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ABSTRACT Translating machine learning research into clinical practice has several challenges. In this
paper, we identify some critical issues in translating research to clinical practice in the context of medical
image segmentation and propose strategies to systematically address these challenges. Specifically, we focus
on cases where the model yields erroneous segmentation, which we define as corner cases. One of the
standardmetrics used for reporting the performance of medical image segmentation algorithms is the average
Dice score across all patients. We have discovered that this aggregate reporting has the inherent drawback
that the corner cases where the algorithm or model has erroneous performance or very low metrics go
unnoticed. Due to this reporting, models that report superior performance could end up producing completely
erroneous results, or even anatomically impossible results in a few challenging cases, albeit without being
noticed. We have demonstrated how corner cases go unnoticed using the Magnetic Resonance (MR) cardiac
image segmentation task of the Automated Cardiac Diagnosis Challenge (ACDC) challenge. To counter this
drawback, we propose a framework that helps to identify and report corner cases. Further, we propose a novel
balanced checkpointing scheme capable of finding a solution that has superior performance even on these
corner cases. Our proposed scheme leads to an improvement of 44.6% for LV, 46.1% for RV and 38.1% for
the Myocardium on our identified corner case in the ACDC segmentation challenge. Further, we establish
the generalisability of our proposed framework by also demonstrating its applicability in the context of chest
X-ray lung segmentation. This framework has broader applications across multiple deep learning tasks even
beyond medical image segmentation.

INDEX TERMS Corner-case handling, medical image segmentation, research to clinical practice, cardiac
MRI, chest X-ray.

I. INTRODUCTION
Medical image segmentation is arguably one of the
most influential and widely researched application fields of
artificial intelligence (AI) in the healthcare domain [1], [2],
[3], [4], [5], [6], [7]. It corresponds to the segmentation of
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organs, tissues, or pathologies of interest in medical images,
obtained through X-ray, ultrasound, computed tomography
(CT), magnetic resonance imaging (MRI), mammography
and further more. At the heart of medical image segmentation
is the correct identification of a region of interest (ROI)
that needs to be found in medical images. For example,
in cardiac magnetic resonance (MR) image segmentation, the
ROI corresponds to the different anatomical parts of the heart.
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A correct, automated segmentation can vastly accelerate the
time to diagnose and relieve medical practitioners from an
overburdening workload. Naturally, this vast potential comes
with its assortment of risks, since missing critical medical
findings can have a detrimental impact on patient outcomes.
This in turn leads tomuchmore stringent evaluation protocols
and higher robustness standards for medical AI solutions than
for other AI applications. Accordingly, the community has
spent a lot of effort in devising proper evaluation methods.
Nevertheless, even though several evaluation metrics have
been proposed over the years, there still remain numerous
‘blind spots’ with each of them.

In particular, existing evaluation protocols suffer from one
major downside: they are computed on an aggregate basis
over a population of patients. While this serves the purpose
of providing a quick gauge of the performance, they run the
risk of masking ‘corner cases’. This hidden risk has insofar
eluded the attention of the community, but may have serious
downstream repercussions when medical practitioners come
to rely on them for their daily work.

What is more, missing out on ‘corner cases’ circumvents
the requirement to provide a uniform standard of care
for all prospective patients. This is a fundamental ethical
requirement for fair treatment: the performance of an
algorithm should be the same for all individuals, irrespective
of their characteristics. Disaggregated evaluations, applied
down to the individual level, can help single out flaws and
discrepancies of a model across different patients.

In this work, we show how aggregated evaluations,
which are the gold standard of evaluating performance of
medical image segmentation models, can lead to misleading
interpretations of model performance. Specifically, we focus
on identifying corner-cases in the evaluation of a state-of-
the-art model using a standardised heart image segmentation
database. We show how even one of the most widely used
evaluation metric, the Dice score, could fail to capture corner
cases where the model prediction dramatically diverges from
the target ROI when averaged over the entire dataset. We then
proceed to propose a procedure for monitoring the training
process that can mitigate this issue by highlighting those
cases. Our work is thus directly connected to the broader
literature on machine learning transparency and accountabil-
ity, and in particular the need to truthfully, and proactively,
identify potential shortcomings of production models [8].
This is particularly critical for medical applications, since
blind spots on corner-cases where models can fail directly
translate to worse or even potentially dangerous clinical
outcomes.

II. RELATED WORK
Identifying appropriate evaluation protocols that holistically
measure performance in a fair manner is challenging for
most research fields. Nevertheless, it constitutes a critical
requirement when it comes to real-world applications,
especially in the medical domain, where they are crucial in
facilitating a transfer to clinical practice. Naturally, this topic

has attracted increasing attention from the community, as the
advent of deep learning has rapidly accelerated research in
medical image segmentation.

For example, [9] explored the lack of reliability in medical
image segmentation performance assessments. Typically
used metrics are often overoptimistic of model performance
and fail to reveal potential weaknesses [10], [11]. As a
consequence, clinical teams repeatedly encounter problems
when it comes to transferring beyond research environ-
ments [11], [12]. To cope with the opaqueness of medical
image segmentation evaluation metrics, [9] provided an
overview of often-used evaluation scores, such as the Dice
similarity coefficient, Jaccard, or Cohen’s Kappa. Further-
more, they proposed a set of guidelines for interpretation and
a standardised evaluation. To further advance standardisation
and reproducibility, [13] proposed MISeval, a metric library
for evaluation.

Similarly, [14] explored a set of boundary overlap metrics
to capture a wider range of segmentation errors, covering
the most frequently used classes of segmentation metrics:
size, overlap, and boundary distance approaches. In their
work, they also demonstrated that there are large differences
between existing evaluation scores as well as high dependen-
cies on the clinical use case. Therefore, there is a gap between
high values of well-known metrics, such as the Dice score,
and the applicability to real-world data.

While these issues are present throughout the general
medical image segmentation field [15], [16], [17], [18],
[19], specific facets of the problem appear for individual
applications – in our case, Cardiac MR Image segmentation.
Bernard et al. [20] present a comprehensive summary of
how state-of-the-art deep learning methods perform in the
context of Cardiac MR Image segmentation and diagnosis.
They further identify several challenges that still exist in this
field, the most prominent of them being:

• Right Ventricle (RV) segmentation and calculation of the
RV ejection fraction .

• Myocardium segmentation at the End Systole (ES)
phase: The difficulty to precisely delineate LV and RV
walls.

• Segmenting slices near the apex and base: Challenges in
the apex pertain to small structures while the challenge
at the basal slices is about how to differentiate between
multiple structures.

• Inter-observer variability among experts in segmenting
apex and basal slices.

• Generation of anatomically impossible results: Deep
learning based segmentationmethods resulted in 82%of
patients having anatomically impossible segmentation
in at least one slice.

In light of the understanding that cardiac MR segmentation is
technically challenging, it is imperative to precisely identify
the boundary conditions and limitations of each method
before using them in clinical context.

To that end, a consortium of multiple academia and
industry researchers as well as practitioners have teamed up
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to analyse the flaws in machine learning algorithm validation.
In their seminal work in this area, Maier-Hein et al. [21] have
identified various pitfalls in the choice of validation metrics,
namely:

• the inappropriate phrasing of the problem
• poor metric selection
• poor metric application

To address these challenges, they propose their ‘‘Metrics
Reloaded’’ framework comprising of problem fingerprinting
as well as a metrics selection methodology.

Furthermore, Maier-Hein et al. [22] emphasise that care
has to be exercised while interpreting the outcomes of
large-scale international challenges that benchmark different
models. They highlight that aspects such as the choice of
metrics as well as the criteria used for aggregated ranking
across metrics could influence the determination of the
winning method. They show that a metric-based vs a case-
based ranking scheme is a significant design choice and
that winners could change based on the aggregation method
chosen. In our current work, we discover that aggregation
of results even across patients has to be done with care,
especially in the presence of corner-cases.

Specifically, identifying corner-cases, that could poten-
tially remain hidden when only average metrics are con-
sidered, still remains an unexplored area. We consider this
an extremely important, yet grossly overlooked, aspect of
metric application – especially in the context of semantic
segmentation. Even though researchers tend to report very
high performance metrics , these may still end up performing
poorly on a few particularly challenging scenarios. While
performance on corner-cases is not of high significance in
research where only averages are reported, blind utilisation
of such solutions for clinical diagnosis/intervention could
have severe consequences. Therefore, an awareness of the
pitfalls of deep learning methods on different corner-cases
is vital when considering their usage in clinical practice.
It is of prime importance for researchers to discover and
transparently report such corner cases for any solution – in
short, to acknowledge the Achilles’ heel of their method.

We note that there is some broader literature on eval-
uating disagreggated model performance beyond the field
of medical image segmentation. Typically, this concerns
the evaluation of model fairness with respect to different
sub-populations (e. g., age and gender groups), but there
is also some existing work which evaluates how models
perform across different individuals [23], [24]. This is
also related to the notion of ‘individual fairness’ which
contests that ‘‘similar individuals should receive equal
treatment’’ [25]. Ouyang et al. [26] also explored corner
cases for classification tasks in their work. In doing so,
they introduced a metric developed on the basis of modified
‘surprise’ adequacy, which targets the characteristics of
corner cases. Furthermore, they also generated artificial
corner cases which could be used for improving a model,
resulting in a fairer classification performance for all subjects
within a dataset. Wu et al. [27] proposed a ‘‘Deep Validation’’

framework for classification tasks, which identifies error-
inducing inputs and has them flagged for human intervention
when the system is perceived working incorrectly. For
medical image segmentation, this translates to ensuring that
models generalise well to different patients, irrespective
of anatomical or pathological differences. To the best of
our knowledge, there exists no evaluation procedure that
explicitly accounts for the detection of model failures on
individual cases. Our work attempts to address this gap in the
existing medical image segmentation evaluation practice.

As a significant step towards addressing these challenges
and bridging this gap between research and clinical practice,
our novel contributions in this paper are the following:

• A methodology for detecting and reporting of
corner-cases.

• A strategy for gaining further insight into these corner
cases.

• An approach for identifying a balanced checkpoint.
The rest of the paper is organised as follows. Section III

describes the dataset used in our experiments and the baseline
network architecture. In Section IV, our proposed framework
for detecting and addressing corner cases in deep learning
based medical image segmentation is presented. This is then
followed by Results in Section V, benchmarking with other
metrices in Section VI and generalizability of the proposed
framework in Section VII. Finally, Section VIII presents a
discussion followed by conclusion and directions for future
work in Section IX.

III. DATASET AND BASELINE NETWORK ARCHITECTURE
The dataset as well as the baseline network architecture on
which we conduct our investigation is detailed next:

A. THE ACDC SEGMENTATION DATASET
We conduct our experiments on the Automated Cardiac
Diagnosis Challenge (ACDC)’s segmentation dataset [20].
The objective of the challenge is to evaluate the efficacy of
deep learning methods at assessing Cardiac MRI, specially in
segmenting the myocardium and the two ventricles, as well as
classifying pathologies. The training dataset of this challenge
contains 3D cine-Magnetic Resonance (MR) cardiac scans of
100 unique patients from the University Hospital of Dijon. Of
these 100, there are 20 patients each belonging to five classes,
namely,

1) Normal case
2) Heart failure with Infarction
3) Dilated Cardiomyopathy
4) Hypertrophic Cardiomyopathy
5) Abnormal Right Ventricle

For each patient, the End Systole (ES) and End Diastole
(ED) frames are provided, identified based on the motion of
the mitral valve from the long axis orientation by a single
expert, resulting in a total of 200 volumes. Additionally, the
ground truth segmentation masks for the Left Ventricle (LV),
Right Ventricle (RV), andMyocardium (MYO) are also made
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available for these 100 patients. The test set of the challenge
comprises another 50 patients, with 10 patients per class.

B. SAUNET ARCHITECTURE
SAUNet – Shape Attentive U-Net for Interpretable Medical
Image Segmentation [28], is one of the recent U-Net based
methods that achieves high average Dice scores along with
good interpretability in Cardiac MR image segmentation on
the ACDC challenge dataset. SAUNet comprises 2 streams,
a texture stream and a gated shape stream. The texture
stream has the same structure as a U-Net [29], but with
the encoder replaced with dense blocks from DenseNet-121
[30], similar to the Tiramisu Network proposed by Jegou
et al. [31]. The decoder block is a dual attention decoder
block. Furthermore, it incorporates learning of shape features
through a secondary stream that processes shape features of
the image. Additionally, the interpretability of features is
enabled at every resolution of the U-Net using spatial
and channel-wise attention paths in the decoder block. We
therefore utilize SAUNet as the baseline architecture in our
experiments.We use the same training-validation split as well
as hyperparameters as in [28].

IV. METHODOLOGY
The schematic of our proposed methodology for identifying
and addressing corner-cases is presented in Figure 1 and
explained in the following sections.

A. METHODOLOGY FOR DETECTING AND REPORTING OF
CORNER-CASES
Deep learning based medical image segmentation methods
currently report average metrics. We propose to analyse
the characteristics of patient-wise metrics to determine
potential outliers. One of the recent unsupervised approaches
for outlier detection in large, high-dimensional datasets is
Empirical-Cumulative-distribution-based Outlier Detection
(ECOD) [32].

ECOD is a multivariate statistical anomaly detection
method. It derives inspiration from the fact that outliers are
often the ‘‘rare events’’ that appear in the tails of a distribution
(right-tail and left-tail). In this method, an empirical cumula-
tive distribution is first computed along each data dimension.
In the next step, this empirical distribution is utilized to
estimate the left and right tail probabilities (F̂(j)

left and F̂(j)
right ).

Finally, by aggregating the estimated tail probabilities across
all dimensions, the outlier score is computed in a non-
parametric way.

Given input data X = {Xi}ni=1 ∈ Rn×d with n samples and
d features where X (j)

i refers to the value of j-th feature of the
i-th sample,

F̂(j)
left(z) =

1
n

n∑
i=1

1{X(j)
i ≤ z} for z ∈ R (1)

F̂(j)
right =

1
n

n∑
i=1

1{X(j)
i ≥ z} for z ∈ R (2)

where1{.} is the indicator function that is 1when its argument
is true and is 0 otherwise [32].

For cardiac image segmentation, we propose to jointly
analyse the Dice scores of LV, RV and MYO by representing
them as a 3-dimensional (3D) vector. This 3D vector is
computed for every patient and analysed using the ECOD
algorithm to determine the corner cases. Outliers detected by
this approach are flagged for detailed analysis. Furthermore,
the segmentation outcomes should be reported for these
flagged cases to enable clinicians to gain insights into
understanding where the model fails to segment correctly.

B. STRATEGY FOR GETTING FURTHER INSIGHTS INTO THE
CORNER CASES
Generally, the average Dice scores across the different
training epochs are plotted to monitor the training process.
However, this does not give any insights on how the model
performs on corner-cases. To address this gap, we propose
that further insights should be obtained by analysing the
characteristics of the Dice score curves of the corner-cases,
across different training epochs. For this analysis, we utilize
the ECOD algorithm [32] to detect the presence of any
outliers across the different training epochs. While in the
previous step, the analysis is across patients, in this step, the
analysis is done using the 3-dimensional (LV, RV,MYO)Dice
scores across different training epochs of the corner-cases.

C. APPROACH FOR IDENTIFYING A BALANCED
CHECKPOINT
In scenarios where the corner cases are observed to have large
Dice score variations across different epochs, the traditional
approach of model checkpointing based on least-loss or
highest average-IoU (Intersection Over Union) could end
up compromising the performance on corner-cases. Also,
utilisation of such solutions could result in anatomically
impossible outcomes in clinical practice which could lead to
disastrous consequences. Hence, an active quest for a more
balanced checkpointing solution is crucial for enabling deep
learning based medical image segmentation approaches to be
used in clinical context.

Our proposal to identify a more balanced checkpoint is to
first exclude all epochs that are identified as outlier epochs for
the corner-case in the previous step. Then, from the remaining
epochs, we propose to utilize the final epoch as the balanced
checkpoint.

V. RESULTS
A. CORNER CASE DETECTION AND REPORTING
In Table 1, we report the average Dice scores obtained using
our model trained with a SAUNet network architecture [28]
on the ACDC segmentation challenge dataset (column 2). In
addition, we compute patient-wiseDice scores for LV, RV and
MYO and identify outliers by providing these 3-dimensional
scores to the ECOD algorithm [32]. We utilise the default
contamination rate of 0.1 of ECOD algorithm from the PyOD
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FIGURE 1. Schematic of our proposed framework for detecting and addressing corner cases in deep learning based medical image segmentation.

TABLE 1. Average Dice score and Dice scores for the corner-case identified for LV, RV, and MYO on ACDC validation set.

toolbox [33]. Patient057_ES is the only one to be detected
as an outlier using our approach. In column 3 of the table,
we report the Dice-scores of this corner case patient. We also
report the difference between the average Dice scores and the
Dice scores of Patient057_ES which is 56.1% for LV, 63.2%
for RV and 40.7% for MYO in column 4.

In Figure 2, the segmentation results for the corner-
case Patient057_ES for all the 8 slices at End Systole are
presented. We observe that for the first 4 slices the predicted
segmentation is completely incorrect and also anatomically
impossible. In these 4 slices, the left ventricle region is
identified as the myocardium, whereas the myocardium
region is identified as the right ventricle.

B. INSIGHTS INTO THE CORNER CASES
Using our proposed approach of analysing the 3-dimensional
(LV, RV, MYO) Dice scores across the training epochs
with the ECOD algorithm [32], outliers are also observed
across the training epochs for Patient057, unlike the other

patients. Hence, our approach flags Patient057 for careful
investigation by clinicians and researchers.

We also compute and plot the Dice scores for the entire
validation set as well as for Patient057. The results are
visualised in Figure 3. The top row depicts the average Dice
score plotted for the entire validation set. The bottom row
depicts the individualised Dice score plot for the corner-
case, Patient057_ES. The columns contain the plots for LV,
RV, MYO, and a consolidated view of the 3 anatomies. The
Dice scores are captured for the epochs where the model
was checkpointed. We use least average-loss as the criteria
to create these checkpoints.

In this figure, we observe that all the curves in the first
row seem to indicate that the model is training effectively.
Typically, this is how model performance and metrics are
reported. However, in the bottom row, we observe that
for the corner-case, Patient057_ES, the Dice scores varies
considerably across the training epochs for LV, RV and
MYO. For instance, the Dice score between the 24th and
25th checkpoint has a very large variation of 71.89% for
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FIGURE 2. The rows contain, from top to bottom, slices 1 to 8 of End Systole frames for Patient057 from
ACDC dataset. The columns from left to right are: (a). Original image, (b). Ground truth, (c). Predicted
segmentation with the least-loss checkpoint, and (d). Predicted segmentation with the proposed
balanced checkpoint, respectively. The colour coding used is blue for LV, green for MYO, and red for RV.
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FIGURE 3. Plot of Dice scores at the least-loss based checkpoints over the training epochs. The 4 columns, from left to right, contain Dice scores for
(a). LV, (b). RV, (c). MYO, and (d). consolidated-view, respectively. The top row contains the plots of average Dice score for the validation set. The bottom
row contains the plots for the corner-case, Patient057_ES (the Dice score at least-loss based checkpoint is marked in red and at the proposed balanced
checkpoint marked in green, respectively).

TABLE 2. Table (A). Average Dice scores for entire validation set with least-loss checkpoint and proposed balanced checkpoint. Table (B): Dice scores for
the corner case, Patient057. Proposed balanced checkpoint significantly improves performance on corner-case (d-c). Furthermore, average Dice scores
also improves (b-a).

LV, 55.04% for RV, and 53.74% for the Myocardium. Such
atypical variations could indicate erroneous model training or
model performance behaviour which gets masked when only
looking at the average Dice scores.

C. BALANCED CHECKPOINT DETERMINATION
Based on our proposed approach of balanced checkpoint
determination, we excluded the outlier epochs determined by
ECOD and chose the final epoch of the remaining ones.
With this approach, the checkpoint that gets identified is the
penultimate (32nd) checkpoint, as is also visualised in row 2
of Figure 3.

The results of utilising this identified balanced checkpoint
is reported in Table 2. As observed in column (a) of the
table, the average Dice scores based on least-loss checkpoint

for the entire validation dataset are 0.912 for LV, 0.833 for
RV, and 0.848 for the Myocardium. At face value, this
seems like a reasonably well performing solution. However,
as observed in column (c) of the table, for Patient057, this
same checkpoint results in extremely low Dice scores of
0.352 for LV, 0.201 for RV, and 0.441 for the Myocardium.
Hence, such a classical approach of saving the model based
on least-loss compromises the performance on the corner
case considerably. As observed in column (d) of the table,
at our proposed checkpoint, the corner case Patient057 has
a Dice score of 0.798 for LV, 0.662 for RV, and 0.822 for
the Myocardium which is an improvement of 44.6% for LV,
46.1% for RV, and 38.1% for the Myocardium as compared
to the previously identified checkpoint. Furthermore, at this
new identified checkpoint, as observed in column (b), the
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TABLE 3. Average Jaccard Coefficient and Jaccard Coefficient for the corner-case identified for LV, RV, and MYO on ACDC validation set.

average Dice scores on the entire validation set also increase
by about 1 to 2% for each of LV, RV, and MYO.

VI. BENCHMARKING WITH OTHER METRICES
So far, we have focused our analysis on the average Dice
score as the evaluation metric since it is a commonly used and
well-established metric for evaluating segmentation models.
It is defined as twice the area of overlap between the predicted
segmentation and the actual labels, divided by the sum of
the areas of the predicted segmentation and the ground truth
labels, leading to a range between 0 (worst) and 1 (best) [34].

In this section, we evaluate other metrics for benchmarking
segmentation results to analyse if the failure to detect the
low performance in corner cases arises because of averaging
across all patients or is a characteristic of Dice score.

One metric that is closely related to the Dice score is
the Jaccard Coefficient, also known as the intersection over
union, which is often used to determine the performance of
image segmentation algorithms [1]. It also calculates the ratio
of the overlapping regions, but in contrast to the average Dice
score which focuses on balancing precision and recall, the
Jaccard Coefficient is more sensitive to false positives.

The balanced Average Hausdorff Distance (bAHD) is
another recently introduced, but yet popular metric [35].
It is derived from the Hausdorff distance, which calculates
the closeness of each point in a segmentation set to the
nearest point in the ground truth label set and vice-versa.
The balanced Average Hausdorff Distance (bAHD), however,
averages these distances, resulting in a more robust way
to account for outlier points in segmentation tasks. Lower
bAHD scores indicate higher segmentation quality.

While in Table 1, we present the average Dice score and
Dice scores for the corner-cases, in Table 3 and 4, we present
the results evaluated using the Jaccard Coefficient and the
balanced Average Hausdorff Distance (bAHD), respectively.
These metrics were computed using the EvaluateSegmenta-
tion tool [36]. When utilising the ECOD algorithm on the
patient-wise metrices, Patient057_ES is detected as a corner-
case. These results validate that averaging across patients is
indeed the major factor for failure in detecting the corner
cases, even with other well established and state-of-the-art
metrices.

VII. GENERALISABILITY OF THE PROPOSED
FRAMEWORK
In this section, we validate the generalisability of our
proposed framework on the task of chest X-ray lung

segmentation. The NIH chest X-ray dataset [37] contains
both posterior-anterior and anterior-posterior views. Tang
et al. [38] used 100 abnormal chest X-ray images from this
dataset with various severity of lung diseases and manually
annotated the lung masks.1 We perform our experiments on
this abnormal chest X-ray dataset.

We utilise the U-Net architecture of Oktay et al. [39],
[40] which has four blocks each in the down-sampling and
up-sampling path. Each block is composed of 2×(Batch
Norm - 2D Conv (kernel size 3 × 3, stride 1, padding 1) -
ReLU). A 2D convolution with kernel size 1 × 1 forms the
last block. Max-pooling is used in the down-sampling path
to halve the spatial dimension of the feature maps after each
block. In the up-sampling path, 2D transposed convolution
is utilised to double the size of the spatial dimension of
the concatenated feature maps. In the down-sampling path,
feature channels are increased as (1 − 64 − 128 − 256 −

512). In the up-sampling path, they are decreased again
accordingly. The last layer of the U-Net has feature channels
that matches the number of label classes for semantic
segmentation.

A criss-cross attention module (CCA) [41] is inserted in
the bottleneck of this U-Net architecture. The input for this
module is the feature maps from the U-Net’s last block
within the down-sampling path. The contextual information
in the criss-cross path of each pixel is gathered by the
criss-cross attention module leading to feature maps H′.
The resulting feature maps after 2 iterations of criss-cross
attention are then passed through the U-Net’s up-sampling
path.

The average Dice score obtained using this model on
the validation set of 40 patients on the NIH dataset is
0.955. We further compute the patient-wise Dice scores
whose scatter plot is visualised in Figure 4. Utilising the
ECOD algorithm with the default contamination factor of
0.1, patient NIH_0072 is detected as an outlier and hence
flagged for detailed analysis (marked in red in the scatter
plot). The segmentation result for an exemplar patient,
NIH_0090 and for the detected outlier patient NIH_0072,
is presented in Figure 5. From this figure, it is evident that
the outlier detected by our framework does have sub-optimal
segmentation outcomes.

This demonstrates that our proposed framework for detect-
ing corner cases is generalisable across other modalities,
anatomies and network architectures.

1Data: https://nihcc.app.box.com/s/r8kf5xcthjvvvf6r7l1an99e1nj4080m
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TABLE 4. Average bAHD and bAHD for the corner-case identified for LV, RV, and MYO on ACDC validation set.

FIGURE 4. Scatter plot of patient-wise Dice scores for the NIH validation
set. The outlier Dice score detected with ECOD (which corresponds to
patient NIH_0072) is highlighted in red.

VIII. DISCUSSION
In this section, we report the clinical insights gained from
the corner case that our proposed approach identified on
the ACDC cardiac image segmentation dataset. In addition,
we also outline other potential solutions for addressing
corner-cases. We also elaborate on a few alternatives for
optimal checkpoint determination.

A. CLINICAL INSIGHTS INTO THE IDENTIFIED
CORNER-CASE
To understand the observed aberration in the predicted
segmentation of Patient057, we obtained clinical insights
from an experienced cardiac imaging specialist. Careful
inspection of the short axis images from the apex to the
base of the LV in addition to the corresponding long axis
images revealed prominent anterolateral and posteromedial
papillary muscles that are generally underrepresented in
the dataset. Further, the segmentation prediction based on
least-loss checkpoint inaccurately identified this region of
pronounced musculature as myocardium. Current interna-
tional recommendations advise that papillary muscles are
included in the LV cavity, as seen in the ground truth analysis
where experts carefully cut through this region during cavity
delineation. A plausible explanation for this aberration is the
under-representation of such variants in the current dataset.
This hypothesis, however, requires further investigation in
larger databases.

FIGURE 5. Lung segmentation results for couple of images from the NIH
dataset. The first row contains results for patient NIH_0090 which is an
exemplar patient. The second row contains results for the identified
outlier patient NIH_0072. The columns from left to right are (a). Original
image, (b). Ground truth and (c). Predicted segmentation.

B. CHECKPOINT DETERMINATION USING LEAST-LOSS VS
HIGHEST AVERAGE-IOU
The standard approach to checkpoint the model during
training is either based on least-loss or highest average-IoU.

We have computed the Dice scores based on both of
these approaches on the validation set, the result of which
is reported in Table 5. As seen in the 2nd and 3rd column
of this table, either of these checkpointing approaches yields
comparable performance and hence, we have utilised the
least-loss based checkpoint in this current work.

C. OTHER POTENTIAL APPROACHES FOR HANDLING
CORNER-CASES
There could be several factors that could lead to sub-
jects/patients ending up as being corner-cases. Identification
of these reasons and potential mitigation approach need
an active collaboration between researchers and clinical
experts. Our current insights are that this could either be
due to data characteristics or due to flaws in annotation,
or model/network’s deficiencies.

Similarly, the resolution to address such corner cases could
also be done through various regimes. For instance, if the
corner case is due to data being a unique case not well
represented in the training dataset, there are the following
ways to address it.
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TABLE 5. Checkpoint based on least-loss vs highest average-IoU on validation set.

• Using a data approach: In our proposed approach,
we have addressed this by separately handling the
corner-case. Other approaches for addressing this could
be adding more data with similar characteristics to
the dataset (real or synthetic). One could also poten-
tially exclude such corner cases from the training
and validation data and include a disclaimer that the
solution cannot be utilised in such outlier scenarios. This
would complement standardised model reporting [8]
and provide clinicians a better understanding of model
capabilities and potential pitfalls.

• Through the model: Further attributes of the data could
be provided as context during the model training. For
instance, in the ACDC challenge dataset, there are
5 different classes. This class information could be
provided as additional input to the model while training.

• Through ground-truth refining: Regions which confuse
the model could be marked as a separate class. For
instance, the papillary muscles, when prominently
visible, could be labelled as a separate class.

• Through anomaly classification as a precursor to
segmentation: A standalone classifier could be built to
distinguish between corner and regular cases. This
is a challenging research problem since the number of
corner-cases could be very few.

D. OTHER POTENTIAL APPROACHES FOR OPTIMAL
CHECKPOINT DETERMINATION
In our proposed balanced checkpointing approach, we have
suggested to exclude the outlier epochs and chose the final
epoch from the remaining epochs to determine a balanced
checkpoint so that corner-cases also obtain reasonable results.
However, this approach could result in a local-optimum rather
than the global optimum. Finding the global optima depends
on several factors such as

• the number of corner-cases
• the behaviour of the solution in the corner-cases over the
different training epochs

• the behaviour of the solution on the non-corner cases
over the different training epochs.

Hence, this is a complex multi-factor optimisation problem
which is an area of active research [10], [34], [42].

IX. CONCLUSION AND FUTURE DIRECTIONS
In this research work, we have uncovered a fundamental
aspect of deep-learning based segmentation models which

has been so far overlooked. Average metrics are indicative
of model performances for the majority of the cases. Such
approaches tend to overlook the method’s performance on the
corner-cases. Spotting these corner-cases – or the Achilles’
heel of the solution – is crucial when deploying such
solutions in a clinical setup.

The strategies we have proposed help to systematically
address these challenges. Our framework first helps to easily
spot any corner-cases. Additionally, we have elucidated
approaches to delve deeper into the specific corner cases and
garner further insights. Finally, we have outlined an approach
to get a balanced model which yields promising results on the
corner-case we identified while also improving average Dice
scores.

One possible future direction is to leverage our proposed
framework in tasks of biomedical image analysis other than
medical image segmentation, such as medical image classifi-
cation and object detection. The automatic determination of
a balanced checkpoint based on global optima is yet another
exciting research direction to explore.
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