
Metadata of the chapter that will be visualized in
SpringerLink

Book Title Systems, Software and Services Process Improvement

Series Title

Chapter Title Identifying Agile Practices to Reduce Defects in Medical Device Software Development
Copyright Year 2023
Copyright HolderName The Author(s), under exclusive license to Springer Nature Switzerland AG

Corresponding Author Family Name Nyirenda
Particle
Given Name Misheck
Prefix
Suffix
Role
Division Regulated Software Research Centre
Organization Dundalk Institute of Technology
Address Dundalk, Ireland
Email misheck.nyirenda@dkit.ie
ORCID http://orcid.org/0000-0003-1320-2755

Author Family Name Loughran
Particle
Given Name Róisín
Prefix
Suffix
Role
Division Regulated Software Research Centre
Organization Dundalk Institute of Technology
Address Dundalk, Ireland
Email roisin.loughran@dkit.ie
ORCID http://orcid.org/0000-0002-0974-7106

Author Family Name McHugh
Particle
Given Name Martin
Prefix
Suffix
Role
Division Regulated Software Research Centre
Organization Dundalk Institute of Technology
Address Dundalk, Ireland
Email martin.mchugh@dkit.ie
ORCID http://orcid.org/0000-0003-4275-3302

Author Family Name Nugent
Particle



Given Name Christopher
Prefix
Suffix
Role
Division
Organization Ulster University
Address Newtownabbey, UK
Email cd.nugent@ulster.ac.uk
ORCID http://orcid.org/0000-0003-0882-7902

Author Family Name McCaffery
Particle
Given Name Fergal
Prefix
Suffix
Role
Division Regulated Software Research Centre
Organization Dundalk Institute of Technology
Address Dundalk, Ireland
Email fergal.mccaffery@dkit.ie
ORCID http://orcid.org/0000-0002-0839-8362

Abstract Medical Device Software (MDS) defects have caused death of patients and continue to be the major cause
of recalls of medical devices in the US and Europe. Despite various approaches proposed to address
defects, dealing with defects in MDS is an increasingly difficult task as MDS has become more complex to
support a growing number of functions. To increase quality in any software development project, it is
essential that defects are identified and addressed quickly in the early stages of the software development
life cycle. Agile methods have been advocated to increase software quality by minimising defects through
their agile practices. However, agile methods on their own are deficient in satisfying the regulatory
requirements for the MDS domain. Instead, the common approach is to integrate agile practices into the
plan driven methods. Consequently, frameworks have been developed to help developers in the MDS
domain to accrue the benefits of agile development while fulfilling regulatory requirements. Despite the
adoption of agile practices in MDS development, it is still unclear as to which agile practice(s) is effective
and how it is applied to address MDS defects. The purpose of this research is to identify agile practices that
can assist in addressing defects in MDS development. This will help MDS developers to select the
appropriate agile practice(s) to address defects.

Keywords
(separated by '-')

Medical Device Software - Agile Practices - Medical Device Software Defects - Software Faults - Medical
Device Recalls



Identifying Agile Practices to Reduce Defects
in Medical Device Software Development

Misheck Nyirenda1(B) , Róisín Loughran1 , Martin McHugh1 ,
Christopher Nugent2 , and Fergal McCaffery1

1 Regulated Software Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
{misheck.nyirenda,roisin.loughran,martin.mchugh,

fergal.mccaffery}@dkit.ie
2 Ulster University, Newtownabbey, UK

cd.nugent@ulster.ac.uk

Abstract. Medical Device Software (MDS) defects have caused death of patients
and continue to be the major cause of recalls of medical devices in the US and
Europe. Despite various approaches proposed to address defects, dealing with
defects in MDS is an increasingly difficult task as MDS has become more com-
plex to support a growing number of functions. To increase quality in any software
development project, it is essential that defects are identified and addressed quickly
in the early stages of the software development life cycle. Agile methods have been
advocated to increase software quality by minimising defects through their agile
practices. However, agile methods on their own are deficient in satisfying the reg-
ulatory requirements for the MDS domain. Instead, the common approach is to
integrate agile practices into the plan driven methods. Consequently, frameworks
have been developed to help developers in the MDS domain to accrue the benefits
of agile development while fulfilling regulatory requirements. Despite the adop-
tion of agile practices in MDS development, it is still unclear as to which agileAQ1

practice(s) is effective and how it is applied to address MDS defects. The purpose
of this research is to identify agile practices that can assist in addressing defects in
MDS development. This will help MDS developers to select the appropriate agileAQ2

practice(s) to address defects.

Keywords: Medical Device Software · Agile Practices · Medical Device
Software Defects · Software Faults · Medical Device Recalls

1 Introduction

In the medical domain, software is used to diagnose illness and assist health personnel
to perform numerous activities related to patient health. Software used in the medi-
cal domain and that performs its functions as a medical device is termed as Medical
Device Software (MDS) [1, 2]. MDS allows medical devices to accomplish complex
functionalities that would otherwise not be possible. For example, MDS allows medical
devices to be utilized in diverse applications, such as regulating the amount of medi-
cation that patients receive, tracking patients’ vital signs, and alerting caregivers about

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Yilmaz et al. (Eds.): EuroSPI 2023, CCIS 1891, pp. 1–15, 2023.
https://doi.org/10.1007/978-3-031-42310-9_5

A
ut

ho
r 

Pr
oo

f

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42310-9_5&domain=pdf
http://orcid.org/0000-0003-1320-2755
http://orcid.org/0000-0002-0974-7106
http://orcid.org/0000-0003-4275-3302
http://orcid.org/0000-0003-0882-7902
http://orcid.org/0000-0002-0839-8362
https://doi.org/10.1007/978-3-031-42310-9_5


2 M. Nyirenda et al.

harmful drug incidences [3]. It is particularly vital that MDS must be of high quality
and reliable as any software quality issues can have significant detrimental effects on a
patient’s recovery, health, and well-being [4]. The difficulty in developing reliable and
safe MDS is evidenced in the recalls of numerous medical devices by the Food and Drug
Administration (FDA) due to software defects [5]. Reliability mainly considers three
characteristics: fault avoidance, fault removal, and fault tolerance [6]. It is very difficult
to achieve reliable software considering that all software development techniques have
limitations, and none can guarantee overall software reliability [7].

Delivering high quality software is a key element in MDS domain. However, some
MDS is released with defects which only manifest when the software is used. There are
many factors that can cause systems to fail including hardware failures, and software
failures [8]. Software-related failures could be traced to different phases of the software
development lifecycle.

The purpose of this research is to identify agile practices that could help to address
defects in MDS development. We reviewed each of the agile practices individually
to gather evidence of their use and potential to address defects in the General Software
Domain (GSD). We reviewed studies in the MDS domain to identify which agile practices
were used in MDS development, including those used to address defects.

The aim of this study is to help practitioners to select and apply the most suitable
agile practice(s) to address defects in MDS development. The remainder of the paper is
organized as follows, Sect. 2 covers the background and the state of the art to software
defect identification, Sect. 3 covers agile practices used in MDS development and agile
practices that could be used to address defects in MDS development, Sect. 4 covers
future work and concludes the paper.

2 Background of Medical Device Software Development

2.1 Medical Device Software

In healthcare, the increase in diseases prevalence and shortage of caregivers has necessi-
tated the drive for faster and more innovative technological solutions to save human life
[9]. Advances in computing, networking, sensing and medical technology have led to the
dramatic increase in diagnostic and therapeutic devices in healthcare [9]. However, the
lack of proper integration and operation of these systems presented systematic inefficien-
cies in healthcare delivery [9]. Consequently, we have witnessed the rise in development
and use of software that integrated these different healthcare systems and enabled them
to interoperate. Most importantly, many medical devices are software-driven which has
enabled them to perform sophisticated functions. Moreover, software used in healthcare
can be recognized as a medical device on its own [10].

There are two types of MDS used in the medical domain: Software as a Medical
Device (SaMD) also called standalone software, and Software in a Medical Device
(SiMD) also known as embedded medical device software [11]. SaMD is “software
intended to be used for medical functions that performs its objectives without being part
of a hardware medical device” [1, 2]. On the other hand, SiMD describes a “traditional
medical device that uses software to support its functionality” [11]. Moreover, the def-
inition of SaMD by the FDA clearly specifies that “software running on a hardware

A
ut

ho
r 

Pr
oo

f



Identifying Agile Practices to Reduce Defects 3

medical device qualifies as SaMD only if it does not drive or control the medical device”
[12].

2.2 Software-Related Medical Device Failures

Despite the availability of numerous standards related to MDS, there have been many
recalls of medical devices and medical device failures due to software defects. In 2021,
in the US, software issues remained the top cause of medical device failures accounting
for 162 (19.4%) medical device recalls [13]. In the EU, software was the top cause of
medical device recalls in quarter three and quarter four of 2021 and was the second
top reason for all medical device recalls in 2021, accounting for 408 (19.8%) medical
device recalls [14]. In 2017 software was the primary cause of medical device failures
with “one in every three medical devices being recalled because of software faults” [15].
Analysis of FDA recall data from 1999 to 2010 identified that four out of every ten
medical devices comprising software failed due to software defects [15] and from 2014
to 2016 there were 100 software-related recalls [16].

Similar studies [3, 5] also present types of software defects that occurred in medical
devices such as control flow faults and omission faults. These and many other software
defects could be traced back to the software development lifecycle. Finding and fixing
defects quickly in the early stages of software development is less expensive than finding
and fixing defects when the software is delivered [17].

2.3 Standards

MDS must be developed in accordance to national and international regulations [18].
Regulatory bodies ensure that medical products do not pose any harm to patients and
healthcare personnel. Accordingly, MDS manufacturers must adhere to numerous reg-
ulatory standards to ensure their MDS is safe. Standards are set and enforced by gov-
ernment agencies such as the FDA in the US and the European Commission in the EU.
In [19] a detailed background to numerous standards relevant to MDS development is
provided. The authors provide valuable information about how different standards came
into play and how they relate to ensure that MDS is safe. Among the many standards
that are relevant to the MDS domain, IEC 62304:2006+A1:2015 Medical Device – Soft-
ware Life Cycle Processes is of utmost significance to manufacturers as it provides an
internationally recognized standard [20]. ISO 14971 Application of Risk Management
to Medical Devices and ISO 13485 Medical Devices – Quality Management Systems –
Requirements for Regulatory Purposes are also vital to the development of regulatory
compliant MDS [19].

2.4 State-of-the-art for Software Defect Identification

Different techniques such as taxonomy-based testing exist to help manufacturers detect
software defects at earlier phases of MDS development. However, many software man-
ufacturers avoid using defect-based testing as it requires a detailed defect taxonomy that
is costly to build and difficult to validate [21]. The Association for the Advancement of

A
ut

ho
r 

Pr
oo

f



4 M. Nyirenda et al.

Medical Instrumentation (AAMI) developed and published AAMI SW91-2018- Classi-
fication of Defects in Health Software in 2018 [21]. SW91 is a taxonomy that provides a
common language for the classification of software defects that occur in health software
[22].

While defect taxonomies such as SW91 help software manufacturers to know the type
of defects that occur in software, they do not assist in removing the defects. Techniques
are required to identify and remove the defects. We investigate which agile practices can
help to detect and remove software defects in the early stages of the software development
lifecycle as defects that slip through these phases are costly to find and fix after product
delivery [17].

2.5 Agile Software Development

Agile Software Development (ASD) reduces the risk of developing low quality software
by minimizing defects through lightweight methods that emphasise customer collabora-
tion and responsiveness to change [23–27]. ASD shortens delivery time while meeting
changing customer needs through fast feedback and flexibility to accommodate rapid
changes to requirements [27]. There are many agile methodologies such as Scrum and
eXtreme Programming (XP) [28, 29]. Each agile methodology has several practices.
For example, Scrum includes sprint and sprint retrospective, while XP involves pair pro-
gramming and refactoring [29]. Agile practices are used to ensure principles and values
of an agile method are implemented [30].

Despite the quality benefit advocated when using agile methodologies, research
reveals that using them on their own they are unable to satisfy the regulatory requirements
for the development of MDS [27, 31, 32]. To meet regulatory requirements, MDS is
typically developed in accordance with the V-Model [18, 33, 34]. However, the V-Model
is based upon Royce’s Waterfall model which is very rigid in terms of requirements [35].
To overcome this issue, MDS developers have integrated specific agile practices into
the V-Model [36, 37]. Despite the integration of agile practices in MDS development
projects, it is still unclear as to which agile practice(s) is effective and how they can be
applied to address MDS defects.

3 Agile Practices for MDS Development

3.1 Identifying all Potentially Suitable Agile Practices

We reviewed several studies to gather agile practices from the commonly used agile
methodologies as indicated in a recent report by Digital.ai Agility, (formerly VersionOne)
[38]. A study by [29] provides an extensive review of several agile methodologies that
are outlined in the report by digital.ai and discuss their practices. In [39] the authors
discuss various agile methodologies and practices they use. These studies formed the
foundation for our initial list of agile practices. We also reviewed papers such as [40]
which identified 50 agile practices that are used in safety-critical software development
and [41] which identified 18 agile practices which they called ‘universal practices’. These
and other studies such as [42] and [43] were some of the sources of an initial list of the

A
ut

ho
r 

Pr
oo

f



Identifying Agile Practices to Reduce Defects 5

agile practices which were further reviewed to obtain our final list of agile practices. We
considered the impact that the agile practice may have on the requirements, modelling,
coding, testing and release stages as defects most often arise during these stages [44].
Our final consolidated list of agile practices is presented in Table 1. It is important to note
that while some of these practices precede the invention of agile methodologies, they are
still incorporated as agile practices in guidance documents such as AAMI TIR45 [45].

3.2 Identifying Which Practices Have Been Used in the Development of MDS

We reviewed 53 papers from the MDS domain that reported using agile practices in MDS
development. Of the 53 papers, 34 were relevant to our study as they clearly indicated
the agile practices used. The number of studies that utilised the agile practices in the
MDS domain are shown in Column 3 of Table 1. Due to size limitation, the data showing
a list of all studies and all the agile practices a study utilised cannot be included in this
paper. Nevertheless, the data can be provided upon request.

Our review of articles from the MDS domain showed that Scrum and XP were the
primary sources of the adopted agile practices. We also observed that agile practices were
generally adopted to reduce delivery time, development costs, and to flexibly accommo-
date changing customer requirements [36, 37, 46–50]. Although quality improvement
is mentioned in some studies, it is not clearly related to defects. Moreover, any quality
improvement is attributed to the general adoption of the agile practices utilised. One study
reported a 78% reduction in field defects across businesses using the SAFe® framework
[48]. However, it is unclear which specific agile practice reduced the defects, because
not all projects may need to adopt all the agile practices of the SAFe® framework. It is
crucial that developers select the appropriate agile practice(s) to address defects in MDS
development. In this regard, we reviewed each of the agile practices in our consolidated
list to uncover evidence of their use to address software defects in the GSD. The number
of studies that discussed the practice in relation to defects are shown in Table 1 column
2.

As shown in Table 1, despite the high number of studies that used agile practices
such as sprint, sprint planning meeting, sprint backlog, sprint review meeting, and ret-
rospective in MDS development, to date there is no study that discusses using any of
these practices to address software defects. The same appears for planning game and
use case. This may mean that research into these practices in relation to software defects
has not been conducted or published. It may also mean that these practices have no
direct impact on coding and testing during software development. On the other hand,
several studies used TDD, PP, unit testing, refactoring, and continuous integration for
MDS development. A high number of studies also used these practices in the GSD to
address defects. However, to date there is no study that discusses using any of these
practices to specifically address defects in MDS development. The high number of stud-
ies that used these practices in the GSD may indicate that they have direct impact on
design, coding, and testing in the software development process. Few studies discussed
using daily stan-up meeting, user story, coding standards, onsite customer, collective
ownership, integration testing, simple design, user acceptance testing (UAT), and small
releases in relation to addressing defects. Our review did not find any study that dis-
cussed using model storming in relation to defects despite the literature indicating its

A
ut

ho
r 

Pr
oo

f



6 M. Nyirenda et al.

potential to resolve requirements defects collaboratively and quickly through creation
of models [51, 52]. Although few studies used code review in the MDS domain, it was
used in several studies for defects in GSD.

Table 1. Number of articles where agile practices have been reported.

Agile practice Defects in GSD MDS Defects in MDS

Test-Driven Development 38 14 0

Unit Testing 25 15 0

Refactoring 23 10 0

Code Review 19 2 0

Pair Programming 17 12 0

Continuous Integration 10 17 0

Collective Ownership 5 3 0

Coding Standards 5 5 0

Small Releases 4 2 0

Onsite Customer 3 6 0

User Acceptance Testing 3 5 0

Daily Stand-up Meeting 3 15 0

Behaviour Driven Development 3 0 0

Integration Testing 2 4 0

Product Backlog 2 17 0

User Story 2 17 0

Simple Design 1 4 0

Planning Game 0 2 0

Use Case 0 6 0

Sprint/Iteration 0 20 0

Sprint Planning Meeting 0 15 0

Sprint Backlog 0 11 0

Sprint Review Meeting 0 8 0

Retrospective 0 13 0

Model Storming 0 0 0

3.3 Agile Practices that Could be Used to Identify Defects

We conducted a review of each agile practice shown in Table 1 to identify evidence of
their use to address defects. We used several search statements to find relevant studies

A
ut

ho
r 

Pr
oo

f



Identifying Agile Practices to Reduce Defects 7

in sources such as SpringerLink, IEEE Explore, ACM Library, IEEE Computer Soci-
ety, ScienceDirect, and Google Scholar. The statements included interchangeable terms
defect, fault, bug, error, flaw, failure, and anomaly. For example, for PP the following
search statements with different alterations were used:

1. Pair programming and software defects/errors/faults/bugs/failures/flaws/anomalies
2. Using pair programming to detect/identify/reduce/remove software

defects/errors/faults/bugs/failures/flaws/anomalies
3. Case study of using pair programming to detect/identify/reduce/remove software

defects/errors/faults/bugs/failures/flaws/anomalies
4. Using pair programming to prevent software

defects/errors/faults/bugs/failures/flaws/anomalies
5. Detecting/identifying software defects/errors/faults/bugs/failures/flaws/anomalies

using pair programming

Abstract and conclusion sections of studies that contained any of these terms were
read and those that discussed addressing them using agile practices were read thoroughly.
Studies that did not discuss addressing any of the terms using agile practices were
discounted. Column 2 in Table 1 shows number of studies on the effect of agile practices
to reduce defects. Overall, the reviewed articles suggest that agile practices can reduce
software defects when applied correctly. We present findings on PP as an example of
our review process on the agile practices.

Pair Programming for Addressing Defects. PP involves two programmers (driver
and navigator) working closely together on one computer, with the driver writing code
and the navigator examining it to detect defects [53–56]. The navigator also thinks of
alternatives, intervenes to supply necessary information, and considers strategic design
implications to prevent or remove defects early, reducing costs [57–59].

We examined 105 papers and found 17 that discussed PP and software defects. The
rest (88 studies) discussed a range of other perspectives regarding PP such as system com-
plexity and programmer expertise [60], development effort [61, 62], knowledge transfer
[59], productivity [63] etc. Table 2 summarises the 17 studies. The acronyms ‘IND’,
‘AC’, and ‘IND & AC’ denote that the study used professional developers, students, or
both as subjects, respectively.

Table 2. Overview of PP usage for defects.

Study type Domain Improvement No improvement

IND AC IND & AC

case study 3 0 2 4 1

experiment 0 5 1 5 1

experience report 1 4 0 5 0

survey 1 0 0 1 0

Total 5 9 3 15 2

A
ut

ho
r 

Pr
oo

f



8 M. Nyirenda et al.

As shown in Table 2, 29% of the studies report results from industry, 53% from the
academic domain, and 18% from both industry and academic domains. Fifteen of the 17
studies report improvement in using PP to reduce software defects. These include 29%
studies from the industry domain of which 3 are case studies [64–66], one is an experience
report [67], and one is a survey [68]. A study by [69] found that PP prevents defects and
lowers the number of defects in software. They further state that the combination of TDD
and designing in pairs effectively lowered the defects. In [65] the authors report lower
defect rates for the parts of code where PP was used in comparison to other parts. They
concluded that PP helps to reduce the introduction of new defects when existing code is
modified. A study by [66] found that an increased amount of PP within tasks lowered
the number of defects and reduced the introduction of new defects. In [67] a reduction
in error rate that was “three orders of magnitude” than normal for the organisation was
achieved after PP was used. A study by [68] found that the number of defects for PP
teams was lower than for solo groups.

Four of the 17 studies are academic experiments. A study by [70] found that PP
yielded 40% fewer defects than Fagan inspection. Fagan Inspection is a group review
method that involves six steps: planning, overview, preparation, inspection, rework,
and follow up to detect defects in development documents like specifications, designs,
source code, etc., during the various stages of software development process [71]. In
[72] a lower defect count for PP teams than solo programmers is reported. A study by
[73] found that the defect densities of the PP groups were much lower than those of the
traditional programming groups. A study by [74] found higher defect reduction rates
during integration for PP team than during inspection for TSP team. Four other studies
of the 17 are experience reports from academic domain. A study by [75] report fewer
defects for PP groups as compared to second-best solo programmers. A study by [76]
found that the defect densities of PP groups were much lower than those of the traditional
programming groups. In [77] the defect density for PP group was much lower than for
solo group. The authors concluded that PP was much effective in reducing defects than
solo programming. A study by [58] reported that programs written by PP groups passed
more automated tests, resulting in less defects as compared to solo groups. Two of the
17 studies report results from both industry and academic. One of these is an experiment
by [78] who found that PP yielded 40% fewer defects than Fagan inspection. The other
study was a case study by [79] who found that PP was beneficial in reducing defects.

Two of the 17 studies did not find significant difference in defect reduction between
PP groups and solo groups. One of the two studies is an IND & AC case study that exam-
ined whether PP improves software quality in four projects [54]. The authors calculated
relative defect density in two of the four projects where defects were properly recorded.
Their results showed that in one of the projects the relative defect density between pair
and solo programming were almost equal, 7.0 defects/KLOC and 6.9 defects/KLOC,
respectively. However, a significant difference of 1.3 defects/KLOC for PP and 8.4
defects/KLOC for solo programming was noted in the other project. Thus, the authors
could not conclude whether PP lowers the defect density as the results were conflicting.
The other study examined PP in relation to thoroughness and defect finding effectiveness
of test suites [80]. The result showed that PP did not have significant impact on thor-
oughness and defect detection effectiveness. However, the author attributed the result to
the small size of the project in which branch coverage and mutation score indicator tend

A
ut

ho
r 

Pr
oo

f



Identifying Agile Practices to Reduce Defects 9

to be insignificant as development skill alone may be enough without requiring a second
pair of eyes. Overall, the findings from the reviewed papers on PP appear to suggest
that PP can help to address defects in software development if applied correctly. The
findings also suggest that when a developer works with a partner, there is higher chance
that defects can be detected early as there is always someone examining the code as it
is being developed. In general, the positive effects of using PP for reducing defects far
outweigh the few negative effects reported.

3.4 Agile Practices that Could Potentially Help to Address Defects in MDS
Development

Our review of agile practices has revealed that certain agile practices have the potential
to reduce defects in software development. Based on review findings, the impact on
various development stages, and the fact that some of the reviewed practices have been
adopted and used in MDS development, we recommend agile practices such as TDD,
PP, unit testing, refactoring, code review, continuous integration, integration testing,
UAT, user story and onsite customer, to help address defects in MDS development.
Our recommendation for certain agile practices is also based on their ability to enhance
quality as detailed in the literature [81]. Despite limited studies on certain agile practices,
the information strongly indicates potential to reduce defects and ensure the right product
is developed. For example, UAT was commonly used in studies investigating other agile
practices such as PP and TDD because it assures customers that the developed system has
the expected components and that they are fit for purpose [82, 83]. Similarly, user story
helps define and understand software requirements correctly [84], enabling developers
to build the right software product, avoiding costly defects later in the development life
cycle [85]. We recommend applying UAT early in the development process rather than
waiting until the final release. This provides early feedback to the development team,
reducing time and rework costs by resolving the problems early before they become
bigger [86]. Coding standards and code ownership reinforce other practices such as
refactoring and PP, making maintenance easier and allowing all developers to modify
the code. TDD, PP, continuous integration, unit testing, code review, onsite customer,
and user story help identify and remove defects early in software development [87].

4 Future Work

As part of our future work, we plan to conduct extensive research through surveys,
interviews, and focus groups with industry professionals to identify agile practices that
are most effective in addressing defects. Based on the findings from this research and
the work presented in this paper, we will develop a comprehensive framework. This
framework will incorporate the most effective agile practices for addressing defects and
will be aligned with the mapping of two industry standards: SW91 and IEC62304 MDS
software development life cycle processes. Our goal is to help MDS developers detect
and remove defects early in the development life cycle, thereby preventing costly rework
when defects are discovered later during use. By implementing this framework, MDS
manufacturers can reduce the risk of defects, avoiding reputation damage and economic
loss.

A
ut

ho
r 

Pr
oo

f



10 M. Nyirenda et al.

5 Conclusion

In this study we investigated agile practices collected from the commonly used agile
methods with the aim of identifying those that could help to address defects in MDS
development. We reviewed articles from the MDS domain to identify practices used to
develop MDS and if any were used to address defects. We found that agile practices
are generally used in MDS development to reduce delivery time, development costs,
and to flexibly accommodate changing customer requirements. We reviewed each agile
practice individually and found that TDD, PP, refactoring, unit testing, integration testing,
continuous integration, code review, onsite customer, user acceptance testing, coding
standards, collective ownership, and BDD help to identify and remove defects in the
GSD. However, no study has specifically discussed using any agile practice to address
defects in MDS development.

Acknowledgement. This research is funded through the HEA Landscape and Technological
University Transformation Fund, co-funded by Dundalk Institute of Technology.

References

1. Pashkov, V., Gutorova, N., Harkusha, A.: Medical device software: defining key terms.
Wiadomości Lekarskie 69(6), 813–817 (2016)

2. IMDRF: “Software as a Medical Device”: Possible Framework for Risk Categorization and
Corresponding Considerations 30 (2014)

3. Ronquillo, J.G., Zuckerman, D.M.: Software-related recalls of health information technology
and other medical devices: implications for FDA regulation of digital health. Milbank Q. 95,
535–553 (2017). https://doi.org/10.1111/1468-0009.12278

4. Shroff, V., Reid, L., Richardson, I.: A Proposed Framework for Software Quality in the
Healthcare and Medical Industry 8 (2011)

5. Alemzadeh, H., Iyer, R.K., Kalbarczyk, Z., Raman, J.: Analysis of safety-critical computer
failures in medical devices. IEEE Secur. Priv. 11, 14–26 (2013). https://doi.org/10.1109/MSP.
2013.49

6. Mili, A., Cukic, B., Xia, T., Ben Ayed, R.: Combining fault avoidance, fault removal and
fault tolerance: an integrated model. In: 14th IEEE International Conference on Automated
Software Engineering, pp. 137–146. IEEE Comput. Soc, Cocoa Beach, FL, USA (1999).
https://doi.org/10.1109/ASE.1999.802168

7. Knight, J.C., Wika, K.G.: Software safety in medical applications. Comput. Aided Surg. 1,
121–132 (2010). https://doi.org/10.3109/10929089509105686

8. Wallace, D., Kuhn, D.: Failure modes in medical device software: an analysis of 15 years of
recall data. Int. J. Reliab. Qual. Saf. Eng. 8, (2002). https://doi.org/10.1142/S02185393010
0058X

9. Lee, I., et al.: High-confidence medical device software and systems. Computer 39, 33–38
(2006). https://doi.org/10.1109/MC.2006.127

10. Pashkov, V., Harkusha, A.: Stand-alone software as a medical device: qualification and liability
issues. Wiad. Lek. Wars. Pol. 1960 73, 2282 (2020). https://doi.org/10.36740/WLek20201
0134

11. Gordon, W., Stern, A.D.: Challenges and opportunities in software-driven medical devices.
Nat. Biomed. Eng. 3, 493–497 (2019). https://doi.org/10.1038/s41551-019-0426-z

A
ut

ho
r 

Pr
oo

f

https://doi.org/10.1111/1468-0009.12278
https://doi.org/10.1109/MSP.2013.49
https://doi.org/10.1109/ASE.1999.802168
https://doi.org/10.3109/10929089509105686
https://doi.org/10.1142/S021853930100058X
https://doi.org/10.1109/MC.2006.127
https://doi.org/10.36740/WLek202010134
https://doi.org/10.1038/s41551-019-0426-z


Identifying Agile Practices to Reduce Defects 11

12. FDA, C. for D. and R.: Digital Health Criteria. FDA. (2020)
13. Sedgwick Brand Protection: State of the Nation 2022 Recall Index Report (2022)
14. Sedgwick Brand Protection: EU State of the nation 2022 recall index report (2022)
15. Fu, Z., Guo, C., Zhang, Z., Ren, S., Jiang, Y., Sha, L.: Study of software-related causes in

the FDA medical device recalls. In: 2017 22nd International Conference on Engineering of
Complex Computer Systems (ICECCS), pp. 60–69 (2017). https://doi.org/10.1109/ICECCS.
2017.20

16. Bliznakov, Z., Stavrianou, K., Pallikarakis, N.: Medical devices recalls analysis focusing on
software failures during the last decade. In: Roa Romero, L.M. (ed.) XIII Mediterranean
Conference on Medical and Biological Engineering and Computing 2013. pp. 1174–1177.
Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-00846-
2_291

17. Boehm, B., Basili, V.R.: Software defect reduction top 10 list. Computer 34, 135–137 (2001).
https://doi.org/10.1109/2.962984

18. Kosti, M.D.: Challenges of agile practices implementation in the medical device software
development methodologies. Eur. Proj. Manage. J. 7, 9 (2017)

19. McHugh, M., McCaffery, F., Coady, G.: Adopting agile practices when developing medical
device software. Comput. Eng. Inf. Technol. 04, 14 (2015). https://doi.org/10.4172/2324-
9307.1000131

20. ISO: IEC 62304:2006(en), Medical device software — Software life cycle processes, https://
www.iso.org/obp/ui/#iso:std:iec:62304:ed-1:v1:en (2006)

21. Rajaram, H.K., Loane, J., MacMahon, S.T., Mc Caffery, F.: Taxonomy-based testing and
validation of a new defect classification for health software. J. Softw. Evol. Process. 31,
e1985 (2019). https://doi.org/10.1002/smr.1985

22. ANSI/AAMI: ANSI/AAMI SW91: 2018 Classification of Defects in Health Software (2018)
23. Noor, R., Fahad Khan, M.: Defect management in agile software development. Int. J. Mod.

Educ. Comput. Sci. 6, 55–60 (2014). https://doi.org/10.5815/ijmecs.2014.03.07
24. Abdelaziz, A.A., El-Tahir, Y., Osman, R.: Adaptive software development for developing

safety critical software. In: 2015 International Conference on Computing, Control, Net-
working, Electronics and Embedded Systems Engineering (ICCNEEE), pp. 41–46. IEEE,
Khartoum, Sudan (2015). https://doi.org/10.1109/ICCNEEE.2015.7381425

25. Beecham, S., Noll, J., Richardson, I.: Using agile practices to solve global software develop-
ment problems -- a case study. In: 2014 IEEE International Conference on Global Software
Engineeering Workshops, pp. 5–10. IEEE, Shanghai, China (2014). https://doi.org/10.1109/
ICGSEW.2014.7

26. Turk, D., Robert, F., Rumpe, B.: Assumptions underlying agile software-development
processes. J. Database Manag. 16, 62–87 (2005). https://doi.org/10.4018/jdm.2005100104

27. Diebold, P.: ACAPI - Agile Capability Analysis and Process Improvement in Highly Regulated
Environments. Kaiserslautern (2013)

28. Ibrahim, N.: An overview of agile software development methodology and its relevance to
software engineering. Jurnal Sistem Informasi 2, 12 (2007)

29. Abrahamsson, P., Salo, O., Ronkainen, J.: Agile software development methods: review and
analysis 112 (2002)

30. Tripp, J.F., Armstrong, D.J.: Agile methodologies: organizational adoption motives, tailor-
ing, and performance. J. Comput. Inf. Syst. 58, 170–179 (2018). https://doi.org/10.1080/088
74417.2016.1220240

31. McHugh, M., McCaffery, F., Fitzgerald, B., Stol, K.-J., Casey, V., Coady, G.: Balancing
agility and discipline in a medical device software organisation. In: Woronowicz, T., Rout,
T., O’Connor, R.V., Dorling, A. (eds.) SPICE 2013. CCIS, vol. 349, pp. 199–210. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38833-0_18

A
ut

ho
r 

Pr
oo

f

https://doi.org/10.1109/ICECCS.2017.20
https://doi.org/10.1007/978-3-319-00846-2_291
https://doi.org/10.1109/2.962984
https://doi.org/10.4172/2324-9307.1000131
https://www.iso.org/obp/ui/#iso:std:iec:62304:ed-1:v1:en
https://doi.org/10.1002/smr.1985
https://doi.org/10.5815/ijmecs.2014.03.07
https://doi.org/10.1109/ICCNEEE.2015.7381425
https://doi.org/10.1109/ICGSEW.2014.7
https://doi.org/10.4018/jdm.2005100104
https://doi.org/10.1080/08874417.2016.1220240
https://doi.org/10.1007/978-3-642-38833-0_18


12 M. Nyirenda et al.

32. Myklebust, T., Stålhane, T., Hanssen, G.: Use of agile practices when developing safety-
critical software. Presented at the August 9 (2016)

33. McHugh, M., McCaffery, F., Casey, V.: Barriers to adopting agile practices when developing
medical device software. In: Mas, A., Mesquida, A., Rout, T., O’Connor, R.V., Dorling, A.
(eds.) SPICE 2012. CCIS, vol. 290, pp. 141–147. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-30439-2_13

34. McHugh, M., McCaffery, F., Casey, V., Pikkarainen, M.: Integrating Agile Practices with a
Medical Device Software Development Lifecycle (2012)

35. Özcan-Top, Ö., McCaffery, F.: A hybrid assessment approach for medical device software
development companies. J. Softw. Evol. Process. 30, e1929 (2018). https://doi.org/10.1002/
smr.1929

36. McHugh, M., Cawley, O., McCaffcry, F., Richardson, I., Wang, X.: An agile V-model for
medical device software development to overcome the challenges with plan-driven software
development lifecycles. In: 2013 5th International Workshop on Software Engineering in
Health Care (SEHC), pp. 12–19 (2013). https://doi.org/10.1109/SEHC.2013.6602471

37. Rasmussen, R., Hughes, T., Jenks, J.R., Skach, J.: Adopting agile in an FDA regulated envi-
ronment. In: 2009 Agile Conference, pp. 151–155 (2009). https://doi.org/10.1109/AGILE.
2009.50

38. Digital.ai Agility: 16th Annual State of Agile Report (2022)
39. de Azevedo Santos, M., de Souza Bermejo, P.H., de Oliveira, M.S., Tonelli, A.O., Seidel,

E.J.: Improving the management of cost and scope in software projects using agile practices.
Int. J. Comput. Sci. Inf. Technol. 5, 47–64 (2013). https://doi.org/10.5121/ijcsit.2013.5104

40. Myklebust, T., Lyngby, N., Stålhane, T.: Agile practices when developing safety systems. Los
Angel. (2018)

41. Diebold, P., Dahlem, M.: Agile practices in practice: a mapping study. In: Proceedings of
the 18th International Conference on Evaluation and Assessment in Software Engineering,
pp. 1–10. ACM, London England United Kingdom (2014). https://doi.org/10.1145/2601248.
2601254

42. Haynes, S.R., Friedenberg, M.: Best Practices in Agile Software Development (2006)
43. Jain, R., Suman, U.: Effectiveness of agile practices in global software development. Int. J.

Grid Distrib. Comput. 9, 231–248 (2016). https://doi.org/10.14257/ijgdc.2016.9.10.21
44. Kannan, V., et al.: User stories as lightweight requirements for agile clinical decision support

development. J. Am. Med. Inform. Assoc. 26, 1344–1354 (2019). https://doi.org/10.1093/
jamia/ocz123

45. AAMI: AAMI TIR45: 2012; Guidance on the use of agile practices in the development
of medical device software, (2012). https://webstore.ansi.org/standards/aami/aamitir45201
2r2018

46. McHugh, M., McCaffery, F., Coady, G.: An agile implementation within a medical device
software organisation. In: Mitasiunas, A., Rout, T., O’Connor, R.V., Dorling, A. (eds.) SPICE
2014. CCIS, vol. 477, pp. 190–201. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-13036-1_17

47. Heeager, L.T., Nielsen, P.A.: Meshing agile and plan-driven development in safety-critical
software: a case study. Empir. Softw. Eng. 25(2), 1035–1062 (2020). https://doi.org/10.1007/
s10664-020-09804-z

48. Badanahatti, A., Pillutla, S.: Interleaving software craftsmanship practices in medical device
agile development. In: Proceedings of the 13th Innovations in Software Engineering Confer-
ence on Formerly known as India Software Engineering Conference, pp. 1–5. Association
for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3385032.
3385047

A
ut

ho
r 

Pr
oo

f

https://doi.org/10.1007/978-3-642-30439-2_13
https://doi.org/10.1002/smr.1929
https://doi.org/10.1109/SEHC.2013.6602471
https://doi.org/10.1109/AGILE.2009.50
https://doi.org/10.5121/ijcsit.2013.5104
https://doi.org/10.1145/2601248.2601254
https://doi.org/10.14257/ijgdc.2016.9.10.21
https://doi.org/10.1093/jamia/ocz123
https://webstore.ansi.org/standards/aami/aamitir452012r2018
https://doi.org/10.1007/978-3-319-13036-1_17
https://doi.org/10.1007/s10664-020-09804-z
https://doi.org/10.1145/3385032.3385047


Identifying Agile Practices to Reduce Defects 13

49. Łukasiewicz, K., Górski, J.: Introducing agile practices into development processes of safety
critical software. In: Proceedings of the 19th International Conference on Agile Software
Development: Companion, pp. 1–8. ACM, Porto Portugal (2018). https://doi.org/10.1145/
3234152.3234174

50. Fitzgerald, B., Stol, K.-J., O’Sullivan, R., O’Brien, D.: Scaling agile methods to regulated
environments: an industry case study. In: 2013 35th International Conference on Software
Engineering (ICSE), pp. 863–872. IEEE, San Francisco, CA, USA (2013). https://doi.org/10.
1109/ICSE.2013.6606635

51. Ambler, S.W.: Agile Model Driven Development (AMDD) (2007)
52. Alshazly, A.A., Elfatatry, A.M., Abougabal, M.S.: Detecting defects in software requirements

specification. Alex. Eng. J. 53, 513–527 (2014). https://doi.org/10.1016/j.aej.2014.06.001
53. Bryant, S., Romero, P., du Boulay, B.: Pair programming and the mysterious role of the

navigator. Int. J. Hum.-Comput. Stud. 66, 519–529 (2008). https://doi.org/10.1016/j.ijhcs.
2007.03.005

54. Hulkko, H., Abrahamsson, P.: A multiple case study on the impact of pair programming on
product quality. In: Proceedings. 27th International Conference on Software Engineering,
2005. ICSE 2005, pp. 495–504 (2005). https://doi.org/10.1109/ICSE.2005.1553595

55. Chong, J., Plummer, R., Leifer, L., Klemmer, S.R., Eris, O., Toye, G.: Pair programming:
when and why it works. 6 (2005)

56. Vanhanen, J., Mäntylä, M.V.: A systematic mapping study of empirical studies on the use of
pair programming in industry. Int. J. Softw. Eng. Knowl. Eng. 23, 1221–1267 (2013). https://
doi.org/10.1142/S0218194013500381

57. Sobral, S.R.: Is pair programing in higher education a good strategy? Int. J. Inf. Educ. Technol.
10, 911–916 (2020). https://doi.org/10.18178/ijiet.2020.10.12.1478

58. Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R.: Strengthening the case for pair
programming. IEEE Softw. 17, 19–25 (2000). https://doi.org/10.1109/52.854064

59. Williams, L.A., Kessler, R.R.: Experiments with industry’s “Pair-Programming” model in the
computer science classroom. Comput. Sci. Educ. 11(1), 7–20 (2001)

60. Arisholm, E., Gallis, H., Dyba, T., Sjoberg, D.I.K.: Evaluating pair programming with respect
to system complexity and programmer expertise. IEEE Trans. Softw. Eng. 33, 65–86 (2007).
https://doi.org/10.1109/TSE.2007.17

61. Nosek, J.T.: The case for collaborative programming. Commun. ACM. 41, 105–108 (1998).
https://doi.org/10.1145/272287.272333

62. Ciolkowski, M., Schlemmer, M.: Experiences with a Case Study on Pair Programming. 7
(2002)

63. Dongo, T.A., Reed, A.H., O’Hara, M.T.: Exploring pair programming benefits for MIS majors.
J. Inf. Technol. Educ.: Innovations Pract. 15, 223–239 (2016). https://doi.org/10.28945/3625

64. Vanhanen, J., Lassenius, C., Mantyla, M.V.: Issues and tactics when adopting pair pro-
gramming: a longitudinal case study. In: International Conference on Software Engineering
Advances (ICSEA 2007), p. 70. IEEE, Cap Esterel, France (2007). https://doi.org/10.1109/
ICSEA.2007.48

65. Phaphoom, N., Sillitti, A., Succi, G.: Pair programming and software defects – an industrial
case study. In: Sillitti, A., Hazzan, O., Bache, E., Albaladejo, X. (eds.) XP 2011. LNBIP,
vol. 77, pp. 208–222. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20677-
1_15

66. di Bella, E., Fronza, I., Phaphoom, N., Sillitti, A., Succi, G., Vlasenko, J.: Pair programming
and software defects–a large, industrial case study. IEEE Trans. Softw. Eng. 39, 24 (2013)

67. Jensen, R.: A pair programming experience. undefined (2003)

A
ut

ho
r 

Pr
oo

f

https://doi.org/10.1145/3234152.3234174
https://doi.org/10.1109/ICSE.2013.6606635
https://doi.org/10.1016/j.aej.2014.06.001
https://doi.org/10.1016/j.ijhcs.2007.03.005
https://doi.org/10.1109/ICSE.2005.1553595
https://doi.org/10.1142/S0218194013500381
https://doi.org/10.18178/ijiet.2020.10.12.1478
https://doi.org/10.1109/52.854064
https://doi.org/10.1109/TSE.2007.17
https://doi.org/10.1145/272287.272333
https://doi.org/10.28945/3625
https://doi.org/10.1109/ICSEA.2007.48
https://doi.org/10.1007/978-3-642-20677-1_15


14 M. Nyirenda et al.

68. Vanhanen, J., Lassenius, C.: Perceived effects of pair programming in an industrial context.
In: 33rd EUROMICRO Conference on Software Engineering and Advanced Applications
(EUROMICRO 2007), pp. 211–218. IEEE, Lubeck, Germany (2007). https://doi.org/10.1109/
EUROMICRO.2007.47

69. Vanhanen, J., Korpi, H.: Experiences of using pair programming in an agile project. In: 2007
40th Annual Hawaii International Conference on System Sciences (HICSS’07). pp. 274b–
274b (2007). https://doi.org/10.1109/HICSS.2007.218

70. Phongpaibul, M., Boehm, B.: A replicate empirical comparison between pair development
and software development with inspection. In: First International Symposium on Empirical
Software Engineering and Measurement (ESEM 2007), pp. 265–274 (2007). https://doi.org/
10.1109/ESEM.2007.33

71. Fagan, M.E.: Advances in software inspections. IEEE Trans. Softw. Eng. SE-12(7), 744–751
(1986). https://doi.org/10.1109/TSE.1986.6312976

72. Vanhanen, J., Lassenius, C.: Effects of pair programming at the development team level: an
experiment. In: 2005 International Symposium on Empirical Software Engineering, 2005.
p. 10 (2005). https://doi.org/10.1109/ISESE.2005.1541842

73. Sison, R.: Investigating the effect of pair programming and software size on software qual-
ity and programmer productivity. In: 2009 16th Asia-Pacific Software Engineering Confer-
ence, pp. 187–193. IEEE, Batu Ferringhi, Penang, Malaysia (2009). https://doi.org/10.1109/
APSEC.2009.71

74. Tomayko, J.E.: A comparison of pair programming to inspections for software defect
reduction. Comput. Sci. Educ. 12, 213–222 (2002). https://doi.org/10.1076/csed.12.3.213.
8614

75. Balijepally, V., Mahapatra, R., Nerur, S., Price, K.H.: Are two heads better than one for
software development? The productivity paradox of pair programming. MIS Q. 33, 91 (2009).
https://doi.org/10.2307/20650280

76. Sison, R.: Investigating pair programming in a software engineering course in an asian setting.
In: 2008 15th Asia-Pacific Software Engineering Conference, pp. 325–331. IEEE, Beijing,
China (2008). https://doi.org/10.1109/APSEC.2008.61

77. Padmanabhuni, V.V.K., Tadiparthi, H.P., Yanamadala, M., Madina, S.: Effective pair pro-
gramming practice- an experimental study 3, 9 (2012)

78. Phongpaibul, M., Boehm, B.: An empirical comparison between pair development and soft-
ware inspection in Thailand. In: Proceedings of the 2006 ACM/IEEE international symposium
on International symposium on empirical software engineering - ISESE ’06, p. 85. ACM Press,
Rio de Janeiro, Brazil (2006). https://doi.org/10.1145/1159733.1159749

79. Winkler, D., Kitzler, M., Steindl, C., Biffl, S.: Investigating the impact of experience and
solo/pair programming on coding efficiency: results and experiences from coding contests.
In: Baumeister, H., Weber, B. (eds.) Agile Processes in Software Engineering and Extreme
Programming: 14th International Conference, XP 2013, Vienna, Austria, June 3–7, 2013.
Proceedings, pp. 106–120. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38314-4_8

80. Madeyski, L.: Impact of pair programming on thoroughness and fault detection effectiveness
of unit test suites. Softw. Process Improv. Pract. 13, 281–295 (2008). https://doi.org/10.1002/
spip.382

81. Arcos-Medina, G., Mauricio, D.: The influence of the application of agile practices in software
quality based on ISO/IEC 25010 standard. Int. J. Inf. Technol. Syst. Approach. 13, 27–53
(2020). https://doi.org/10.4018/IJITSA.2020070102

82. Pandit, P., Tahiliani, S.: AgileUAT: a framework for user acceptance testing based on user
stories and acceptance criteria. Int. J. Comput. Appl. 120, 16–21 (2015). https://doi.org/10.
5120/21262-3533

A
ut

ho
r 

Pr
oo

f

https://doi.org/10.1109/EUROMICRO.2007.47
https://doi.org/10.1109/HICSS.2007.218
https://doi.org/10.1109/ESEM.2007.33
https://doi.org/10.1109/TSE.1986.6312976
https://doi.org/10.1109/ISESE.2005.1541842
https://doi.org/10.1109/APSEC.2009.71
https://doi.org/10.1076/csed.12.3.213.8614
https://doi.org/10.2307/20650280
https://doi.org/10.1109/APSEC.2008.61
https://doi.org/10.1145/1159733.1159749
https://doi.org/10.1007/978-3-642-38314-4_8
https://doi.org/10.1002/spip.382
https://doi.org/10.4018/IJITSA.2020070102
https://doi.org/10.5120/21262-3533


Identifying Agile Practices to Reduce Defects 15

83. Miller, R.W., Collins, C.T.: Acceptance Testing (2002)
84. Scott, E., Tõemets, T., Pfahl, D.: An empirical study of user story quality and its impact

on open source project performance. In: Winkler, D., Biffl, S., Mendez, D., Wimmer, M.,
Bergsmann, J. (eds.) SWQD 2021. LNBIP, vol. 404, pp. 119–138. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-65854-0_10

85. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.: Improving agile require-
ments: the quality user story framework and tool. Requirements Eng. 21(3), 383–403 (2016).
https://doi.org/10.1007/s00766-016-0250-x

86. Jeeva Padmini, K.V., Perera, I., Dilum Bandara, H.M.N.: Applying agile practices to avoid
chaos in user acceptance testing: a case study. In: 2016 Moratuwa Engineering Research
Conference (MERCon), pp. 96–101. IEEE, Moratuwa, Sri Lanka (2016). https://doi.org/10.
1109/MERCon.2016.7480122

87. Duka, D.: Agile Experiences in Software Development 6 (2012)

A
ut

ho
r 

Pr
oo

f

https://doi.org/10.1007/978-3-030-65854-0_10
https://doi.org/10.1007/s00766-016-0250-x
https://doi.org/10.1109/MERCon.2016.7480122


Author Queries

Chapter 5

Query Refs. Details Required Author’s response

AQ1 This is to inform you that corresponding author has been identified
as per the information available in the Copyright form.

AQ2 As per Springer style, both city and country names must be
present in the affiliations. Accordingly, we have inserted the city
name “Dundalk, Newtownabbey” in affiliation “1, 2” respectively.
Please check and confirm if the inserted city name “Dundalk, New-
townabbey” are correct. If not, please provide us with the correct
city name.

A
ut

ho
r 

Pr
oo

f


	Identifying Agile Practices to€Reduce Defects in€Medical Device Software Development
	1 Introduction
	2 Background of€Medical Device Software Development
	2.1 Medical Device Software
	2.2 Software-Related Medical Device Failures
	2.3 Standards
	2.4 State-of-the-art for€Software Defect Identification
	2.5 Agile Software Development

	3 Agile Practices for€MDS Development
	3.1 Identifying all Potentially Suitable Agile Practices
	3.2 Identifying Which Practices Have Been Used in€the€Development of€MDS
	3.3 Agile Practices that€Could be Used to€Identify Defects
	3.4 Agile Practices that€Could Potentially Help to€Address Defects in€MDS Development

	4 Future Work
	5 Conclusion
	References


