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Abstract

Recently, there has been a rising interest in small satellites such as CubeSats in the

aerospace community due to their small size and cost-effective operation. To support

maneuverability, a CubeSat can be equipped with a propulsion system, in our case, uti-

lizing a propellant tank where the fuel must be maintained at a certain temperature range.

Simultaneously, the energy production should be maximized so that the other compo-

nents of the satellite are not overheated. Because of these difficulties, ensuring that

operating conditions fulfill different goals and constraints for small satellites with low

cost and energy consumption is challenging. To meet the technological requirements,

a novel control-oriented lumped thermal model is derived in nonlinear ordinary differ-

ential equation form for the studied fuel-tanked satellite. The model is able to simulate

the thermal behavior of the surface and fuel tank of the satellite in its orbit. Addition-

ally, we present multi-criteria control designs using the derived nonlinear model of the

CubeSat systems. First, a PID control scheme with anti-windup compensation is em-

ployed to evaluate the minimum heat flux required to keep the propellant tank at a given

reference temperature. Then, a linearization-based controller is developed to control the

temperature. Finally, the optimization of the solar panel area and constrained tempera-

ture control is solved as an integrated nonlinear MPC case using the quasi-LPV form of

the state equations. Several simulation scenarios with different power limits and solar

panel coverage cases are shown to illustrate the trade-offs in control design and to show

the applicability of the approach.

The INS update rate is faster than the one in the GNSS receiver. However, the GNSS

received data may suffer for a few seconds blocking, for different reasons, impairing

the integration architectures for GNSS and INS. Thus, a novel GNSS data prediction

procedure employing a KNN predictor algorithm is proposed to treat data synchroniza-

tion between the INS sensors and GNSS receiver and overcome GNSS data blocking.

The experimental work was conducted on a drone that hovered over a minor Hungarian

model airfield. The GNSS data is calculated for four different scenarios. One scenario

has no blocking, and the other three have incremental blocking periods of data. An

ultra-tight architecture is used to perform the GNSS/INS integration to handle the INS

sensors’ inaccuracies and divergences throughout the operation. The results show that

using the GNSS/INS integration system yields more precise Cartesian coordinate data

than using a stand-alone INS or GNSS system without a predictor.
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Nomenclature

asdasdasd

Acronyms

ADCS Attitude Determination and Control System.

CubeSat Cube-shaped miniaturized satellite.

Face Face of the CubeSat.

COTS Commercial Off-The-Shelf.

CDH Command and Data Handling.

LPV Linear Parameter Varying.

MPC Model Predictive Control.

Solar panel Solar panel forced to CubeSat surface.

Tank Spherical propellant tank.

1U One unit CubeSat.

INS Inertial Navigation System.

GNSS Global Navigation Satellite System.

Galileo Europian GNSS.

BeiDou China GNSS.

KNN K-Nearest Neighbo.

GNSS/INS Integration between GNSS and INS.

I In-Phase.

Q Quadrature.

IMU Inertial Measurement Unit .

AHRS Attitude Heading Reference System.

AMSL Above Mean Sea Level.

Geodetic Geographic coordinate.

LLA Geodetic coordinate.

ECEF Earth-Centered Earth-Fixed coordinate.
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Symbols Units

A [m2] Area of each face.

AF Percentage of Albedo factor.

AP [m2] Area of the solar panel.

a Material’s absorptivity .

as Material’s solar absorptivity.

aIR Material’s infrared absorptivity.

aAl
IR Aluminum infrared absorptivity.

aAl
s Aluminum solar absorptivity.

asc
s Solar panel solar absorptivity.

aAl-sc
s Aluminum and solar panel average absorptivity.

Cp [J/kg K] Aluminum specific heat.

Cs
p [J/kg K] Stainless steel specific heat.

Csc
p [J/kg K] Solar panel specific heat.

Cv [J/kg K] Nitrogen specific heat.

ε Material’s emissivity.

εIR Aluminum IR emissivity.

εAl
IR Aluminum infrared emissivity.

εsc
IR Solar panel infrared emissivity.

εAl-sc
IR Aluminum and solar panel average infrared emissivity.

Ff t View factor between a face and the tank.

Gs [W/m2] Solar constant.

h [m] Distance of the tank’s surface to the face.

m [kg] Total mass of CubeSat.

mAl [kg] Mass of an Aluminum face.

mg [kg] Mass of nitrogen in the tank.

ms [kg] Mass of the tank (stainless steel).

P [sec] Orbital period of the CubeSat.

P1 [sec] First orbit interval (first quartile of the orbital period).

P2 [sec] Second interval (second and third orbital quartile ).

P3 [sec] Third interval (fourth quartile of the orbital period).

Q̇ [W] Power dissipated heat rate.

Q̇c [W] Heat flux applied to the tank generated by the heater.

Q̇Fi [W] Radiated heat transfer between the ith face and the tank.
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r [m] Tank radius.

TE [K] Earth’s reference temperature.

Tt [K] Tank’s temperature.

Vr [K] Tank reference temperature.

λ [= AP
A ] Portion of the solar panel area compared to that of the

face.

σ [W/m2K4] Stefan-Boltzmann constant.

c [m/sec] Velocity of the light.

C (t) Sequence of the code C/A.

D(t) Navigation message.

ω j Weight of the j-neighbor.

w [rad/sec] Angular frequency.

w′ [Hz] Carrier frequency of the receiver.

ŵ [Hz] Estimated carrier frequency of the receiver.

we [Hz] Error in frequency.

xu [m] Measured position.

vu [m/sec] Measured velocity.

xe [m] Position error.

ve [m/sec] Velocity error.

ŷl Predicted data.

y j Testing data.

ψ ′ Phase of the GNSS signal.

ψˆ Estimated phase of the GNSS.

ψe Error in phase.

ξ Gaussian Noise.

ξI In-phase Noise.

ξQ Quadrature noise.

viii

DOI:10.15774/PPKE.ITK.2023.002



Chapter 1

Introduction

1.1 Background

1.1.1 Satellite systems

The successful launch of Sputnik 1 in October 1957 ushered in a period of rapid technological
development between the Soviet Union and the United States of America. That spawned new
political, military, and scientific headway to cultivate the next 60 years of space technology,
so-called the Space age [1; 2]. Subsequently, over the last two decades, there has been a surge
in interest in and use of much smaller satellites, taking advantage of shrinkage-mutation in a
wide range of digital devices and systems. In addition, small satellites’ increasing popularity
in planning and creating new missions via shorter development time intervals and cheaper
orbital delivery costs. A new age in space, termed Space age 2, has begun as a consequence
of the expanding possibilities for space access via new technologies in space programs, global
partnerships, new launch vehicles, and new launch service providers [3; 4].

Small satellites are indeed a novel technology because they can achieve the conventional
satellite services incorporated by reducing development time and cost. These small satellites
do not exceed the size of a small suitcase, yet they orbit Earth in formations. Advances
in minimized research instruments, miniature satellite technologies, and increased access
to space have led to a spurt in space studies and business. They have been developed to
construct a wide range of applications, such as in planetary science research, astrophysics,
biomedicine, and Earth remote sensing, by universities, governments, and private aerospace
companies. CubeSat technology was produced at the beginning of this century to satisfy the
low cost of designing and the lowest price of launching into space. These small satellites
have provided an abundant opportunity for scientists and engineers to deal with space, so
they have become substantial in space technology. When CubeSat manufacturing and launch
are affordable, it is possible to place numerous satellites in orbit. However, each satellite
must be positioned at a unique orbital point to arrange this constellation form. It can be done
either by using the launcher’s capabilities or by performing maneuvers after the launch using
onboard propulsion; so far, CubeSats often have very limited or no propulsion systems [3;
5].
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There is a pragmatic temperature difference of hundreds of degrees in orbit when a satellite
faces the Sun or is in the shadow part of the orbit. Objects may become too hot or cold in
space, and cooling is only possible by transferring heat to the outside surface of a satellite
and then radiating it into deep space. Therefore, thermal control is a critical component in
keeping the temperature of a CubeSat within the survival temperature range. The majority
of CubeSats practice passive temperature control. This is accomplished by installing thermal
blankets comprised of many layers of insulation on the Cubesat, using paint (black is used to
absorb heat, whereas white is used to reflect it), and using solar panels placed on the outside
surface, which acts as an insulating layer as well.

The satellite’s power system consists of batteries, solar panels for charging, and a charge
regulator. The satellite travels from the full Sun to the Earth’s shadow in each cycle of Earth’s
orbits. For planning operations, the available energy in the batteries must be considered
to satisfy the onboard requirements. Because of CubeSat’s small surface area constraints,
power is precious. Furthermore, the satellite’s active thermal management system consumes
energy, so it is essential to ensure that CubeSat’s active mean control system utilizes the
lowest amount of power possible [2; 6].

Many literatures, reports, and books are published concerning illustrating and evaluating
small spacecraft,e.g., the State of Art NASA’s online SmallSat technology report integrated
with CubeSat 101 equips CubeSat concepts and developments’ comprehensive and regularly
updated attributes [7; 8; 9].

1.1.2 Satellite navigation systems

Navigation systems have advanced certainly in territorial coverage and precision during
the last 50 years. In particular, navigation and positioning technologies have significantly
changed our industries and lifestyles, especially since the invention of the Global Naviga-
tion Satellite Systems (GNSS), which incorporated techniques of the Global Position System
(GPS) in the United States, the Global Navigation Satellite System (GLO NASS) in Rus-
sia, the Galileo system in the European Union, and the (BeiDou) Navigation Satellite System
(BDS) in China. Satellite navigation systems are fundamentally based on signals transmit-
ted from the space segments, the ground segments’ reception, and the processing of the
transmitted signals. Therefore, the design and performance of this signal may limit the over-
all system performance. Concurrently, technological developments have made significant
improvements in wireless communications, aerospace engineering, and satellite navigation.
Also, theoretical research has proposed many novelties concerning the design of satellite
navigation signals. The construction of a satellite navigation system depends on the specific
mission and application conditions; the design constraints of the signal’s various elements
are mutually related. Thus, it is impossible to develop a new navigation signal with better-
integrated performance simply by combining multiple methods or by mimicking different
systems [10; 11].

2
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The navigation systems of aerospace devices are highly accurate and reliable in different
weather conditions, and errors do not accumulate over time. On the other hand, they have a
relatively low data update rate and some complications concerning the attitude data. Onboard
Inertial Navigation Systems (INS) are the gyroscope and accelerometer that measure the
integration of velocity, position, and attitude to the vehicles. The inertial components have
a faster data update rate, but the INS navigation errors caused by device errors accumulate
as time elapses via the integration principle in navigation computation. The INS exponential
error must be rectified to secure the required navigation accuracy for the long-term airborne
mission. Thus, to create robust integrated navigation systems, all other navigation syntheses
are conducted to aid inertial navigation and make up the integrated navigation systems [10;
12].

The GNSS and INS navigation systems, of course, each have their own strengths and
weaknesses, so each system alone is challenging to meet the requirements of high navigation
performance for a long time. Therefore, the INS/GNSS integration has complementary ad-
vantages and effectively achieves accurate navigation. Therefore, combining INS and GNSS
might provide complementing benefits, making it a viable option for attaining high-accuracy
and reliable navigation units. In terms of the INS/GNSS integration mechanism, integrated
solutions have progressed from the simple initial method to complex approaches. A sim-
ple integration model uses satellite tracking signals to reset the inertial navigation system’s
position and velocity directly. This integration procedure corrects the inertial navigation sys-
tem’s positioning and velocity defects while the attitude or inertial system errors will not
be restored. Therefore, the in-depth integration technique has been developed to improve
the complementarity of the inertial navigation system and the satellite navigation system. It
is a technique of advanced integration in which the inertial navigation system and satellite
navigation system may assist and correct one another to achieve superior performance [12;
13].

The theoretical and practical aspects of satellite navigation systems have gained much at-
tention from academic researchers. Therefore, many scientists have published distinguished
books and literature on the operating principles, applications of satellite navigation systems,
and on the hybrid INS/GNSS navigation systems [14; 15; 16].

3
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1.2 Aim and motivation

The first research objective of this work was the model-based thermal analysis and control of
a small satellite (CubeSat) to study the possibility and conditions of the fuel tank installation.
Next, an optimization-based approach considering control inputs was exploited to investigate
an optimal solar panel ratio to upgrade a CubeSat power system. Finally, GNSS data pre-
diction and synchronization investigations were conducted between the INS sensors and the
GNSS receiver in order to enhance the navigation data. The motivation behind the research
is presented in this section.

1.2.1 CubeSat functionality

Interest in CubeSats has grown tremendously within the space community from space agen-
cies, industry, and academia. Two factors have influenced this spurt of interest: the low-cost
nature of access to space and the utilization of Commercial Off-The-Shelf (COTS) technolo-
gies in architectural design. These two factors have led to a significantly lower overall cost of
a CubeSat mission. The CubeSat Project was started in 1999 as a collaborative effort of Cal-
ifornia Polytechnic State University and Stanford University to develop standards for small
satellites. Initially, a CubeSat was defined as a ten-centimeter cube weighing one kilogram
or one unit (1U). Then specifications have changed over time, and nowadays, it is possible to
build even bigger CubeSats up to (12U). In addition, CubeSats are often launched as a sec-
ondary payload due to their compact size. Thus, standardizing their designs facilitates their
assembly inside launchers and deployment in orbit.

All satellites, including CubeSats, comprise elementary survivability and mission progress
subsystems (buses). Some of these buses are custom designed and built, while others can
be underlying COTS parts. These buses include the Attitude Determination and Control
System (ADCS), Command and Data Handling (CDH), communications, structure, power,
propulsion, thermal control, and payload. The Attitude Determination and Control System
(ADCS) determines the attitude and orientation of the satellite and can also alter it if needed
through active means. The Command and Data Handling subsystem (CDH) serves as the
CubeSat’s “brains,” including the electronics and software required to execute specific orders
while in orbit. The communications subsystem includes antennas and radios required for
communication between the satellite and the ground station or other satellites. A structure
subsystem is a mechanical subsystem that holds all the components in place upon launch and
provides structural support. Typically, the bus structure is intended to work with stacks of
devices that use a PC/104 hole arrangement. Depending on the bus construction architecture,
electronics stacks may be dropped into the bus from the top or slid in from the side. When
feasible, sharp corners are avoided, and fillets are included in the structural design to mitigate
stress concentrations. The payload is the part that fulfills the mission’s overall purpose, for
example, an optic for Earth imaging applications [17; 18].

4
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Propulsion subsystem engineering is becoming more critical as the number of CubeSats
grows. Innovative propulsion systems are needed to provide rotational attitude control, orbit
modification, and de-orbiting, depending on the mission requirements. Without a propul-
sion system, gravity influences the CubeSat and begins an early de-orbit process, shortening
its space duration. Thus, the absence of a propulsion bus has restricted CubeSats in orbit
to a few weeks, or at most months. Several propulsion methods are being developed for
CubeSats, including butane systems, pulsed plasma, and arc thrusters. In addition, the devel-
opment of new thruster technologies such as monopropellant systems, green monopropellant
systems, cold gas systems, and ion propulsion systems is underway. The simplest method
uses chemical propellants kept in tanks connected to a pressure reducer and a control valve.
Most systems try to increase the total enthalpy of the working fluid before the nozzle, which
results in higher kinetic energy and correspondingly higher propulsive forces by speeding the
propellant flow out of a diverging nozzle [19; 20; 21].

The purpose of the thermal control system bus is to keep the temperature of the CubeSat
components within specified limits, considering power consumption, operations, and other
factors in the given orbit. In other words, a thermal control bus is essential to avoid Cube-
Sat freezing or overheating by the extreme thermal conditions in space, securing optimal
functionality for mission success. However, due to the crucial space environment vacuum
conditions, heat transmission is mostly by radiation and conduction, with convection oc-
curring exclusively in manned spacecraft systems. Also, thermal systems are often treated
as subsystems of structural systems because of the strict correlation between them. There-
fore, a thermal control bus system is constrained by the spatial arrangement of the CubeSat
elements and the materials employed to construct them. So, the materials selection and com-
ponent placement restrict and influence the temperature exchange between the satellite’s in-
ternal components and its surroundings. When addressing the temperature management of
thermal systems, two temperature limits are commonly defined: an operating limit and a sur-
vival limit. A thermal control system that is effective will maintain component temperatures
within their operational limits [2].

Power generation and optimal photovoltaic panel orientations are essential for small satel-
lites with restricted surface areas for panel mounting. A CubeSat power bus that includes so-
lar panels and batteries is constrained by the small area for solar panels and lacks intricate
and heavy deployable boards. Solar flux is the only energy source in a CubeSat that gener-
ates the power required for spacecraft operations. It can be a body-mounted or deployable
configuration depending on the satellite design and mission. Body-mounted solar panels are
fixed to the structure bus itself, while deployable solar panels have hinges that can rotate the
panels outward and orient them toward the Sun. Because they orbit in low Earth orbit, small
satellites frequently undergo the Earth’s shadow and the satellite’s direction prospective Sun.
However, it encounters a significant variation in the thermal environment during Earth’s Sun-
lit and eclipse periods while a satellite is orbiting Earth. Thus, a thermal analysis of the solar
panels to ensure the safe operation of satellites throughout their mission life is of great im-
portance. Also, the precise pointing of CubeSat solar panels toward the Sun is impossible
because of the difficulty of carrying out attitude determination and control systems with low
mass and low onboard power consumption. As a result, CubeSat has a low amount of elec-
tric energy; in particular, the growing community of CubeSat producers is confronted with
operational limits and power constraints, necessitating the development of innovative panel
configurations [3].

5
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1.2.2 Navigation systems and related challenges

Currently, three major global navigation satellite systems, including GPS, GLO NASS, and
Galileo, have a notional constellation of 75 satellites. If all three systems supply spare satel-
lites besides the BeiDou navigation satellite system, and if space-based augmentation sys-
tems (SBAS) satellites are included, then up to 90 satellites will send navigation signals
concurrently to perform GNSS ranging measurements [22; 15]. Satellite navigation is used
throughout all stages of flight. With local augmentation systems, GNSS may even deliver
high-accuracy landing performance. The navigation systems must provide high integrity,
continuity, and availability levels besides accuracy.

The Strap-down Inertial Navigation System (SINS) estimates the airborne location, ve-
locity, and attitude, incorporating inertial components’ measurement data and initial system
parameters. The inertial elements are the core of SINS, and their accuracy directly affects
the system’s performance. However, even ideal inertial components produce results with er-
rors because of several interferences, which significantly affect the accuracy of SINS. Inertial
component errors may be deterministic or random. Determinate error is the primary cause
of the inertial component error; hence, building an inertial component error model, testing
it, and adjusting it within SINS is essential. Despite just a minor component of inertial com-
ponent error, a random error has a significant impact on SINS accuracy. Random errors may
be statistically regulated or not. In the case of statistically regulated random errors, optimal
filtering is typically used for the estimate, and compensation [13].

Integration of the Global Navigation Satellite System and Inertial Navigation System
(GNSS/INS) is necessary to precisely navigate from open skies to densely populated ar-
eas. GNSS, which includes augmented, assisted, differential, and relative system concepts,
needs a direct line of sight between the satellite and the receiver for accurate localization . On
the other hand, inertial systems are self-contained and independent, have no visibility issues,
and are as accurate as GNSS when used in short time intervals. However, due to the double
integration over time, the inaccuracy of an INS increases with time squared. Therefore, both
techniques are usually integrated to achieve a high-performance navigation system.

Five levels of system integration are commonly distinguished, separately, loosely, closely,
tightly, and deeply coupled (ultra-tightly coupled); the significant property of ultra-tightly
coupled is that the INS inertial data is used to assist the GNSS tracking loops. Typically, the
design of a deeply coupled system needs synchronization between the INS and the GNSS
receivers; thus, an Extended Kalman Filter (EKF) is used to merge the satellite and inertial
information. In engineering practice, mathematical models of systems are often nonlinear,
for example, the guidance and control system of a drone, the inertial navigation system of
an aircraft or cruise ship, and the attitude determination and positioning system of a satel-
lite. Thus, research on nonlinear optimal state estimation has significant technical relevance.
While its filter performance is comparable to that of the Kalman filter for linear systems, it
clearly outperforms the extended kalman filter for nonlinear systems, as there is no need to
calculate the Jacobian matrix or linearize the state or measurement equations; thus, there is
no truncation error in higher-order terms. Even though its precision is limited because of the
requirement for linearizing nonlinear systems and calculating the "Jacobian" matrix during
the application, EKF is commonly used in the navigation fields of guided airborne systems.
In addition, the discrete EKF equation can only be executed when the filter and single-step
prediction errors are small [13; 23].
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The advantages of the ultra-tightly coupled approach include accurate GNSS signal pre-
diction, reduced jamming of the GNSS by decreasing the tracking loop bandwidth of the
GNSS receiver significantly, and improved satellite signal tracking during high-speed maneu-
vers. Thus, the ultra-tightly coupled strategy improves accuracy, availability, and continuity
at the cost of extensive onboard processing of the airborne [15].

1.3 State of the art

At present, a few CubeSats have flown in space with an onboard propulsion system. These
thrusters are used for attitude control or performing orbital maneuvers, formation flight, de-
orbit, drag recovery, and proximity operations. Because of the significant and growing inter-
est in CubeSat mission capabilities, several propulsion systems have been rapidly developed
for CubeSats, such as cold gas propulsion systems, solar sails, electric propulsion systems,
and chemical propulsion systems [24; 25]. Cold gas propulsion systems are relatively sim-
ple solutions for CubeSats. Gas from a high-pressure gas cylinder is simply vented through a
valve and nozzle to produce thrust [26; 19]. The investigation of the potential thermal hazards
of installing the fuel tank must be considered as an early stage of featuring an engine in the
CubeSat. Therefore, an internal thermal control subsystem must be developed to effectively
regulate the heat transfer to ensure that the system remains within its thermal operational lim-
its,[24; 27]. To achieve the intended performance of the component, the operational thermal
limits must be strictly maintained. For simple tracking control, a PID controller might still
be a practical choice, even for certain nonlinear processes[28].

The main task of the thermal modeling is to give a sufficient description of the CubeSat
surface and propellant tank material properties and formulate appropriate initial and bound-
ary conditions. The vast majority of control design techniques require models in ordinary
differential equations form [29]. For nonlinear models, such as the CubeSat system studied,
a low-dimensional model is preferred due to the computational complexity of the control de-
sign. This approach is also supported by control theory and practice; in general, such simple
models are often sufficient for controller design [30]. As the first step to regulating temper-
ature, a passive control in the form of the appropriate composition of materials covering the
surfaces of the satellite is used. During the construction of the model, the standard principles
of thermal modeling [31], and their application in aerospace engineering are followed [32;
33].
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Relevant results can be found in the literature concerning the thermal modeling and analy-
sis of small satellites in the form of ODEs. For example, in [34] a simple thermal dynamical
model of a CubeSat containing two differential equations is presented. The two lumped bal-
ance volumes are the surface and internal parts of the satellite, respectively. It is shown
that the problem is mathematically analogous to the forced vibration of a damped mechani-
cal system. In [30], new theoretical results on the qualitative behavior of spacecraft thermal
models are provided that contain several nodes (compartments). It is proven that such mod-
els exhibit a unique asymptotically stable equilibrium in the positive orthant with constant
external disturbance inputs, which leads to a stable limit cycle during orbital motion. The
analysis concerning the frequency domain of a multi-compartmental model of a satellite is
conducted in [35]. The ODEs are linearized around the equilibrium points, which permits
frequency domain analysis. Feedback linearization aims to apply a suitable nonlinear feed-
back law to nonlinear systems to obtain a linear closed-loop system in the input-output sense.
Therefore, it is a basic but often practically limited technique for controlling nonlinear sys-
tems. Many surveys discuss the effects of coordinate changes and feedback transformation
for input-output-wise linearization in order to achieve full linearity of both state-space equa-
tions and the output map [30; 35].

The Linear Parameter Varying (LPV) paradigm has received a lot of attention in recent
decades and has become a standard formalism in systems and control theory. An LPV
framework treats linear dynamical systems that have state-space representations depending
on time-varying parameters; thus, it can be considered as the natural extension of the Lin-
ear Time Invariant (LTI) framework [36; 37]. Furthermore, the LPV framework is a popular
approach to rewriting nonlinear systems by involving nonlinearities in the scheduling pa-
rameters, and in this way, it is possible to extend some of the linear control techniques for
nonlinear systems [38]. The combination of LPV control and feedback linearization has
been implemented in [39] to provide a general control method for input-affine nonlinear sys-
tems. Nevertheless, instead of linearizing the nonlinear systems, set-valued methods with
Quasi-Linear Parameter Varying (quasi-LPV) representations have been developed for non-
linear systems [40]. The LPV models can be employed to describe nonlinear models derived
from nonlinear differential equations concerned with physical relations. Often, a nonlinear
state-space model can be embedded into the so-called quasi-LPV model class [41; 42; 43], in
which the time-varying parameters are typically disturbance signals or functions of the state,
input, and/or output. In [44], three different quasi-LPV model formulation techniques are
discussed, namely, state transformation, function substitution, and an LPV extension for the
well-known Jacobian (linear approximation) method.

Due to the rapid growth of computational power in the last few decades, a new control
methodology has emerged in the systems and control community based on prediction and
optimization. These concepts are collectively called the Model Predictive Control (MPC)
framework, which spans a reasonably comprehensive class of system models. Many results
are available for general nonlinear systems, for example, in [45; 46]. Other MPC techniques
are formulated specifically for nonlinear models in a quasi-LPV form; see e.g. [47; 48; 49
; 50]. Several useful numerical techniques of [46; 51; 45; 52; 53; 54] were implemented in
Matlab’s Model Predictive Control Toolbox [55].
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The GNSS/INS integration is a prominent navigation mechanism in which the short-term
accuracy of the INS is processed in real-time using the GNSS long-term accuracy signals
[56]. Because the Inertial Measurement Unit (IMU) inherent shifts, the INS navigation error
exponentially increases in time, resulting in reduced navigation accuracy [57]. INS con-
tinuously calculates position, velocity, and attitude angles during GNSS signal loss for any
reason. The GNSS, on the other hand, has a lower update rate than the INS, and the satellite
signal can be lost or fragmented due to environmental circumstances, including mountains,
high buildings, tunnels, and multi-path reflections [58; 59]. GNSS provides highly accu-
rate guidance information, and INS has a continuously high update rate. However, there are
drawbacks, such as the GNSS measurement’s low update rate, the possibility of an absence
signal, and the IMU’s drift characteristics in the INS. These drawbacks of both individual
frameworks are addressed, and both systems’ advantages are merged via the integration syn-
thesis of GNSS/INS. So far, integration of the GNSS/INS framework has usually been estab-
lished to determine the vehicle’s position and attitude, which can be implemented by using a
Kalman filter [60; 13; 61; 62; 63]. The problem in all the integration architectures mentioned
above is that the INS data rate is higher than the GNSS data rate. Consequently, a predictor
should be used to predict the in-between sampling instants of the GNSS receiver in order to
synchronize with INS data before the integration process and overcome the GNSS receiver’s
stopping time (blocking data) when the signal is lost for a few seconds [64]. Hence, the
prediction process benefits two critical solutions: first, it gives a high GNSS data rate, and
second, it overcomes the problem of GNSS signal loss.

Different prediction algorithms are used in the output of the GNSS or GPS receivers before
integration with the INS data for synchronization purposes. In reference [65], a method
proposed to predict GPS data was shown by using a Normalized Least-Mean-Square (NLMS)
algorithm. Furthermore, a different blocking time of GPS is taken to indicate the ability of the
algorithms for GPS prediction data. In reference [66], a comparison between the performance
of Radial Basis Function Neural Networks (RBFNN) and Wavelet Neural Networks (WNNs)
for GPS data prediction is presented, and the results show that WNNs are more efficient than
RBFNNs. Additionally, a carrier phase prediction method at the baseband signal processing
level to solve GNSS blocking signals in challenging environments was proposed in reference
[67].
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Chapter 2

Nonlinear thermal modeling of a CubeSat

2.1 Background

There has been an increasing interest in small satellites by governments and industry, justi-
fied primarily by their low cost, mass, size, short development time, and relative simplicity.
The cost of sending vehicles and satellites into space and the related large amount of work
involved result in infrequent missions. Therefore, the engineers working on space systems
usually do not get many opportunities to practice launch and flight operations. CubeSat is
a microsatellite, consistent with the CubeSat Design Specification developed by California
State Polytechnic. This standardized type of satellite poses limits on both the size and weight
of the space segment. The size of this satellite cannot exceed roughly 10x10x10 cm3 and a
mass of 1 kg. At present, very few CubeSats have flown with an onboard propulsion system
to provide attitude control or perform orbital maneuvers. Thus, there is a need to investigate
the possibility of installing a propellant tank and performing thermal simulations to obtain a
starting point for adding a propulsion system to CubeSat.

To modify either the CubeSat surface optical properties or the solar panel ratios attached to
specific satellite sides, we need a thermal model for simulations and control design. Thermal
Mathematical Model (TMM) is responsible for simulating the transient thermal behavior of
the CubeSat’s key parts through its orbit. The TMM together with the simulation results
are introduced to study the temperature variations and the thermal stability of the CubeSat
surface and its propellant tank [P1; 68]. Furthermore, the TMM is reformulated as a unified
model concerning the solar panel ratio that partially covers the CubeSat surface [P2]. Finally,
depending on this new model, an equivalent quasi-LPV model is composed [P2; 43] as the
first step toward applying the Model Predictive Controller (MPC).

In this Chapter, the thermal simulation of the fuel tank is shown for several cases based on
different variations of the satellite surface coating. Also, a new model concerning the solar
panels’ ratios (λ ) is parallelly simulated with the original TMM under the same constraints
to ensure its validity. The solar panels are the most critical part of CubeSat due to the power
limits. Thus, to make the effect of varying the solar panels’ ratios more elaborated, additional
simulations with different values of λ are also presented.
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The Chapter is organized as follows: A brief mathematical model description of the Cube-
Sat’s dynamical thermal behavior TMM is formulated in section 2.3. This TMM is employed
to simulate different surface compositions of a CubeSat in section 2.3.5. Then an equiva-
lent model depicting the thermal behavior of CubeSat’s specific parts with respect to λ is
derived in section 2.4. The equivalent model is also employed to simulate the CubeSat ther-
mal behavior with the TMM in section 2.6. Additionally, the range of dynamical behavior of
the CubeSat for different values of λ is shown in section 2.4.2. Finally, a quasi-LPV model
formulation is presented in Section 2.5.

2.2 System description

The intended use of the model developed in this thesis is twofold: 1) to study the effect of
different surface compositions (including solar panels) on the CubeSat’s temperature, and
2) to evaluate the possibility of installing a propellant tank in the CubeSat. Concerning the
modeling, the following assumptions are made:

2.2.1 Structural

CubeSat is a cubic structural bus with a total mass of 1 kg composed of six faces as walls. The
basic structure of these faces is composed of the aluminum alloy 6061-T6 with various optical
surface properties. These properties are based on uncoated surfaces for one experiment and
coated with a magnesium oxide-aluminum oxide paint for the others. The nitrogen fuel tank,
made of stainless steel with a diameter of 5 cm, is planned to be installed in the center of this
small satellite and is assumed to contain an internal gas subjected to 100 bar of pressure at
298 K as an initial temperature.

2.2.2 Orbital

This satellite is devised for a circular Low Earth Orbit (LEO). The total orbital period (P) is
1.5 h. However, its orbital motion is assumed to be identical when exposed to solar radiation
and during shadow passage at an altitude of 300 km and an inclination of zero. Face 3 is
directed towards the Earth throughout its orbit. Faces 1, 2, and 4 are exposed to the Sun with
regard to the orbital motion of the satellite. Finally, faces 5 and 6 are directed toward space
along the satellite orbit, as shown in Figure 2.1.

Figure 2.1: CubeSat orbital motion includes three time intervals (P1, P2, and P3)
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2.2.3 Thermal

The CubeSat’s six faces are considered to have a uniform temperature distribution. The
conductive heat transfer between the central fuel tank and the satellite’s surfaces is ignored
to simplify the thermal modeling calculations. Face 3 is exposed to infrared radiation from
the Earth along the orbit and albedo during the luminous orbit intervals [34]. The thermal
rate of power dissipation generated from the operation of CubeSat’s elements is assumed to
be 2 W. The thermal boundary limits for the fuel tank are 228 K and 338 K, and for the
surface area of the satellite, they are 173 K and 373 K.

2.3 Nonlinear dynamic thermal model

The problem concerns the formulation of the model, which is, on the one hand, simple
enough to reduce the expenditure, on the other hand, detailed enough to present an adequate
description of the physical surroundings [1]. The primary purpose of these calculations is
to divide the periodic motion of the satellite (with period P) into three intervals (parts), as
shown in Figure 2.1. The first interval (P1) starts with an initial time of t = 0 sec when face 1
faces the Sun and ends at a time of t = 1350 sec when face 4 faces the Sun. The second inter-
val (P2) is an eclipse interval between t = 1351 sec and t = 4050 sec. The third interval (P3)
starts at t = 4051 sec when face 2 faces the Sun and ends at the end of the satellite period at
t = 5399 sec.

2.3.1 First interval equations

Interval P1 : t = 0 → t =
P
4

The CubeSat spends a quarter of its orbital period in this luminous part. During this time
interval, the satellite’s surface receives direct solar and albedo radiation depending on its
orbital motion. In addition, the satellite emits thermal IR radiation into space; however, only
face 3 receives infrared radiation from Earth because it is facing this planet along the orbit
[69]. The rate of heat transfer between face 1, the external environment, and the spherical
fuel tank during the first interval can be represented by

(mAlCp +mscCsc
p )

dT1

dt
= GsaAl-sc

s Acos
(

2πt
P

)
+ Q̇+ Q̇F1 − ε

Al-sc
IR σAT 4

1 (2.1)

where mAl denotes the mass of aluminum, Cp stands for the specific heat of aluminum (980
J/(kg·K)), msc represents the mass of the solar panel, Csc

p is the specific heat of the solar panel
(1600 J/(kg·K)), T1 denotes the temperature of face 1, Gs stands for the solar constant (1367
W/m2), and aAl-sc

s represents the average solar absorptance of aluminum and the solar panel
which is calculated as (Al %·aAl

s +sc %·asc
s ), where Al % and sc % denote the percentages of

aluminum and solar panels in the cover, respectively. A stands for the surface area of the face
(0.01 m2), Q̇ represents the thermal rate of power dissipation, Q̇F1 denotes the radiative heat
transfer between face 1 and the tank, εAl-sc

IR is the average infrared emissivity of Al and sc
which is calculated as (Al %·εAl+sc %·εsc) and σ stands for the Stefan-Boltzmann constant
(5.669 ·10−8W/m2 K4) [26].
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The rate of heat transfer between face 2, the external environment, and the spherical fuel
tank during the first interval can be described as

(mAlCp +mscCsc
p )

dT2

dt
= Q̇+ Q̇F2 − ε

Al-sc
IR σAT 4

2 (2.2)

where T2 denotes the temperature of face 2 and Q̇F2 stands for the radiative heat transfer be-
tween face 2 and the tank.

The rate of heat transfer between face 3, the external environment, and the spherical fuel
tank during the first interval can be described as

mCp
dT3

dt
= AFGsaAl

s FsEAcos
(

2πt
P

)
+ Q̇+ Q̇F3 +aAl

IRσAT 4
E − ε

Al
IR σAT 4

3 (2.3)

where m denotes the mass of the face (0.04 kg), FsE stands for the view factor between the
face of the satellite and the Earth which is almost one [69], T3 represents the temperature of
face 3, Q̇F3 is the radiative heat transfer between face 3 and the tank, AF denotes the factor
on the albedo (0.28), aAl

s stands for the solar absorptivity of aluminum, aAl
IR represents the

infrared absorptivity of aluminum, TE is the reference temperature of the Earth (255 K) and
εAl

IR denotes the infrared emissivity of aluminum.
The rate of heat transfer between face 4, the external environment, and the spherical fuel tank
during the first interval can be modeled as(

mAlCp +mscCsc
p
) dT4

dt
= GsaAl-sc

s Asin
(

2πt
P

)
+ Q̇+ Q̇F4 − ε

Al-sc
IR σAT 4

4 (2.4)

where T4 denotes the temperature of face 4 and Q̇F4 stands for the radiative heat transfer
between face 4 and the tank.
The rate of heat transfer between face 5, the external environment, and the spherical fuel tank
during the first interval can be described as

mCp
dT5

dt
= Q̇+ Q̇F5 − ε

Al
IR σAT 4

5 (2.5)

where T5 denotes the temperature of face 5 and Q̇F5 stands for the radiative heat transfer be-
tween face 5 and the tank.

The rate of heat transfer between face 6, the external environment, and the spherical fuel
tank during the first interval can be described as

mCp
dT6

dt
= Q̇+ Q̇F6 − ε

Al
IR σAT 4

6 (2.6)

where T6 denotes the temperature of face 6 and Q̇F6 stands for the radiative heat transfer
between face 6 and the tank.
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2.3.2 Second interval equations

Interval P2 : t =
P
4
→ t =

3
4

P

This interval concerns the duration of an eclipse. The satellite spends half of its orbital
period in an eclipse. During this interval, the satellite’s surface receives neither direct solar
nor albedo radiation, while face 3 still receives IR radiation from Earth because it faces it.
The satellite emits thermal IR radiation into space. Therefore, the heat transfer rates of the
CubeSat’s faces (1, 3, and 4) have slightly changed in their equations compared to the first
interval as represented in the following equations:

(mAlCp +mscCsc
p )

dT1

dt
= Q̇+ Q̇F1 − ε

Al-sc
IR σAT 4

1 (2.7)

mCp
dT3

dt
= Q̇+ Q̇F3 +aAl

IRσAT 4
E − ε

Al
IR σAT 4

3 (2.8)

(mAlCp +mscCsc
p )

dT4

dt
= Q̇+ Q̇F4 − ε

Al-sc
IR σAT 4

4 (2.9)

Moreover, the equation for face 2 is similar to the equations ((2.7) and (2.9)) for faces 1
and 4, respectively. The equations for faces 5 and 6 are the same as they were in the first
interval; see equations (2.5) and (2.6).

2.3.3 Third interval equations

Interval P3 : t =
3
4

P → t = P

The satellite spends the last quarter of its orbital period in this second luminous part. During
this time interval, the satellite’s surface receives and emits thermal radiation in a similar
manner to interval 1, with only a slight change in the equation for face 2. Therefore, the
CubeSat’s Faces 1, 3, 5, and 6 equations are identical to the first interval equations for these
sides; see equations (2.1), (2.3), (2.5), and (2.6). Also, the face 4 equation is the same as
the face 4 equation in the second interval; see equation (2.9). Then the rate of heat transfer
between the CubeSat face 2, the external environment, and the spherical fuel tank in the third
interval can be modeled as

(mAlCp +mscCsc
p )

dT2

dt
= GsaAl-sc

s A
∣∣∣∣sin

(
2πt
P

)∣∣∣∣+ Q̇+ Q̇F2 − ε
Al-sc
IR σAT 4

2 (2.10)

2.3.4 The transient heat transfer of the spherical propellant tank

The rate of radiative heat transfer between the faces of the satellite and the fuel tank can be
described as the following equation:

(msCs
p +mgCv)

dTt

dt
=−

6

∑
1

Q̇Fn (2.11)

where ms denotes the mass of stainless steel, Cs
p stands for the specific heat of stainless steel

(504 J/(kg·K)), mg represents the mass and CV the specific heat of nitrogen (743 J/(kg·K)),
and Tt is the temperature of the tank.
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The radiative heat transfer between each face and the tank Q̇Fn , depending on which face
it applies to, can be described as

Q̇Fn = FftεσA(T 4
t −T 4

n ) (2.12)

The view factor between the face in question and the fuel tank is given by Fft =
1

(1+H)2

(see, e.g. [31]), where H denotes the ratio of the distance between the spherical surface of
the tank to the surface of the internal face (h = 0.025 m) in terms of the radius (r = 0.025
m), which is expressed as H = h

r .
The mass of the solar panel msc per unit area is on average 850 g/m2; thus, the mass of the

solar panel as a proportion of the total face mass is determined by the equation (msc = 850
g/m2 ·A ·sc %). The total mass of the tank mt is assumed to be 0.1 kg, so the mass of nitrogen
gas was calculated by considering the initial temperature and total pressure of the tank.

The optical surface properties are shown in Table 2.1, and the masses of both nitrogen gas
and the tank are shown in Table 2.2. Hence, it is necessary to calculate the properties of the
average materials to conduct a thermal analysis.

In addition to these faces’ radiation absorptivity, radiation emissivity can be calculated as
the average emissivity of aluminum and the solar panel, as shown in Table 2.3.

Table 2.1: CubeSate surface characteristics.

Aluminum
uncoated

Aluminum coated
solar

panels

Specific Heat
[J/(kg·K)]

980 980 1600

Emissivity (thermal) 0.08 0.92 0.85
Absorptivity (solar) 0.379 0.09 0.92

Table 2.2: CubeSat tank specification.

Stainless Steel Nitrogen

Specific Heat [J/(kg·K)] 504 743
Mass [kg] 0.0926 0.0074

Table 2.3: Optical surface properties of CubeSat.

Cube Face Coverage ε a

1,2 and 4
70% Al, 30% sc 0.89 0.33
30% Al, 70% sc 0.87 0.67

3,5 and 6 Al painted 0.92 0.09
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2.3.5 Analysis of different surface compositions

The thermal behavior investigations of CubeSat faces and central propellant tank are pre-
sented for several cases based on:

• Uncoated surfaces.

• Surfaces coated with magnesium oxide-aluminum oxide paint.

• Different feasible options of solar panel ratios.

The Matlab ODE45 solver has been exploited to simulate CubeSat temperatures with spe-
cific optical properties of the surface materials and different solar panel ratios. The default
relative error tolerance of 1e-3 and the default absolute tolerance of 1e-6 for each compo-
nent, and plotting the first component of the solution with the simulation time step of 1 sec.
Furthermore, all the initial conditions were centered around the room temperature, which is
skewed beyond the constraint for special calculations, as shown in Figure 2.2.

CubeSat surface is composed of unpolished aluminum

In this case, the thermal simulations of the faces and fuel tank were conducted according to
the assumption that the satellite faces are composed of the aluminum alloy 6061-T6. The
CubeSat thermal behavior was simulated along the orbit by solving the model’s intervals
equations with the ODE45 solver in Matlab.

1 - The thermal simulation of the faces and spherical fuel tank during one orbital period
(time span from 0 sec to 5399 sec) is shown in Figure 2.2, A. The simulation of the temper-
ature of the tank during this orbital period is shown in Figure 2.2, B. It can be seen that the
predefined temperature limits are not fulfilled in this case since the minimum temperatures
of the CubeSat surface and fuel tank exceed 460 K during its orbital period.

2 - The thermal simulation of the faces and spherical fuel tank during several orbits (8
orbital periods with a time span of 12 h to illustrate long-term operations) is shown in Figure
2.2, C, and the simulation of the temperature of the tank during these orbital periods is shown
in Figure 2.2, D.

CubeSat surface is composed of polished aluminum

The CubeSat surface and fuel tank thermal simulations were conducted according to the
assumption that the satellite’s surface was composed of aluminum coated with magnesium
oxide-aluminum paint. By using the assumed time span of each interval, the results are
shown below:

1 - The thermal simulations of the faces and spherical fuel tank during one orbital period
(time span from 0 sec to 5399 sec) are shown in Figure 2.3, A. The simulation of the tem-
perature of the tank during this orbital period is shown in Figure 2.3, B. It can be seen that
all the defined temperature limits are adhered to in this case. In addition, it would be worth-
while to mention that the CubeSat face (3, 5, and 6) temperatures also dropped because the
satellite surface has a thermal interconnection, see section 2.3.4.

2 - The thermal simulation of the faces and spherical fuel tank over 8 orbital periods (a
time span of 12 h) is shown in Figure 2.3, C, and the simulation of the temperature of the
tank during these orbital periods is shown in Figure 2.3, D.
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Figure 2.2: Simulation of the CubeSat heat rates assuming aluminum-uncoated surface over orbital
motion (A & B refer to one orbital simulation, C & D refer to eight times orbitals simulation). (T1,
. . ., T6) refers to the temperatures of faces 1, . . ., 6, respectively, and (Tt) denotes the temperature of
the tank.

17

DOI:10.15774/PPKE.ITK.2023.002



0 1000 2000 3000 4000 5000 6000

Time [sec]

260

280

300

T
em

p
er

at
u

re
 [

K
]

T1

T2

T3

T4

T5

T6

Tt

0 1000 2000 3000 4000 5000 6000

Time [sec]

262

264

266

T
em

p
er

at
u

re
 [

K
]

Tt

0 2 4 6 8 10 12

Time [hour]

260

280

300

T
em

p
er

at
u

re
 [

K
]

T1

T2

T3

T4

T5

T6

Tt

0 2 4 6 8 10 12

Time [hour]

262

264

266

T
em

p
er

at
u

re
 [

K
]

Tt

(A)

(B)

(D)

(C)

Figure 2.3: Simulation the CubeSat heat rates assuming aluminum-coated surface over orbital motion
(A & B refer to one orbital simulation, C & D refer to eight times orbital simulation)
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The CubeSat faces exposed to the Sun during its orbit are covered with solar panels
ratio of λ = 30%

In this case, these three sides of the CubeSat are assumed to be composed of 70% aluminum
and 30% solar panels, and the other faces are coated with magnesium oxide-aluminum oxide
paint. The simulation results are as follows:

1 - The thermal simulation of the faces and spherical fuel tank during one orbital period (a
time span of 0 sec to 5399 sec) is shown in Figure 2.4, A. The simulation of the temperature
of the tank during this orbital period is also shown separately in Figure 2.4, B. The results
show that the tank’s temperature varied between a maximum of 281.9 K and a minimum
of 265.4 K, while the temperatures of the faces also remained within the given temperature
limits.

2 - The thermal simulation of the faces and spherical fuel tank over 8 orbital periods (a
time span of 12 h) is shown in Figure 2.4, C, and the simulation of the temperature of the
tank during these orbital periods is shown in Figure 2.4, D.

The CubeSat faces exposed to the Sun during its orbit are covered with solar panels
ratio of λ = 70%

The results, according to the assumption that three sides of the CubeSat are composed of
30% aluminum and 70% solar panels while the rest surface is coated with magnesium oxide-
aluminum oxide paint, are shown below:

1 - The thermal simulation of the faces and spherical fuel tank during one orbital period
(time span from 0 sec to 5399 sec) is shown in Figure 2.5, A, while simulation of the temper-
ature of the tank during this orbital period is shown in Figure 2.5, B. The results show that
the tank’s temperature varied between a maximum of 302.4 K and a minimum of 270.6 K.
In contrast, the temperatures of the faces were within thermal limits.

2 - The thermal simulation of the faces and spherical fuel tank over 8 orbital periods (a
time span of 12 h) is shown in Figure 2.5, C, also the simulation of the temperature of the
tank during these orbital periods is shown in Figure 2.5, D.

2.4 Equivalent thermal model of a CubeSat

In the second interval P2, the CubeSat spends half of its orbital time in the shadow of the Earth
(eclipse part). In the third part P3, the satellite orbits again in the sight of the Sun (second
luminous part). In section 2.3, a mathematical model is given for the thermal behavior of
the satellite’s surface and tank (separately for each orbital interval P1, P2 and P3) in the form
of nonlinear switched ordinary differential equations . In this section, the seven governing
equations of the CubeSat’s thermal dynamics are rewritten into an equivalent unified model
concerning λ , which indicates the solar panel ratio. The equivalent “unified” state-space
model formulation is done as follows:
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Figure 2.4: Simulation of the CubeSat heat rates performs 30% sc, covering three predefined faces
over orbital motion (A & B refer to one orbital simulation, C & D refer to eight times orbital simula-
tion)
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Figure 2.5: Simulation of the CubeSat heat rates performs 70% sc, covering three predefined faces
over orbital motion (A & B refer to one orbital simulation, C & D refer to eight times orbital simula-
tion)
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2.4.1 Formulation of an equivalent thermal model

Due to the Sunlight and shadowing effects of the Earth, the temperatures of the CubeSat
surface and its fuel tank typically have large fluctuations throughout the orbit. Functions
ρ1,ρ2,ρ4 : R+ → [−1,1] in the equivalent thermal model are meant to describe this peri-
odic temperature fluctuation phenomenon in the dynamics. These time-varying terms in the
dynamics are considered as known time varying parameters given as follows:

ρ1(t) =

cos
(2πt

P

)
, if

2πt
P

∈
[
−π

2 ,
π

2

]
+2kπ, k ∈ Z,

0, otherwise,
(2.13a)

ρ2(t) =

−sin
(2πt

P

)
, if

2πt
P

∈
[
−π

2 ,0
]
+2kπ, k ∈ Z,

0, otherwise,
(2.13b)

ρ4(t) =

sin
(2πt

P

)
, if

2πt
P

∈
[
0, π

2

]
+2kπ, k ∈ Z,

0, otherwise.
(2.13c)

Function ρ1 has nonzero values only in intervals P1 and P3, whereas, functions ρ2 and ρ4
are nonzero in intervals P3 and P1, respectively. The graph of functions ρ1, ρ2 and ρ4 are
illustrated in Figure 2.6.

Figure 2.6: Graph of functions ρ1, ρ2 and ρ4, which describe the temperature fluctuations of the
CubeSat through its orbital motion
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The principle of constructing the new model is to integrate the three interval equations
for the same face of CubeSat into one equation of the equivalent model, considering the
time-varying parameter (ρ) and the solar panel ratios (λ ). Each face in the original model in
section 2.3 has three equations depending on its orbital motion’s CubeSat intervals (P1, P2,
and P3). The new module synthesis stands upon combining these three equations into one
equation concerning the ratio of solar panels, as in the following:

First equation:

Face1


P1

P2

P3

=



(mAlCp +mscCsc
p )

dT1

dt
= GsaAl-sc

s Acos
(

2πt
P

)
+ Q̇+ Q̇F1 − ε

Al-sc
IR σAT 4

1

(mAlCp +mscCsc
p )

dT1

dt
= Q̇+ Q̇F1 − ε

Al-sc
IR σAT 4

1

(mAlCp +mscCsc
p )

dT1

dt
= GsaAl-sc

s Acos
(

2πt
P

)
+ Q̇+ Q̇F1 − ε

Al-sc
IR σAT 4

1

∴ The integration of the three equations into an equation concerning optical properties λ

and time-varying parameters ρ ▶

kAl-scṪ1 =GsaAl-sc
s Aρ1(t)+ Q̇+FFtε

Al
IR σA(Tt

4 −T 4
1 )− ε

Al-sc
IR σAT 4

1

=GsaAl
s Aρ1(t)+ Q̇+FFtε

Al
IR σA(Tt

4 −T 4
1 )− ε

Al
IR σAT 4

1

+λ

(
Gs(asc

s −aAl
s )Aρ1(t)− (εsc

IR − ε
Al
IR )σAT 4

1

)
=GsaAl

s Aρ1(t)+ Q̇− (FFtε
Al
IR σA+ ε

Al
IR σA)T 4

1 +FFtε
Al
IR σATt

4

+λ

(
Gs(asc

s −aAl
s )Aρ1(t)− (εsc

IR − ε
Al
IR )σAT 4

1

)
Second equation:

kAl-scṪ2 =GsaAl-sc
s Aρ2(t)+ Q̇+FFtε

Al
IR σA(Tt

4 −T 4
2 )− ε

Al-sc
IR σAT 4

2

=GsaAl
s Aρ2(t)+ Q̇+FFtε

Al
IR σA(Tt

4 −T 4
2 )− ε

Al
IR σAT 4

2

+λ

(
Gs(asc

s −aAl
s )Aρ2(t)− (εsc

IR − ε
Al
IR )σAT 4

2

)
=GsaAl

s Aρ2(t)+ Q̇− (FFtε
Al
IR σA+ ε

Al
IR σA)T 4

2 +FFtε
Al
IR σATt

4

+λ

(
Gs(asc

s −aAl
s )Aρ2(t)− (εsc

IR − ε
Al
IR )σAT 4

2

)
Third equation:

kAlṪ3 =AFGsaAl
s Aρ1(t)+ Q̇+FFtε

Al
IR σA(Tt

4 −T 4
3 )+aAl

IRσAT 4
E − ε

Al
IR σAT 4

3

=AFGsaAl
s Aρ1(t)+ Q̇+aAl

IRσAT 4
E +FFtε

Al
IR σATt

4 − (FFtε
Al
IR σA+ ε

Al
IR σA)T 4

3
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fourth equation:
kAl-scṪ4 =GsaAl-sc

s Aρ4(t)+ Q̇+FFtε
Al
IR σA(Tt

4 −T 4
4 )− ε

Al-sc
IR σAT 4

4

=GsaAl
s Aρ4(t)+ Q̇+FFtε

Al
IR σA(Tt

4 −T 4
4 )− ε

Al
IR σAT 4

4

+λ

(
Gs(asc

s −aAl
s )Aρ4(t)− (εsc

IR − ε
Al
IR )σAT 4

4

)
=GsaAl

s Aρ4(t)+ Q̇− (FFtε
Al
IR σA+ ε

Al
IR σA)T 4

4 +FFtε
Al
IR σATt

4

+λ

(
Gs(asc

s −aAl
s )Aρ4(t)− (εsc

IR − ε
Al
IR )σAT 4

4

)

A similar arrangement is established for the whole TMM intervals equations. Thus, the
module describing the thermal exchange mechanism of CubeSat is as presented in (2.15).
Finally, the final form of CubeSat’s thermal model concerning solar panels ratios, as shown
in equations (2.16).

kAl-scṪ1 = e1ρ1(t)+ Q̇− (k0 + k1)T 4
1 + k0Tt

4 +λ (e2ρ1(t)− k2T 4
1 )

kAl-scṪ2 = e1ρ2(t)+ Q̇− (k0 + k1)T 4
2 + k0Tt

4 +λ (e2ρ2(t)− k2T 4
2 )

kAl-scṪ4 = e1ρ4(t)+ Q̇− (k0 + k1)T 4
4 + k0Tt

4 +λ (e2ρ4(t)− k2T 4
4 )

kAlṪ3 = k5ρ1(t)+ Q̇+ k6T 4
E − (k0 + k1)T 4

3 + k0Tt
4

kAlṪ5 = Q̇− (k0 + k1)T 4
5 + k0Tt

4

kAlṪ6 = Q̇− (k0 + k1)T 4
6 + k0Tt

4

kTṪt = k0
(
T 4

1 +T 4
2 +T 4

3 +T 4
4 +T 4

5 +T 4
6 −6Tt

4)+ Q̇c

(2.15)

∴ The model concerning optical properties λ and time-varying parameters ρ ▶

kAl−sc(λ ) Ṫ1 =Q̇+ Q̇F1 +Gs (aAl-sc
s (λ ))Aρ1(t)

− (εAl-sc
IR (λ ))σ AT 4

1

kAl−sc(λ ) Ṫ2 =Q̇+ Q̇F2 +Gs (aAl-sc
s (λ ))Aρ2(t)

− (εAl-sc
IR (λ ))σ AT 4

2

kAl Ṫ3 =Q̇+ Q̇F3 +AFGs aAl
s Aρ1(t)

+aAl
IRσ AT 4

E − ε
Al
IR σ AT 4

3

kAl−sc(λ ) Ṫ4 =Q̇+ Q̇F4 +Gs (aAl-sc
s (λ ))Aρ4(t)

− (εAl-sc
IR (λ ))σ AT 4

4

kAl Ṫ5 =Q̇+ Q̇F5 − ε
Al
IR σ AT 4

5

kAl Ṫ6 =Q̇+ Q̇F6 − ε
Al
IR σ AT 4

6

kT Ṫt =k0(T 4
1 +T 4

2 +T 4
3 +T 4

4 +T 4
5 +T 4

6 −6Tt
4)+ Q̇c

(2.16)

where
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e1 = Gs aAl
s A

e2 = Gs A (asc
s −aAl

s )

k0 = Fft σ ε
Al
IR A

k1 = σ ε
Al
IR A

k2 = σ (εsc
IR − ε

Al
IR ) A

k5 = AF Gs aAl
s A

k6 = σ aAl
IR A

kAl = m Cp

kT = msCs
p +mgCv

kAl-sc = mAlCp +mscCsc
p

kAl-sc(λ ) = mAlCp +λ mscCsc
p

aAl-sc
s (λ ) = (1−λ )aAl

s +λ asc
s

ε
Al-sc
IR (λ ) = (1−λ )ε

Al
IR +λ ε

sc
IR

are auxiliary parameters for more convenient notation.
The physical parameters and the time-dependent variables of the model are as follows:

TE = 255K is the Earth’s reference temperature, Tt [K] is the tank’s temperature, aAl
IR = 0.09

is the Aluminum infrared absorptivity, aAl
s = 0.09 is the Aluminum solar absorptivity, asc

s =

0.92 is the solar panel solar absorptivity, aAl-sc
s (λ ) is the Aluminum and solar panel average

absorptivity, εAl
IR = 0.92 is the Aluminum infrared emissivity, εsc

IR = 0.85 is the solar panel
infrared emissivity, εAl-sc

IR (λ ) is the Aluminum and solar panel average infrared emissivity,
Q̇c [W] is the heat flux applied to the tank generated by the heater, Q̇Fi [W] is the radiated
heat transfer between the ith face and the tank, Q̇ = 2W is the power dissipated heat rate,
Cp = 980J/(kgK) is the specific heat of Aluminum, Cs

p = 504J/(kgK) is the stainless steel
specific heat, Csc

p = 1600J/(kgK) is the solar panel specific heat, Cv = 743J/(kgK) is the
Nitrogen specific heat, mAl = 0.04kg is the mass of an Aluminum face, mg = 0.0074kg is
the mass of nitrogen in the tank, ms = 0.0926kg is the mass of the tank (stainless steel),
msat ≃ 1kg is the total mass of CubeSat, msc = 0.0085kg is the mass of solar panel covering
a whole face, Gs = 1367W/m2 is the solar constant, σ = 5.669 ·10−8 WK4/m2 is the Stefan-
Boltzmann constant, A = 0.01m2 is the area of each face, AF = 0.28 is the albedo factor,
Fft =

1
(1+H)2 is the view factor between a face and the tank, where H = h/r, where h= 0.025m

is the distance of the tank’s surface to the face, and r = 0.025m is the tank radius.
The radiated heat transfer Q̇Fi between the ith face and the tank is defined as follows:

Q̇Fi = Fft ε
Al
IR σ A(Tt

4 −T 4
i ), i = 1, . . . ,6. (2.17)

The tank is equipped with a supplementary heat source (actuator or heater), which gen-
erates the control signal u = Q̇c in the form of a (non-negative) heat flux Q̇c [36].
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2.4.2 Thermal calculation of various solar panel ratios

The solar panels are responsible for providing power to the CubeSat by converting solar
energy into electric power through a photovoltaic process. Because of the surface area con-
straints in a CubeSat, calculating the solar panel area is important to propose the possibility
of increasing the solar panel area concerning the thermal boundary conditions of the Cube-
Sat. Therefore, the thermal performances of the CubeSat surface and tank at different solar
panel ratios are presented in this subsection. The simulations are accomplished for the case in
which the power dissipated inside the satellite due to the operation of its electric component
is fixed at 2 W with a total orbit time of 1.5 h. Furthermore, the solar panels are supposed to
cover three faces of the CubeSat due to their sun-facing sides.
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(a) Dynamic thermal behavior of the CubeSat
surface and fuel tank when λ= 0.3
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(b) Dynamic thermal behavior of the CubeSat
surface and fuel tank when λ= 0.5
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(c) Dynamic thermal behavior of the CubeSat
surface and fuel tank when λ= 0.6
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(d) Dynamic thermal behavior of the CubeSat
surface and fuel tank when λ= 0.7

Figure 2.7: Dynamic thermal behavior of the CubeSat surface and fuel tank with different solar panel
ratios

Figure 2.7 (a, b, c, and d) illustrates the thermal responses of the CubeSat’s sides and
tank with λ= (0.3, 0.5, 0.6, and 0.7) of solar panel ratios, respectively, covering three sides
of the CubeSat. The simulations successfully produced the thermal effects of increasing the
ratio of the solar panels placed on CubeSat’s specific walls. The CubeSat surface and tank
temperatures manifested in Figure 2.7d stand much higher than the CubeSat surface and tank
temperatures exposed in Figure 2.7a. So it is clearly explained that the CubeSat temperature
rises by increasing the solar panels’ ratio.
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2.5 Quasi-LPV formulation of the thermal model

Beginning from the nonlinear input-affine dynamical model (2.16), with seven differential
equations formulated with respect to physical laws, an equivalent quasi-LPV model repre-
sentation can be formulated in the following form:

Ik(λ ) ẋ = A(x)x+Bu+E(x,ρ)λ +F(ρ) , (2.18)

where the state vector x contains seven state variables, as shown below:

x =
(
T1 T2 T3 T4 T5 T6 Tt

)T ∈ Rn (n = 7)

containing the six temperature values (T1, . . . ,T6) of the six faces of CubeSat, respectively,
and the fuel tank’s temperature Tt.

Vector ρ contains the three time-varying parameter signals, as shown in the following:

ρ =
(
ρ1 ρ2 ρ4

)T ∈ Rp (p = 3)

which model the periodic temperature fluctuation effect caused by the Sunlight; see equations
(2.13a),(2.13b), and (2.13c).
Coefficient matrices Ik(λ ), A(x), B, E(x,ρ) and F(ρ) in (2.18) are given as follows:

Ik(λ ) = diag(kAl−sc(λ ),kAl−sc(λ ),kAl,kAl−sc(λ ),kAl,kAl,kT), (2.19a)

A(x) =



−k01T 3
1 0 0 0 0 0 k0Tt

3

0 −k01T 3
2 0 0 0 0 k0Tt

3

0 0 −k01T 3
4 0 0 0 k0Tt

3

0 0 0 −k01T 3
3 0 0 k0Tt

3

0 0 0 0 −k01T 3
5 0 k0Tt

3

0 0 0 0 0 −k01T 3
6 k0Tt

3

k0T 3
1 k0T 3

2 k0T 3
3 k0T 3

4 k0T 3
5 k0T 3

6 −6k0Tt
3

, (2.19b)

B =


0
0
0
0
0
0
1

, E(x,ρ) =


k4ρ1−k2T 4

1
k4ρ2−k2T 4

2
0

k4ρ4−k2T 4
4

0
0
0

, F(ρ) =


Q̇+k3ρ1
Q̇+k3ρ2

Q̇+k5ρ1+k6T 4
E

Q̇+k3ρ4
Q̇
Q̇
0

, (2.19c)

where 

k01 = k0 + k1

k1 = σ εAl
IR A

k2 = σ (εsc
IR − εAl

IR ) A

k3 = Gs aAl
s A

k4 = Gs (asc
s −aAl

s )A

k5 = AFGs aAl
s A

k6 = aAl
IR σ A

are auxiliary constants.
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2.6 Equivalent model evaluation

In this section, we are going through the simulations of the new model together with the
original model to illustrate and compare the CubeSat thermal behaviors in these models. A
Matlab Simulink model has been employed to analyze the CubeSat surface and tank thermal
performance of the equivalent model in parallel with the TMM in section 2.3 even with the
same features as section 2.3.5. So the new model simulation has been done for the case
that three faces of the satellite are covered by 30% of solar panels (λ= 0.3), as shown in
Figure 2.8b. Also, part (a) of that figure introduces the Matlab Simulink constructions for the
two models, which gave us the computational results. The simulation results of the mutual
models show that the thermal behaviors of the satellite surface and tank are similar for the two
models, with a slight difference in the face temperatures according to the approximation and
rounding accuracy of the equivalent model parameters. Thus, the assembly of the equivalent
model has been fulfilled and evaluated.
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(a) Matlab Simulink diagrams of the models
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Figure 2.8: The Models’ performance in Matlab

28

DOI:10.15774/PPKE.ITK.2023.002



2.7 Conclusion

A thermal mathematical model was constructed and studied to compute the transient tem-
peratures of the CubeSat surface and fuel tank. Several cases were studied using various
surface compositions. The obtained results show that the proposed TMM is able to calculate
the radiative heat the CubeSat encounters through its assumed orbit. Initially, the CubeSat
surface was assumed to be composed of the uncoated aluminum alloy 6061-T6. So far, the
corresponding results conclude that the CubeSat surface and fuel tank temperatures would
be too high. Therefore, additional finishes applied to the surface were taken into considera-
tion. The first choice of finish was to coat the entire surface of the satellite with magnesium
oxide-aluminum oxide paint. The obtained results of the CubeSat show that faces and fuel
tank temperatures dropped because of the increased emissivity and decreased absorptivity of
its surface. Further simulations were performed of cases in which the faces were exposed to
the Sun when partially covered with solar panels. The results indicate that the case described
in subsection 2.3.5, which delivers the most electrical power due to the highest percentage of
solar panels, still satisfies the temperature limits of the fuel tank and surfaces of the satellite.
Moreover, the remodeling of the TMM has been accomplished concerning solar panel ratios
λ , which paves the way to derive the quasi-LPV formulation of the thermal model. The eval-
uation of the new syntheses was performed, and both models’ responses matched sufficiently
well. Finally, different λ possibilities were presented, illustrating the significant influence of
solar panel ratios on the CubeSat dynamic thermal responses. The results also suggest the
possibility of installing a fuel tank inside a CubeSat, which could be the first step required to
add a propulsion system that can generate thrust for this CubeSat.
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Chapter 3

Thermal control approaches for a
CubeSat

3.1 Background

As certain electronic and thermodynamic components of the CubeSat were generally de-
signed for terrestrial applications, we require the spacecraft equipment to operate at/around
room temperature. Furthermore, at room temperature, it is less expensive and much easier
to conduct qualification and flight acceptance testing, as well as equipment development [1].
Due to the payload’s varying mass, shape, and distribution, a spacecraft requires strong struc-
tural stability, so a thermally-induced distortion must be minimized or rigidly controlled. As
a first step, a thermal mathematical model was built in [P1] to analyze the thermal behavior of
the CubeSat system equipped with an additional propellant tank placed in the middle of the
spacecraft. The possibility to regulate the fuel tank temperature employing PID-based con-
trol systems to follow a prescribed constant temperature during the satellite orbital motion
was examined in [P4]. For tank temperature control, a nonlinear control design technique is
utilized using input/output feedback linearization as proposed in [P5]

The so-called Model Predictive Control (MPC) concepts span a fairly wide class of sys-
tem models. MPC techniques are explicitly formulated for nonlinear models in a quasi-LPV
form as in [P2]. It is challenging that the thermal controller design has multiple objectives.
Firstly, we have to keep propellant tank at approximately room temperature with minimal or
no fluctuation. Moreover, the temperature of the CubeSat’s surface should not exceed a given
upper bound. Secondly, a control signal has to be computed, which can be realized with the
onboard heater; namely, it must be non-negative and not exceed an upper power limit. On
the other hand, we are interested in maximizing the area of the solar panel to produce more
electrical energy to operate the onboard computer or other (e.g., telecommunication) devices
or sensors. Then, it is worth mentioning that the solar panel significantly influences the av-
erage/baseline temperature level of each component of the CubeSat object. Therefore, the
proportion (λ ) of the solar panel area (AP = λ A) and the total face area (A) are distinguished
design parameters in the manufacturing of the CubeSat. Finally, the integrated design of an
optimal solar panel area and an appropriate control signal, together, provide that the compo-
nent temperatures fulfill the prescribed technological constraints.
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The Chapter is organized as follows: Two preliminary PID techniques are presented in
section 3.2. Then the dynamic power supplied to the tank employing PID-based approaches
is illustrated in section 3.3. Next, the CubeSat tank thermal regulation utilizing a linearization
scenario is shown in section 3.4. Also, the tank thermal regulations of the two models are
summarized in section 3.4 as a comparison. Finally, an integrated model predictive control
design approach is presented in Section 3.5.

3.2 PID-based temperature control of CubeSat

The most elementary controller for temperature tracking is a PID, the scheme of which is
shown in Figure 3.1. Suppose a linear or linearized mathematical model of the plant is
given; in that case, it is possible to apply various PID-based design techniques to determine
the controller parameters that will meet the transient and steady-state specifications of the
closed-loop system. In order to find the minimum required heat flux, Matlab Simulink models
have been implemented to simulate the CubeSat thermal dynamics controlled by PID-based
controllers. During the analysis, two different PID strategies were considered. Firstly, the
traditional PID control loop is applied with actuator saturation. Then, the control dynamics
are supplemented by integral anti-windup feedback of the actuator’s error.

Figure 3.1: PID closed-loop control system

3.2.1 Process and Actuator

The spacecraft has extensive temperature oscillations caused by the periodically changing
environment. Then the CubeSat surface and its fuel tank temperatures through the orbit
have large fluctuations due to the Sunlight and the Earth’s shadow effects. Since the satellite
equipment usually operates efficiently within a narrow temperature range, and most materials
have non-zero coefficients of thermal expansion, larger than preferred temperature changes
could lead to thermal distortion [1]. Thus, an active control strategy has to be implemented
in the CubeSat thermal control system.
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The thermal mathematical model for the CubeSat surface and its fuel tank, described in
section 2.3, was the process simulated by using the Embedded Matlab function with some
other components. The actuator is either an actual device by which some specific physical
variables are controlled (regulated) or it is a unit that supplies the input (e.g., material flow
or power) to the process. The physical control input might be a heater that provides a heating
rate to the fuel tank [70]. The heater attached to the fuel tank generates the control signal to
produce the additional heat flux Q̇c along the shady part of the orbit. In this study, the actuator
( heater) is assumed to be a device that converts the control signal (Cs) into additional heat
flux Q̇c and passes it to the satellite propellant tank as a supplementary heat source, as shown
in Figure 3.2.

 

Figure 3.2: Simulink model of the initial PID controller

3.2.2 Simulations of CubeSat thermal control system

The investigations of the ability to control the satellite propellant tank within the prescribed
temperature range were done for the case of the CubeSat being covered by 70% aluminum
and 30% solar panels. So λ = 0.3; namely, 30% portion of the appropriate faces are covered
by solar panels. The thermal simulation results in Figure 2.4 show that the transient tank
temperature oscillates between 282 K and 266.2 K. If the requirement is to regulate the tank
temperature at 290 K, a heater should be attached to the tank during the satellite orbits, which
provides the additional heat rate Q̇c to the fuel tank along with the satellite orbital motion.
The elements and structure of the control system are shown in Figure 3.3.
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Figure 3.3: Structure of controlled system using PID controller

Figure 3.4: The PID controller with anti-windup block diagram.

The transparency of the PID control mechanism, the availability of reliable and cost-
effective commercial PID modules, and their widespread acceptance by operators are among
the reasons for its success. There are many PID tuning methods, each with pros and cons. For
instance, commonly known as rule-based tuning methods, the Kappa-tau tuning method is an
evolution of the Ziegler-Nichols method. This method is designed to overcome the short-
comings of Ziegler-Nichols, such as high proportional gains, but it provides poor results
for systems with long normalized dead time. The lambda tuning method is suited only
for PI controller tuning, a derivative parameter can not be taken into consideration. The
Ziegler–Nichols tuning method is a heuristic method of PID tuning. So far, it is suitable for
a stable system, as in our case, and it provides an acceptable time response for our model.
Therefore, Ziegler and Nichols’s rules were used to set the values of KP, TI , and TD. The
obtained controller parameters are KP= 5, TI= 1s and TD= 1s based on experimental step
responses. The satellite faces and the fuel tank temperatures have been examined for two
orbits, as shown in Figure 3.5.
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In practice, the heating power is limited to about 1.5 W [71], as shown by the saturation
block in the actuator part in Figure 3.3 and the corresponding thermal performance of the fuel
tank as presented in Figure 3.5. Windup is a phenomenon, caused by interactions between the
integral action and saturation. Thus, to improve the control response, an anti-windup scheme
was used, as shown in Figure 3.4. Figure 3.6 shows the corresponding controlled fuel tank
temperature.

Figure 3.5: The satellite surface temperatures and
the regulated fuel tank temperature by using a
simple PID controller

Figure 3.6: The satellite surface temperatures and
the regulated fuel tank temperature by using a PID
controller in the anti-windup scheme

Two PIDs procedures are employed to illustrate the CubeSat tank thermal responses clearly.
The satellite fuel tank thermal responses by using the classic PID controller and the PID with
anti-windup are shown, respectively in Figure 3.7 (a, and b). It is visible that the initial tran-
sient is not acceptable for the simple PID without anti-windup. However, the anti-windup
solution satisfies the design specifications with a short settling time and a slight overshoot.

(a) Using the PID controller (b) Using the PID controller with anti-windup

Figure 3.7: The CubeSat’s fuel tank thermal response
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3.3 Simulations of different heating power values

The power of an active heater in a small satellite is hardly limited. Hence, it is necessary
to determine a minimum power limit at which the detailed PID synthesizes steer the tank
temperature at the reference value along the satellite orbits and seek the best responses sat-
isfying the purpose. Therefore, PID-based controllers are designed and simulated to control
the satellite propellant tank temperature at 290 K employing manifold heating power limits.

The following simulations are presented for different values of the heating power limits
with classic PID and anti-windup PID controllers. Moreover, the same conditions for both
control schemes are considered to observe the fuel tank thermal responses among multiple
different maximal heat flux values, such as 2, 1.5, 1.3, and 1 W.

• Fuel tank thermal responses by using a PID controller with different heating
power limit values:

The thermal behaviors of the PID-controlled fuel tank have been simulated with dif-
ferent values of maximal heating power (2, 1.5, 1.3, and 1 W), as shown respectively
in Figure 3.8 (a, b, c, and d).

(a) The heating power limit of 2W (b) The heating power limit of 1.5W

(c) The heating power limit of 1.3W (d) The heating power limit of 1W

Figure 3.8: The PID regulated dynamic thermal response of the fuel tank with different heating power
limit values of the heater
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• Fuel tank thermal responses by using an anti-windup PID controller with differ-
ent heating power values:

The thermal behaviors simulations for the fuel tank have been conducted by applying
an anti-windup controller with the following values of the maximal heating power (2,
1.5, 1.3, and 1 W), as shown respectively in Figure 3.9 (a, b, c, and d).

(a) The heating power limit of 2W (b) The heating power limit of 1.5W

(c) The heating power limit of 1.3W (d) The heating power limit of 1W

Figure 3.9: The anti-windup PID regulated dynamic thermal response of the fuel tank with different
heating power values of the heater
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3.4 Linearization-based control system

The input/output linearization feedback law is derived using the thermal mathematical model
equations from Chapter 2 considering the case of 70% aluminum and 30% solar panels (λ =

0.3) covering three satellite’s faces, which are exposed to the Sun throughout the circular
satellite’s orbit. Foremost, it is necessary to limit the heat flux passed by the heater to the
propellant tank at 1.5 W.

The dynamic equation of the tank’s temperature is written as follows:

Ṫt =
k0

kT

(
6

∑
i=1

T 4
i −6Tt

4

)
+

1
kT

u, (3.1)

To perform a feedback linearization, the following nonlinear input function can be computed:

u = kTer − k0

(
6

∑
i=1

T 4
i −6Tt

4

)
, (3.2)

where k0 = FFt σ εAl
IR σ A, and (kT) is a constant which is equal to (msCs

p+mgCv); see section
2.4.2, Tt is the fuel tank temperature, u is the input of the nonlinear system, er is the error
signal, i.e., the difference between the fuel tank reference temperature value (Vr) which is
equal to 290 K, and the fuel tank output temperature Tt.

Observe that by substituting feedback (3.2) into (3.1) we obtain:

Ṫt = er. (3.3)

The Matlab Simulink model configuration presented in Figure 3.10 is a simple integrator
that describes the fuel tank thermal control system via the input-output linearization structure.
Figure 3.11 exposes the thermal behavior schemes of the propellant tank and the CubeSat
surface. It is clear that the peak power delivered to the tank through the heater is 1.5 W, as
presented in Figure 3.12, which satisfies the physical constraints.

Figure 3.10: Input/output linearization control framework in Matlab/Simulink
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Figure 3.11: CubeSat surface and its fuel tank thermal behaviors via linearization-based controller
and heating power limited at 1.5 W

Figure 3.12: The essential heat flux to regulate the fuel tank temperature
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The simulations of regulated models operate two controlled instances to compare the
thermal time responses of the fuel tank.

The Matlab Simulink model has been employed to analyze the CubeSat surface and the
tank’s regulated thermal responses for the model in section 2.4 in parallel with the TMM
in section 2.3, even with the same features of the case λ = 30% in section 2.3.5. So, the
CubeSat fuel tank temperature regulations at 290 K for two models have been produced in
Figure 3.13 (b). While part (a) of this Figure refers to Matlab Simulink constructions for the
two models together to satisfy the required results.
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Figure 3.13: (a) Matlab/Simulink of the unified model controlled by PID and the original TMM with
input-output linearization, (b) Simulation of these two syntheses

In Figure 3.13 (b), the differences between the transit time responses for the fuel tank
temperatures of two models come from using two different controller types. For the new
model, the PID control system is employed to regulate the fuel tank temperature, so the time
response of the fuel tank temperature has a small overshoot[P4]. While for the original TMM,
the input-output linearization method is performed to control the tank temperature; thus, the
time response of the tank temperature has no overshoot; see [P5]. In addition, this Figure
demonstrates that the two models track the fuel tank reference temperature with identical
steady-state responses despite being subjected to different control syntheses.
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3.5 Integrated control design and parameter computation
using MPC

In this section, we present a simultaneous design for both a feasible control input signal (Q̇c)
and an optimal solar panel area (λ A). To model and solve nonlinear MPC optimization
problems we used Matlab’s Model Predictive Control Toolbox [55] (MPC-Toolbox), which
is based on [45] and on the works (e.g., [72]) collected in [46].

3.5.1 Nonlinear MPC design

In this subsection, we present in brief the MPC optimization problem based on [72]. We
consider a continuous-time nonlinear system as

ẋ(t) = f (x(t),u(t),ρ(t)), (3.4)

where x is the state vector, u is the input or the manipulated variable, and ρ is a known
disturbance signal. We assume that the present and future values of ρ are both available. It
is realistic in the case of a CubeSat when the orbit of the device is precisely known.

Note that the MPC is a discrete-time controller, therefore, a sampled model of (3.4) is
considered by the MPC-Toolbox [55, Pg. 10.4] by using the implicit trapezoidal method
(i.e., the Tustin approximation) with a constant sampling period (h).

Additionally, we consider a zero-order hold on the manipulated variable u (i.e., u is de-
signed in the form of a staircase function). On the other hand, we assume that the known
disturbance ρ is a piecewise affine function, namely:

u(t) = u(tk), for all t ∈ [tk, tk+1), and

ρ(t)≈ ρ(tk)+
t − tk

h
(ρ(tk+1)−ρ(tk)), for all t ∈ [tk, tk+1),

(3.5)

where tk = k ·h for any integer number k. Then, the Tustin approximation of (3.4) simplifies
to

x(tk+1)≈ x(tk)+
h
2

(
f
(
x(tk),u(tk),ρ(tk)

)
+

+ f
(
x(tk+1),u(tk),ρ(tk+1)

))
.

(3.6)

Let x̂(tk+i|tk), i = 1, . . . ,N denote the value of the state at time tk+i predicted at the kth
time step tk using the discrete-time approximation (3.6) in the knowledge of x(tk), ρ(tk),
. . . , ρ(tk+i) and for some input. Similarly, let u(tk+i|tk), i = 0, . . . ,N − 1 denote the value
of the input at time tk+i computed at the kth time step tk. Integer number N constitutes the
so-called prediction horizon of the MPC problem. Then, the MPC input design at time tk can
be formulated as follows.
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Problem 1 (General MPC design). Consider a dynamical system (3.4). Assume that the
values of x(tk), ρ(tk), . . . , ρ(tk+N) are available at time tk. Compute x̂(tk+i|tk), i = 1, . . . ,N
and u(tk+i|tk), i = 0, . . . ,N −1, which minimize a cost function

J
(
x̂(tk+1|tk), . . . , x̂(tk+N |tk), û(tk|tk), . . . ,u(tk+N−1|tk)

)
, (3.7)

and satisfy the following equality constraints (prediction model):

x̂(tk+i+1|tk) = x̂(tk+i|tk)+

+
h
2

(
f
(
x̂(tk+i|tk),u(tk+i|tk),ρ(tk+i)

)
+

+ f
(
x̂(tk+i+1|tk),u(tk+i|tk),ρ(tk+i+1)

))
,

x̂(tk|tk) = x(tk).

(3.8)

We are allowed to enforce additional custom constraints on the designed input and the
predicted state values, e.g., we can prescribe bounds for the state:

x ≤ x(tk+i|tk)≤ x for all i = 1, . . . ,N, (3.9a)

or the rate of the input can also be bounded

ν ≤ u(tk+i|tk)−u(tk+i−1|tk)≤ ν for all i = 1, . . . ,N −1, (3.9b)

or, e.g., the input can be set constant on the prediction horizon (u(tk+i|tk) = u(tk|tk) for all
i = 1, . . . ,N −1). △

Note that in Problem 1, both the predicted state x̂(tk+i|tk), i = 1, . . . ,N and the “planned”
input u(tk+i|tk), i = 0, . . . ,N−1 are considered as free decision variables, and they are meant
to be found such that both the prediction model (3.8) and the prescribed control goals (e.g.,
(3.9)) are satisfied.

In a typical MPC design, a sequence of input values are computed on-line in each time-
step tk for a typically short prediction horizon (e.g., N = 10), and only the first computed
input value u(tk|tk) is applied to the system for all t ∈ [tk, tk+1). Then, a new computation
is performed at tk+1 in the knowledge of the already measured new state value x(tk+1), and
again only u(tk+1|tk+1) is applied to the system on the next sampling interval t ∈ [tk+1, tk+2).
Note that the on-line MPC design is applicable in real time only if the processing time of the
MPC optimization is less than the sampling period (h).

3.5.2 Optimal solar panel area computation

In this section, we propose an off-line MPC optimization to compute the optimal solar panel
area. Differently from the on-line MPC, we compute a sequence of input values only at time
step k = 0 and we consider a larger prediction horizon (e.g., N = 40, 60 or 100), which covers
two consecutive orbital periods. Roughly speaking, after computing λ with an off-line MPC,
we are ready to manufacture the satellite and control the temperatures by using, e.g., a PID
controller or an on-line MPC. Note that our primary aim is to obtain an optimal/feasible λ ,
rather than to control the system, therefore, an on-line MPC design is not addressed for the
thermal model of the CubeSat system.

Due to the fact that an optimal control sequence is computed only in t0 (k = 0), the term
“|t0” is omitted from the arguments of x̂ and u. The off-line MPC problem for the optimal λ

computation is summarized as follows.
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Problem 2 (Optimal λ computation). Consider a dynamical system (3.4), with

x : [0,∞)→ R7, x j(t) = Tj(t), j = 1, . . . ,6, x7(t) = Tt(t),

u : [0,∞)→ R2, u1(t) = Q̇c(t), u2(t) = uλ (t),

ρ : [0,∞)→ R3.

(3.10)

Assume that the values of x(t0), ρ(t0), . . . , ρ(tN) are available at time t0 = 0. Compute x̂(ti),
i = 1, . . . ,N and u(ti), i = 0, . . . ,N −1, which minimize the cost function

J
(
u(t0)

)
= 1−u2(t0), (3.11)

satisfy the difference equation
x̂(ti+1) = x̂(ti)+

h
2

(
f
(
x̂(ti),u(ti),ρ(ti)

)
+

+ f
(
x̂(ti+1),u(ti),ρ(ti+1)

))
,

x̂(t0) = x(t0),

(3.12)

and satisfy the following additional constraints

1. x̂7(ti) ∈ [Tt,Tt] for all i = k(start), . . . ,N,

2. x̂ j(ti)≤ TF for all j = 1, . . . ,6 and all i = 1, . . . ,N,

3. u1(ti) ∈ [0,u] for all i = 1, . . . ,N −1,

4. u2(ti) = u2(t0) (= λ ) for all i = 1, . . . ,N −1,

5. u2(t0) ∈ [0,1],

(3.13)

where Tt, Tt, TF, u and the integer number k(start) are constant scalar values given a priori. △
Note that the quasi-LPV model formulation in (2.18) of the thermal model does not fit into

the model class (3.4) required by the MPC design, as the “input” λ appears on both sides of
(2.18). Therefore, we consider the following relaxed quasi-LPV model:

ẋ(t) = I−1
k (λ ∗)

(
A(x(t))x(t)+Bu1(t)+

+E(x(t),ρ(t))u2(t)+F(ρ(t))
)
,

(3.14)

where u(t) =
(

Q̇c(t)
λ

)
and the parameter λ ∗ is assumed to be known before the optimization.

Note that dynamics (3.14) are equivalent to (2.17) if and only if λ ∗ = λ .
To find an optimal value for λ , we iteratively approximate λ ∗ ≈ λ as follows. Consider an

initial value λ ∗
(0) for λ ∗. In the κth iteration, we perform the MPC optimization described in

Problem 2 for λ ∗ = λ ∗
(κ). If the resulting optimal value for λ = uλ (t0) is not “close enough”

to λ ∗
(κ) (e.g., |λ −λ ∗

(κ)| > ελ ), we perform again the optimization with λ ∗
(κ+1) = λ .

3.5.3 Numerical simulations and results

The computations presented in this section were processed on a laptop with an Intel Core
i7-4710MQ CPU at 2.50 GHz and 16 GB of RAM.

During the analysis, we considered six different case studies with different sampling rates
(h), and control objectives (Tt, Tt, u, k(start)), but with a common value for TF = 370K, and
λ ∗
(0) = 0.5 with ελ = 0.0005. In each case study, the MPC design is performed over two or-

bital periods with sampling rate h = 2P
N . As presented in Section 3.5.1, the input is searched
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in the form of a piecewise constant function during the optimization, whereas, the external
known disturbance function is assumed to be a piecewise linear function in time. After the
optimization, the thermal model in (2.18) of the CubeSat system is simulated with the com-
puted control input sequence u1(ti), i = 0, . . . ,N − 1 and the optimal λ with the assumption
that the input is piecewise linear between the computed discrete values u(ti), namely:

ū1(t) = u1(ti)+
t − ti

h
(u1(ti+1)−u1(ti)),

for all t ∈ [ti, ti+1),

i = 0, . . . ,N −1.

(3.15a)

Differently from the MPC optimization, the simulation is performed on four consecutive
orbital periods. Therefore, the control input sequence for the second orbital period computed
through the MPC optimization is periodically extended in the simulation for the next two
consecutive orbital periods, namely:

ū1(t) = ū1
(
t − (ℓ−1)P

)
, for all t ∈ [ℓP,(ℓ+1)P), ℓ= 2,3. (3.15b)

Let x̄(ti) denote the simulated state at time ti of the state-space model (2.17) driven by the
computed input signal ū(t) in (3.15). In order to quantify the prediction error of the MPC
design with respect to the simulated time evaluation of the tank temperature, we compute the
following two error quantities:

MSE : 1
N ∑

N
i=1(x̂7(ti)− x̄7(ti))2,

abs. err. : maxi=1,...,N |x̂7(ti)− x̄7(ti)|.
(3.16)

The abbreviation MSE designates the mean squared error between the predicted and sim-
ulated values of the tank temperature at the discrete-time points ti, i = 1, . . . ,N. Whereas,
the absolute error (abs. err.) is the maximal absolute values of the difference between the
predicted and simulated value of the tank temperature at the discrete-time points over the
prediction horizon.

The MPC optimization results for the six different case studies are presented in details
in Figures 3.14-3.19, respectively. Each of Figures 3.14-3.19 contains six subplots (A)-(F),
which illustrate the following results: subplot (A) presents the optimal staircase control input
sequence u1(ti) = Q̇c(ti), i = 0, . . . ,N −1, computed through the MPC optimization; subplot
(B) shows the predicted values of the tank temperature at t0, . . . , tN (blue dotted line), and
the interval constraint on Tt(ti) ∈ [Tt,Tt] for all i = k(start), . . . ,N (red region); subplot (C)
illustrates the predicted values Tj(ti) of the surface temperatures at t0, . . . , tN , and j = 1, . . . ,6;
subplot (D) illustrates the interpolated piecewise affine input function (3.15) considered in
the simulations; in Subplot (E), the simulated time evaluation of the tank temperature is
compared against the predicted time series of the tank temperature through the mean squared
and absolute prediction errors (3.16); subplot (F) illustrates the simulated time evaluation of
the surface temperatures.

The presented data in subplots (A)-(C) are computed through the MPC optimization, and
they span two orbital periods. The data in (D)-(F) present the simulation results of the thermal
model (2.17) driven by the input (3.15).
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In Figure 3.14, we present the first case study. We designed an optimal value for the solar
panel area and a controller sequence to keep the tank temperature around 290 K. If we allow
higher fluctuation Tt(ti) ∈ [287,293] K, i = 3, . . . ,N, (N = 40, h = 270s), but require a low
power control signal (u= 1.2 W), we obtain λ ≃ 0.51. In the second case study (Figure 3.15),
we restricted the tank temperature to a tighter interval Tt(ti) ∈ [289,291] K. The optimization
points out that the solar panel ratio should be decreased to λ = 0.4481, at the same time,
the applicable heating power limit should be increased to u = 1.4 W (Figure 3.15). It is
worth remarking that the control objectives are more conservative in this case compared to
the first case study. Therefore, we considered a shorter sampling period h = 180s (N = 60).
Observing the results of the first two control design setups, we can conclude that smaller
temperature fluctuations can be achieved if the solar panel area is small enough and the
actuator has a higher power limit to be able to provide the necessary heat flux during the
shady parts of the orbit.

In the next two cases, our major objective is to analyze the precision and complexity of
the proposed optimization method for two different sampling periods. In these computations,
the baseline tank temperature was raised to 300K, and we allowed ±3K fluctuation (namely,
Tt = 297K, and Tt = 303K). First, we considered a longer sampling period h = 270s (N =

40), secondly, we used a shorter one h = 108s (N = 100). In both cases, one feasible power
bound for the heater was u = 1.75W. As Figures 3.16 and 3.17 illustrate, a shorter sampling
period may result in a more precise prediction model (3.12). Obviously, the undershoot and
overshoot from the allowed (red) region are lower if a shorter sampling period is selected.
Unfortunately, the computational complexity of the optimization increases combinatorially
as we consider a longer prediction horizon (i.e., a larger N = 2P

h ).
From the authors experience, the bound conditions for the surface temperatures (x̂ j(ti) ≤

370K for all i = 1, . . . ,N, and all j = 1,6) are trivially satisfied in the previous four cases
(Figures 3.14-3.17). Therefore, this constraint is removed from the optimization to reduce its
computational complexity.

Another pair of interesting experiments is illustrated in Figures 3.18 and 3.19. Let us
relax the upper bound for the CubeSat’s surface and tank temperature TF = Tt = ∞. (In
the numerical computations we consider finite but “large enough” value for Tt = 330K.)
Using MPC, we can find the lowest feasible upper bound u for the input power, such that
the heater can maintain the tank’s temperature above Tt. The optimization was performed in
two different cases for Tt = 290 K and Tt = 297 K. Through the optimization, we concluded
that the CubeSat’s appropriate faces should be completely covered by solar panels (λ = 1),
and the minimum required upper bound for the thermal flux should be u = 1.069 and u =

1.545, respectively. However, we have seen in the previous syntheses that, in the real-world
scenario, λ = 1 is not a feasible value for solar panel coverage. In this case, the parts of
the satellite will be overheated, and we are not able to give a control input sequence that
keeps the faces and the tank temperature below the prescribed values, i.e., the optimization
is infeasible with the criteria x̂ j(ti)≤ 370K for all i = 1, . . . ,N, and all j = 1,6.

Although the on-line MPC design is planned as future work, we remark that the dynamics
of the CubeSat’s thermal system are relatively slow, therefore, the processing time of the
“off-line” MPC can be easily kept much below the sampling period. From the second case
study (Figure 3.15, we have found that for a relatively large prediction horizon (N = 60) the
optimization can still be executed (comfortably) within a single sampling period.
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Figure 3.14: Low power (Q̇c ≤ 1.2 W) MPC design allowing higher (±3 K) fluctuation around
Tt = 290 K with h = 270s, N = 40. The final value of λ ∗ was obtained through two iterations:
λ ∗
(0) = 0.5, λ ∗

(1) = 0.5102. The processing time of the MPC optimization was less than 15 seconds.
The constraints (3.12) and (3.13) were tested less than 500 times during the optimization
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Figure 3.15: Medium power (Q̇c ≤ 1.4 W) MPC design allowing smaller (±1 K) fluctuation around
Tt = 290 K with h = 180s, N = 60. The final value of λ ∗ was obtained through two iterations:
λ ∗
(0) = 0.5, λ ∗

(1) = 0.4481. The processing time of the MPC optimization was less than 40 seconds.
The constraints (3.12) and (3.13) were tested less than 750 times during the optimization
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Figure 3.16: High power (Q̇c ≤ 1.75 W) MPC design enforcing a higher baseline tank temperature
(Tt = 300 K) but allowing higher (±3 K) fluctuation (h = 270s, N = 40). The final value of λ ∗ was
obtained through three iterations: λ ∗

(0) = 0.5, λ ∗
(1) = 0.7095, λ ∗

(2) = 0.7123. The processing time of
the MPC optimization was less then 15 seconds. The constraints (3.12) and (3.13) were tested less
than 550 times during the optimization
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Figure 3.17: High power (Q̇c ≤ 1.75 W) MPC design enforcing a higher baseline tank temperature
(Tt = 300 K) but allowing higher (±3 K) fluctuation (h = 108s, N = 100). The final value of λ ∗ was
obtained through three iterations: λ ∗

(0) = 0.5, λ ∗
(1) = 0.7, λ ∗

(2) = 0.7026. The processing time of the
MPC optimization was less than 200 seconds. The constraints (3.12) and (3.13) were tested less than
650 times during the optimization
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Figure 3.18: Minimum thermal flux required to keep the tank’s temperature above 290 K if λ = 1
(i.e., the appropriate faces of the CubeSat are fully covered by the solar panel). The sampling period is
h = 270s, the prediction horizon is N = 40. The final value of λ ∗ was obtained through two iterations:
λ ∗
(0) = 0.5, λ ∗

(1) = 1. The processing time of the MPC optimization was less than 1 second. The
constraints (3.12) and (3.13) were tested 30 times during the optimization
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Figure 3.19: Minimum thermal flux required to keep the tank’s temperature above 297 K if λ = 1
(i.e., the appropriate faces of the CubeSat are fully covered by the solar panel). The sampling period is
h = 270s, the prediction horizon is N = 40. The final value of λ ∗ was obtained through two iterations:
λ ∗
(0) = 0.5, λ ∗

(1) = 1. The processing time of the MPC optimization was less than 1 second. The
constraints (3.12) and (3.13) were tested 12 times during the optimization
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3.6 Conclusion

In this Chapter, control approaches for the thermal system of an orbiting CubeSat were pre-
sented. During its orbital motion, the satellite flies along the Sunny and shady sides of the
Earth. Thus, periodic fluctuations can be observed in the thermal dynamics of the different
components of the CubeSat. To maintain the tank temperature within an acceptable range,
a passive control approach was presented in Chapter 2 by manipulating the surface coating
of the CubeSat and the power dissipated heat flux of the onboard electrical devices. Differ-
ently from Chapter 2, four distinct control design techniques to track a given reference tank
temperature were simulated by considering multiple input saturation levels and solar panel
coverage. Furthermore, simultaneous designs for passive and active control were presented
for selecting an optimal area for the solar panels (passive control) and computing a feasible
heat flux signal (active control). First, the area of the solar panels has been fixed to simu-
late the CubeSat tank thermal responses under PID-based control techniques, and different
heater power saturation levels have been tested in the classical PID controller scheme with an
anti-windup compensation. Then, a feedback linearization technique was applied to achieve
reference tracking. These new theoretical and computational results open up new avenues
for manufacturing and operating CubeSat in order to meet technological thermal constraints.
The simulation results show that the minimum heating power to achieve the prescribed con-
trol goals is about 1.5 W. Moreover, the results clearly show that the thermal response of the
fuel tank, corresponding to the anti-windup PID controller, is more advantageous because
of the faster rising time and almost no overshoot. Finally, an optimization-based model-
predictive approach was demonstrated to simultaneously design an optimal solar panel ratio
and a feasible control input sequence. The results show that an off-line model-predictive
analysis is particularly useful for assessing the physical limits of the control. It is especially
true for nonlinear models, where the available analysis and control design techniques are
more limited than the results for linear time-invariant systems.
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Chapter 4

Unmanned aerial vehicle navigation
using GNSS/INS integration

4.1 Background

Satellite navigation is challenging in critical places, mainly because of the signal block-
age problem. As a result, satellite systems are frequently integrated with inertial navigation
systems, which compensate for each other. In other words, regarding advantages and draw-
backs during the application, the Inertial Navigation System (INS) and the Global Naviga-
tion Satellite System (GNSS) are two types of common navigation equipment. Therefore,
the INS/GNSS integrated navigation system is a reasonably constructed system that is vastly
employed in aviation, aerospace, and sailing [13].

This Chapter proposes a K-Nearest Neighbor (KNN) predictor algorithm to predict sig-
nals between sampling instants of GNSS receiver data based on actual GNSS data attributes.
The KNN method uses the database to search for data similar to the current data. Thus,
the obtained data are the so-called nearest neighbors of the existing data [73]. The integra-
tion of INS/GNSS with a Kalman filter into ultra-tightly coupled synthesis is then proposed.
The Kalman filter’s measurement update establishes a connection between the states and
measurements. So, a link between GNSS measurements, In-Phase (I) and Quadrature (Q)
signals, and INS data, location, velocity, and attitude, is formed in an ultra-tightly integrated
system. Thus, ultra-tightly is not a direct coupling technique as loosely, and tightly coupled
systems [74]. Then, a comprehensive software was constructed in the Matlab environment
to carry out the analysis. The algorithms’ main idea is that KNN predicts new GNSS data
points based on k training samples, which correspond to the measured GNSS data, and then
the output of the predictor is integrated with the INS data.

The results show that the KNN predicts precisely the signs localized between the GNSS
sampling points and that integrating GNSS/INS provides satisfying performance, especially
with a short period of GNSS data loss.

The Chapter is organized as follows: The collecting and processing of the experimental
data are presented respectively in sections 4.2, and 4.3. Then, the modulation technique
specifying how to satisfy the GNSS/INS integration is proposed in section 4.4. Lastly, in
section 4.5 the results of simulations according to different scenarios that concern variations
in GNSS data blocking time are displayed.
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4.2 Experimental data records

The whole system is tested on data recorded with an actual flying drone. The logs were
produced when a video recording campaign was run at the Mátyásföld, (144m Above Mean
Sea Level (AMSL), 47.4992 N, 19.1977 E), model airfield near Budapest [75]. Mátyásföld
airfield was a commercial, public airfield at the beginning of the 20th century, which also
served as the main airport of Budapest before Budaörs airport was built [76; 77]. Nowadays,
it is only used for recreational purposes, as it is the home of the MMBK SE, RC model aircraft
club [78]. As shown in Figure 4.1, the airfield has a maintained runway for RC planes and
a fixed table to carry out minor fixes or setup of the model planes. It is one of the locations
where scientific experiments [79] took place before introducing the new drone regulation in
Hungary in 2021.

An Inertial Measurement Unit (IMU), such as the ArduCopter’s [80], is made up of at least
three accelerometers that measure the three-axis gravity vectors and two gyros that measure
rotation around the tilt and pitch axes in airborne vehicles. The Attitude Heading Reference
System (AHRS) is an IMU plus the code to decrypt the output from its sensors to identify
the position and heading of airborne vehicles. Both are insufficient on their own since gyros
drift over time and accelerometers are inaccurate over short periods of movement time. To
develop an AHRS, the data from both types of sensors must be integrated into the software
to ascertain the actual aircraft attitude and motion. The Kalman filter is one method for
accomplishing this. Autopilots, which combine a CPU and sensors in one device, have now
supplanted them.

The data were recorded with a 3DR Iris+ [81] drone running the ArduCopter firmware.
During the experiments, the AHRS_GPS_GAIN parameter was set to 1, which means that
the AHRS took into account GNSS measurements as well to flatten out disturbances in IMU
sensor measurements. 3DR Iris+ was a commercially available product of the 3D Robotics
company, and it is an RC-controlled quadcopter with the PixHawk flight control computer
[82]. The maximum flight time is around 20 minutes with the 5100 mAh battery. The aircraft
can carry a payload of a maximum of 450g.

In the original experiment [75], the Iris+ was programmed to fly automatically along with
the predefined waypoints and carried a 2-axis Tarot gimbal with a GoPro camera; see Figure
4.2. In addition, the Iris+ has a UBlox GPS + Compass Module [83] and two IMU modules
composed of two sets of accelerometers and gyroscopes to track the aircraft’s position. The
precision of the tracking changes with the number of satellites seen by the GPS antenna, but
in general, the accuracy is enough to run automatic flights; it is typically within a 1m radius.

4.3 Converting geographic coordinate system to ECEF
coordinate system

The Earth’s Figure depicts geographic (geodetic) coordinates, commonly known as meridians
and latitude lines. So, geodetic coordinates are determined on the surface of a reference
ellipsoid, which characterizes the Earth’s shape. Meridians pass across the north and south
poles of the planet, intersecting at right angles with the latitudes. Except for the equator, the
latitudes are not great circles, meaning their centers are not the same as the Earth’s center. The
altitude of a location is also considered, along with the geodetic coordinates of a point. The
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Figure 4.1: Mátyásföld airfield top view image [78], the red box shows the location of the model
runway, the table, and the parking area for cars; the green box indicates the helipad.

Figure 4.2: 3DR Iris+ aircraft with Tarot Gimbal and GoPro camera [84]

Earth-Centered Earth-Fixed (ECEF) coordinate frame is the Cartesian coordinate frame used
in satellite navigation systems. ECEF employs three-dimensional (X, Y, and Z) coordinates
(in meters) to describe the position of an object. The expression Earth-Center refers to the
fact that the origin of the axis (0, 0, 0) is at the mass center of gravity (as determined by years
of satellite tracking). The term Earth-Fixed refers to the fact that these axes are fixed to the
Earth (i.e., they rotate with the Earth); see Figure 4.3.

The obtained data was in LLA geodetic coordinates; while the subsequent calculations are
required, the data is in ECEF cartesian coordinates. Thus, Matlab was used for converting
the geographic coordinates into the ECEF coordinates. Then, Figure 4.4 represents the 3D
trajectory of the moving drone in LLA coordinates, and Figure 4.5 denotes the 3D trajectory
of the moving drone in ECEF coordinates. Finally, to illustrate the data recorded in the
experiment, we zoom in on the drone’s altitude in both coordinates, as presented in Figure
4.6. It is demonstrated that the INS signals recorded in ECEF coordinates are not much
smoother than signals in LLA coordinates, but the differences in the coordinate scales are
significant.
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Figure 4.3: LLA and ECEF coordinate systems

Figure 4.4: LLA of The 3D trajectory of the moving drone
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Figure 4.5: ECEF of the 3D trajectory of the moving drone
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Figure 4.6: ECEF and LLA altitude trajectory of the moving drone
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4.4 Modulation of GNSS/INS integration

GNSS/INS integration’s main idea is to use the position information measured by GNSS to
correct the INS drift errors[64].

The K-Nearest Neighbor (KNN) algorithm belongs to the supervised learning category
and is used for classification and regression. It is also a universal algorithm for filling in
missing values and resampling datasets. The name (K-nearest neighbor) means considering
k nearest data points to predict the new data point. Thus, the KNN predictor algorithm
is used at the GNSS receiver’s output to predict between GNSS instant samples’ data for
synchronization purposes with INS [85; 86].

4.4.1 K-nearest neighbor predictor algorithm

For neighborhood classification, a KNN algorithm variant is used. In the case of KNN, when
the k parameter is selected, various dataset properties need to be considered. As a result,
the classification performance is better with a higher k-value because of the effect of noise
reduction, but at the same time, the classes will be closer to each other. Thus, the boundaries
between the classes are less clear. So, a KNN is a supervised learning algorithm where the
training samples determine the classification rules without additional parameters [73].

In other words, the K-Nearest Neighbor (KNN) principle is to locate k entities from the
training data that are closest to the data being tested. The KNN algorithm is relatively
straightforward; it works by determining the K-nearest neighbor from the testing data to
the training data and then using the majority of KNN to predict the testing data. Hence, this
algorithm aims to predict new GNSS data based on actual GNSS data characteristics. The
position information is provided at 1 Hz by the GNSS receiver. However, the system which
integrates GNSS and INS measurements (see Figure 4.7) needs the information at 10 Hz. To
fulfill this requirement, the predictor will estimate nine new data points at every measured
point (for example, for a GNSS measurement at t = 6 sec, the predictor provides data for t =
6.1, 6.2, . . . 6.9 sec). If the GNSS receiver is blocked, the predictor will produce estimates
for a few seconds. The predictor needs four data points to produce the estimates. For exam-
ple, at t = 6.1 sec, these four preceding points are used to estimate: t = 5.7, 5.8, 5.9, and 6
sec.

Since KNN predictions are based on the axiomatic assumption that objects close in dis-
tance are practically similar, it makes sense to distinguish between the K-nearest neighbors
when making predictions, that is giving the closest points among the K-nearest neighbors
more influence over the search point’s outcome. This can be accomplished by introducing a
series of weights ω , one for each nearest neighbor, defined by their relative proximity to the
inquiry site. As a result, KNN is one of the methods utilized in classification approaches to
predict output variables. The dataset is separated into training and testing data in the classi-
fication process. KNN compares the given testing data to the training data using a similarity
measure. The Euclidean distance between real GNSS data (testing data (xtest)), and training
data (xtrain) is used in K-nearest neighbor to compare the given testing data to training data,
as shown in equation (4.1) [87]:
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Figure 4.7: Kalman filter for ultra-tightly coupled GNSS/INS Integration

d (X ,Y,Z) =

√
n

∑
i=1

(X1i −X2i)
2 +

n

∑
i=1

(Y 1i −Y 2i)
2 +

n

∑
i=1

(Z1i −Z2i)
2 (4.1)

where xtrain is X1, Y1, and Z1; and xtest is X2, Y2, and Z2.
The KNN method selects the data points closest to the testing data in GNSS to ask for

training data. Then, the data output from the k training can be chosen to be the nearest
neighbors to predict the unknown GNSS data. Thus, the following KNN equation is used to
predict the required data [88]:

ŷl =
1
k

k

∑
j=1

y j (4.2)

where k is the number of nearest neighbors of yj.
Hence, to consider the correlation between times, the following equation can be used for

GNSS data prediction [87]:

ŷl =
k

∑
j=1

ω jy j (4.3)

where ŷl is the testing of the predicted data, y j is the testing data, and ω j is the weight of the
j-neighbor. When n is the number of the training data, the KNN time series model can be
presented as [87]:

ω j = j/n (4.4)
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4.4.2 Kalman filter

In order to navigate precisely with GNSS, the INS systems have to ensure that INS is the
essential keeper of short-term navigation information. The Kalman filter keeps navigation
information as accurate as the noise sources allow. In GNSS/INS integration, the Kalman
filter represents the stochastic vehicle dynamics with the INS and uses it to estimate, cor-
rect, and compensate for errors in the INS implementation. A vital feature of the integrated
navigator is maintaining short-term accuracy when GNSS signals are not available for a few
seconds [89; 90; 91].

The Kalman filter is the optimal estimator of the expected value of the state of the pro-
cess in the case of the zero-mean white noise of the measurements. It is a set of equations
in quadratic form, and the process can be described with a stochastic difference equation.
Regardless of any optimum criterion, the Kalman filter is considered the conditional expec-
tation process of the state-space of concern to the whole past observation stream. Thus, the
estimated value of X (k) (discrete-time from) is X̂ (k|k) and defined by [90; 92; 93]:

X̂ (k) = E {X (k) |Y (k)} (4.5)

where X̂ (k) is the estimated state, E { } is the expected value, Y (k) represents all the data
history { Y (0) , Y (1) , Y (2) ,Y (3) . . . Y (k)}, and the associated estimate error covariance
matrix is given by the following:

P(k|k) = E{[X (k)− X̂ (k|k)][X (k)− X̂ (k|k)]T} (4.6)

where P(k|k) is the error covariance matrix. The following linear recursive formulas sum-
marize the optimal Kalman filtering algorithm:

• Filter estimate
X̂ (k|k) = F (k,k−1) X̂ (k−1|k−1) +K (k) [Y (k)

−H (k)F (k,k−1) X̂ (k−1|k−1)]
(4.7)

• Filter gain

K (k) = P(k|k−1)HT (k) [H (k)P(k|k−1)HT (k)+R(k)]
−1

(4.8)

• Error covariance

P(k+1|k) = F (k,k−1)P(k|k)FT (k,k−1)+Q(k) (4.9)

P(k|k) = [I −K (k)H (k)]P(k|k−1) (4.10)

where 

X̂ (k) : n × 1 estimated state vector

F(k): n × n state transition matrix

K(k): n × 1 Kalman gain vector

Q(k): n × 1 covariance matrix of the system noise vector

R(k): m × 1 covariance of the measurement noise vector

H(k): m × n observation matrix

P(k): n × n covariance matrix of the state vector

Initial estimates of P(0|0) and X̂ (0|0) are required for this algorithm..
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4.4.3 Ultra-tightly coupled integration of GNSS/INS

The ultra-tight GNSS/INS integration is becoming more popular despite its implementation
complexities (the INS is collocated with the GNSS), as it has unique advantages such as ex-
cellent anti-jamming performance and increased dynamic ranges. In the case of ultra-tight
GNSS/INS integration, I and Q (In-phase and Quadrature) variables from the GNSS corre-
lator are integrated with the position, velocity, and attitude of the INS. The main difference
between ultra-tight coupling and the widely used loose or tight GNSS/INS integration meth-
ods is that the INS aiding of the GNSS receiver is optional in loosely or tightly coupled
systems, whereas, in the case of ultra-tight coupling, it is part of the integration. The main
reason behind this is that the GNSS and INS variables are strongly connected through the ve-
hicle’s dynamics. Another advantage of integrating INS data into the GNSS tracking loop is
that it can suppress the Doppler effect between the satellites and the receiver introduced by
the vehicle dynamics. Thus, this design makes the GNSS more reliable in an extended dy-
namic range, which is almost impossible to achieve with other techniques (such as increasing
the carrier tracking loop bandwidth, which increases the thermal noise, possibly degrading
the measurement accuracy). The mathematical analysis and the ultra-tight integration de-
sign based on the Kalman filter are introduced in [94]. The architecture and equations are as
follows.

Equation (4.11) is used to estimate the phase and frequency of the GNSS signal [91; 92]:

y(t) = AC (t − t1)D(t − t1)cos(w(t − t1)+ψd (t))+ξ . (4.11)

By neglecting the effect from the atmosphere, the delay propagation (τ) can be given as
follows:

t1 =
|Xs (τt)−Xu (τr)|

c
(4.12)

A =
√

2P (4.13)

τr = τt + τ (4.14)

w = 2πD(t) (4.15)

where τt is the time of the transmitting signal, τr is the time of the receiving signal, t is the
time of the routing period, Xs (τt) is the GNSS satellite position, Xu (τr) is the user position,
P is the signal power, C (t) is the sequence of the code C/A, τ is the delay propagation, D(t)
is the navigation message at 50 Hz, the navigation message is the phase of the initial carrier,
ξ is the Gaussian Noise, c is the velocity of light, and w is the angular frequency.

From the above equations, one can write equation (4.11) as follows [95]:

y(t) = AC (t − t1)D(t − t1)cos
(
w′t +ψ

′)+ξ (4.16)

yw′ = w (1− vr

c
− ar

c
(t +2t0)) (4.17)

ψ
′ =−w

c
( |Xs (t0 − τ)−Xu (t0) |− vrt0 +art2

0)+ϕd (4.18)

Equations (17) and (18) represent the association of velocity and position with frequency and
phase. The sequential loop function may represent the path for existing parameters in order
to obtain navigation data.
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vr =
d
dt

|Xs (t0 − τ)−Xu (t0) | (4.19)

ar =
d2

dt2 |Xs (t0 − τ)−Xu (t0) | (4.20)

where w′ is the receiver carrier frequency, ψ ′ is the phase of the GNSS signal, and t0 is the
time at the reference point. To explain the relationship between I, Q, w′, and ψ ′, let ŵ and ψˆ

be the estimated values of the receiver and k (number of iteration); hence, by multiplying the
estimated local carrier (ψ )̂ with the signal arriving and integrating redetection interval, one
can get a quadrature signal [96].

I =

(K+1)T∫
KT

sin
(
ŵt +ψ

)̂ [
Acos

(
w′t +ψ

′)+ξI
]

dt (4.21)

Q =

(K+1)T∫
KT

cos
(
ŵt +ψ

)̂ [
Acos

(
w′t +ψ

′)+ξQ
]

dt (4.22)

I and Q data are quadrature-phase signal data. According to Figure 4.7, there is a feedback
link from the Kalman filter data to the INS, and then we make measurements to evaluate I and
Q data according to equations (4.21) and (4.22). When they are feedback from the Kalman
filter, which has a link from GNSS, their rates, in the beginning, are 1 Hz. Before the KNN
predictor, the GNSS rate is 1 Hz. Thus, we assume that the GNSS data are available every 1
sec. Equations (4.21) and (4.22), as shown above, can be written as follows [94; 96]:

I =

(K+1)T∫
KT

(
A
2
[sin(wet +ψe)]+ξI)dt (4.23)

Q =

(K+1)T∫
KT

(
A
2
[cos(wet +ψe)]+ξQ)dt (4.24)

we = ŵ−w′ (4.25)

ψe = ψ
ˆ−ψ

′ (4.26)
where I and Q are the elements generated by the mixer, ξI and ξQ are the components of
quadrature noise, we is the frequency error, and ψe is the phase error. The errors are then
reduced from the iteration loops, and by taking the supposition and integration of Equations
(4.23) and (4.24), the result is as follows [95; 96]:

E [I] =
−A
2we

[cos(we (K +1)T +ψe)− cos(weKT +ψe)] (4.27)

E [Q] =
−A
2we

[sin(we (K +1)T +ψe)− sin(weKT +ψe)] (4.28)

we =
w
c

|vu − v̂u|=
w
c

ve (4.29)

ψe =
−w
c

[|xu − x̂u|− |vu − v̂u|t] =
−w
c

[xe − vet] (4.30)
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where T is the rate data; xu and vu are the position and velocity, which are measured at the
receiver; x̂u and v̂u are the position and velocity of the receiver estimates; xe and ve are the
position and velocity errors. The represented measurements by the complementary filter are
Y , where Y = (INS measurements)− (GNSS measurements). Hence, by combining velocity
and position with (I and Q) measurements, and according to Figure 4.7, one can get the
following equations [64; 96]:

dE [I] =
1
2

[
∂E [I]
∂ψe

∂ψe

∂x
+

∂E [I]
∂we

∂we

∂x

]
(4.31)

dE [Q] =
1
2

[
∂E [Q]

∂ψe

∂ψe

∂
.
x
+

∂E [Q]

∂we

∂we

∂
.
x

]
(4.32)

z = {I +dI,Q+dQ}k −{I −ξI, Q−ξQ}k (4.33)

z = {dI +ξI,dQ+ξQ}k (4.34)

where dI and dQ are the deviations of INS measurements due to the inertial INS sensor (I
and Q), ξI , and ξQ are the GNSS (I and Q) measurements’ components of the quadrature
noise, and k is the iteration number. The two measured components from the INS (I and
Q) will be subtracted from the GNSS receiver components (I and Q). The result is shown in
the equation (4.34). Thus, the Kalman filter treats the remaining signal after subtraction and
generates the estimation error.
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4.5 Measurement based computation results

The INS and GNSS computation data were obtained from the drone autopilot records. The
logs were formed during a video recording campaign Mátyásföld model airport close to Bu-
dapest; see section 4.2. Therefore, the investigations were conducted using a 3DR Iris+ drone
with ArduCopter firmware [75; 81; 80].

To keep the mathematical model simple enough to be manageable, it is frequently neces-
sary to ignore certain properties of the system. Hopefully, the advantage gained from math-
ematical simplicity offsets the errors introduced by ignoring some aspects of the system.
Hence, we have considered that the recorded INS data from the drone was not merged with
other sensors to simplify the computation. It would be suitable for algorithms that require
real-time calculations, such as in our case. Another aspect is that this algorithm would be
mostly used for situations when a fixed-wing aircraft encounters satellite signal loss during
turn maneuvers.
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Figure 4.8: Comparing the drone trajectory coordinates in (X, Y, and Z) when using the the GNSS
data without a predictor and GNSS data with a KNN predictor; a-1 shows the drone trajectory in
X-axis without using the KNN predictor; a-2 shows the drone trajectory in X-axis by using the KNN
predictor; b-1 shows the drone trajectory in Y-axis without using the KNN predictor; b-2 shows
the drone trajectory in Y-axis by using the KNN predictor; c-1 shows the drone trajectory in Z-axis
without using KNN predictor; c-2 shows the drone trajectory in Z-axis by using the KNN predictor
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The INS information is available every 0.1 sec, while the GNSS receiver information
is available every second. Nevertheless, the INS and GNSS must be time-synchronized to
estimate the errors from the two frameworks in a specific time interval. Figure 4.8 shows the
comparison of the drone trajectory coordinates in (X, Y, and Z) when using the (GNSS data
without a predictor) and (GNSS data with a KNN predictor). This Figure shows the drone’s
trajectory in the three coordinates, represented by 60 points. At each point, GNSS provides
the target position (X, Y, and Z). These points are 1 sec apart, and hence the whole duration
of the trajectory is 60 sec.

The KNN predictor algorithm was used to enable GNSS receiver output to predict between
samples instant when the GNSS signal is lost for a few seconds. Hence, after adding the
KNN predictor to the GNSS receiver’s output, it has 600 points of (target position (X, Y,
and Z)); these points are 0.1 sec apart for the same whole 60-sec duration of the trajectory.
The following scenarios are taken for the evaluation performance of the proposed GNSS/INS
system (all of these scenarios are taken after adding the KNN predictor for the integration of
GNSS/INS):

Scenario (I): This scenario compares the positions in three coordinates (X, Y,
and Z) for INS, GNSS, and the integration of GNSS/INS without
blocking the GNSS data (see Figure 4.9).

Figure 4.9 (a) presents the simulation of the integrated positioning,
INS positioning, and GNSS localization signs in the X-axis for 60
sec. Firstly, we can observe that the integrated positioning lies be-
tween the INS and the GNSS localization signals, which indicates
that the integration synthesis is well-performing. It also shows that
the integrated positioning signal follows the INS signal with a con-
stant error. Simulation of the positioning systems in the Y-axis for
60 sec is demonstrated in Figure 4.9 (b), again it has the same per-
formance in part (a) that the integrated signs are following the INS
signal with a constant error. Moreover, Figure 4.9 (c) shows the be-
havior of the integrated positioning signal that tracks the INS signal
with a steady error in the Z-axis for the same period.

Scenario (II): This scenario is like Scenario (I) but with a blocking time of 1 sec
in the GNSS receiver (see Figure 4.10).

The same integration methodology utilized in the first scenario is
employed with the slight blocking of the GNSS signal as 1 sec.
So Figure 4.10 (a) shows the X-axis of integrated positioning, INS,
and GNSS signal behaviors for 60 s; it can be seen that the new
signal (i.e., integrated signs) has still tried to track the INS signal.
However, of course, it has a more significant error when the GNSS
has lost that it depends on the GNSS signal; see Figure 4.7. Then
the Y-axis of the integrated signals is shown in Figure 4.10 (b), and
it also presents that the integration signal is stacked in the same error
problem when the GNSS signal is lost. Afterward, Figure 4.10 (c)
displays the behavior of the integrated signal in the Z-axis for 60
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sec when the GNSS signal has blocked for 1 sec; also, it can be
observed that there is an error gap at the period of GNSS lost.

Scenario (III): This scenario is like Scenario (I), but with a blocking time of 4 sec
in the GNSS receiver (see Figure 4.11).

Employing the same integration procedure as in the previous scenar-
ios, the simulation of the integrated positioning system connecting
to the GNSS signal is blocked for 4 sec. Figure 4.11 (a) displays the
X-axis of integrated positioning, INS, and GNSS signal behaviors
for 60 sec. It can be noticed that the new signal has tracked the INS
signal even though the new positioning signal has a more consider-
able error within the period of the GNSS being blocked regarding
the longer blocking time of the GNSS signal. Additionally, Figure
4.11 (b) presents the Y-axis of the integrated positioning signs for 4
sec of GNSS blocked time. Also, Figure 4.11 (c) shows the Z-axis
of the integrated positioning signs in 60 sec when the GNSS signal
is lost for 4 sec.

Scenario (IV): This scenario is like Scenario (I), but with a blocking time of 8 sec
in the GNSS receiver (see Figure 4.12).

Finally, the integrated positioning sign simulations concerning the
8 sec of the GNSS blocking signal are performed. Figure 4.12 (a)
presents the X-axis simulation of the integrated positioning, INS,
and GNSS signals for 60 sec, incorporating an 8 sec lost signal from
GNSS. It can be clearly seen that the integrated signs have a bigger
error than the above scenarios; thus, as a final corollary, the error ac-
cumulates whenever the blocking period is increased. Nevertheless,
Figure 4.12 (b) shows the simulation of the integrated positioning
signs in the Y-axis for 60 sec, with the total blocking time of the
GNSS signal being 8 sec. Later on, Figure 4.12 (c) illustrates the
simulation of the integrated signs in the Z-axis for 60 sec with a
signal loss of 8s.

From the above scenarios, one can conclude that using GNSS/INS with a KNN predictor
can decrease the deviation in the three coordinates (X, Y, and Z) when there is a blocking in
time (lost signal) for a few seconds in the GNSS receiver. The standard deviation of INS,
GNSS without predictor, and GNSS/INS with KNN predictor can be seen in Table 4.1 when
the GNSS receiver is used with and without blocking for a few seconds.

To answer the question of why we should synchronize the GNSS signal, we need to ex-
plain that the INS updates every 0.1 seconds, while GNSS updates every 1 second. This is
because after receiving the satellite signal, the receiver demodulates it, generates a signal
similar to the satellite signal, and shifts registers to be identical to the satellite signal. Next,
the receiver has to calculate the time difference to find the distance of the receiver from the
satellite. Then, decode the signal to provide the navigational message. This procedure must
be carried out in the receiver for at least four satellites in order to compute the position of the
aerial vehicle in ECEF coordinates, which are then converted to a geodetic coordinate frame.
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Table 4.1: The standard deviation of INS, GNSS without predictor, and GNSS/INS with KNN pre-
dictor, when the GNSS receiver with and without blocking in a few seconds

GNSS

Standard Deviation
σINS σGNSS σGNSS/INS

X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis
No

blocking 27.8269 117.5755 15.7477 27.6191 117.2243 15.8113 27.7402 117.4276 15.7710

1 sec
blocking 27.8269 117.5755 15.7477 27.5380 117.1091 15.6933 27.7465 117.4192 15.7247

4 sec
blocking 27.8269 117.5755 15.7477 27.4144 116.8594 15.3463 27.6745 117.1738 15.6184

8 sec
blocking 27.8269 117.5755 15.7477 26.6793 115.8801 15.0102 27.4085 116.6536 15.5051

Furthermore, because this is a novel investigation employing the KNN algorithm predictor
for data synchronization of ultra-tight GNSS/INS integration, we conducted a brief evalua-
tion of this study by comparing the prediction data accuracy with some of the state-of-the-art
methods employing similar main ideas, as shown in table 4.2.

The main drawback of the Least-Mean-Square Algorithm (LMS) is that it is sensitive to
the scaling of its input. This makes selecting a learning rate that ensures algorithm stability
inconceivable. The Normalized Least Mean Squares Filter (NLMS) is a variant of the LMS
algorithm that solves this problem by normalizing the input power. The normalized least-
mean-square (NLMS) algorithm usually converges faster than the LMS algorithm since it
utilizes a variable convergence factor, but it is still unstable for large datasets [65].

Wavelet Neural Networks (WNNs) is mathematical functions that split data into different
frequency components and then study each component with a resolution matched to scale.
The proposed approach based on the WNNs uses Morlet as an activation function in the hid-
den layer of the wavelet neural network, while the Radial Basis Function Neural Networks
(RBFNNs) use a basis function that can be calculated as a Gaussian function. The Wavelet
Neural Networks (WNNs) method for prediction has great ability, suitability, and more sta-
bility for GPS prediction than RBFNN, but it needs more time for alteration, which is not
suitable for unmanned aerial vehicles [66].

In reference [67], they suggested a carrier phase prediction method based on carrier open-
loop tracking to achieve carrier phase continuity. In order to increase the effectiveness of
phase prediction, the prediction approach investigates reliable receiver clock drift estimates.
It focuses on extending the effective time of carrier phase prediction by accurately estimating
the receiver clock drift. Then it may overcome the carrier phase discontinuity problem caused
by frequent signal blockages of particular satellite signals. This positioning method is more
accurate than the methods that rely on the frequency and amplitude of the signal because it
is very sensitive to any slight change in a moving signal. However, it continued to rely on
assumptions and, as a result, extended the processing time.
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Figure 4.9: Comparing between the positions in three coordinates (X, Y, and Z), for INS, GNSS, and
integration of GNSS/INS without blocking in the GNSS data; a shows the INS, GNSS, and integration
of INS/GNSS routes in X-axis without GNSS blocking; b shows the INS, GNSS, and integration of
INS/GNSS routes in Y-axis without GNSS blocking; c shows the INS, GNSS, and integration of
INS/GNSS routes in Z-axis without GNSS blocking
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Figure 4.10: Comparing between the positions in three coordinates (X, Y, and Z) for INS, GNSS, and
integration of GNSS/INS when blocking of (1 sec) are observed in the GNSS data; a shows the INS,
GNSS, and integration of INS/GNSS routes in X-axis with one second of GNSS blocking; b shows
the INS, GNSS, and integration of INS/GNSS routes in Y-axis with one second of GNSS blocking;
c shows the INS, GNSS, and integration of INS/GNSS routes in Z-axis with one second of GNSS
blocking.
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Figure 4.11: Comparing between the positions in three coordinates (X, Y, and Z) for INS, GNSS, and
integration of GNSS/INS through blocking of (4 sec) are accord in the GNSS data; a shows the INS,
GNSS, and integration of INS/GNSS routes in X-axis with 4 sec of GNSS data blocking; b shows the
INS, GNSS, and integration of INS/GNSS routes in Y-axis with 4 sec of GNSS data blocking; c shows
the INS, GNSS, and integration of INS/GNSS routes in Z-axis with 4 sec of GNSS data blocking
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Figure 4.12: Comparing between the positions in three coordinates (X, Y, and Z) for INS, GNSS, and
integration of GNSS/INS when blocking of (8 sec) are followed in the GNSS data; a shows the INS,
GNSS, and integration of INS/GNSS routes in X-axis with 8 sec of GNSS data blocking; b shows the
INS, GNSS, and integration of INS/GNSS routes in Y-axis with 8 sec of GNSS data blocking; c shows
the INS, GNSS, and integration of INS/GNSS routes in Z-axis with 8 sec of GNSS data blocking
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Table 4.2: Brief evaluation of prediction methods

Reference Prediction for
GPS or GNSS Method of Predictor Accuracy

[65] GPS NLMS low
[66] GPS RBFNN and WNNs medium
[67] GNSS Carrier phase prediction high

Our method GNSS KNN high

4.6 Conclusions

Integrating GNSS and INS systems can amend the weaknesses inherent in each and combine
their advantages. The GNSS is an accurate localization technology; yet, it is relatively slow
to update and may be lost due to several issues. The INS is a precise and instant positioning
system, but it needs regular calibration. When INS information is available in 0.1 sec, while
GNSS receiver information is available every second, a prediction between the GNSS re-
ceiver’s sampling instants is required. Different predictors can be used for GNSS receivers,
selecting the best one depending on its prediction results. Because time synchronization
between INS and GNSS must be achieved to estimate the errors from the two systems simul-
taneously, a new technique of using a predictor on GNSS output before integrating with the
INS has been employed. The KNN predictor algorithm employs the database to search for
data that is similar to the current data; hence, this algorithm was implemented at the output of
the GNSS receiver to improve the synchronization process between INS and GNSS and pre-
dict the output of the GNSS receiver when its signal is lost (data blocking) for a few seconds.
So the computations provided reasonable position values between every two GNSS signals
in the three coordinates (X, Y, and Z); see Figure 4.8. Moreover, ultra-tight integration be-
tween GNSS and INS was also performed because of its advantages, such as anti-jamming
immunity and increased dynamic ranges. Then, for a few seconds, GNSS data were clutched
in different scenarios, both with and without blocking, to classify the integration robustness
and simulate the new dynamic signal behavior in the three axes. Based on the results, it can
be stated that the error values along the three axes (X, Y, and Z) get bigger as the GNSS data-
blocking period gets longer. In simple terms, the error values increase whenever the GNSS
data-blocking time is extended. In conclusion, the errors obtained when using GNSS/INS
with predictor are less than those obtained when using INS alone or GNSS without predictor
for the same blocking periods in the GNSS data; see Figures (4.10, 4.11, and 4.12).
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Chapter 5

Summary and conclusions

5.1 Summary of results

In the last twenty years, CubeSats have attracted the attention of many universities, a compre-
hensive range of national space agencies, and professional space companies due to their low
cost, flexible technology applying COTS components, and faster development phases. How-
ever, satellites encounter an enormous thermal variation during the Earth’s Sunlit and eclipse
periods while orbiting Earth. One key challenge is keeping the CubeSat components within
their operational thermal limits to guarantee efficiency. In addition, satellite-based navigation
systems are challenging in built-up areas, mainly to the signal blockage problem. Besides,
onboard navigation components have inherent accumulative errors. Therefore, the leading
conventional navigation solutions are satellite navigation signals frequently integrated with
inertial navigation measurements that compensate for each other.

The follow-up on these research fields is to create mathematical models to interpret the key
issues that need investigations based on physical laws and potentially simplifying assump-
tions. First, a thermal mathematical model describing the CubeSat surface and its central
propellant tank, thermal behaviors along with its orbital motions has been derived. Next, this
model was employed to investigate the satellite’s thermal behavior and the thermal transi-
tion responses with a feasible passive control synthesis to regulate CubeSat-specific element
temperatures fulfilling power limitations in the CubeSat throughout its orbit. Then, the ac-
tive thermal was selected to regulate tank temperatures at the reference temperature value
and eliminate the CubeSat propellant thermal fluctuations along the satellite orbit. Finally,
because power is the most concerning subject in a CubeSat, an optimization-based model-
predictive approach was developed to simultaneously design an optimal solar panel ratio
considering the feasible heating power delivered to the system and the propellant tank ther-
mal responses throughout the CubeSat orbital motion.

Furthermore, to deal with navigation accuracy problems, a KNN predictor algorithm is
proposed at the GNSS receiver’s output to predict between samples of instant GNSS data for
synchronization purposes with INS. Also, an ultra-tightly coupled integration technique has
been exploited to correct the INS measured data with accumulated errors over time, based on
GNSS received data.
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A simulation framework in Matlab has been developed to study four different integration
scenarios containing data-blocking situations of different lengths using real data measure-
ments. The obtained results have shown that the computed signals of the GNSS/INS inte-
gration yield more accurate position data when the GNSS signal is blocked. However, the
proposed integration technique is able to maintain sufficiently precise localization even when
GNSS signals are not available for 1, 4, or 8 seconds. This advantageous feature is guaran-
teed by the physical background of the applied KNN algorithm. Below is a more detailed
discussion of the results.

• Different surface compositions have been investigated in section 2.3. The simulation
results showed CubeSat surface and propellant temperatures were higher than their
respective temperature limits see section 2.2.3 in the case in which the CubeSat surface
was made of an uncoated aluminum alloy, as shown in Figure 2.2.

• In CubeSats, a passive control system is a common thermal regulation strategy. There-
fore, I assumed a polished CubeSat surface with magnesium oxide-aluminum ox-
ide paint. The simulation results demonstrated that the CubeSat temperatures were
dropped, as shown in Figure 2.3.

• To generate a Quasi-LPV formulation of the nonlinear thermal model of the CubeSat,
first, we combined the three interval equations into an equivalent model containing
seven equations regarding solar panel ratio (λ ). Then we investigated the thermal ef-
fects of the various solar panel ratios, λ = 0.3,0.5,0.6,and 0.7, which are partially
covering the satellite’s three faces, on the CubeSat surface and its propellant tank. The
simulation results illustrated that the CubeSat temperatures were increased by increas-
ing the solar panel ratios, as shown in Figure 2.7. Thus, the thermal constraints should
be considered in the computations of the optimal solar panel ratios for the CubeSat.

• The comparison of simulations of the equivalent model in section 2.4 in parallel with
the TMM section 2.3 without a controller and with active controller syntheses were
evaluated. The simulation results for the CubeSat surface and fuel tank thermal perfor-
mances in the periodic orbit were similar for the two models, as shown in Figures 2.8
and 3.13, respectively.

• In section 3.2, a PID-based approach was applied as an active control system to regu-
late the tank temperature of the CubeSat at the reference value as well as to eliminate
thermal fluctuations of the tank temperature via CubeSat orbit. Figure 3.7a demon-
strates that the fuel tank temperature, employing anti-windup PID with restricted heat-
ing power of 1.5 W, tracks the reference temperature value with desirable overshoot
and a short settling time response. In addition, different heating powers, which are
supposed to maintain the fuel tank thermal performance when the heater is subjected
to PID-based controllers, were investigated. By comparing Figures 3.8 and 3.9, we
can see that the anti-windup PID control system consumes the lowest heating power to
grant an appropriate thermal response to the CubeSat fuel tank along the orbit.
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• Employing the nonlinear model in section 2.3, a linearization-based thermal regulation
synthesis for the CubeSat fuel tank was derived. Matlab/ Simulink model has been em-
ployed to simulate the CubeSat surface and fuel tank regulated thermal performances
by conducting input/output linearization feedback law, as shown in Figure 3.10, with a
heating power consumption range of 1.5 W, as shown in Figure 3.12. The simulation
results in Figure 3.11 present the linearization-based technique’s capability to control
the fuel tank temperature at the reference value with an appropriate thermal response.

• The off-line MPC approach is used in the section 3.5 for the quasi-LPV model of
the CubeSat in the section 2.5. An MPC framework was exploited to integrate active
and passive control strategies for both an appropriate control input signal (Q̇c) and
an optimal solar panel area (λ A), which covered three faces of the CubeSat surface.
The results of the MPC optimization for the six different case studies are illustrated
in detail in section 3.5.3 and Figures 3.14-3.19. Finally, the results of the simulations
indicated that the optimal solar panel ratio changes depending on the tolerances of
the acceptable reference temperature value and the amount of rabbling in the thermal
response. However, (λ = 1) is not a realistic value for solar panel coverage since we
cannot supply a control input sequence that keeps the faces and the tank temperature
below the prescribed values.

• The INS measurements of drones are assumed to be provided every 0.1 seconds,
while the GNSS receiver provides information about the drone’s position every sec-
ond. Therefore, we addressed this gap by formulating a KNN predictor to predict
between sampling instant of the GNSS receiver for the synchronization purpose be-
tween the two systems (INS and GNSS) before the integration process; see Figure 4.8.
The performance of the KNN predictor was also examined when the GNSS signal was
lost for a few seconds for different reasons. Hence, the performances of GNSS with no
blocking, and blocking for 1, 4, and 8 seconds, respectively, are presented as shown in
Figures 4.9 - 4.12.

• The ultra-tightly coupled GNSS/INS integration system described in 4.4.3 was de-
signed and implemented in order to achieve the integration between the INS and GNSS
techniques, where the purpose of the Kalman filter in this system is to estimate the sys-
tem errors based on the measurement errors between the GNSS and INS systems.

• From Figures (4.9 - 4.12) and Table 4.1, we can simply conclude that the integrating
GNSS/INS system obtained more precise results than each system standing alone, es-
pecially when the GNSS signal is lost for a few seconds. Also, from Table 4.1, one
can see that the standard deviation values for GNSS without a KNN predictor and for
8 seconds of signal blocking time in the three axes (X = 26.6793, Y = 115.8801, Z =
15.0102) are smaller than the values of the standard deviation for GNSS with a KNN
predictor and for the same period of blocking time in the three axes (X = 27.4085, Y
= 116.6536, Z = 15.5051). Finally, Figure 4.12 shows that when the GNSS receiver
signal is blocked, the integrated GNSS/INS system will be more reliable.
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5.2 Conclusion

The main contributions and the proposed theses of this work are summarized in this section,
and then the possible directions for further research are given. The relevant Chapter of the
dissertation and the related publications are indicated for each thesis point.

5.2.1 New scientific contributions

The main scientific contributions of the dissertation are summarized in the following theses.

Thesis 1 Nonlinear thermal modeling of a CubeSat (Chapter 2)

Related publications: ([P1], [P2], [P6], [P7])

I have developed a lumped dynamical model describing the surface and internal
propellant tank temperatures of a CubeSat performing orbital motion. First, the
thermal model in the nonlinear input-affine form, containing seven differential
equations for three time intervals and a time-varying disturbance due to orbital
motion, has been derived using physical laws and simplifying assumptions. More-
over, I have given the control-oriented Quasi-Linear Parameter Varying (quasi-
LPV) form of the model.

• The simulations showed that the temperatures on the CubeSat surface and fuel
tank can be efficiently decreased by appropriately setting the optical surface prop-
erty of the CubeSat. The material’s optical properties can be structured to reduce
absorptivity and increase the CubeSat surface emissivity.

• I have designed a passive control method to keep the CubeSat cover and propel-
lant tank temperatures within a predefined range by setting the surface optical
properties and changing the solar panels’ ratios.

• A quasi-LPV model has been derived in order to accomplish Model Predictive
Control in (Thesis 2). The simulations showed that the differences between the
simulation results of the integrated unified thermal model and the original thermal
model are negligible under the same thermal conditions.

The simulation results have shown that the propellant tank temperatures ranged from
484 K to 501 K for the case in which the CubeSat surface is made of uncoated alu-
minum. When I assumed a polished CubeSat surface with reflective metallic paint, the
tank temperatures dropped, oscillating from 261 K to 266 K. Furthermore, by simu-
lating different solar panel ratios (λ = 0.3 and 0.7), the propellant tank temperatures
contrasted from 265 K to 302 K, which is within the propellant tank thermal operational
limits.
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Thesis 2 Thermal control approaches for a CubeSat (Chapter 3)

Related publications: ([P2], [P4], [P5], [P7], [P8])

I have designed different control schemes to track a constant reference temper-
ature value and avoid the thermal fluctuations caused by the CubeSat’s periodic
motion on a low Earth orbit simultaneously. PID-based control structures have
been used to track the propellant tank temperature along the satellite orbit, ap-
plying minimal essential power. As a further development, I have designed a
linearization-based controller to maintain the propellant tank temperature at the
reference temperature. An optimization-based model-predictive approach for the
simultaneous design of an optimal solar panel ratio and a feasible control input
sequence has also been proposed and evaluated.

• I have shown through simulations that the PID-based control system employing
an anti-windup strategy keeps the propellant tank at a prescribed temperature
value (290 K) throughout the satellite orbital. The anti-windup technique has
avoided saturation and overshoot response and gave a suitable thermal response
for the CubeSat propellant tank through the satellite orbital motion with the least
amount of power consumption (1.3 W).

• The linearization method supplying the input/output linearization securing the
feedback law to the nonlinear thermal model has been implemented for the ther-
mal regulation of the CubeSat propellant tank. As a result, the linearization-based
method adjusted the propellant tank temperature to the reference value with an
acceptable thermal response and without additional power consumption (1.5 W).

• A novel multivariable model predictive control approach was developed which
integrates the active and passive thermal control of the CubeSat using its quasi-
LPV model. Both the solar area ratio and the heating power were considered
inputs in the control scheme. The proposed approach can take into consideration
several often contradictory goals and constraints related to power consumption
and control performance.

The optimization modifications have revealed that if the temperature constraint of the
CubeSat propellant tank is raised to 297 K, the applicable sides of the CubeSat could
be covered entirely by solar cells (λ = 1). So far, optimal solar panel percentages
covering the specific faces of the CubeSat have varied from 44.8% to 100% regarding
the propellant tank thermal limit and the acceptable fluctuation of the thermal response
of the CubeSat propellant tank through orbit.
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Thesis 3 Unmanned aerial vehicle navigation using GNSS/INS integration (Chapter 4)

Related publications: ([P3], [P9])

I have proposed a novel GNSS data prediction method which uses the K-Nearest
Neighbor (KNN) algorithm for improving the data synchronization between the
INS sensors and the GNSS receiver. This algorithm is also employed to produce
the GNSS loss data. I have designed a reinforced and innovative ultra-tightly
coupled approach to integrate the GNSS available data correlator with the INS’s
position, velocity, and attitude to rectify the INS measurements. I have illustrated
the applicability of the approach for improving navigation performance in chal-
lenging environments through different scenarios using real measurement data.

• I have shown through computations that the proposed KNN predictor estimates
the missing data between GNSS sampling instants with sufficient precision, which
allows the successful synchronization with INS.

• I have shown that the navigation data can be enhanced using an ultra-tight inte-
gration approach, where the integration trajectories for the three axes track the
GNSS received data in real-time.

• I have developed a simulation framework in Matlab to study four different in-
tegration scenarios containing data blocking situations of different lengths using
real measurement data collected at the Mátyásföld airfield.

The obtained results have shown that the computed signals of the GNSS/INS integra-
tion yield more accurate position data when the GNSS signal is blocked. Moreover,
the three axes GNSS standard deviation calculation (X = 26.6793, Y = 115.8801, Z
= 15.0102) is smaller than the standard deviation calculation for GNSS/INS (X =
27.4085, Y = 116.6536, Z = 15.5051) when they are subjected to 8 seconds signal
blocking period. However, the proposed integration technique is able to maintain suffi-
ciently precise localization when GNSS signals are not available for 1, 4, or 8 seconds.
This advantageous feature is guaranteed by the physical background of the applied
KNN algorithm.
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5.2.2 Suggestions for future research

The design and operation of small satellite thermal control systems and integrated satellite
navigation are complicated tasks involving a vast number of variables and multiple engineer-
ing disciplines. Given the encouraging results of this dissertation, we would like to extend
the approaches and the results presented in these theses in the following directions.

Nonlinear dynamic thermal model. The dynamic thermal model in section 2.3 is an appli-
cable thermal analysis tool for the CubeSat in its present configuration. It does, however,
have certain restrictions. Therefore, it could be extended in a straightforward way to include
the interplanetary trajectories of the CubeSat orbit instead of a circular motion and with an
actual calculation of the Sun phase time and eclipse orbit duration. We can also make more
complex mathematical models of the structure of the CubeSat and more sophisticated dy-
namic movements of a CubeSat in orbit by considering the actual movement of the satellite
rather than just having face 3 of the CubeSat facing the Earth.

◁

Thermal Control Approaches. An important part of the whole design is the passive en-
vironment, which is essentially the surface composition and solar panel ratio of the faces.
Therefore, future work will be focused on the optimization of these parameters to further re-
duce the necessary heating energy. The application of thermal active control strategies can
be extended to various system designs, such as advanced control synthesis, adaptive con-
trol systems, or sliding mode control systems, exploiting the actual thermal model variables
and inputs. An on-line MPC could be one of the important directions of research in the fu-
ture. It simultaneously computes the optimized value of λ , simulates the satellite’s thermal
performance, and controls the temperature at the same time.

◁

Navigation using GNSS/INS integration. The navigation strategies are directed toward im-
proving the quality of the IMU sensors, and various sensor properties may be evaluated. Us-
ing different types of INS (low-cost, medium-cost, and high-cost) and integrating each type
of INS with GNSS. Then we would like to compare the results of integration between GNSS
and these three types of integration in order to determine whether integrating low-cost INS
with GNSS affects the obtained results or not, to use low-cost INS for integration purposes
with GNSS instead of medium-cost or high-cost INS. More sophisticated error models may
be used in the Kalman filter. The integration of GNSS/INS can be used, with a new filtering
methodology, to achieve optimal noise filtering over the whole motion band of interest.

◁
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