N. However, decreasing K /N value indeed decreases the probability of obtaining
non-secure shards regardless of the value 4, and thus increases the security level.

7 Also termed product-moment correlation coefficient
8 The detailed calculation method is described in Appendix B

11

H. Baniata et al. Internet of Things 24 (2023) 100955

1

e o o
2 & 8
Fraction of K/N &A

Security Enhancement (%)
e
0

°

0 50000 100000 150000 200000 250000 300000 350000
TestCase

g
g

Security_of_random(%) === Security of GA(%) ® adversary fraction ® intra_shard_importance

Fig. 3. Security level measurements of our GA-based sharding protocol and the RS protocol (correlated with the main y-axis on the left), while changing
intra-shard weight importance (1) and the actual adversary fraction (K/N) (correlated with the secondary y-axis on the right).

—— Difference in Security
= =2 Trendline

Difference in S ecurity Level (%)
E88s8o88888

Test Case

Fig. 4. Difference in the security of our GA-based sharding vs. RS protocols, with trendline for all tested cases.

In Fig. 4, we plot the differences in security values (i.e., Rpogs— Rrs) While decreasing the fraction K/N. Although we can at a
first glance argue that K /N is directly correlated with the difference in security, this is not an accurate description. Specifically, we
can see in Table 3 that the security difference correlation with all test parameters, including K/N, is very close to zero. However,
decreasing K/N generally decreases the probability of having non-secure shards in the set R regardless of the protocol used for
sharding. This can be seen in Fig. 3 which is supported by the correlation data provided in Table 3. As a result, decreasing K/N
leads to statistically equivalent increment of secure shards in both sets Rppgs and Ryig. In other words, as K/N decreases, the
security level of both protocols gets closer to 100% security level, resulting in a less total difference readings of the security levels.
We can notice that the differences presented in Fig. 4 mostly fluctuate between approximately —50% and +50%, leading to an
expected average security difference of (50 +(—50))/2 = 0%. Indeed, averaging the difference in security levels between Ry, ¢¢ and
Ry, for all test cases, revealed a negligible mean absolute difference < 0.5%.

The results presented thus far clearly prove that our proposed BOSS protocol is able to shard BC networks with an RS-equivalent
security level and enhanced scalability. Thus, the proposed BOSS protocol successfully addressed the first research objective declared
in Section 3.3. We further need to show that the BOSS protocol fulfills the unpredictability and verifiability properties, demonstrating
that this protocol is robust against the threat models listed in Section 3.5.

5.3. Unpredictability

Since the value of 4 in our protocol is defined randomly, we take a case where the adversary collects all its miner nodes at one
location with almost zero latency. The adversary will honestly adhere to the protocol’s rules until 4, by luck, serves for its shard
controlling purpose.

As the description of the protocol states, the output of the protocol (i.e., the set R) can only be generated when the value of 4
is known. However, the protocol also requires the list of nodes and their corresponding meta data (e.g. identities, neighbors, edge
weights, etc.). Now we analyze the steps of the protocol and the expected actions to be made by an adaptive adversary. As in most
realistic scenarios [53], we assume a slowly-adaptive adversary.

Let ¢, t,n, and ¢, be the instants when the sharding protocol is triggered, terminated, and re-triggered, respectively. We shall
show that an adversary cannot manipulate the protocol, during the period 7, — 1, [37], such that its nodes would be included in a
selected shard. To facilitate following up on our described timeline, we show the defined instants and periods in Fig. 5.

During the small period of time ¢, — ¢, the adversary can indeed predict the outcome of the protocol but cannot manipulate it.
That is, 4 is assigned a randomly selected value, which is generated and agreed-on by the end of the sharding round s — 1 (i.e., at
the instant ¢;). Only at 7;, 4 can be known by the adversary. Any node that wishes to participate in round s, has to establish an
identity by solving a fresh PoW puzzle. This node has to submit a valid PoW solution to the reference committee before a “cutoff
time” which is roughly 10 min in RapidChain. The cutoff time then equals precisely (¢, +600) seconds which is less than 7,. Once the
cutoff time has passed, each valid solution defines the corresponding node’s identity, which is added to the list of active participants.
From that point, no puzzle solutions are accepted (even if valid) and the consensus mechanism starts till the arrival at an agreed-on
list of participants. After the consensus takes place to agree on the valid participants and their corresponding identities, this list of
participants is publicly accessible. Let the period of time needed to reach a consensus on the list of participants, and the instant at
which a consensus is reached be T, and ¢/, respectively.

12

H. Baniata et al. Internet of Things 24 (2023) 100955

A&
A A&R

What's known List of Nodes

to the adversary

t, Cutoff £, £
600s > & > Tea

Timeline

S=s+1

Fig. 5. Timeline of the BOSS protocol and the corresponding expected knowledge of the adversary at each instant of the protocol workflow.

Once the list of participants and the value of 4 is known (at instant ¢ty = 7,4+ 600+ T, seconds), any node, including the adversary,
can predict which node is going to be assigned to which shard by running our GA-based BOSS protocol. The resultant set R will be
generated at instant 7./, forcing the adversary nodes to be included in a seemingly randomly-selected shards, and further making
the current value of A no more valid for the following sharding rounds. The time needed to optimize the set R depends mainly on
all input parameters mentioned in Table 3, except for K/N, and the computational power of the node that runs the GA algorithm.
Assuming the adversary controls stronger resources than the reference committee, the adversary may be able to generate R before
the reference committee does. However, the adversary cannot manipulate the distribution in the set R in order to assign its nodes into
one shard, except if the optimization is canonically run by a leader node that was originally controlled by the adversary at instant
t,. This issue can be easily solved by the public verifiability guaranteed by our protocol (discussed in the following subsection).
Thus, the adversary may only be able to manipulate the protocol during the period ¢, — .

All parameter configurations are predefined on the system level as we have previously shown that they do not affect the output
of the protocol. Nonetheless, the adversary cannot by any means change the value A nor the list of participants as they were both
generated, and agreed-on, in a distributed fashion. Thus, knowing these pieces of information does not provide any help for the
adversary regarding its nodes assignment. The adversary, however, can keep track on the submitted PoW solutions by other honest
nodes during the period (Cutoff- 7, = 600 s). Since the solutions submission times of these honest nodes are distributed along the
period (Cutoff- 7, = 600 s), only by the end of this period can the adversary disconnect nodes that do not provide high attack
probability and reconnect nodes that serve the purpose of the adversary. However, this would be too late as all honest nodes do
track the cutoff time and the adversary would not be able to connect the new nodes and submit PoW solutions of these nodes in
negligible time.

To clarify, once the instant 7 | is reached, the new value of 4 is generated and the adversary would have exactly 600 s to relocate
its nodes such that the weights on their corresponding edges (i.e., latency or RTT on the connection link) manipulates the protocol
to assign the adversary’s nodes into one shard. Let us assume the algorithm was already reverse-engineered and the adversary knows
the exact values of edge weights per each A value. Additionally, let us assume that the adversary had already many nodes that were
distributed in several distinct physical locations. The adversary had those nodes distributed in such a way that for each 4 value,
there is a sub-group with edges and weights that gives high probability of those nodes being assigned to the same shard. In this
case, we need to consider several issues as follows:

» The time needed to connect those nodes to the network. Even with a paralleled and automated approach, connecting nodes
to the network takes at least several seconds and up to several minutes per node. This was clearly tested in the RapidChain
paper® indicating an average of 200 s per node to join a network of only 500 nodes.

The time needed to generate PoW solutions for all these nodes before the cutoff time. For this, the adversary shall control
highly strong nodes in terms of computational capacity, such that PoW solutions using the newly generated seed (i.e., 1) can
be generated in less than the time needed by most of the network nodes. This practically contradicts the initial assumption
that the adversary controls a maximum of ¥ < 1/3.

The probability that the adversary gets all nodes in this sub-group peered with each other (i.e., x;; = 1 Vi, j € K). The adversary
is not able to select peers in permissionless BCs [54], and further is randomly peered when joining a RapidChain protocol [14].
Thus, the probability that the adversary will get its second node peered with its first node is 1/N. For the third node to be
connected to one of the two nodes, the probability would be 2/ N. While the probability would be 1/N? if the third node is to
be connected to both two nodes. Assuming the adversary is able to instantly connect and peer its nodes, the probability that
the adversary gets all its nodes (in the selected sub-group) peered with each other equals 1/NX.

9 See Section 6.6 in the full RapidChain paper [14]

13

H. Baniata et al. Internet of Things 24 (2023) 100955

Finally, during the period of time 7., ; — s, the adversary may be able to change the characteristics of its K nodes, yet it would
be impossible for an adversary to predict the outcome of the protocol and, thus, changing the characteristics of the nodes in K is
arbitrary. Not to mention, of course, that at this time the list of participants of the sharding round s+ 1 is still not available as well.

In summary, only when the Cutoff instant is reached, the adversary can know both A and the list of nodes. After that, the
adversary can reorganize its nodes which can serve for its attack purpose, which takes a period of time 7,. Since the consensus
starts immediately after the Cutoff instant is reached, there is no time window for the adversary to perform its attack tasks. As 74 > 0,
the tasks performed by the adversary then can serve the attack only in the next sharding round, assuming that all nodes in the current
round remain active and connected, and that 4 is the same for the next round. The probability of this happening approaches zero
with N increasing and, thus, the adversary has no chance to manipulate the protocol. Furthermore, if the adversary could predict
its outputs during the period ¢, — ty, such predictions are useless for the current and future rounds.

5.4. Verifiability

We are left with one property evaluation for the proposed BOSS protocol, namely the public verifiability. We show in this
subsection that this property is satisfied in the proposed protocol. Accordingly, we confirm that this protocol is robust against the
yet unaddressed threats mentioned previously.

As mentioned in the previous sections, the set R is generated at instant 7, by the reference committee. After that, the list of
nodes and the value of 4, along with the set R are all known to all nodes in the network. Although these will not help in the
prediction of the outputs of the next sharding round, they can allow the verification of the most recently generated set R. Simply,
the generated set R is reproducible by any node in the network as the initial node-shard allocation is readable. That is, the consensus
on the list of participants implies an immutable block, consisting of those participants’ identities, with agreed-on order according
to their registration timestamp. This block is appended to the publicly accessible DL. Since all parameters (described in Table 2)
are unified on the system-level, the initial allocation and 4 values can be used to reproduce R. If the regenerated R does not match
the originally generated R, further measures can be forced including the re-evaluation of the generator’s reputation, re-election
of a new reference committee, etc. Thus, even if the protocol deploys a canonical GA optimization and the optimizer node was
already compromised by an adversary, the adversary can only delay the arrival of an agreed-on set R as a new sharding round shall
be triggered. However, such situation does not affect the safety of the system as at least one node in the network will announce
that the set R could not be reproduced. This would trigger all (honest) receiving nodes to try for themselves and take configured
countermeasure.

6. Conclusion

In this paper, we proposed a Blockchain Optimized and Secure Sharding (BOSS) protocol for permissionless Blockchain (BC)
with the aim of securely increasing the total system throughput. BOSS utilizes a Genetic Algorithm (GA) to shard BC networks,
which enhances the system in terms of scalability compared to the typically used Randomized Sharding (RS). Meanwhile, a niched
Pareto optimization approach was integrated as a fitness function of the GA program, such that the program will randomly oscillate
between inter- and intra-shard oriented optimality. We defined, implemented, and comprehensively tested our protocol with more
than 362,880 cases, covering several system and optimization parameters. The evaluation revealed approximately 17% average
enhancement in scalability, along with a negligible < 0.5% mean absolute difference in security level. We have further shown that
our proposed protocol satisfies both the public verifiability property, and the unpredictability property. The fulfillment of those
properties confirmed the applicability of the proposed protocol in permissionless BCs. To the best of our knowledge, this is the first
work that optimized inter- and intra-shard scalability, with publicly verifiable solutions in permissionless BCs, while maintaining
an RS-equivalent security and unpredictability.

Declaration of competing interest

The authors whose names are listed immediately below certify that they have NO affiliations with or involvement in any
organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus;
membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing
arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the
subject mater or materials discussed in this manuscript.

Data availability

Data is publicly accessible and the link to full database is provided within the manuscript.
Acknowledgments

The research leading to these results has received funding from the National Research, Development and Innovation Office
within the framework of the Artificial Intelligence National Laboratory Programme, and from the national project TKP2021-NVA-
09 implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research,

Development and Innovation Fund, financed under the TKP2021-NVA funding scheme, and from the University of Szeged Open
Access Fund under the grant number 6534.

14

H. Baniata et al. Internet of Things 24 (2023) 100955
Appendix A. Blockchain sharding as a mixed integer program

Blockchain sharding can be modeled for intra-shard optimization, considering three variables as follows: variable){ is a binary
variable that takes the value of 1 if the node i is allocated into shard ¢, for ¢ € R, and zero otherwise. The binary variable x;; takes
the value of one if the edge (i, /) connects nodes i and j in the same shard, and zero otherwise. Finally, the continuous variable f;;
representing the flow over the edge (i, j). Moreover, A = {n+1,...,n +d} is a set of artificial nodes, one for each shard in R. The
model, denoted as M, can then be formulated as follows:

min 2 W;;X;; (A1)
G.))EE

subject to
Y ye=1 Viev (A.2)
cER
yf+y;f—x,-j§1 V (i,j)e E,ce R (A.3)
y§+y§+x,.jgz Y (i,j) € E,c,l € R,c#1 (A.4)
Y ox;=1 VieA (A.5)
jev
Zfij=2y; VieA (A.6)
jev jev

> o fy= Y fi=1 VjEV A7)

())EE U.DEE
fll+fllsﬂxlj V(’v])EE (A'8)
axijsf[jsﬂx[j VieAjevVv (A.9)

i €{0,1} VieV,ceR
x; €{0.1} Vi,)€E
fi; ERY VG, j))€EE

Constraint (A.2) guarantees that each node is allocated to exactly one shard. Constraint (A.3) guarantees that if node i and j are
in the same shard then the variable x; jsettol, while constraint (A.4) ensures if nodes i and j are in different shards then x; j has
to be zero. Constraints (A.5)-(A.7) are flow conservation constraints. Constraint (A.5) guarantees that each artificial node in A is
exactly connected to one node in the graph. Constraint (A.6) guarantees that the outflow from artificial node i to node j is equal
to the number of nodes in shard ¢ that node j belongs to. Constraint (A.7) guarantees that the outflow from node j is equal to the
inflow into node j. Constraints (A.8) and (A.9) guarantee that the number of nodes in a given shard is bounded by « and g.

Appendix B. Correlation coefficient

Generally, the Correlation Coefficient is defined as a statistical measure of the strength of a linear relationship between two
variables. The closer the calculated coefficient to zero, the lower the correlation between the tested variables. On the other hand,
the further the coefficient is from zero, the better the fit and the greater the correlation. Specifically, the values can range from
—1 (perfect negative/inverse correlation) to +1 (perfect positive/direct correlation). The Pearson coefficient p uses a mathematical
statistics formula to measure how closely the data points combining the two variables (with the values of one data series plotted
on the x-axis and the corresponding values of the other series on the y-axis) approximate the line of best fit. The line of best fit can
be determined through regression analysis.

To calculate p, each variable’s standard deviation needs to be calculated as well as the covariance between the considered
variables. Subconsequently, p is the covariance divided by the product of the two variables’ standard deviations. The mathematical
formula for such calculations is given in Eq. (B.1).

_ Cov(x,y)
B 0,0y

(B.1)

xy
where:

+ p is the Pearson product-moment correlation coefficient,
» Cov(x, y) is the covariance of variables x and y,
» ¢ is the standard deviation.

Standard deviation is a measure of the dispersion of data from its average. Covariance shows whether the two variables tend to
move in the same direction, while the correlation coefficient measures the strength of that relationship on a normalized scale, from
-1to1l.

15

H. Baniata et al. Internet of Things 24 (2023) 100955

References

[1]

[2]
[3]

[4]
[5]

(61

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]

[35]

[36]

[37]

[38]

[39]

S. Perera, S. Nanayakkara, M. Rodrigo, S. Senaratne, R. Weinand, Blockchain technology: Is it hype or real in the construction industry? J. Ind. Inform.
Integr. 17 (2020) 100125.

S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, Decentralized Bus. Rev. (2008) 21260.

C. Bernardino, C.J. Costa, M. Aparicio, Digital evolution: Blockchain field research, in: 2022 17th Iberian Conference on Information Systems and
Technologies, CISTI, IEEE, 2022, pp. 1-6.

D.D.F. Maesa, P. Mori, Blockchain 3.0 applications survey, J. Parallel Distrib. Comput. 138 (2020) 99-114.

A.A. Monrat, O. Schelén, K. Andersson, A survey of blockchain from the perspectives of applications, challenges, and opportunities, IEEE Access 7 (2019)
117134-117151.

H. Baniata, T. Pflanzner, Z. Feher, A. Kertesz, Latency assessment of blockchain-based SSI applications utilizing hyperledger indy, in: Proceedings
of the 12th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER, SciTePres, INSTICC, 2022, pp. 264-271, http:
//dx.doi.org/10.5220,/0011082300003200.

G. Yu, X. Wang, K. Yu, W. Ni, J.A. Zhang, R.P. Liu, Survey: Sharding in blockchains, IEEE Access 8 (2020) 14155-14181.

Y. Liu, Y. Wang, Y. Jin, Research on the improvement of MongoDB Auto-Sharding in cloud environment, in: 2012 7th International Conference on Computer
Science & Education, ICCSE, IEEE, 2012, pp. 851-854.

Y.-F. Ge, Z.-H. Zhan, J. Cao, H. Wang, Y. Zhang, K.-K. Lai, J. Zhang, DSGA: A distributed segment-based genetic algorithm for multi-objective outsourced
database partitioning, Inform. Sci. 612 (2022) 864-886.

G. Kim, M. Franz, J. Kim, The ticket price matters in sharding blockchain, in: Data Privacy Management, Cryptocurrencies and Blockchain Technology:
ESORICS 2022 International Workshops, DPM 2022 and CBT 2022, Copenhagen, Denmark, September 26-30, 2022, Revised Selected Papers, Springer,
2023, pp. 185-202.

R. Han, Scaling Permissionless Blockchains Via Sharding (Ph.D. thesis), Monash University, 2022.

L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, P. Saxena, A secure sharding protocol for open blockchains, in: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016, pp. 17-30.

E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, B. Ford, Omniledger: A secure, scale-out, decentralized ledger via sharding, in: 2018 IEEE
Symposium on Security and Privacy, SP, IEEE, 2018, pp. 583-598.

M. Zamani, M. Movahedi, M. Raykova, Rapidchain: Scaling blockchain via full sharding, in: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, 2018, pp. 931-948.

T. Rajab, M.H. Manshaei, M. Dakhilalian, M. Jadliwala, M.A. Rahman, On the feasibility of sybil attacks in shard-based permissionless blockchains, 2020,
arXiv preprint arXiv:2002.06531.

B. Wang, J. Jiao, S. Wu, R. Lu, Q. Zhang, Age-critical and secure blockchain sharding scheme for satellite-based internet of things, IEEE Trans. Wireless
Commun. 21 (11) (2022) 9432-9446.

N. Gao, R. Huo, S. Wang, T. Huang, Y. Liu, Sharding-hashgraph: A high-performance blockchain-based framework for industrial internet of things with
hashgraph mechanism, IEEE Internet Things J. 9 (18) (2021) 17070-17079.

R. Han, J. Yu, H. Lin, S. Chen, P. Esteves-Verissimo, On the security and performance of blockchain sharding, Cryptol. ePrint Arch. (2021).

X. Cai, S. Geng, J. Zhang, D. Wu, Z. Cui, W. Zhang, J. Chen, A sharding scheme-based many-objective optimization algorithm for enhancing security in
blockchain-enabled industrial internet of things, IEEE Trans. Ind. Inform. 17 (11) (2021) 7650-7658.

M.N. Halgamuge, S.P. Mapatunage, Fair rewarding mechanism for sharding-based blockchain networks with low-powered devices in the internet of things,
in: 2021 IEEE 16th Conference on Industrial Electronics and Applications, ICIEA, IEEE, 2021, pp. 504-509.

E. Mehraein, Z. Ahmadian, R. Nourmohammadi, IGD-ScoreChain: A novel lightweight-scalable blockchain based on nodes sharding for the internet of
things, Cryptol. ePrint Arch. (2023).

S. Sen, M.J. Freedman, Commensal cuckoo: Secure group partitioning for large-scale services, Oper. Syst. Rev. 46 (1) (2012) 33-39.

L. Ren, K. Nayak, I. Abraham, S. Devadas, Practical synchronous byzantine consensus, 2017, arXiv preprint arXiv:1704.02397.

H. Baniata, A. Kertesz, Approaches to overpower proof-of-work blockchains despite minority, IEEE Access 11 (2023) 2952-2967.

M. Cordero, A. Miniguano-Trujillo, D. Recalde, R. Torres, P. Vaca, Graph partitioning in connected components with minimum size constraints via mixed
integer programming, 2022, arXiv. http://dx.doi.org/10.48550/ARXIV.2202.11254.

A. Henzinger, A. Noe, C. Schulz, ILP-Based local search for graph partitioning, J. Exp. Algorithmics (JEA) 25 (2020) 1-26.

B. Borchers, J.E. Mitchell, An improved branch and bound algorithm for mixed integer nonlinear programs, Comput. Oper. Res. 21 (4) (1994) 359-367.
1.S. Dhillon, Co-clustering documents and words using bipartite spectral graph partitioning, in: Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2001, pp. 269-274.

G. Wang, Z.J. Shi, M. Nixon, S. Han, Sok: Sharding on blockchain, in: Proceedings of the 1st ACM Conference on Advances in Financial Technologies,
2019, pp. 41-61.

M. Zhang, J. Li, Z. Chen, H. Chen, X. Deng, Cycledger: A scalable and secure parallel protocol for distributed ledger via sharding, in: 2020 IEEE International
Parallel and Distributed Processing Symposium, IPDPS, IEEE, 2020, pp. 358-367.

C. Huang, Z. Wang, H. Chen, Q. Hu, Q. Zhang, W. Wang, X. Guan, Repchain: A reputation-based secure, fast, and high incentive blockchain system via
sharding, IEEE Internet Things J. 8 (6) (2020) 4291-4304.

A. Manuskin, M. Mirkin, I. Eyal, Ostraka: Secure blockchain scaling by node sharding, in: 2020 IEEE European Symposium on Security and Privacy
Workshops, EuroS&PW, IEEE, 2020, pp. 397-406.

V.S. Naresh, V.D. Allavarpu, S. Reddi, P.S.R. Murty, N.L. Raju, R.J. Mohan, A provably secure sharding based blockchain smart contract centric hierarchical
group key agreement for large wireless ad-hoc networks, Concurr. Comput.: Pract. Exper. (2022) e6553.

Y. Liu, J. Liu, Q. Wu, H. Yu, H. Yiming, Z. Zhou, SSHC: A secure and scalable hybrid consensus protocol for sharding blockchains with a formal security
framework, IEEE Trans. Dependable Secure Comput. (2020).

N. Alon, H. Kaplan, M. Krivelevich, D. Malkhi, J. Stern, Scalable secure storage when half the system is faulty, in: International Colloquium on Automata,
Languages, and Programming, Springer, 2000, pp. 576-587.

Z. Zhang, X. Wang, G. Yu, W. Ni, R.P. Liu, N. Georgalas, A. Reeves, A community detection-based blockchain sharding scheme, in: Blockchain-ICBC 2022:
5th International Conference, Held As Part of the Services Conference Federation, SCF 2022, Honolulu, HI, USA, December 10-14, 2022, Proceedings,
Springer, 2022, pp. 78-91.

A. Mariani, G. Mariani, D. Pennino, M. Pizzonia, Blockchain scalability and security: Communications among fast-changing committees made simple, in:
2023 IEEE 20th International Conference on Software Architecture Companion, ICSA-C, IEEE, 2023, pp. 209-215.

D. Bogdanov, K. Emura, R. Jagomadgis, A. Kanaoka, S. Matsuo, J. Willemson, A secure genetic algorithm for the subset cover problem and its application
to privacy protection, in: Information Security Theory and Practice. Securing the Internet of Things: 8th IFIP WG 11.2 International Workshop, WISTP
2014, Heraklion, Crete, Greece, June 30-July 2, 2014. Proceedings. Vol. 8, Springer, 2014, pp. 108-123.

J. Horn, N. Nafpliotis, D.E. Goldberg, A niched Pareto genetic algorithm for multiobjective optimization, in: Proceedings of the First IEEE Conference on
Evolutionary Computation. IEEE World Congress on Computational Intelligence, Ieee, 1994, pp. 82-87.

16

http://refhub.elsevier.com/S2542-6605(23)00278-0/sb1
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb1
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb1
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb2
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb3
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb3
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb3
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb4
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb5
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb5
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb5
http://dx.doi.org/10.5220/0011082300003200
http://dx.doi.org/10.5220/0011082300003200
http://dx.doi.org/10.5220/0011082300003200
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb7
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb8
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb8
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb8
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb9
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb9
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb9
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb10
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb10
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb10
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb10
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb10
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb11
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb12
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb12
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb12
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb13
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb13
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb13
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb14
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb14
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb14
http://arxiv.org/abs/2002.06531
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb16
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb16
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb16
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb17
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb17
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb17
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb18
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb19
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb19
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb19
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb20
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb20
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb20
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb21
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb21
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb21
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb22
http://arxiv.org/abs/1704.02397
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb24
http://dx.doi.org/10.48550/ARXIV.2202.11254
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb26
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb27
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb28
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb28
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb28
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb29
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb29
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb29
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb30
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb30
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb30
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb31
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb31
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb31
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb32
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb32
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb32
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb33
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb33
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb33
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb34
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb34
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb34
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb35
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb35
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb35
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb36
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb36
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb36
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb36
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb36
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb37
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb37
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb37
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb38
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb38
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb38
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb38
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb38
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb39
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb39
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb39

H. Baniata et al. Internet of Things 24 (2023) 100955

[40]

[41]

[42]

[43]
[44]

[45]

[46]
[47]

[48]
[49]
[50]
[51]
[52]
[53]

[54]

E. Syta, P. Jovanovic, E.K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M.J. Fischer, B. Ford, Scalable bias-resistant distributed randomness, in: 2017 IEEE
Symposium on Security and Privacy, SP, leee, 2017, pp. 444-460.

G. Wang, M. Nixon, Randchain: Practical scalable decentralized randomness attested by blockchain, in: 2020 IEEE International Conference on Blockchain,
Blockchain, IEEE, 2020, pp. 442-449.

S. Das, V. Krishnan, .M. Isaac, L. Ren, Spurt: Scalable distributed randomness beacon with transparent setup, in: 2022 IEEE Symposium on Security and
Privacy, SP, IEEE, 2022, pp. 2502-2517.

D. Whitley, T. Starkweather, Genitor II: A distributed genetic algorithm, J. Exp. Theor. Artif. Intell. 2 (3) (1990) 189-214.

Y.-J. Gong, W.-N. Chen, Z.-H. Zhan, J. Zhang, Y. Li, Q. Zhang, J.-J. Li, Distributed evolutionary algorithms and their models: A survey of the state-of-the-art,
Appl. Soft Comput. 34 (2015) 286-300.

M. Rodriguez, D.M. Escalante, A. Peregrin, Efficient distributed genetic algorithm for rule extraction, Appl. Soft Comput. 11 (1) (2011) 733-743.

T.C. Belding, The distributed genetic algorithm revisited, 1995, arXiv preprint adap-org/9504007.

R. Patel, E. Rudnick-Cohen, S. Azarm, M. Otte, H. Xu, J.W. Herrmann, Decentralized task allocation in multi-agent systems using a decentralized genetic
algorithm, in: 2020 IEEE International Conference on Robotics and Automation, ICRA, 2020, pp. 3770-3776, http://dx.doi.org/10.1109/ICRA40945.2020.
9197314.

H. Adeli, S. Kumar, Distributed genetic algorithm for structural optimization, J. Aerospace Eng. 8 (3) (1995) 156-163.

P. Erdds, A. Rényi, et al., On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci. 5 (1) (1960) 17-60.

H. Baniata, A. Anaqreh, A. Kertesz, Full Database for Test Results of the BOSS Protocol, Zenodo, 2023, URL https://doi.org/10.5281/zenodo.8037447.
H. Toutounji, A.C. Aljundi, On randomness and the genetic behavior of cellular automata, in: 2008 3rd International Conference on Information and
Communication Technologies: From Theory To Applications, IEEE, 2008, pp. 1-6.

R. Caponetto, L. Fortuna, S. Fazzino, M.G. Xibilia, Chaotic sequences to improve the performance of evolutionary algorithms, IEEE Trans. Evol. Comput.
7 (3) (2003) 289-304.

D. Tennakoon, V. Gramoli, Dynamic blockchain sharding, in: 5th International Symposium on Foundations and Applications of Blockchain 2022, FAB
2022, Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2022, pp. 6:1-6:17.

Y. Shahsavari, K. Zhang, C. Talhi, Toward quantifying decentralization of blockchain networks with relay nodes, Front. Blockchain 5 (2022) 1.

17

http://refhub.elsevier.com/S2542-6605(23)00278-0/sb40
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb40
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb40
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb41
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb41
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb41
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb42
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb42
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb42
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb43
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb44
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb44
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb44
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb45
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb46
http://dx.doi.org/10.1109/ICRA40945.2020.9197314
http://dx.doi.org/10.1109/ICRA40945.2020.9197314
http://dx.doi.org/10.1109/ICRA40945.2020.9197314
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb48
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb49
https://doi.org/10.5281/zenodo.8037447
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb51
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb51
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb51
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb52
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb52
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb52
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb53
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb53
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb53
http://refhub.elsevier.com/S2542-6605(23)00278-0/sb54

	Distributed scalability tuning for evolutionary sharding optimization with Random-equivalent security in permessionless Blockchain
	Introduction
	Related Work
	Randomized Sharding in RapidChain
	Optimum Sharding using Linear Programming

	Model
	Blockchain
	Blockchain Sharding
	Problem Statement
	Overview of the BOSS protocol
	Threat Models
	Reference committee is compromised by an adversary
	Node-Shard assignment is predictable

	Optimization Methods & Algorithms
	Evolutionary Sharding Optimization
	Scalability Tuning
	Distributed Scalability Tuning
	Experimental Setup

	Results & Discussion
	Scalability
	RS-equivalency
	Unpredictability
	Verifiability

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Blockchain Sharding as a Mixed Integer Program
	Appendix B. Correlation Coefficient
	References

