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Abstract
Bioclimatic variables (BCVs) are the most widely used predictors within the field of 
species distribution modeling, but recent studies imply that BCVs alone are not suf-
ficient to describe these limits. Unfortunately, the most popular database, WorldClim, 
offers only a limited selection of bioclimatological predictors; thus, other climatologi-
cal datasets should be considered, and, for data consistency, the BCVs should also 
be derived from the respective datasets. Here, we investigate how well the BCVs are 
represented by different datasets for the extended Mediterranean area within the 
period 1970–2020, how different calculation schemes affect the representation of 
BCVs, and how deviations among the datasets differ regionally. We consider different 
calculation schemes for quarters/months, the annual mean temperature (BCV-1), and 
the maximum temperature of the warmest month (BCV-5). Additionally, we analyzed 
the effect of different temporal resolutions for BCV-1 and BCV-5. Differences result-
ing from different calculation schemes are presented for ERA5-Land. Selected BCVs 
are analyzed to show differences between WorldClim, ERA5-Land, E-OBS, and CRU. 
Our results show that (a) differences between the two calculation schemes for BCV-1 
diminish as the temporal resolution decreases, while the differences for BCV-5 in-
crease; (b) with respect to the definition of the respective month/quarter, intra-annual 
shifts induced by the calculation schemes can have substantially different effects on 
the BCVs; (c) all datasets represent the different BCVs similarly, but with partly large 
differences in some subregions; and (d) the largest differences occur when specific 
month/quarters are defined by precipitation. In summary, (a) since the definition of 
BCVs matches different calculation schemes, transparent communication of the BCVs 
calculation schemes is required; (b) the calculation, integration, or elimination of BCVs 
has to be examined carefully for each dataset, region, period, or species; and (c) the 
evaluated datasets provide, except in some areas, a consistent representation of BCVs 
within the extended Mediterranean region.
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1  |  INTRODUC TION

Bioclimatic variables (BCVs) are the most commonly used predictors 
in species distribution modeling (SDM; Fourcade et al., 2018) to de-
scribe niche evolution (Warren et al., 2010), the delineation of pro-
tected areas (Esselman & Allan, 2011), the ecological limits (Cunze 
et al., 2016), and the habitat suitability of invasive species (Ibáñez-
Justicia et al., 2020; Koch et al., 2016). The BCVs contain information 
on temperature and precipitation at different temporal scales (e.g., 
annual, quarterly, monthly means, or sums), which are in these fields 
of research more relevant than monthly time series of climate data 
(Deblauwe et al., 2016) because they are physiologically meaning-
ful for species distributions (Title & Bemmels, 2018). O'Donnell and 
Ignizio (2012) note that BCVs better represent the types of seasonal 
trends inherent in the physiological limitations of different species.

The initial set of 12 BCVs came with the start of the BIOCLIM 
program in 1984, which represents the beginning of modern SDM 
(Booth, 2018). The original set of BCVs was derived from monthly 
mean values of daily minimum and maximum temperatures and 
mean monthly precipitation sums. Although the first documentation 
of these variables was provided by Booth  (1985) and Prendergast 
and Hattersley  (1985), the BCVs can be traced back to Nix (1986). 
In 1996, BCVs were expanded to 19 variables by adding meaning-
ful annual variables, such as the minimum temperature of the cold-
est month or the mean precipitation sums of the driest quarter 
(Booth, 2018). In 1999, additional variables were provided, including 
complex interactions associated with water balance calculations, 
bringing the total number of BCVs to 35 (Booth et al., 2014; Xu & 
Hutchinson, 2011).

The success story of BCVs within the SDM community dramati-
cally increased with the release of freely downloadable global high-
resolution datasets (Fourcade et al., 2018). One of the most popular 
BCV datasets is provided by the WorldClim database (Fick & Hi-
jmans, 2017; Hijmans et al., 2005), but other databases also provide 
BCVs (Bede-Fazekas & Somodi, 2020; Booth, 2018). In addition, al-
gorithms for calculating BCVs are available for several computing en-
vironments, such as the “biovars” function of the R package “dismo” 
(Biovars, Hijmans,  2006; Hijmans et al.,  2022). The 19 BCVs pro-
vided by WorldClim are based on climate interpolation methods de-
veloped for the BIOCLIM program (Booth et al., 2014) and cover the 
entire land areas of the world except for Antarctica (Booth, 2022). 
The dataset is available in four different spatial resolutions (30 arc 
seconds–10 arc minutes, roughly 1–20 km) and provides means for 
the recent period 1970–2000 as well as historical and future scenar-
ios (Title & Bemmels, 2018). Overall, WorldClim's 19 BCVs are the 

most used set of variables in SDM (Bradie & Leung, 2017). Booth 
et al.  (2014) reviewed recent literature on maximum entropy mod-
els (MaxEnt) and found that more than 76% used at least one and 
55% used all BCVs. This is also confirmed by the study of Fourcade 
et al. (2018), who reviewed 190 studies that modeled terrestrial or-
ganisms. Over 87% of these studies used at least one BCV, 20% used 
all BCVs, and over 42% used BCVs in addition to other variables.

The close relationship between climate and species distributions, 
the advances in modeling techniques, such as machine learning al-
gorithms like MaxEnt and boosted regression trees (BRTs), and the 
frequent use of BCVs seem to be a blessing, since results from differ-
ent studies on the same species seem to be comparable. However, 
the use of BCVs comes with caveats on several levels. First, many 
studies indicate that some of the BCVs are highly correlated (e.g., 
precipitation of the driest month [BCV-14] and precipitation of the 
driest quarter [BCV-17]), and most SDM techniques cannot deal with 
collinearity (e.g., Dormann et al., 2013; Fourcade et al., 2018; O'Don-
nell & Ignizio, 2012). Therefore, a preselection of relevant predictors 
should be made based on the species-specific key limiting factors 
identified by expert knowledge or statistical approaches (Porfirio 
et al., 2014; Synes & Osborne, 2011; Title & Bemmels, 2018). This 
leads to the second problem, since the key limiting factors and the 
real distribution of the species are often unknown (Jiménez-Valverde 
et al., 2013; Synes & Osborne, 2011), and statistical methods alone 
are not sufficient to accept or reject predictors from the ensemble 
due to conflict rankings (Porfirio et al., 2014). Third, in some regions, 
the interactive variables that combine information on temperature 
and precipitation exhibit large shifts in space and time and are there-
fore often excluded from analyses (Escobar et al., 2014). However, 
these variables are the most important predictors in some studies 
(Booth, 2022). Fourth, species distributions often depend more on 
extremes than on annual means, and extremes are underrepresented 
in the BCV dataset (Bradie & Leung,  2017; Stewart et al.,  2021). 
Thus, many studies combine BCVs with other (bio)climatic variables 
that represent extremes.

All these points are controversial and are discussed in detail in 
recent literature. Only the preselection by expert knowledge based 
on species limits represents a general agreement (e.g., Porfirio 
et al., 2014; Synes & Osborne, 2011; Title & Bemmels, 2018). How-
ever, two options are commonly used in the absence of general infor-
mation on the limits. Some studies recommend using the complete 
set of 19 BCVs, as highly parameterized models with multiple climate 
predictors may even outweigh possible collinearity problems (Brau-
nisch et al., 2013). In addition, the number of predictors depends 
on the underlying method that is applied to the data. For example, 
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the BIOCLIM model requires a larger number of predictors in order 
to achieve similar results as MAXENT with only a limited number 
of predictors (Booth,  2018; Penman et al.,  2010). Other studies 
consider preselection to be essential since an increasing number 
of predictors leads to a decrease in the predicted area of suitability 
(Beaumont et al.,  2005) or only improves assessments of the cur-
rent distribution but performs poorly for projections (Booth, 2018). 
Porfirio et al. (2014) suggest that preselection is more important for 
mobile species than long-lived immobile plants.

While the above issues are mostly taken into account for the 
use or processing of BCVs in the model-building phase, the fact that 
there are multiple ways to calculate BCVs is mostly not considered. 
To our knowledge, most SDM researchers are not aware of this issue 
and, therefore, ignore the problems caused by the different calcu-
lation approaches. However, there are several calculation schemes 
that correspond to the definition of BCVs, and different databases 
are based on different calculation methods, making the results in-
comparable. The same problem arises with respect to the compu-
tational algorithms designed to calculate BCVs, which are available 
in various computing environments (Bede-Fazekas & Somodi, 2020). 
Overall, we found two studies that address different ways of cal-
culating BCVs. O'Donnell and Ignizio  (2012) calculated 20 biocli-
matic indices for the United States mainly based on the original set 
of BCVs, but without a comparative analysis of different calculation 
schemes. In contrast to many other studies, they describe their cal-
culation scheme in detail and list the differences compared to the 
BCVs of the most popular database, WorldClim. Bede-Fazekas and 
Somodi  (2020) demonstrate different calculation options in detail, 
focusing on the temporal context of BCVs. They show that different 
temporal references, in combination with predictor selection, nota-
bly affect model structure and projections. The authors projected 
changes in potential natural vegetation at high spatial resolution for 
Hungary using different calculation schemes and regional climate 
models (RCMs). Depending on the calculation scheme, they pro-
jected both large increases and large decreases for some habitats 
in the future. Therefore, the authors recommend paying more at-
tention to the calculation scheme of BCVs, as it strongly influences 
the projections. However, both studies did not consider uncertain-
ties arising from different observational datasets. But there are also 
some studies that deal with intercomparisons of different datasets. 
For example, Cerasoli et al.  (2022) compared the two versions of 
WorldClim (v1.4, v2.1) for Europe with respect to spatial prediction 
mismatches, and Morales-Barbero and Vega-Álvarez (2019) ana-
lyzed mean annual temperatures and precipitation on a global scale 
using five different datasets to determine bioclimatic congruence. 
However, to our knowledge, a detailed comparison of the most com-
mon gridded station-based observations and reanalysis weather 
data for the Mediterranean area and Central Europe with respect to 
the full set of BCVs has never been performed before.

In addition to the consideration of the effect of different BCV 
calculation schemes, as recommended by Bede-Fazekas and So-
modi (2020), this study demonstrates how different datasets affect 
the derivation of BCVs for the extended Mediterranean area. Our 

results are compared with the most commonly used BCV dataset 
of WorldClim and the R computational algorithm BIOVARS of the 
dismo R package. The aim of the present study is to investigate the 
differences in some BCVs depending on the computational scheme 
or dataset. We will show that the curse of BCVs does not start during 
model setup, but already during variable generation.

The data used in this study and the preprocessing steps are de-
scribed in Section  2.1. For the analysis, we have defined a clima-
tological and biological calculation scheme to identify the wettest, 
driest, hottest, and coldest month/quarter, which is roughly equiva-
lent to the static and dynamic approach described in Bede-Fazekas 
and Somodi (2020). Furthermore, we show different approaches to 
define, for example, the annual mean temperature (BCV-1) or the 
maximum (minimum) temperature of the hottest (coldest) month 
(Section 2.2). The results are then compared with the BCVs of the 
WorldClim dataset and with the results of BIOVARS. The differences 
between the calculation schemes and the datasets among different 
subregions are shown in Section 3. We discuss the results in Sec-
tion 4 and draw conclusions in Section 5.

2  |  MATERIAL S AND METHODS

2.1  |  Data

2.1.1  |  Reference

As a reference, we downloaded the set of 19 BCVs from version 
2.1 of WorldClim (Fick & Hijmans,  2017) with a spatial resolution 
of 5 arc minutes, as this is approximately the spatial resolution of 
our reference dataset in our target domain. The WorldClim dataset 
contains the climatological means of the 19 standard BCVs for the 
period 1970–2000. The WorldClim dataset was then interpolated 
by means of the first-order conservative remapping algorithm of the 
Climate Data Operator (CDO; Schulzweida,  2022) to a 0.1° ×  0.1° 
grid (~90 km2 per grid box) to fit the reference spatial resolution over 
the extended Mediterranean region (10W-45E, 27N-55N, 154,000 
grid boxes, see Figure 2). In total, we obtain one data value for each 
BCV of all land grid boxes (113,443 grid boxes).

The WorldClim dataset (https://www.world​clim.org/) can pro-
vide a high spatial resolution (30 arc seconds) for the reference 
period (the future period provides lower spatial resolution), but the 
temporal resolution (climatological means) as well as the coverage 
(period 1970–2000) of the BCVs are low. The dataset is limited to 
land areas but covers the entire world except for Antarctica. In addi-
tion, WorldClim provides monthly climatological data for the period 
1960–2018 for all variables needed to calculate the BCVs, as well as 
some other variables such as solar radiation, wind speed, or water 
vapor pressure (downscaled from CRU-TS-4.03). For future projec-
tions, they also provide the variables to calculate BCVs based on 
different shared socio-economic pathways (SSPs) of 23 General Cir-
culation Models (GCMs). In the following, the original interpolated 
BCVs of WorldClim are marked WorldClim.
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2.1.2  |  Reanalysis and station-based 
gridded datasets

The analyses are based on the ERA5-Land reanalysis dataset with 
hourly temporal resolution and 0.1° × 0.1° spatial resolution (Muñoz 
Sabater, 2019, 2021). Here, the spatial resolution of the ERA5-Land 
dataset represents the reference grid for the target domain, and 
daily or monthly values were derived from the hourly data. ERA5-
Land provides global coverage for the period 1950 to the present. 
The dataset provides only one spatial resolution, but the temporal 
resolution ranges from monthly to hourly. In addition to the vari-
ables needed for calculating BCVs, more than 50 variables classi-
fied into eight groups (e.g., temperature, soil water, radiation, and 
heat) are available. In addition, different datasets and variables are 
available for 37 atmospheric levels, which are freely accessible from 
the Copernicus homepage. Thus, ERA5-Land represents the most 
recent dataset with the highest temporal resolution and the largest 
number of variables in our study domain.

We also consider the gridded Climate Research Unit daily time se-
ries (TS) version 4.05 on a regular 0.5° grid (CRU; Harris et al., 2020). 
The CRU dataset is based on a broad network of weather station 
observations, and the data are derived by interpolation of monthly 
anomalies. The dataset provides the coarsest resolution (0.5° × 0.5°) 
of all datasets considered and covers the period 1901–2020. The 
dataset provides monthly values of all variables needed to calculate 
BCVs, plus six additional variables (e.g., vapor pressure, cloud cover; 
Harris et al., 2020).

Temperature and precipitation time series of the ensembles 
of the daily gridded observational dataset for precipitation, tem-
perature, and sea level pressure in Europe (E-OBS, version 24.0e) 
were downloaded with a spatial resolution of 0.1° × 0.1° (Cornes 
et al., 2018). The E-OBS dataset is available in two spatial resolutions 
(highest resolution: 0.1° × 0.1°) and covers the area from 25° W–45° 
E and 25° N–71.5° N. Thus, E-OBS is the only non-global dataset 
considered in this study. The dataset provides daily data from 1950 
to the end of June 2021. In addition to the variables needed to calcu-
late BCVs, four other variables are available (e.g., sea level pressure, 
relative humidity; Cornes et al., 2018). As E-OBS is only based on 
observations, the dataset contains gaps, and thus some regions, pe-
riods, and/or variables are not continuously represented. Generally, 
a grid box within the E-OBS dataset is considered complete when 
80% of the data is available.

All datasets have been fitted to the grid of the target domain 
and interpolated where necessary by means of the same interpo-
lation scheme applied to WorldClim. Since all datasets are derived 
by different methods, in the following, we summarize ERA5-Land, 
CRU, and E-OBS under the term gridded station-based obser-
vations and reanalysis weather data (GSORW-Data). Although 
WorldClim is also a gridded station-based observational dataset, 
it only represents climatological means instead of daily meteo-
rological data. For the comparative analysis between WorldClim 
and GSORW-Data, we consider the period 1970–2000, since 
the BCVs of WorldClim only cover this period. For intra-  and 

inter-comparisons of the GSORW-Data, we extend the period to 
1970–2020. We downloaded hourly, daily, or monthly values of 
minimum, mean, and maximum temperature as well as precipita-
tion sums for all datasets and aggregated them to monthly values 
using CDO where appropriate. All analyses and figures were per-
formed using R Statistical Software (v4.2.2; R Core Team, 2022) 
and RStudio (Posit Team, 2022).

2.2  |  Calculation schemes

There is not much information in the literature on the calculation 
of WorldClim BCVs. Several approaches are possible to derive the 
19 BCVs from temperature (T2M) and precipitation (PRE) time se-
ries. In particular, the definition of the hottest/coldest or wettest/
driest quarter/month provides some options (Bede-Fazekas & So-
modi,  2020; O'Donnell & Ignizio,  2012). Following BIOVARS pro-
vided by the creators of the WorldClim dataset, we assume that all 
BCVs of WorldClim are calculated using climatological means over 
a period of 31 years (1970–2000). Thus, each grid box is not repre-
sented by a time series but by monthly climatological mean values 
for each climate variable (i.e., minimum and maximum temperature, 
precipitation).

The WorldClim annual mean temperature (TMEAN) is the aver-
age of the maximum and minimum temperatures. Since most of the 
popular reanalysis and observational datasets (e.g., ERA5(-Land), 
CRU, E-OBS, and NCEP-NCAR) provide mean temperatures, the 
calculation of the annual mean temperature is redundant, but 
since we have also applied BIOVARS, the calculation of the mean 
using the maximum (TMAX) and minimum (TMIN) temperatures 
is considered too. Differences within the calculation scheme also 
affect BCV-4.

Several options are available for BCVs defined for specific 
periods of interest (POI, month, or quarter). When climatological 
averages (e.g., over a 30-year period) are used as input, the pe-
riod with the highest or lowest average values will always repre-
sent the POI. However, if time series are used, the POI can be 
defined in two ways. First, we define the POI for the entire time 
series, that is, using the driest month on average in the time se-
ries. Then we extract the corresponding month from all years and 
calculate the average, even though the month is not the driest in 
every year of the time series (climatological approach, CLIM). On 
the other hand, the POI is identified separately for each year, and 
then the respective values are averaged. In this way, the driest 
month of each year is always taken into account, although it is 
not usually the same month throughout the period (biological ap-
proach, BIO). Such a concept is also pursued by Bede-Fazekas and 
Somodi (2020), but for the dynamic or static selection of quarters/
months with respect to future periods. However, their method is 
also valid for and applicable to recent periods in order to calculate 
the BCVs, and Bede-Fazekas and Somodi (2020) also provide sim-
ilar information in the Appendix S2. The climatological approach 
is consistent over time since the BCV always represents the same 
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month or quarter of the year, but due to interannual shifts, the 
definition of the BCV is no longer valid. On the other hand, the bi-
ological approach is always consistent with the definition of BCV, 
since it always represents the month or quarter with the highest 
or lowest value but describes different physiological and ecolog-
ical phenomena, for example, when the driest month is shifted 
from the early growing season to the hibernation season. Thus, 
the statistical link established during model construction is ques-
tioned (Bede-Fazekas & Somodi, 2020). This problem concerns all 
BCVs related to specific months (BCV-5, BCV-6, BCV-13, BCV-14, 
and indirectly BCV-3 and BCV-7) or quarters (BCV-8–BCV-11 and 
BCV-16–BCV-19).

For BCV-5 and BCV-6, there are two ways to extract the ex-
treme monthly temperatures. On the one hand, the absolute lowest/
highest daily value of the month can represent the minimum/maxi-
mum temperature of the coldest/hottest month. On the other hand, 
the BCVs can be calculated using the averaged minimum/maximum 
daily temperatures of the respective month. The same method has 
also been applied to periods or annual time series to show the effect 
of the calculation methods on different time scales (e.g., the lowest 
daily temperature of the year vs. the average of the daily minimum 
temperatures of the year). These two options indirectly affect the 
calculation of BCV-2, BCV-3, and BCV-7 as well. In the following, 
we show the difference between the two calculation schemes (see 
Section 3.1).

An additional aspect must be considered when the BCVs are 
based on quarters (three consecutive months). When BIOVARS 
is applied to annual data, the quarter (November–December–
January) is calculated using the monthly data of the same year. 
Thus, January of the same year is added to November and De-
cember, even though they are not consecutive. This calculation 
scheme may be valid (but also inaccurate) for climatological aver-
ages but not for time series (O'Donnell & Ignizio, 2012). The effect 
on temperature-based quarters of time series may be marginal, as 
the variability of monthly mean temperatures is relatively small 
compared with the dominant seasonal cycle, but for precipitation-
based quarters, the differences can be substantial. Another issue 
is the definition of quarters, that is, whether the first quarter 
starts with January or whether January is the month in the middle. 
If January is the middle month, it is recommended to extend the 
time series of interest by 2 years (start year −1):(end year +1) in 
order to calculate all quarters by consecutive months; otherwise, 
1 year should be added at the end of the time series. This fea-
ture concerns all BCVs based on quarterly values (BCV-8-BCV-11, 
BCV-16-BCV-19). However, we do not address the variations in 
the calculation of BCVs that result from these issues. In this study, 
we calculate BCVs based on consecutive months, using the median 
month as a representative.

We compared different datasets (ERA5-Land, E-OBS, and CRU) 
based on time series (Section 3.2). The BCVs of the time series were 
extracted using BIOVARS as well as the BIO and CLIM calculation 
schemes. In the following, the quarters of the BIO and CLIM calcu-
lation scheme are based on consecutive months, and the reference 

is always the month in the middle. Thus, the first quarter of 1970 
includes the months December 1969–February 1970.

3  |  RESULTS

In the following, we first present the differences between differ-
ent calculation schemes using the ERA5-Land reanalysis dataset for 
selected BCVs. Results are exemplified for the annual mean tem-
perature (BCV-1) to show differences that occur when using mean 
temperature time series or mean values derived from minimum and 
maximum temperature. Differences between absolute and mean ex-
treme temperatures are illustrated by means of the maximum tem-
perature of the warmest month (BCV-5). Differences arising from 
the CLIM and BIO calculation schemes are presented by means 
of the mean temperature and precipitation of the wettest quarter 
(BCV-8 and BCV-16). An intercomparison of different datasets is 
presented in Section 3.2. Since all BCVs are based on temperature 
and precipitation and mean annual values of climate variables are a 
good indicator of how well these are represented by different data-
sets, we show the results for the annual mean temperature (BCV-1) 
and precipitation (BCV-12). To show whether the selection of the 
quarters is represented differently within the GSORW-Data, results 
are also visualized for the mean temperature of the wettest quarter 
(BCV-8). Figures for other monthly or seasonal BCVs affected by the 
aforementioned differences in calculation schemes are presented in 
Appendix S1 and differences with respect to different datasets are 
presented in Appendix S2.

3.1  |  Differences of BCVs due to 
calculation scheme

Figure  1 shows Taylor plots (Taylor, 2001) for all BCVs derived 
from the ERA5-Land dataset. The Taylor plots show the normalized 
standard deviation, the centered root mean square error (RMSE), 
and the correlation coefficient of the different calculation schemes 
with respect to the reference BCVs of WorldClim (purple point in 
the middle of the x-axis). In general, the closer the data point is to 
the reference, the higher the agreement between the reference and 
the calculation scheme. The BCVs of WorldClim are used as a ref-
erence. The Taylor plots show only minor differences between the 
calculation schemes when only temperature variables are involved. 
The differences increase when precipitation values are considered 
and show considerable variations when the POI is determined by 
precipitation, that is, wettest month (BCV-13, BCV-14) or wettest 
quarter (BCV-8, BCV-9, BCV-16, BCV-17). The figure also shows that 
the BIO approach is similar to the derived results of BIOVARSBIO, 
and CLIM approximately corresponds to BIOVARSCLIM. Thus, no-
table differences are only due to whether the BCVs are calculated 
from climatological means (CLIM) or time series (BIO), whereas the 
differences resulting from the calculation scheme and BIOVARS are 
only marginal.
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6 of 18  |     MERKENSCHLAGER et al.

3.1.1  |  Annual mean temperature (BCV-1)

Differences with respect to the BCV-1 calculation scheme are 
shown for ERA5-Land in Figure  2. The difference between the 
TMEAN of ERA5-Land and the calculation using minimum and 
maximum temperatures depends on the temporal resolution. On 
a daily scale, differences between −7.4°C and +9.6°C occur and 

become smaller when the temporal resolution is reduced. If only 
the range between the lower and upper quartile is considered, the 
monthly, annual, and interannual time series are almost identi-
cal, unless the range of the daily quartile is extended by 0.2°C in 
both directions. For a period of 31 years, the deviations between 
the two approaches do not exceed ±1°C (top left). Especially in 
mountainous regions (e.g., Alps, Atlas, and Caucasus), the standard 

F I G U R E  1 Taylor-Diagrams depicting the differences with respect to the calculation scheme for all BCVs (Period: 1970–2000; Reference: 
WorldClim). Due to different scales, the standard deviations are normalized and the RMSEs are centered. The points represent the biological 
(BIO, green) and climatological (CLIM, blue) calculation schemes, and triangles represent the BCVs derived from BIOVARS when the function 
is applied to time series (BIOVARSBIO, light green) or periods (BIOVARSCLIM, light blue).
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    |  7 of 18MERKENSCHLAGER et al.

deviations of the differences show higher and the correlation co-
efficients lower values. Although the standard deviations within 
these regions are quite low, lower correlation coefficients also 
occur on the Sinai Peninsula, the northwestern coasts of the Ibe-
rian Peninsula, and the southern coast of Ireland (bottom left). The 
highest agreement between the two methods is found over the 
Sea of Azov. Overall, ERA5-Land TMEAN exceeds the tempera-
ture time series derived from minimum and maximum tempera-
tures for most parts of the study area, with the highest values in 
the northern parts of Africa and the Middle East away from the 
coast. Along the southern and eastern coasts of the Mediterra-
nean Sea and over the Iberian Peninsula, the TMEAN of ERA5-
Land is notably lower than that computed by BIOVARS, with the 
largest deviations along the Atlantic coast of Morocco.

3.1.2  | Maximum temperatures of the warmest 
month (BCV-5)

Absolute and mean maximum/minimum temperatures were cal-
culated for the period 1970–2020 on a monthly and annual basis, 
as well as for the entire period, by means of the CLIM approach. 
In contrast to BCV-1, the temperature differences become larger 
with reduced temporal resolution (see Figures 2 and 3, upper left), 
but the differences are already notable for monthly time series. 

Here we present the results for the maximum temperature of the 
warmest month (Figure  3). Especially in Northern France and the 
Benelux countries, temperature differences of more than 15°C can 
be observed between the two calculation schemes (Figure  3, top 
right). Since mean and absolute maximum temperatures do not al-
ways occur within the same month, both calculation schemes are 
also subject to temporal shifts. On average, the absolute maximum 
temperature at the Israeli-Egyptian coast is 3 months later than the 
mean maximum temperature, while the absolute values reach their 
maximum 2 months earlier than the mean temperatures in the north-
western parts of Ukraine (Figure 3, bottom left). Finally, we used the 
date of the maximum from the absolute and mean maximum (derived 
from the entire period) and extracted only the mean maximum tem-
peratures for both time series. Considering only the temporal shift 
between absolute and mean maximum temperatures, the shift of the 
maximum alone leads to differences of up to 5.7°C in some regions 
(Figure 3 bottom right, Border area of Ukraine and Belarus, Mediter-
ranean coast of Israel and Lebanon).

3.1.3  | Mean temperature/precipitation of the 
wettest quarter (BCV-8, BCV-16)

A rough classification of the study area highlights four subregions 
with respect to the climatologically wettest quarter (Figure  4). 

F I G U R E  2 BCV-1 Annual mean temperatures: Differences between WorldClim's calculation scheme and mean temperature time series 
of ERA5-Land for different temporal scales (top, left), standard deviations (top, right), and correlation coefficient (bottom, left) of daily 
temperatures. Mean differences between both time series are shown for the period 1970–2020 at the bottom, right (BIOVARS–ERA5-Land).
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8 of 18  |     MERKENSCHLAGER et al.

Beginning with the southern subregion in winter, the date of the wet-
test quarter shifts counterclockwise through the seasons. The Black 
Sea region has the wettest quarter in spring, the northern subregion 
in summer, and the western parts of the Mediterranean region in 
autumn (Figure 4, upper left). However, a closer look at the Iberian 
Peninsula shows that although the climatological wettest quarter is 
in autumn, the winter season quantitatively represents the wettest 
quarter (BIO calculation scheme, Figure 4, upper middle). Overall, 
the BIO approach shows a more heterogeneous picture, with shifts 
mainly within the respective season. In the upper right part of Fig-
ure 4, the interannual shifts of the wettest season are shown (BIO 
calculation scheme). It shows that the wettest season is shifted by 
up to 4 months per year on average north and south of the Pyrenees, 
northeast of the Black Sea, and in parts of Bulgaria. This reflects 
the high interannual variability of rainfall in the extended Mediterra-
nean area. Smaller interannual shifts occur in the southeastern parts 
of our study area, in the eastern parts of Europe, and north of the 
Alps. In terms of temperature, these shifts have the greatest impact 
northeast of the Black Sea, with high gradients between −10°C and 
+10°C, while the northwestern parts of the Iberian Peninsula show 
the greatest differences in precipitation (−250 mm).

3.2  |  Differences of BCVs due to datasets

In Figure 5, Taylor plots are shown for all BCVs derived from differ-
ent datasets using the CLIM calculation scheme as a reference. Other-
wise, the framework is the same as in Figure 1. The Taylor plots show 
that all datasets reproduce the BCVs of the WorldClim database well, 
and major differences between the models can only be observed for 
BCV-8 and BCV-10 of temperature and, to some extent, BCV-13 of 
precipitation. On the one hand, possible reasons for the deviations can 
be traced back to the different representation of precipitation within 
the GSORW-Datasets, which affects precipitation-based BCVs (e.g., 
BCV-13) as well as temperature-based BCVs (e.g., BCV-8). When re-
gions have two precipitation peaks with similar amounts in summer 
and winter, temperatures can vary notably, while the precipitation of 
the wettest quarter (BCV-16) shows only small variations. In addition, 
precipitation has higher spatial and temporal variability, so different 
resolutions and interpolation schemes may also affect the represen-
tation of precipitation patterns. For BCV-10, larger deviations are ob-
served only in E-OBS. Here, spatial and temporal data gaps may be 
the reason for the deviations since the temperature is generally well 
represented among the GSORW-Datasets.

F I G U R E  3 BCV-5 Maximum temperatures of the warmest month: Differences between absolute and mean maximum temperatures 
(period 1970–2020) of ERA5-Land for different temporal scales (top, left) and regions (top right). The temporal shift (in months) of absolute 
and mean maximum temperature is presented at the bottom left. The shift-induced temperature difference of the mean maximum 
temperature is given at the bottom right.
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    |  9 of 18MERKENSCHLAGER et al.

In the following, WorldClim is used as a reference for all other 
datasets. When we use evaluative terms, we are referring to the 
WorldClim dataset without claiming that this dataset is the best rep-
resentation of reality.

3.2.1  |  Annual mean temperature (BCV-1)

Figure 6 shows the annual mean temperatures of WorldClim (BCV1) 
for the period 1970–2000 and the temperature anomalies of the dif-
ferent GSORW-Datasets. Compared to the other datasets, E-OBS 
shows the smallest deviations (−3.4 to 2.6°C). Especially in the east-
ern parts of Turkey, the annual mean temperatures are far below 
those of WorldClim. ERA5-Land shows negative deviations over 
much of North Africa but also over Turkey and the Levant, Spain, 
and the Alpine region, and the deviations are higher than those ob-
served in E-OBS (−5.6 to 3.8°C). The highest deviations are observed 
within the CRU dataset (−10.0 to 9.2°C). Especially in mountainous 
regions, the CRU dataset exhibits both large negative and positive 
deviations. Overall, all datasets show higher mean annual tempera-
ture differences to WorldClim in the northeastern part of the study 
area, while lower temperature differences are observed along the 
southern Mediterranean coast. The latter is probably due to the lim-
ited data availability in this region and, thus, a more similar database 
in all considered datasets.

3.2.2  | Mean temperature of the wettest quarter 
(BCV-8)

Figure 7 shows that the Mediterranean and European areas are 
very heterogeneous in each GSORW-Dataset where the wet-
test quarter can occur in any season. Thus, even small shifts in 
the precipitation pattern or deviations in the spatial resolution 
can lead to notable changes in BCV-8. The greatest agreement is 
observed over central and eastern Europe, where precipitation 
maxima occur in the summer. The largest discrepancies are ob-
served northeast of the Black Sea within the CRU dataset, but 
large discrepancies are also observed over France, where pre-
cipitation maxima occur in all seasons. Over the Iberian Penin-
sula, the adjacent regions with precipitation maxima in spring and 
autumn are represented in all datasets, although some shifts in 
the boundaries can be observed. Over the southeastern parts of 
the study area, ERA5-Land shows precipitation maxima in winter, 
while CRU and, where data are available, E-OBS show the wettest 
quarter in spring.

The heterogeneity in France is responsible for the large tempera-
ture differences within this region. Between the Gulf of Lion and the 
German North Sea coast, the temperatures of the wettest quarter 
are for some regions more than 10°C higher in the GSORW-Data 
than in WorldClim (Figure  8). Over the northeastern parts of the 
Black Sea, we assume that WorldClim also has its wettest quarter 

F I G U R E  4 BCV-8 and BCV-16 Temperature and precipitation in the wettest quarter: The upper figures represent the climatological 
quarters of the wettest quarter (CLIM, top left) and the quarter that most frequently represents the wettest quarter due to the biological 
approach (BIO, top mid) of the ERA5-Land dataset (period 1970–2020). The figure at top right represents the mean interannual shift of 
the wettest quarter for the BIO calculation scheme (Maximum shift: white dot and number). Figures at the bottom show the differences 
between both approaches (BIOCLIM) with respect to temperature (left) and precipitation (right).
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10 of 18  |     MERKENSCHLAGER et al.

in summer since CRU almost matches the reference pattern. In con-
trast, warmer temperatures are observed over the Sinai Peninsula 
for CRU and, where data are available, for E-OBS, leading to the 
conclusion that both WorldClim and ERA5-Land have their wettest 
quarter in winter. In general, within the considered domain, the data-
sets show warmer temperatures than WorldClim, but also notably 
lower temperatures can be observed.

3.2.3  |  Annual precipitation (BCV-12)

The largest differences between the datasets and WorldClim are 
observed in the triangle between France, Switzerland, and Italy 
on the west side of the Alps (Figure 9). Here, all datasets overes-
timate the WorldClim annual precipitation totals by more than 
1000 mm, with the largest deviations within the ERA5-Land dataset 

F I G U R E  5 Taylor-Diagrams depict differences with respect to the GSORW-Datasets for all BCVs (Period: 1970–2000; Reference: 
WorldClim). Due to different scales, the standard deviations are normalized and the RMSEs are centered.
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    |  11 of 18MERKENSCHLAGER et al.

(2200 mm). Differences between the datasets can be observed at 
the southeastern coast of the Black Sea, where CRU shows the high-
est underestimation (−1157 mm). In this area, ERA5-Land overesti-
mates precipitation by 482 mm and E-OBS by 109 mm. Compared 
to WorldClim, ERA5-Land (+77 mm) and CRU (+2 mm) are too wet, 
while E-OBS (−30 mm) is too dry on average. Especially over top-
ographically heterogeneous areas such as the Alps or the eastern 
Pontic Mountains south of the Black Sea, precipitation amounts 
are predominantly overestimated, while the western part of Eu-
rope (northwest of the Iberian Peninsula, Great Britain, and Ireland) 
shows lower precipitation amounts than the reference.

4  |  DISCUSSION

4.1  |  Differences between calculation schemes

Analyses have shown that there is a high degree of agreement be-
tween all the calculation schemes presented. Only BCVs based on 
periods (month or quarter) defined by precipitation show larger dif-
ferences (BCV-8, BCV-9, BCV-13, BCV-14, BCV-16, BCV-17). It has 
been shown that it does not matter whether the BCVs are calcu-
lated with one of the calculation schemes presented here or with 
BIOVARS provided by the dismo R package, since the differences 
are only marginal. For the calculation of BCVs, it is only relevant 

whether the variables are calculated by means of annual values or 
period means. Thus, although there are small differences between 
BIOVARS and the calculation schemes, these have hardly any impact 
on the calculation of the BCVs. Consequently, BIOVARS proves to 
be a suitable method to obtain BCVs for the Mediterranean region. 
It should only be thoroughly checked if the wettest or driest sea-
son coincides with the turn of the year. With respect to BCV-1, the 
higher the temporal resolution, the greater the differences between 
the mean temperatures provided by the datasets and the calculation 
scheme of BIOVARS. Thus, only marginal differences will occur when 
the function is applied to annual or climatological means. However, 
Hijmans (2006) and Hijmans et al. (2022) explicitly point out that the 
function can also be applied to weekly data. In our opinion, the user 
should rather refer to the original mean temperature time series of 
the used dataset, since, especially over mountainous regions or re-
gions with a high degree of continentality, differences can be large at 
high temporal resolution, and, thus, the use of BIOVARS for calculat-
ing BCV-1 can lead to notable differences in comparison to the mean 
temperature time series of the GSORW-Data. Furthermore, since all 
datasets provide mean temperature time series, the calculation of 
mean temperatures is redundant.

For the time series of maximum/minimum temperatures of 
the warmest/coldest months (BCV-5 and BCV-6), the two calcu-
lation schemes show large differences when the temporal resolu-
tion is reduced. Analyses have shown that the BCVs of WorldClim 

F I G U R E  6 BCV-1 Annual mean temperature: The figure shows the temperatures of WorldClim (bottom left) and the temperature 
differences (dataset minus WorldClim) of ERA5-Land (top left), E-OBS (top right), and CRU (bottom right) for the period 1970–2000 (gray 
areas: no data).
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12 of 18  |     MERKENSCHLAGER et al.

F I G U R E  7 Wettest quarter for ERA5-Land (top left), E-OBS (top right), and CRU (bottom left) for the period 1970–2020 (gray areas: no 
data).

F I G U R E  8 BCV-8 Mean temperature of the wettest quarter: The figure shows the temperatures of WorldClim (bottom left) and the 
temperature differences of ERA5-Land (top left), E-OBS (top right), and CRU (bottom right) for the period 1970–2000 (gray areas: no data).
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    |  13 of 18MERKENSCHLAGER et al.

correspond to the calculation scheme with mean maximum or mini-
mum temperatures. It has been shown that differences of up to 16°C 
occur between the two calculation schemes, especially in the oce-
anic regime. Here, the moist air masses of the Atlantic Ocean flatten 
the daily temperature amplitude, so that single extremes notably 
increase the difference between absolute and mean maxima. In ad-
dition, calculating mean maximum temperatures by considering only 
the temporal shift between absolute and mean maxima also results 
in temperature differences of up to 6°C. The largest differences are 
observed along the Egyptian Mediterranean coast, where shifts of 
up to 3 months occur between absolute and mean maximum tem-
peratures, but also along the French Mediterranean coast, where the 
temporal shift is only 1 month. It shows that large shifts between 
mean and absolute temperature maxima occur mainly along the 
North African coast, but the effect is similar to small shifts in some 
European regions. However, we assume that the approach based on 
mean maxima/minima should be applied when mobile species are 
investigated or the temperature limits of the species cannot be spec-
ified exactly, whereas absolute maxima/minima should be consid-
ered when the temperature limits of species are known and essential 
for survival. Especially for immobile species such as plants, the use 
of absolute minima and maxima may have added value. This is also 
consistent with the analysis of Gloning et al. (2013) on the calcula-
tion of hardiness zones for woody plants. The authors suggest that 
absolute minimum temperatures should also be considered as the 
future climate is warmer, but the risk of cold snaps is still present 

due to increased standard deviations and changes in the skewness of 
the minimum temperature distribution. Therefore, the choice of cal-
culation scheme depends strongly on the species and the research 
question.

The most controversial variables in the BCV pool are the ones 
that combine temperature and precipitation. Especially large 
changes within short distances are an issue of major concern. 
These discontinuities are predominantly related to shifts in the 
quarterly periods used to calculate the BCVs (Booth,  2022). For 
example, the mean temperature of the wettest quarter (BCV-8) 
can exhibit notable differences in regions with two rainy seasons 
in summer and winter, and maxima are shifted spatially (one grid 
box has a maximum in summer and the neighboring grid box in 
winter) or temporally (summer maximum in 1 year and winter maxi-
mum in the following year). Temporal shifts also affect the dynamic 
approach (similar to the BIO calculation scheme when applied to 
different climatological periods) described in Bede-Fazekas and 
Somodi (2020), where variables are determined period-by-period. 
This leads to a discussion about how to handle these BCVs. On the 
one hand, Escobar et al.  (2014) pointed out that these variables 
should be excluded from SDM since they show odd spatial anom-
alies in some regions. Authors who cite Escobar et al. (2014) even 
claim that these variables are unsuitable for usage (Booth, 2022). 
On the other hand, Bradie and Leung (2017) have analyzed differ-
ent environmental variables and their contribution to SDM. They 
concluded that the interactive variables are the most important 

F I G U R E  9 BCV-12 Annual mean precipitation: The figure shows the precipitation of WorldClim (bottom left) and the precipitation 
differences of ERA5-Land (top left), E-OBS (top right), and CRU (bottom right) for the period 1970–2000 (gray areas: no data).
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14 of 18  |     MERKENSCHLAGER et al.

predictors in some regions and for some species. For global studies, 
Booth (2022) recommends seeking alternative measures for inter-
active variables based on water balance studies, as rainfall season-
ality can be important for species distributions.

In addition to the question of the usefulness of the interactive 
variables, Bede-Fazekas and Somodi (2020) present two calculation 
schemes for the variables based on specific periods of the year (all 
four interactive variables included). When the variables are calcu-
lated by climatological means, the variable always represents the 
same quarter or month. Thus, the variable always describes the 
same physiological and ecological phenomenon, but the definition 
of the variable is not valid anymore since, due to shifts within the 
annual cycle, the variable may not always represent the true timing 
of, for example, the wettest quarter. In contrast, the definition is 
valid when the variables are calculated year-by-year since the true 
wettest quarter is always chosen. However, since the wettest quar-
ter may exhibit interannual variations, it may in 1 year represent 
precipitation in autumn and in the subsequent year precipitation in 
spring. Thus, the statistical link in SDM is not valid anymore since 
the BCV describes different ecological and physiological character-
istics. In general, these findings are in accordance with the results 
of Bede-Fazekas and Somodi  (2020). It shows that their assump-
tions about the temporal context of future species distribution 
assessments are also valid for the calculation of BCVs within the 
recent period.

In the following, we will address these caveats to show that 
there are still factors to be considered when handling the interac-
tive variables. In terms of the wettest quarter, the largest variability 
can be observed over the northeastern parts of Spain, the border 
area of Romania and Bulgaria, and the Caucasus region of Georgia, 
with an interannual shift of up to 4 months. This means that no clear 
rainy season can be defined for this region since it is shifted not only 
by months but also by seasons. For example, over the northeast-
ern parts of Spain, there are no clear differences between BCV-8 
and BCV-16 due to the calculation scheme, but regions with their 
maximum in spring and regions with their maximum in autumn are 
located next to each other. This can be attributed to the fact that 
the precipitation regime of the Spanish Mediterranean coast and its 
backcountry is mainly decoupled from the westerly wind drift, and 
precipitation events depend on weather conditions with an easterly 
or northerly wind component (Rodrigo & Trigo, 2007). The lack of a 
barrier along the Catalan coast allows these weather conditions to 
penetrate further inland (Cortesi et al., 2014). The relative frequency 
of these weather conditions is subject to an annual cycle with max-
ima in summer and minima in winter. Since the Azores High over the 
Iberian Peninsula has a stabilizing effect in summer, these weather 
conditions are rarely associated with precipitation in summer, and 
precipitation maxima are shifted to the transitional seasons. Espe-
cially in the backcountry, convective precipitation events provide 
precipitation maxima in spring since the thermal land-sea contrast 
in the Mediterranean region is decreasing while the Azores High has 
not yet reached the stabilizing characteristics of the summer season 
(Esteban-Parra et al., 1998). In contrast, subcontinental convective 

processes are negligible along the coast. Here, precipitation maxima 
occur in autumn due to the high temperatures of the Mediterranean 
Sea and the resulting enhanced cyclogenesis (Rodrigo & Trigo, 2007). 
Depending on the intensity of these weather conditions, the bound-
ary between the two precipitation regions fluctuates, resulting in 
interannual shifts of the wettest quarter by more than 4 months. 
Nevertheless, the precipitation differences between spring and au-
tumn peaks within this region are rather small, although different 
weather conditions are responsible for precipitation generation. 
Thus, the influence on the BCV is rather small, although the statis-
tical link is not valid, since it describes two completely different life 
cycles or phenological phases (e.g., juvenile stage in spring and se-
nior stage in autumn).

In contrast, the northern part of Portugal shows only a small 
difference between both approaches with respect to the wettest 
quarter (about 2 months). According to the CLIM approach, the 
wettest quarter is in late autumn (October–December), while the 
BIO scheme selects mainly the December–February period. In au-
tumn, the temperatures of the Atlantic Ocean are still high, and 
due to evaporation, a large amount of precipitable water enters 
the atmosphere. As the Azores High tends to weaken in autumn, 
the northern part of Portugal falls under the influence of westerly 
wind drift, and the precipitation pattern is mainly determined by 
Atlantic cyclones. Atlantic cyclones and a huge amount of precip-
itable water combined with orographic effects can lead to intense 
precipitation events in this area (Santos et al., 2017). Overall, due 
to sporadic extreme precipitation events, the climatologically wet-
test quarter occurs in late autumn, while mid-winter represents 
the quarter that quantitatively exhibits the highest precipitation 
amounts. Thus, although the statistical link is almost identical, huge 
differences of up to 260 mm can be observed between the CLIM 
and BIO calculation schemes.

The same can be observed for temperature in Russia, northeast 
of the Sea of Azov. Due to the high degree of continentality, a rela-
tively small shift of 2 months leads to a difference between the BIO 
and CLIM approaches of up to 13°C.

Overall, 55.4% of the study area exhibits the same wettest 
quarter in both calculation schemes. For the driest quarter, the 
agreement is 68.2%, but with higher differences for absolute tem-
peratures (BCV-9; see Appendix  S1.4). Here, the study area is di-
vided into a northern and a southern part. In the northern part of the 
study area, BCV-9 and precipitation of the driest quarter (BCV-17) of 
the CLIM approach are notably smaller than under consideration of 
the BIO calculation scheme. In contrast, temperatures in the south-
ern part are notably higher for CLIM, whereas differences with re-
spect to precipitation hardly exist. An even greater agreement with 
respect to the selected quarter can be seen for the hottest (98.2%) 
and coldest quarter (99.7%). Therefore, differences in precipitation 
and temperature between both calculation schemes barely exist 
(Appendices S1.5 and S1.6).

We showed that there could be large differences between the 
two calculation schemes within the study area, confirming the 
analysis of Bede-Fazekas and Somodi  (2020). However, we also 
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showed that the discontinuities resulting from the different calcu-
lation schemes affect the BCVs to a greater or lesser extent. In the 
northeastern parts of Spain, where large interannual shifts of the 
wettest season occur, the effect on the respective BCVs is rather 
small, whereas in the northern parts of Portugal (precipitation) and 
southeastern parts of Russia (temperature), relatively small shifts 
lead to large differences between the CLIM and BIO calculation 
schemes. This means that although the statistical link within the BIO 
approach is not valid and different physiological and ecological char-
acteristics are described, the effect on BCV may be rather small, and 
conversely, small shifts in quarters may have a substantial influence 
on BCV, although the physiological and ecological phenomena are 
almost the same.

4.2  |  Differences between datasets

The ecological hypotheses tested by SDMs are affected by incon-
sistencies in climatic datasets, as they represent another source 
of uncertainty (Morales-Barbero & Vega-Álvarez, 2019). However, 
Watling et al.  (2014) argue that neither model performance nor 
spatial predictions vary significantly due to different climate inputs 
and that the results of SDMs are more influenced by the modeling 
algorithm. As their study is limited to species in Florida, which is 
topographically plain, mountainous regions, which obviously show 
strong discrepancies between datasets (e.g., Cerasoli et al., 2022; 
Morales-Barbero & Vega-Álvarez,  2019), are not present in the 
analysis. Jimenez-Valverde et al.  (2021) also found higher inter-
model discrepancies for precipitation than for temperatures, with 
annual mean temperatures (BCV-1) generally showing the highest 
agreement, which is also confirmed in the present study. Cerasoli 
et al.  (2022) point out that BCVs representing variability (BCV-2, 
BCV-4, and BCV-15) show larger differences between datasets than 
seasonal or annual mean values. Again, we found considerable dif-
ferences in the seasonal means, but this is mainly due to the intra-
annual shifts of the season. Overall, inter-model differences arise 
when the dataset is based on the interpolation methods of a mete-
orological station network and the respective region only exhibits 
a small number of stations. In this case, climate dataset based on 
quasi-mechanistic downscaling or remote sensing are more accurate 
(Waltari et al., 2014). Since WorldClim provides a high-quality data-
set in station-rich regions such as Europe (Fick & Hijmans, 2017), 
differences in our study area cannot be attributed to this issue. 
Furthermore, Jiménez-Valverde et al.  (2021) point out that differ-
ences between datasets diminish when the resolution is reduced. 
However, our studies are based on the same resolution as the “low 
resolution model” of Jiménez-Valverde et al. (2021), and inter-model 
differences are still present.

In the present study, all examined datasets represent the BCVs 
well. Since E-OBS does not provide data for the entire study area, 
comparisons are made only for the E-OBS grid boxes. For means, E-
OBS shows the greatest agreement with WorldClim for BCV-1, but 
the tails are shifted to higher values with respect to extremes. In 

contrast, ERA5-Land has the largest deviation from the mean, but 
the range of temperatures is similarly represented, while CRU has 
the largest absolute deviations from the WorldClim dataset. Overall, 
most deviations from all datasets are limited to ±2°C, and mean de-
viations are close to zero (without outliers). For BCV-12, CRU has the 
highest agreement with respect to means and extremes, and ERA5-
Land shows notably higher precipitation amounts than WorldClim. 
Thus, the mean deviation of ERA5-Land is 57 mm and covers the 
range from −218 to 357 mm, while the mean deviation of CRU is 
2 mm, and the deviations range from −122 to 129 mm (without out-
liers). For BCV-8, ERA5-Land shows the highest general agreement 
with WorldClim for both means and extremes, and E-OBS shows the 
lowest agreement, although the deviations have the smallest range 
(without outliers). Therefore, from a statistical point of view, no clear 
recommendation can be made, as all datasets have strengths and 
weaknesses.

Regarding spatial representation, the differences increase 
in complex terrain, especially for BCVs based on precipitation 
(amounts or periods). Differences between the GSORW-Data and 
the reference of up to 2000 mm can be observed for BCV-12 within 
the alpine region. Compared to WorldClim, all datasets also show 
notably lower annual precipitation amounts in the northern parts 
of Portugal and adjacent areas of Spain. As already seen within the 
statistical evaluation, ERA5-Land exhibit comprehensive higher 
values of BCV-12. With respect to the temperature of the wettest 
quarter (BCV-8), all datasets show areas of high deviations west of 
the line between the Gulf of Lion and the German North Sea coast. 
This is due to the very heterogeneous characteristics of the rainy 
season within this area. Furthermore, large negative deviations 
can also be observed northeast of the Black Sea in ERA5-Land and 
E-OBS, while CRU generally agrees with WorldClim's BCV-8. For 
annual mean temperatures (BCV-1), heterogeneity is present for 
all datasets. ERA5-Land, E-OBS, and, to some extent, CRU show 
higher temperatures than WorldClim over much of Europe, while 
underestimating temperatures over the Maghreb and the Middle 
East. The locations of the highest deviations are spread mainly over 
the Alps and the eastern parts of the study area. Temperatures in 
the Alps are generally underestimated, with the largest deviations 
for CRU (−10°C) in the Italian Alps, whereas the highest deviations 
are in the southwestern part of Turkey (ERA5-Land), east of the 
Black Sea (E-OBS), or Armenia (CRU). All locations with the highest 
deviations (negative or positive) have in common that they prevail 
in mountainous regions.

From a technical point of view, all datasets have advantages and 
disadvantages. The BioClim dataset of WorldClim provides by far 
the highest spatial resolution, but BCVs are only available as means 
for the climatological period 1970–2000 and not as time series. For 
the same period, however, WorldClim offers six monthly averaged 
climatological variables and TMIN, TMAX, and PRE for the period 
1960–2021 with a monthly temporal resolution. Thus, BCVs can 
be calculated for missing periods or on an annual temporal resolu-
tion. If SDM is performed using only BCVs, WorldClim provides a 
very suitable dataset. However, the recent trend within the SDM 
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community is to train models using more (bio)climatological vari-
ables than just the BCVs. Variables beyond the set of 35 BCVs (e.g., 
growing degree days) can also be obtained from the CliMond or-
ganization (Kriticos et al.,  2014). The website of the CliMond or-
ganization (www.climo​nd.org) collects fully described and readily 
available predictors for SDM. Below, we list some studies that use 
variables beyond BCVs.

For example, Title and Bemmels (2018) include 16 climatic and 
two topographic variables (ENVIREM) to determine species dis-
tributions, as these variables are very likely to be directly related 
to ecological or physiological processes. The calculation of these 
variables requires data that is not available in WorldClim for all 
time periods. Kriticos et al.  (2014) introduce five modified BCVs 
based on principal component analysis applied to the existing 35 
BCVs. These five variables explain 90% of the variation in the 35 
BCVs, but these variables should not be used in combination with 
the original BCVs. In addition, SDMs based on these five variables 
cannot be applied for climate change studies or for comparative 
analysis of datasets. Stewart et al.  (2021) consider climate ex-
tremes to improve predicted distributions, particularly at plant 
range edges. Bailey and van de Pol  (2016) expect changes in the 
frequency and magnitude of extremes to drive more drastic shifts 
in species distributions than changes in mean climate. As extreme 
weather events are short-lived but are thought to have notable 
effects on plant distribution (Walter et al.,  2013), monthly time 
series data are not sufficient. Furthermore, Booth (2022) suggests 
using seasonal or monthly variables based on the water balance 
as used by the BIOCLIM team in 1999 and acknowledges that 
several recent studies have also included evaporation measures. 
However, due to the daily scale of E-OBS and CRU, both data-
sets are suitable when considering extremes for SDM, but when 
building more complex models that include the water balance sys-
tem, ERA5(-Land) or an equivalent reanalysis dataset should be 
the choice. When conducting studies based on BCVs and more 
complex variables, all variables should be taken from one dataset, 
as the processes mapped are then consistent from a climatological 
point of view.

5  |  CONCLUSIONS

The study presented here shows that the WorldClim dataset pro-
vides an adequate data basis when the BCVs are the only climato-
logical variables to be used in SDM analysis. However, if additional 
climatological variables are to be considered in SDM studies, other 
datasets should be considered for the sake of data consistency. All 
evaluated datasets provide high-quality data, and thus the choice 
of dataset for SDM depends on other characteristics, such as data 
availability for the region of interest, temporal and spatial resolution, 
or availability of climatological variables critical for species distribu-
tion. Here, ERA5-Land is a good choice, as this dataset contains by 
far the most climatological data for the global domain, as well as a 
high temporal and spatial resolution.

Since the datasets examined here do not provide BCVs, these 
must first be calculated based on the available data. As the defi-
nition of BCVs leaves some room for maneuver, especially with 
regard to temporal reference periods, researchers should consider 
beforehand exactly what goal they are pursuing when modeling 
species distributions or ecological niches. In terms of calculation 
schemes, differences occur, especially when BCVs represent pre-
cipitation, when the period of interest is determined by precipita-
tion, or in complex terrain. However, no general recommendation 
can be made here, as we have found areas where large temporal 
shifts in the period of interest, such as the wettest quarter, have 
little effect on the variable and vice versa. In addition, we also 
found regions where the spatial pattern of the periods of interest 
resembles a small-scale mosaic. This can also result in large spatial 
differences, especially with respect to the mean temperatures of, 
for example, the wettest quarter (BCV-8), when areas with precip-
itation maxima in summer and winter are adjacent to each other. 
Thus, we comply with the recommendation of Booth (2022) that 
BCVs should be carefully evaluated with respect to temporal or 
spatial discontinuities within the respective study area and, if nec-
essary, to remove variables with substantial differences. Another 
option would be to define fixed specific quarters based on pheno-
logical characteristics rather than climatological ones. However, 
this requires an understanding of the phenological characteristics 
of the species and its dependence on specific climatological con-
ditions at specific times of the year. For example, if an annual plant 
requires precipitation within the juvenile stage, precipitation in 
spring (e.g., March–April–May) should be the variable of interest. 
Fixed quarters based on phenological characteristics ensure that 
both the statistical and the phenological link are valid. A similar 
assumption is provided by Booth  (2022), who recommends fixed 
winter and summer periods as one option to overcome these 
discontinuities.

The question of which calculation scheme to use depends pri-
marily on the scientific question, the species, and what is known 
about the natural limits of that species. One suggestion is that, if 
the natural limits of the species are known, absolute rather than 
mean maximum (BCV-5) or minimum (BCV-6) temperatures and 
year-by-year (BIO) calculation of BCVs may be better for immo-
bile species (i.e., plants) as they better represent the biological 
limits of the species. In contrast, for mobile species (i.e., animals), 
climatological means (CLIM) should be considered since the dis-
tribution of the species is not limited by single events but by 
long-term disturbances. In addition, we recommend to rely on the 
climatological calculation scheme if the goal of the study is to 
assess the future distribution or ecological niches of a species. 
Although this blurs the definition of the variables, since the actual 
wettest period of the year is not always selected, the statistical 
link is preserved. In our opinion, this is a prerequisite when mod-
els are transferred to future periods where intra-annual reloca-
tions of, for example, the wettest quarter are more than likely. 
This is also in agreement with Bede-Fazekas and Somodi (2020), 
who recommend using the static approach for BCV calculation to 
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achieve better congruence between recent and future periods. 
In general, whatever approach is used to calculate BCVs, a de-
tailed description of the calculation scheme (Bede-Fazekas & So-
modi, 2020) and a justification of why this scheme is used should 
be provided in each study.

In summary, BCVs are considered blessings in part as they have 
provided effective results for many hundreds of SDM analyses 
(Bradie & Leung, 2017). However, this blessing can turn into a curse, 
as the vague definition of the variables allows some leeway. With-
out deeper insight into the underlying calculation scheme, the use 
of BCVs implies that results from different studies are easily com-
parable, which is obviously not the case when different calculation 
schemes are used. Using the same set of BCVs and the same sta-
tistical model, different calculation schemes for SDM of the same 
species may produce different results, so comparability of results is 
limited at best.
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